人教版高一数学必修四第一章正切函数的性质与图象

合集下载

必修四1.4.3正切函数的性质与图象

必修四1.4.3正切函数的性质与图象

3 (1) 2 4 (1)
(2)2
(2)
题型三
【例 3】 求下列函数的最小正周期: ( 1) y=- tan x 3 ;
求周期
ቤተ መጻሕፍቲ ባይዱ
3
5
( 2) y=| tan x| . 分析: ( 1) 利用 T= 求解; ( 2) 画出函数图象利用图象法求解.
|ω|
解: ( 1) ∵ ω= , ∴ 最小正周期 T= = 3.
内都是增函数。
kπ , ( ,0) k Z 2
对称轴呢?
典型例题
例1.求函数y= tan(

2
x

3
)的定义域、周期和单调区间。
5 定义域: x x 2k , k 3
周期:T 2
5 1 单调增区间: +2k , 2k , k 3 3
y tan x

正切函数的图象
3 2

0
y
3 2

2


3 2
o
x
问题4、正切函数 y
= tanx 的单调性。

2 k ,
正切函数在开区间(问题5、正切函数 y

= tanx
2 的值域。
k ), k 内都是增函数.
值域为R
正 切 函 数 图 像
性质 :
预习自测 1 (1) x k x k , k (2) x x k , k 2 (3) x k x k , k 2 k 2 x x , k 3 6
x k x k , k 2

高中数学人教版必修四《1.4.3正切函数的性质与图像》课件

高中数学人教版必修四《1.4.3正切函数的性质与图像》课件

由T ,
得T
2
所以y tan( x ) 的最小正周期为 。
23

k
x
2
k ,
k Z,
解得 5 2k x 1 2k, k Z,
2
2 32
3
3
因此,函数的单调递增区间是
5 3
2k,1 3
2k
,k
Z
y
1
x
-3/2
- -/2
0 /2
3/2
-1
性质 定义域 值域 周期性 奇偶性 单调性
2、通过学生自己动手作图,调动学生的积极性 和情感投入,培养学生数形结合的思想方法。
3、培养学生发觉数学规律,实践第一的观点,增 强学习数学的爱好。
重点:
学绘画正切函数的简图,推导正切函数的性质。
难点:
体验正切函数基本性质的运用
知识探究(一):正切函数的图象
摸索1:类比正弦函数图象的作法,可以利用正切线作正切 函数在区间 ( , ) 的图象,具体应如何操作?
(x R, x k , k Z )
2
正切函数是周期函数, 最小周期是
[例2]求函数 小正周期.
y 5 tan x , x (2k 1)
2
(k Z ) 的最
解:由T ,
得T
1
2
2
所以y 5 tan x , x (2k 1) (k Z ) 的最小正周期为2 。
2
f (x) tan(x) tan x f (x)
4 5
解:(1) tan1380 tan1430
(2) tan- 13 tan 17
4 5
[例5] 求函数y tan( x )的定义域,周期和单调区间。

人教版数学必修四第一章1.4.3 正切函数的性质和图象 应用课件(共21张PPT)

人教版数学必修四第一章1.4.3 正切函数的性质和图象 应用课件(共21张PPT)

基础练习
1.关于正切函数 ytanx, 下列判断不正确的是(B )
A 是奇函数 B 在整个定义域上是增函数 C 在定义域内无最大值和最小值
D 平行于 x 轴的的直线被正切曲线各支所截线
段相等
例题分析
例1、比较下列每组数的大小。
( 1 ) t a n 1 6 7 o 与 t a n 1 7 3 o
⑸( 单2调性k:,2 在k 每)一个,k开 区Z间内都是增函数。
(6)渐近线方程:xk2, kZ (7)对称中心
( kπ 2
,0 )
问题讨论
问题:
(1)正切函数是整个定义域上的增函数吗?为什么? (2)正切函数会不会在某一区间内是减函数?为什么?
A
B
(-π 2+kπ,π 2+在kπ 每一)个,k开区Z间内都是增函数。
函数 图形 定义域 值域 最值
单调性 奇偶性
周期 对称性
y=sinx
y
1
2
0
-1
3
2
2
xR
2
5 2
x
y=cosx
y
1
0
2
3 2
2
5 2
x
-1
xR
y[1,1]
y[1,1]
x
2
2k 时, ymax
1
x 2 2k时,ymin 1
x2k时, ymax 1
x2k时,ymin 1
x[-22k,22k] 增函数 x[22k,322k] 减函数
四、小结:正切函数的图像和性质
1、 正 切 曲 线 移是 正先 切 y 利 t线 ax用 n ,x得 (平 ,)的 图 象 22
再 利 用 周 期 象性 向把 左该 、段 右图 扩 展 得 到

高中数学必修4《正切函数的性质与图象》课件1

高中数学必修4《正切函数的性质与图象》课件1

tan( 13 ) tan 2
5
5
又Q 0< < 2 <
45 2
tan( 11 ) tan( 13 )
4
5
说明:比较两个正切值大小,关键是把相应的角 化到
y=tanx的同一单调区间内,再利用y=tanx的单调递增性
解决。
知识巩固
练习
(1) tan138 与tan143
(2)
tan
画函数 y tan(x的图像),并通过图像讨论其的性质
4
y tan x
y
7 4
3 2
5 4
3 4
2
4
0
4
2
3 4
5 4
3
2
x
动手实践:
函数y tan(x 的性质

4
定义域:
值域: R
x
x
R且x
4
k
,
k
Z
周期性: T
奇偶性:
非奇非偶
单调性: ( 3 k , k ), k Z增函数
42
4
因此,函数的定义域是
x
x
R且x
4
k
,k
Z
Q
y
tan
2
tk的 单 x调 增 4 区2间是k
-
2
k
,
2
k
,
k
Z
3 k x k
4
4
函数的单调增区间是
3
4
k ,
4
k
,
k
Z
变式提高
2、求满足下列式子x的取值范围 : y tan x
若tan(x ) 1,则

高中数学必修4;正切函数的图象和性质_课件ppt_

高中数学必修4;正切函数的图象和性质_课件ppt_
<
>
2单、调求区函间数、对y 称3t中an(心3x坐标3 )及的渐定近义线域方,程值。域,
第十二页,编辑于星期日:二十三点 三十九分。
例题分析
例3 求函数 y tan 3x 的周期.
解: 因为tan(3x ) tan 3x,
即tan3(x+ )=tan3x,
3
f (x ) f (x)
4
,
0
第九页,编辑于星期日:二十三点 三十九分。
例5画出函数 y tan x的图像,并指出其单调区间、奇偶性和周期。
3
2
2
3
2
3 2
2
3
2
第十页,编辑于星期日:二十三点 三十九分。
例6、比较下列每组数的大小。
解: (1)
(2)tan(-
11π) 4

tan(-
13π) 5
900 1670 1730 1800
24
例2关于正切函数 y tan x, 下列判断不正确的是( )
• A 是奇函数
• B 在整个定义域上是增函数
• C 在定义域内无最大值和最小值
• D 平行于 x轴的的直线被正切曲线各支所截线段相等
例3.函数 y tan(3x的) 一个对称中心是( )
A.9Biblioteka ,0B.4
,
0
C.
6
,
0
D.
k
3
,
k
2
(k
Z
)
第十四页,编辑于星期日:二十三点 三十九分。
反馈演练
1、 解不等式 1+tanx 0
2、解不等式:1- tan x 0
3、解不等式:tan(x ) 3

第一章 正切函数的性质与图象

第一章 正切函数的性质与图象

人教A版必修四· 新课标· 数学
版块导航
温馨提示:本题将正切函数的值域、单调性及二次函数 在限定区间上的最值问题有机地综合在一起,同时充分体现 了化归转化数学思想的渗透.
人教A版必修四· 新课标· 数学
版块导航
规律归纳 对于正切函数 y=tanx,图象都是向上和向下无限伸展 的,故 tanx 的值域是实数集 R,无最大值,最小值,求解关 于 tanx 的值域可用换元法求解.
版块导航
(2)不等式 1+tanx≤0 即 tanx≤-1, 在同一直角坐标系中作出 正切函数的图象和直线 y=-1, 如图 π π 显然在(- , )上 2 2 π 满足 tanx=-1 的是 x=- . 4 π π π π 由图可知在(- , )上使不等式成立的 x 的取值范围是- <x≤- . 2 2 2 4 π π 故使不等式成立的 x 的集合为{x|kπ- <x≤kπ- ,k∈Z}. 2 4
)
人教A版必修四· 新课标· 数学
版块导航
3.函数 y=|tanx|的图象对称于( A.原点 B.y 轴 C.x 轴 D.直线 y=x
)
解析:函数为偶函数. 答案:B
人教A版必修四· 新课标· 数学
版块导航
π 4.函数 y=tan(2x-4)的单调区间是________.
π π π kπ π kπ 3π 解析:由 kπ-2<2x-4<kπ+2,得 2 -8<x< 2 + 8 (k∈Z), π kπ π kπ 3π ∴函数 y=tan(2x-4)的单调增区间为( 2 -8, 2 + 8 )(k∈Z).
人教A版必修四· 新课标· 数学
版块导航
点此进入
点此进入
点此进入

高中数学_1.4.3正切函数的性质与图象教学设计学情分析教材分析课后反思

高中数学_1.4.3正切函数的性质与图象教学设计学情分析教材分析课后反思

《正切函数的性质与图象》的教学设计一.教材分析1.地位与作用《正切函数的性质与图象》是高中数学必修4第一章第四节内容(人教版)。

在学习了正弦函数、余弦函数的图象与性质之后,研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升。

2.教材处理教材采用探究的方法引导学生注意正切函数与正弦函数在研究方法上类似,我采用以提问、设计问题探究的方式,让学生回忆如何有前面学习的知识得到正切函数的性质。

数的研究缺乏形象、直观的特点,进而引导学生由正弦线得到正切曲线的作图过程与方法,设计一系列问题一步步引导学生注意画正切曲线的细节。

我把空间、时间留给学生,让他们自主探究,不仅发挥了学生的能动性,而且增强了动脑、动手绘图的能力。

二.学情分析通过前面正切线,诱导公式的学习,学生已经能解决部分问题,尤其对正弦函数图象与性质的研究,让学生有了思考的方向,且具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。

但在画正切函数图象时,还有许多需要注意的地方,比如定义域,函数区间等问题。

这又提升了学生分析问题的能力及严密认真的态度。

三.教学目标确定正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。

本着新课程标准的理念,养成学生对知识的生成过程的体验,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:1.知识目标:1).掌握正切函数的性质.2).能借助单位圆中的正切线画出正切函数的图像.3).能够利用正切函数的图像与性质解决问题.2. 过程与方法:1)通过类比,联想正弦函数图象的作法作正切函数的图象.2)能学以致用,结合图象分析得到正切函数的性质,并能解决问题。

3.情感态度与价值观:通过一系列问题的设置,培养学生用联系发展的观点思考问题,充分体验数形结合的思想优势,激发学生学习的积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生学好数学的自信心. 4.重点与难点重点:正切函数的图象及其主要性质。

人教版数学必修四第一章1.4.3 正切函数的性质和图象 经典教案

人教版数学必修四第一章1.4.3 正切函数的性质和图象 经典教案

1.4.3正切函数的性质与图象一、教材分析《正切函数的图象和性质》是人教A版高中《数学》必修4第一章第四单元第三节内容,本节课既是对前面正余弦函数图象和性质知识的延展、对三角函数内容的进一步完善,也为学习后续知识直线的斜率作了铺垫.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后从代数角度对性质作出严格表述.但对正切函数,教材采用了先根据已有的知识(正切函数定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.主要是为了给学生提供研究函数问题更多的视角,加强了理性思考的成分,并使数形结合的思想体现得更加全面.二、教学目标(一)知识与技能1.理解并掌握正切函数的定义域、周期性、奇偶性、单调性、值域等性质;2.能利用正切线画出正切函数的准确图象,利用“三点两线”画出正切函数的简图,掌握正切函数图象结构、特征;3.能根据正切函数图象观察性质,根据性质理解图象,用数形结合的思想理解和解决一些简单的三角问题.(二)过程与方法1.通过复习回顾正、余弦函数图象与性质的探究过程,引导学生将本节课要学习的内容与之建立起联系,培养学生的“类比”思维能力;2.利用诱导公式、正切线等探究正切函数的性质;3.经历由正切函数的性质推测图象,再由图象理解性质的过程,渗透了“由数到形和由形到数”的“数形结合”的思想,从而培养学生自觉运用“数形结合”的思想从不同角度解决问题的能力;4.在正切函数的图象分析中,让学生体会、感知无限逼近(极限)的思想;5.通过讲解例题,总结方法,巩固练习等,学会用数形结合的思想理解和处理问题.(三)情感态度与价值观在得到正切函数图象的过程中,学会一类周期性函数的研究方式,通过自己动手得到图象让学生亲身经历数学研究的过程,体验探索的乐趣.通过数形结合,培养学生勇于探索、勤于思考的习惯,渗透由抽象到具体的思想方法,让学生理解动与静的唯物辨证观,进一步培养学生合作学习和数学交流的能力,增强对数学的应用意识,同时,正切曲线的中心对称性让学生感受到数学的美学魅力,增强学生的学习兴趣.三、学情分析学生在知识上已经掌握了三角函数的定义,诱导公式,三角函数线,正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.四、教学重难点教学重点:正切函数的性质,用单位圆中的正切线作正切函数图象.教学难点:1.利用单位圆中的正切线探究正切函数的单调性;2.利用正切线及正切函数的奇偶性、单调性作⎪⎭⎫ ⎝⎛-∈=2,2,tan ππx x y 图象; 3.正切函数性质的简单应用.五、教学用具直尺,三角板,圆规,多媒体设备(PPT ).六、教学过程(一)复习回顾(0.5分钟)回忆:在前面已经学习了哪几种三角函数的图象和性质?研究了它们的哪些性质?学生自由发言,互相补充,之后教师作口头梳理.设计意图:复习巩固已学知识,为后面教学作铺垫.(二)问题引入(4.5分钟)思考1:我们是先研究的正余弦函数的图象还是性质?能否采用同样的方法研究正切函数的图象与性质呢?学生口答后,教师指出:本节课我们将不从图象研究性质,而是从一个“全新”的角度来研究正切函数的性质.(给出课题,同时板书课题)设计意图:主要是为了给学生提供研究函数问题更多的视角,加强了理性思考的成分,并使数形结合的思想体现得更加全面,同时培养学生的类比思维能力,引出这节课的课题和明确研究方向.思考2:我们学过有关正切函数的哪些性质?学生简单的口答后,提问学生回顾正切函数的定义、诱导公式、正切线等,教师在PPT 上给出单位圆,引导学生进行回顾,同时板书正切函数的定义域并强调用集合或区间表示.设计意图:为后面研究正切函数的性质、画图象作铺垫.思考3:要研究一个函数的性质,我们一般从哪些方面入手?学生自由发言,互相补充,之后教师给出下一个问题.思考4:在这众多的性质中,我们先研究哪个性质更好呢?教材中是先研究的哪个性质?(周期性)学生自由发言,教师稍作等候后对给出不同回答的同学进行提问,并做补充解释,让学生明白先研究周期性的原因:如果一个函数具有周期性,那么当研究清楚该函数在一个周期内的性质之后,就可以推广到整个定义域上,可以降低探究难度.在本节中,对探究单调性和图象等有所帮助..设计意图:周期性是学生刚刚接触到的一个函数性质,相对其他性质还比较陌生,这样设计能让学生进一步体会到周期性在函数性质研究中的地位与作用.(三)探究新知1.性质(共12分钟)(1)周期性(3分钟)引导性提问:正切函数有没有周期性?→周期是多少?→如何得到的?(tanx π)tan(x =+)→正切函数的周期是π.学生自由口答,教师可视情况进行提问,引导学生结合周期性的定义对正切函数的周期是π做一强调,指出与正余弦函数周期的不同,并板书性质.(2)奇偶性(3分钟)引导性提问:正切函数有没有奇偶性?→是奇函数还是偶函数,为什么?→I x x x ∈∀=-,tan )tan(,→定义域关于原点对称→正切函数是奇函数.学生自由口答,若学生没提到检验定义域,则教师提醒学生要先检验定义域是否关于原点对称,并师生共同完成正切函数定义域的检验,为直观起见,可借助数轴.设计意图:强调判断奇偶性要先看定义域,同时先探究奇偶性对探究单调性有所帮助. (3)单调性(5分钟)思考5:既然正切函数的周期是π,那么我们只需要研究一个长度为多少的区间上的单调性?选择哪个区间好呢? 学生思考后自由回答,若回答不准确,则教师引导学生选择包含原点的区间⎪⎭⎫ ⎝⎛22-ππ,,因为原点附近的角是我们常见的角.思考6:这个区间能否根据我们已经得到的某一条性质进一步缩小呢?学生自由口答,教师较有指向性的提问,能使学生很容易发现“由于正切函数是奇函数,只需要探究它在⎪⎭⎫ ⎝⎛20π,上的单调性”. 思考7:如何探究正切函数在⎪⎭⎫ ⎝⎛20π,上的单调性?已掌握的有关正切函数的知识中,可以用来比较正切值大小是什么?给学生充足的时间相互探讨,由于已学过的有关正切函数的知识只有“定义、诱导公式和正切线”,所以学生在简单的讨论交流之后应该很容易想到是正切线.教师引导学生借助正切线探究正切函数在单调性⎪⎭⎫ ⎝⎛20π,上的单调性,再根据奇偶性将结论推广到⎪⎭⎫ ⎝⎛22-ππ,,再根据周期性将结论推广到整个定义域.设计意图:正切函数单调性的探究是本节课的难点,在本节课中利用已经得到的奇偶性和周期性,将需要研究的单调区间一步步缩小,之后再利用奇偶性和周期性,还原出正切函数在定义域上的单调情况,让学生体会到函数性质之间的联系,培养学生“从特殊到一般”“从局部到整体”的数学思维.另外,当明确了单调性之后,值域也能很容易得到.(4)值域(1分钟)正切函数在⎪⎭⎫ ⎝⎛-2,2ππ上的值域是R→正切函数的值域是R→无最大值和最小值. 2.图象(共11分钟)猜想:根据我们已经探究出的正切函数的性质,请同学们先猜想、想象一下正切函数的图象会如何呢?学生想象,稍后教师提问一名学生,让他口头表述自己想象的正切函数的图象,之后教师引导学生画图验证猜想.设计意图:猜想图象可使学生对性质进行整合,培养学生的想象能力.思考8:利用已知的性质,如何画函数的图象?可以先画怎样的一个区间内的图象? 教师较有提示性的提问,学生很容易做出回答:由于正切函数的是周期为,所以只需要画出一个周期内的图象,然后通过平移就可以得到在整个定义域内的图象.由于在探究单调性时就选取的⎪⎭⎫ ⎝⎛-2,2ππ,所以学生也能很容易想到先画出⎪⎭⎫ ⎝⎛-2,2ππ上的函数图象. 类比正弦函数图象的作法,利用单位圆中的正切线绘制()Z k k x x y ∈+≠=,2,tan ππ图象.(1)教师借助PPT ,引导学生按照下列步骤作图:(5分钟)①作直角坐标系,并在直角坐标系轴左侧作单位圆; ②选取特殊角:34606-4-3-ππππππ,,,,,,,分别在单位圆中作出正切线,以6π为例进行详细的步骤说明;③描点;(纵坐标是相应的正切线)④连线:当x 趋近于22-ππ或时,图象的走势如何?思考之后学生自由回答,教师引导学生理解22-ππ==x x 和是正切函数的两条渐进线.思考9:有时不需要画出正切函数精确的图象,只需画出简图,只需确定哪些点或线就能画出函数⎪⎭⎫ ⎝⎛∈=22-,tan ππ,x x y 的简图? 学生可看出有三个点很关键(0,0),),(14--π,),(14π,还有两条渐近线:2π-=x ,2π=x .即“三点两线”.学生回答之后,教师板演画出草图.思考10:如何得到函数在⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2322-23-ππππ,,,上的图象?整个定义域上的图象呢? 学生自由回答,根据正切函数的周期性,我们可以把上述图象左右平移,得到正切函数()Z k k x x y ∈+≠=,2,tan ππ的图象,称为“正切曲线”.教师板演画出⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2322-23-ππππ,,,上的草图.这时,学生可以拿出先前由性质推测的图象进行对比,自己找出问题,加以体会.设计意图:培养学生运用类比的方法解决问题的能力,形成对正切函数图象的感知.(2)观察图象,验证、丰富性质(4分钟)从图中可以看出,正切曲线是被相互平行的直线()Z k k x ∈+=,2ππ所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;从y 轴方向看,上下无限延伸,得到它的哪一性质——值域为R ;图象关于原点中心对称,得到它的哪一性质——奇函数;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是Z k k k ∈⎪⎭⎫ ⎝⎛++,22-ππππ,,没有减区间. 设计意图:形与数的结合,更能加深对性质的认识,对比正切函数的性质和图象,分析各个性质在图象上的反映,得出:函数的性质有利于画函数的图象,函数的图象是其性质的直观反应,培养学生的识图能力,利用正切函数的图象进一步加深对性质的理解,体会“数形结合”的思想,同时,由渐近线感知无限逼近的思想.追问:在整个定义域上是增函数吗?注意:只能说在某个区间单调递增,不能说在整个定义域单调递增.设计意图:避免一些错误认识,进一步加深对正切函数单调性的理解.它的图象是关于原点对称的,得到是哪一性质——奇函数.追问:认真观察图象还有其它的对称中心吗?有没有对称轴? 通过图象我们还能发现是中心对称,对称中心是Z k k ∈⎪⎭⎫ ⎝⎛,,02π,无对称轴. 强调:正切函数的对称中心是图象和渐近线与x 轴的交点.3.例题分析(8分钟)例1.求函数y =tan (2πx +3π)的定义域、周期和单调区间. 教师板演讲解,说明可将2πx +3π作为一个整体来处理,而不必设元,并写出解题过程,以规范学生的解题步骤. 设计意图:巩固正切函数的定义域、周期性和单调性,渗透换元的思想.例2.比较大小()︒167tan 1︒173tan ()⎪⎭⎫ ⎝⎛-411tan 2π 513tan π 学生思考后,举手发言,说明理由.教师提醒学生注意利用诱导公式将角度转化为同一单调区间后才能进行比较,并结合正切函数的图象加以说明.设计意图:深化对正切函数的单调性的理解和转化的思想.练习:(5分钟)1.观察正切函数的图象,写出使不等式3tan ≥x 成立的x 的集合.2.求函数x y 3tan =的定义域、值域、周期和单调区间.(学生板演)(四)小结1.正切函数的性质与图象;2.性质有助于更有效的作图,图象有助于更直观的研究性质;3.数形结合的思想方法;设计说明:从知识,方法,思想三个方面对本节课进行总结.(五)布置作业习题1.4,A组,8,9题,B组2题:其他题完成在书上.七、板书设计。

数学必修四课件 1.4.3 正切函数的性质与图象

数学必修四课件 1.4.3 正切函数的性质与图象

17π - 【解析】tan =-tan 4 22π - tan =-tan 5
π , 4
2π , 5
π π 2π π 2π π ∵- < < < ,∴tan >tan , 2 4 5 2 5 4 即
17π 22π - tan- 4 >tan . 5
)
tan 2x 3.函数 f(x)= 的定义域为( tan x
kπ A.xx∈R且x≠ 4 ,k∈Z
)
π B. xx∈R且x≠kπ+4,k∈Z π C. xx∈R且x≠kπ+2,k∈Z π D.xx∈R且x≠kπ-4,k∈Z

【答案】A
• 正切函数的性质
【例 1】 求函数 间.
【解题探究】 利用正切函数的定义域, 求出函数的定义域, 通过正切函数的周期公式求出周期,结合正切函数的单调增区 间求出函数的单调增区间.
π π y=tan2x+3 的定义域、周期和单调区
π π π 1 【解析】由 x+ ≠ +kπ,k∈Z,解得 x≠ +2k,k∈Z. 2 3 2 3
1 ∴定义域为 xx≠3+2k,k∈Z .
π 周期 T= =2. π 2 π π π π 由- +kπ< x+ < +kπ,k∈Z, 2 2 3 2 5 1 解得- +2k<x< +2k,k∈Z. 3 3
5 1 ∴函数的单调递增区间为-3+2k,3+2k ,k∈Z.
• 【方法规律】运用正切函数单调性比较大小 的方法 • (1)运用函数的周期性或诱导公式将角化到同 一单调区间内. • (2)运用单调性比较大小关系.

高一数学人必修四课件时正切函数的性质与图象

高一数学人必修四课件时正切函数的性质与图象

THANKS
感谢观看
在受迫振动中,可以利用正切函数表示驱动力与时间 的关系,从而分析受迫振动的响应情况,如共振现象 等。
06
总结回顾与拓展延伸
重点难点总结回顾
01
正切函数的定义域、值域及周期性
正切函数在每个开区间(kπ-π/2, kπ+π/2) (k∈Z)内有定义,值域为全
体实数,周期为π。
02
正切函,形状类似于正弦函数和余弦函数
学生有时会将正切函数与其他三角函数混淆,导致解题错误。纠正方法是加强对三角函数 的理解和记忆,明确它们之间的区别和联系。
忽视周期性
正切函数具有周期性,但学生在解题时有时会忽视这一点,导致答案不完整或错误。纠正 方法是始终牢记正切函数的周期性,并在解题时特别注意。
拓展延伸:反三角函数简介
反三角函数的定义
通过万能公式将正弦、余弦函数转换为正切函数,如 sinθ=(2tan(θ/2))/(1+tan^2(θ/2)),cosθ=(1-tan^2(θ/2))/(1+tan^2(θ/2))。
05
正切函数在实际问题中应用
角度计算问题
利用正切函数的性质,可以解 决与角度相关的问题,如计算 角度、判断角的大小关系等。
高一数学人必修四课 件时正切函数的性质 与图象
汇报人:XX 20XX-01-22
contents
目录
• 正切函数基本概念 • 正切函数图象特征 • 正切函数性质分析 • 正切函数与其他三角函数关系 • 正切函数在实际问题中应用 • 总结回顾与拓展延伸
01
正切函数基本概念
正切函数定义
01
正切函数是三角函数的一种,表 示直角三角形中一个锐角的对边 与邻边的比值。

课件正切函数的图像和性质河南省新乡市-中学_人教版高中数学必修四PPT课件_优秀版

课件正切函数的图像和性质河南省新乡市-中学_人教版高中数学必修四PPT课件_优秀版

]
减函数
奇函数
2
对称轴: x
2
k
,
k
Z
对称中心: (k , 0) k Z
y=cosx
y
1
0
2
3 2 5 x
2
2
-1
xR
y [1,1]
x 2k 时, ymax 1 x 2k 时,ymin 1
x[ 2k , 2k ] 增函数
x[2k , 2k ] 减函数
偶函数
2
对称轴: x k , k Z 对称中心:(2 k , 0) k Z
正切函数
的性质:
取 x∈ (-π/2,π/2) ,先画函数y=tanx 在
函数 图像 定义域 值域 最值
单调性 奇偶性
周期 对称性
y=sinx
y
1
2
0
2
-1
3 2 5 x
2
2
xR
y [1,1]
x
2
2k 时, ymax
1
x
2
2k 时,ymin
1
x[-
2
2k
,
2
2k
]
增函数
x[2
2k ,
3
2
2k
向右平移,每次平移π个单位长度就得到y=tanx
1、根据正切函数的定义域和周期, 向右平移,每次平移π个单位长度就得到y=tanx
1
你能否得出一般性的结论? 取 x∈ (-π/2,π/2) ,先画函数y=tanx 在
x
取 x∈ (-π/2,π/2) ,先画函数3y=tanx 在 2
2
O
2
3 2
向右平移,每次平移π个单位长度就得到y=tanx

人教A高中数学必修4第一章 1.4 1.4.3 正切函数的性质与图象

人教A高中数学必修4第一章  1.4  1.4.3 正切函数的性质与图象
π π 在-2,2 内是增函数,
返回导航
上页
下页
∴tan(2-π)<tan(3-π)<tan 1, 即 tan 2<tan 3<tan 1.
人教A版数学·必修4
返回导航
上页
下页
1.求函数 y=Atan(ωx+φ)(A,ω,φ 都是常数)的单调区间的方法 (1)若 ω>0, 由于 y=tan x 在每一个单调区间上都是增函数, 故可用“整体代换” π π 的思想,令 kπ- <ωx+φ<kπ+ ,求得 x 的范围即可. 2 2 (2)若 ω<0,可利用诱导公式先把 y=Atan(ωx+φ)转化为 y=Atan[-(-ωx-φ)] =-Atan(-ωx-φ),即把 x 的系数化为正值,再利用“整体代换”的思想,求 得 x 的范围即可. 2.运用正切函数单调性比较大小的方法 (1)运用函数的周期性或诱导公式将角化到同一单调区间内. (2)运用单调性比较大小关系.
π 3 得 2kπ- <x<2kπ+ π,k∈Z. 2 2 ∴函数 y=tan
1 π - x+ 的单调递减区间是 4 2
π 3 2kπ- ,2kπ+ π,k∈Z. 2 2
人教A版数学·必修4
(2)∵tan 2=tan(2-π),tan 3=tan(3-π), π π 又∵ <2<π,∴- <2-π<0. 2 2 π π ∵ <3<π,∴- <3-π<0, 2 2 π π 显然- <2-π<3-π<1< , 2 2 且 y=tan x
人教A版数学·必修4
返回导航
上页
下页
1.4.3 正切函数的性质与图象

人教新课标A版高中数学高一必修4课件1.4.3正切函数的性质与图象

人教新课标A版高中数学高一必修4课件1.4.3正切函数的性质与图象

1.4.3 正切函数的性质与图象
6
[预习导引] 正切函数y=tan x的性质与图象
y=tan x
图象
1.4.3 正切函数的性质与图象
7
定义域
{x|x∈R,且 x≠kπ+2π,k∈Z}
值域 周期
R 最小正周期为 π
1.4.3 正切函数的性质与图象
8
奇偶性
奇函数
单调性
在开区间 kπ-π2,kπ+2π (k∈Z) 内递增
2.正切函数的性质
(1)正切函数y=tan x的定义域是 x|x≠kπ+π2,k∈Z ,值域是R.
1.4.3 正切函数的性质与图象
39
(2)正切函数y=tan x的最小正周期是π,函数y=Atan(ωx+φ)
(A,ω≠0)的周期为T=|ωπ| . (3)正切函数在-2π+kπ,π2+kπ(k∈Z)上递增,不能写成闭区 间.正切函数无单调减区间.
1.4.3 正切函数的性质与图象
30
跟踪演练3 画出函数y=|tan x|的图象,并根据图象判断其单 调区间、奇偶性、周期性. 解 由y=|tan x|得, y=t-antaxn,xk,π≤-xπ2<+kπk+π<2πx<kk∈πZk∈,Z.
1.4.3 正切函数的性质与图象
31
其图象如图.
由图象可知,函数y=|tan x|是偶函数,
x≠π3+kπ.
所以函数的定义域为
π4+kπ,3π+kπ∪π3+kπ,π2+kπ(k∈Z).
1.4.3 正切函数的性质与图象
11
规律方法 求定义域时,要注意正切函数自身的限制条件, 另外解不等式时要充分利用三角函数的图象或三角函数线.
1.4.3 正切函数的性质与图象

1.4.3正切函数的性质与图象(教学设计)

1.4.3正切函数的性质与图象(教学设计)

1.4.3正切函数的性质与图象(教学设计)教学目的:知识目标:1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质;能力目标:1.理解并掌握作正切函数图象的方法;2.理解用函数图象解决有关性质问题的方法;德育目标:培养认真学习的精神;教学重点:用单位圆中的正切线作正切函数图象; 教学难点:正切函数的性质。

授课类型:新授课教学模式: 启发、诱导发现教学. 教学过程:一、复习回顾,新课引入: 问题:正弦曲线是怎样画的?正切线?练习正切线,画出下列各角的正切线:.下面我们来作正切函数图象. 二、师生互动,新课讲解:1.正切函数tan y x =的定义域是什么? ⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ2.正切函数是不是周期函数?()tan tan ,,2x x x R x k k z πππ⎛⎫+=∈≠+∈ ⎪⎝⎭且,∴π是tan ,,2y x x R x k k z ππ⎛⎫=∈≠+∈ ⎪⎝⎭且的一个周期。

π是不是正切函数的最小正周期?下面作出正切函数图象来判断。

3.作tan y x =,x ∈⎪⎭⎫⎝⎛-2,2ππ的图象说明:(1)正切函数的最小正周期不能比π小,正切函数的最小正周期是π;(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数R x x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”。

4.正切函数的性质 引导学生观察,共同获得: (1)定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ; (2)值域:R观察:当x 从小于()z k k ∈+2ππ,2π+π−→−k x 时,tan x −−→+∞ 当x 从大于()z k k ∈+ππ2,ππk x +−→−2时,-∞−→−x tan 。

(3)周期性:π=T ;(4)奇偶性:由()x x tan tan -=-知,正切函数是奇函数;(5)单调性:在开区间z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2内,函数单调递增。

高中数学人教A版必修4第一章1.4.3正切函数的性质与图像课件

高中数学人教A版必修4第一章1.4.3正切函数的性质与图像课件
1.4.2 正切函数的性质与图像
目标: 1.了解正切函数图像的几何画法; 2.掌握正切函数的性质; 3.能对应正切函数的图像和性质解决问题.
重难点:正切函数的图像及性质
探究1:正切函数的性质
思考1:正切函数的定义域是什么?
思考2:根据相关诱导公式,你能判断正切函数是周期函数吗?
探究2:正切函数的图像
目标: 1.了解正切函数图像的几何画法; 2.掌握正切函数的性质; 3.能对应正切函数的图像和性质解决问题.
重、难点:正切函数的图像及性质
正切函数的性质:
1.定义域: 2.值域: 3.单调性: 4.奇偶性:奇函数 5.周期性: 6.对称性:
1
思考:如何画出正切函数在其他区间上的图像?
可以利用正切函数的周期性
探究3:正切函数的图像与性质
观察正切函数的图像,得到正切函数的以下性质:
1.定义域: 2.值域: 3.单调性:
思考:正切函数在整个定义域上是增函数吗?为什么?
观察正切函数的图像,得到正切 函数的以下性质:
1.定义域: 2.值域: 3.单调性: 4.奇偶性:奇函数 5.周期性: 6.对称性:

高一数学人教A版必修四课件:第一章 《三角函数》1.4.3 正切函数的性质与图象 课件资料

高一数学人教A版必修四课件:第一章 《三角函数》1.4.3 正切函数的性质与图象 课件资料

学案·新知自解教案·课堂探究练案·学业达标1.4.3正切函数的性质与图象学案·新知自解教案·课堂探究练案·学业达标学案·新知自解学案·新知自解教案·课堂探究练案·学业达标1.能画出y =tan x 的图象. 2.理解正切函数y =tan x在⎝⎛⎭⎪⎪⎫-π2,π2上的性质. 3.能够熟练应用正切函数y =tan x 的性质.学案·新知自解教案·课堂探究练案·学业达标函数y =tan x 的图象与性质解析式y =tan x图象定义域__________________________⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z学案·新知自解教案·课堂探究练案·学业达标值域 ___ 周期 ___ 奇偶性 ______单调性在开区间________________________上都是增函数R π 奇函数 ⎝ ⎛⎭⎪⎪⎫k π-π2,k π+π2,k ∈Z学案·新知自解教案·课堂探究练案·学业达标[化解疑难]如何作正切函数的图象 (1)几何法就是利用单位圆中的正切线来作出正切函数的图象,该方法作图较为精确,但画图时较烦琐.(2)“三点两线”法“三点”是指⎝⎛⎭⎪⎪⎫-π4,-1,(0,0),⎝⎛⎭⎪⎪⎫π4,1;“两线”是指x =-π2和x =π2.在三点、两线确定的情况下,类似于五点法作图,可大致画出正切函数在⎝⎛⎭⎪⎪⎫-π2,π2上的简图,然后向右、向左扩展即可得到正切曲线.学案·新知自解教案·课堂探究练案·学业达标1.f (x )=tan ⎝⎛⎭⎪⎪⎫2x +π3的最小正周期为( )A .π4 B .π2 C .πD .2π学案·新知自解教案·课堂探究练案·学业达标解析: 方法一:函数y =tan (ωx +φ)的周期是T =π|ω|,直接套用公式,可得T =π|2|=π2.方法二:由诱导公式可得tan ⎝ ⎛⎭⎪⎪⎫2x +π3=tan ⎝ ⎛⎭⎪⎪⎫2x +π3+π=tan ⎣⎢⎢⎡⎦⎥⎥⎤2⎝⎛⎭⎪⎪⎫x +π2+π3,所以f ⎝⎛⎭⎪⎪⎫x +π2=f (x ),所以周期为T =π2.答案: B学案·新知自解教案·课堂探究练案·学业达标2.函数f (x )=tan ⎝ ⎛⎭⎪⎫x +π4的单调增区间为()A.⎝ ⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z B .(k π,k π+π),k ∈ZC.⎝ ⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝ ⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z学案·新知自解教案·课堂探究练案·学业达标解析: 由k π-π2<x +π4<k π+π2(k ∈Z),得k π-34π<x <k π+π4,k ∈Z ,所以函数f (x )的递增区间为⎝ ⎛⎭⎪⎫k π-34π,k π+π4(k ∈Z).答案: C学案·新知自解教案·课堂探究练案·学业达标3.函数f (x )=tan 2xtan x的定义域为________.解析: 函数应满足⎩⎪⎪⎨⎪⎪⎧2x ≠k π+π2,x ≠k π+π2,tan x ≠0(k ∈Z),即⎩⎪⎪⎨⎪⎪⎧x ≠k π2+π4,x ≠k π+π2,x ≠k π,(k ∈Z),所以x ≠k π4,k ∈Z. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π4,k ∈Z学案·新知自解教案·课堂探究练案·学业达标教案·课堂探究学案·新知自解教案·课堂探究练案·学业达标正切函数的定义域自主练透型求下列函数的定义域:(1)y =tan ⎝ ⎛⎭⎪⎫x +π4;(2)y =3-tan x .解析: (1)由x +π4≠k π+π2(k ∈Z)得,x ≠k π+π4,k ∈Z ,所以函数y =tan ⎝ ⎛⎭⎪⎫x +π4的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π4,k ∈Z .学案·新知自解教案·课堂探究练案·学业达标(2)由3-tan x ≥0得,tan x ≤ 3. 结合y =tan x的图象可知,在⎝ ⎛⎭⎪⎫-π2,π2上,满足tan x ≤3的角x 应满足-π2<x ≤π3,所以函数y =3-tan x 的定义域为⎩⎨⎧⎭⎬⎫x |k π-π2<x ≤k π+π3,k ∈Z .学案·新知自解教案·课堂探究练案·学业达标[归纳升华]求正切函数定义域的方法(1)求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y=tan x有意义即x≠π2+kπ,k∈Z.而对于构建的三角不等式,常利用三角函数的图象求解.(2)求正切型函数y=A tan(ωx+φ)(A≠0,ω>0)的定义域时,要将“ωx+φ”视为一个“整体”.令ωx+φ≠kπ+π2,k∈Z,解得x.学案·新知自解教案·课堂探究练案·学业达标1.求函数y =11+tan x的定义域.解析: 要使函数有意义,则有1+tan x ≠0, ∴tan x ≠-1,∴x ≠k π-π4且x ≠k π+π2,k ∈Z.因此,函数y =11+tan x的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π-π4且x ≠k π+π2,k ∈Z .学案·新知自解教案·课堂探究练案·学业达标与正切函数有关的周期性、奇偶性问题多维探究型(1)求f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的周期;(2)判断y =sin x +tan x 的奇偶性.学案·新知自解教案·课堂探究练案·学业达标解析: (1)∵tan ⎝ ⎛⎭⎪⎫2x +π3+π=tan ⎝ ⎛⎭⎪⎫2x +π3,即tan ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2+π3=tan(2x +π3),∴f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的周期是π2.(2)定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z ,关于原点对称,∵f (-x )=sin(-x )+tan(-x )=-sin x -tan x =-f (x ), ∴它是奇函数.学案·新知自解教案·课堂探究练案·学业达标[归纳升华]与正切函数有关的函数的周期性、奇偶性问题的解决策略(1)一般地,函数y=A tan(ωx+φ)的最小正周期为T=π|ω|,常常利用此公式来求周期.(2)判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.若不对称,则该函数无奇偶性,若对称,再判断f(-x)与f(x)的关系.学案·新知自解教案·课堂探究练案·学业达标2.(1)函数y =tan ⎝ ⎛⎭⎪⎫π2x +3的最小正周期是()A .4B .4πC .2πD .2(2)已知函数f (x )=tan x +1tan x,若f (a )=5,则f (-a )=________.学案·新知自解教案·课堂探究练案·学业达标解析: (1)T =ππ2=π·2π=2.(2)f (x )的定义域为⎝ ⎛⎭⎪⎫k π-π2,k π∪⎝ ⎛⎭⎪⎫k π,k π+π2(k ∈Z).可知f (x )的定义域关于原点对称.又f (-x )=tan(-x )+1tan (-x )=-⎝ ⎛⎭⎪⎫tan x +1tan x =-f (x ),∴f (x )为奇函数.∴f (-a )=-f (a )=-5.答案: (1)D (2)-5学案·新知自解教案·课堂探究练案·学业达标正切函数的单调性的应用多维探究型(1)求函数y =tan ⎝ ⎛⎭⎪⎫12x -π4的单调区间;(2)比较tan ⎝ ⎛⎭⎪⎫-13π4与tan ⎝ ⎛⎭⎪⎫-12π5的大小.学案·新知自解教案·课堂探究练案·学业达标[边听边记] (1)由k π-π2<12x -π4<k π+π2(k ∈Z)得,2k π-π2<x <2k π+32π,k ∈Z ,所以函数y =tan ⎝ ⎛⎭⎪⎫12x -π4的单调递增区间是⎝⎛2k π-π2,2k π+⎭⎪⎫32π(k ∈Z). (2)由于tan ⎝ ⎛⎭⎪⎫-13π4=tan ⎝ ⎛⎭⎪⎫-4π+34π =tan 34π=-tan π4,学案·新知自解教案·课堂探究练案·学业达标tan ⎝ ⎛⎭⎪⎫-12π5=-tan ⎝ ⎛⎭⎪⎫2π+2π5=-tan 2π5,又0<π4<2π5<π2,而y =tan x 在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以tan π4<tan 2π5,-tan π4>-tan 2π5,即tan ⎝ ⎛⎭⎪⎫-13π4>tan ⎝ ⎛⎭⎪⎫-12π5.学案·新知自解教案·课堂探究练案·学业达标[归纳升华](1)求函数y=A tan(ωx+φ)(A,ω,φ都是常数)的单调区间的方法①若ω>0,由于y=tan x在每一个单调区间上都是增函数,故可用“整体代换”的思想,令kπ-π2<ωx+φ<kπ+π2,解得x的范围即可.②若ω<0,可利用诱导公式先把y=A tan(ωx+φ)转化为y=A tan[-(-ωx-φ)]=-A tan(-ωx-φ),即把x的系数化为正值,再利用“整体代换”的思想,求得x的范围即可.(2)运用正切函数单调性比较大小的方法①运用函数的周期性或诱导公式将角化到同一单调区间内.②运用单调性比较大小关系.学案·新知自解教案·课堂探究练案·学业达标3.(1)已知函数y =tan ⎝ ⎛⎭⎪⎫3x -π3,求函数的单调区间;(2)利用正切函数的单调性比较下列函数值的大小:①tan ⎝ ⎛⎭⎪⎫-6π5与tan ⎝ ⎛⎭⎪⎫-13π7; ②tan 1,tan 2,tan 3.学案·新知自解教案·课堂探究练案·学业达标解析: (1)由于正切函数y =tan x 在区间⎝⎛-π2+k π,⎭⎪⎫π2+k π(k ∈Z)上为增函数,因此令-π2+k π<3x -π3<π2+k π,解得k π3-π18<x <k π3+5π18(k ∈Z),即函数y =tan ⎝ ⎛⎭⎪⎫3x -π3的单调递增区间为⎝⎛k π3-π18,k π3+⎭⎪⎫5π18(k ∈Z).学案·新知自解教案·课堂探究练案·学业达标(2)①∵tan ⎝ ⎛⎭⎪⎫-6π5=tan ⎝ ⎛⎭⎪⎫-π5,tan ⎝ ⎛⎭⎪⎫-13π7=tan π7.又∵函数y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, 而-π2<-π5<π7<π2.∴tan ⎝ ⎛⎭⎪⎫-π5<tanπ7,即tan ⎝ ⎛⎭⎪⎫-6π5<tan ⎝ ⎛⎭⎪⎫-13π7.学案·新知自解教案·课堂探究练案·学业达标②因为tan 2=tan(2-π),tan 3=tan(3-π), 又因为π2<2<π,所以-π2<2-π<0.因为π2<3<π,所以-π2<3-π<0.显然-π2<2-π<3-π<1<π2,又y =tan x在⎝ ⎛⎭⎪⎫-π2,π2内是增函数, 所以tan(2-π)<tan(3-π)<tan 1, 即tan 2<tan 3<tan 1.学案·新知自解教案·课堂探究练案·学业达标练案·学业达标点击进入WORD链接数学必修4 第一章三角函数学案·新知自解教案·课堂探究练案·学业达标谢谢观看!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.3 正切函数的性质与图象考点 学习目标核心素养 正切函数的图象 能借助单位圆中的正切线画出y =tan x 的图象数学抽象、直观想象 正切函数的性质掌握正切函数的性质数学运算、逻辑推理问题导学预习教材P 42-P 45,并思考下列问题: 1.正切函数有哪些性质?2.正切函数在定义域内是不是单调函数?函数y =tan x 的图象与性质解析式y =tan x图象定义域 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∈Z值域 R 最小正 周期 π 奇偶性奇函数单调性在开区间⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z )上都是增函数对称性对称中心⎝⎛⎭⎫k π2,0(k ∈Z )(1)正切函数在定义域上不具备单调性,但在每一个开区间⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z )内是增函数.不能说函数在其定义域内是单调递增函数.(2)正切函数无单调递减区间,在每一个单调区间内都是递增的,并且每个单调区间均为开区间,不能写成闭区间.判断(正确的打“√”,错误的打“×”) (1)正切函数的定义域和值域都是R .( ) (2)正切函数在整个定义域上是增函数.( ) (3)正切函数在定义域内无最大值和最小值.( ) (4)存在某个区间,使正切函数为减函数.( ) 答案:(1)× (2)× (3)√ (4)× 函数f (x )=tan ⎝⎛⎭⎫x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ∈R ,x ≠k π-π2,k ∈ZB .{x |x ∈R ,x ≠k π,k ∈Z }C.⎩⎨⎧⎭⎬⎫x |x ∈R ,x ≠k π+π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x ∈R ,x ≠k π+π3,k ∈Z答案:D函数y =tan ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4的最小正周期为( )A.π2 B .π C .2π D .3π答案:A函数y =tan ⎝⎛⎭⎫x -π4的单调递增区间是________.答案:⎝⎛⎭⎫-π4+k π,3π4+k π,k ∈Z正切函数的定义域求下列函数的定义域:(1)y =11+tan x ;(2)y =lg(3-tan x ).【解】 (1)要使函数y =11+tan x有意义,需使⎩⎨⎧1+tan x ≠0,x ≠k π+π2(k ∈Z ),所以函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ∈R 且x ≠k π-π4,x ≠k π+π2,k ∈Z .(2)因为3-tan x >0,所以tan x < 3. 又因为tan x =3时,x =π3+k π(k ∈Z ),根据正切函数图象,得k π-π2<x <k π+π3(k ∈Z ),所以函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |k π-π2<x <k π+π3,k ∈Z .求正切函数定义域的方法(1)求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义,即x ≠π2+k π,k ∈Z .(2)求正切型函数y =A tan(ωx +φ)(A ≠0,ω>0)的定义域时,要将“ωx +φ”视为一个“整体”.令ωx +φ≠k π+π2,k ∈Z ,解得x .函数 y =tan(2x -π4)的定义域是________.解析:因为 2x -π4≠π2+k π(k ∈Z )⇒x ≠3π8+k π2(k ∈Z ),所以定义域为{x |x ≠k π2+3π8,k∈Z }.答案:{x |x ≠k π2+3π8,k ∈Z }正切函数的单调性及其应用(1)求y =tan ⎝⎛⎭⎫12x +π4的单调区间.(2)比较tan 65π与tan ⎝⎛⎭⎫-137π的大小. 【解】 (1)由题意,k π-π2<12x +π4<k π+π2,k ∈Z ,即k π-3π4<12x <k π+π4,k ∈Z ,所以2k π-3π2<x <2k π+π2,k ∈Z ,故单调递增区间为⎝ ⎛⎭⎪⎫2k π-3π2,2k π+π2(k ∈Z ).(2)tan 65π=tan ⎝ ⎛⎭⎪⎫π+π5=tan π5,tan ⎝⎛⎭⎫-137π=-tan 137π=-tan ⎝ ⎛⎭⎪⎫2π-π7 =-tan ⎝ ⎛⎭⎪⎫-π7=tan π7,因为-π2<π7<π5<π2,y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,所以tan π7<tan π5,即tan 65π>tan ⎝⎛⎭⎫-137π.(1)运用正切函数单调性比较大小的方法①运用函数的周期性或诱导公式将角化到同一单调区间内. ②运用单调性比较大小关系.(2)求函数y =A tan(ωx +φ)(A ,ω,φ都是常数)的单调区间的方法①若ω>0,由于y =tan x 在每一个单调区间上都是增函数,故可用“整体代换”的思想,令k π-π2<ωx +φ<k π+π2,k ∈Z ,解得x 的范围即可.②若ω<0,可利用诱导公式先把y =A tan(ωx +φ)转化为y =A tan[-(-ωx -φ)]=-A tan(-ωx -φ),即把x 的系数化为正值,再利用“整体代换”的思想,求得x 的范围即可.1.函数 f (x )=13tan ⎝⎛⎭⎫π2x +π4的单调递增区间为( )A.⎝⎛⎭⎫2k -32,2k +12,k ∈Z B.⎝⎛⎭⎫2k -12,2k +12,k ∈Z C.⎝⎛⎭⎫4k -12,4k +12,k ∈Z D.⎝⎛⎭⎫4k -32,4k +12,k ∈Z 解析:选 A .由 k π-π2<π2x +π4<k π+π2(k ∈Z )得 2k -32<x <2k +12(k ∈Z ).故 f (x )的单调递增区间为⎝⎛⎭⎫2k -32,2k +12(k ∈Z ). 2.函数y =tan ⎝⎛⎭⎫x 2+π4,x ∈⎝⎛⎭⎫0,π6的值域是________.解析:因为x ∈⎝ ⎛⎭⎪⎫0,π6,所以x 2+π4∈⎝ ⎛⎭⎪⎫π4,π3,所以tan ⎝ ⎛⎭⎪⎫x 2+π4∈(1,3).答案:(1,3)正切函数奇偶性和周期性的应用已知函数 f (x )=sin x|cos x |.(1)求函数 f (x )的定义域; (2)用定义判断函数f (x )的奇偶性; (3)在[-π,π]上作出函数 f (x ) 的图象. 【解】 (1)由 cos x ≠0,得 x ≠k π+π2(k ∈Z ),所以函数f (x )的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知函数 f (x )的定义域关于原点对称.因为 f (-x )=sin (-x )|cos (-x )|=-sin x|cos x |=-f (x ),所以 f (x )是奇函数.(3)f (x )=⎩⎪⎨⎪⎧tan x ,-π2<x <π2,-tan x ,-π≤x <-π2或π2<x ≤π,所以 f (x )在[-π,π]上的图象如图所示.正切型函数的周期性、奇偶性问题的解题策略(1)一般地,函数y =A tan(ωx +φ)的最小正周期为T =π|ω|,常常利用此公式来求周期.(2)判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.若不对称,则该函数无奇偶性,若对称,再判断f (-x )与f (x )的关系.画出 f (x )=tan |x |的图象,并根据其图象判断其单调区间、周期性、奇偶性.解:f (x )=tan |x |化为 f (x )=⎩⎪⎨⎪⎧tan x ,x ≠k π+π2,x ≥0(k ∈Z ),-tan x ,x ≠k π+π2,x <0(k ∈Z ), 根据 y =tan x 的图象,作出 f (x )=tan |x |的图象,如图所示,由图象知,f (x )不是周期函数,是偶函数,单调增区间为⎣⎢⎡⎭⎪⎫0,π2,⎝ ⎛⎭⎪⎫k π+π2,k π+3π2(k ∈N );单调减区间为⎝ ⎛⎦⎥⎤-π2,0,⎝⎛⎭⎪⎫k π-3π2,k π-π2(k =0,-1,-2,…).1.函数y =1tan x ⎝⎛⎭⎫-π4<x <π4的值域是( ) A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,1)D .(-1,+∞)解析:选B.因为-π4<x <π4,所以-1<tan x <1,所以1tan x ∈(-∞,-1)∪(1,+∞),故选B.2.比较大小:tan13π4________tan 17π5. 解析:因为tan 13π4=tan π4,tan 17π5=tan 2π5,又 0<π4<2π5<π2,y =tan x 在⎣⎢⎡⎭⎪⎫0,π2内单调递增,所以 tan π4<tan 2π5,即 tan 13π4<tan 17π5.答案:<3.求函数 y =tan ⎝⎛⎭⎫-12x +π4的单调区间及最小正周期.解:因为 y =tan ⎝ ⎛⎭⎪⎫-12x +π4=-tan ⎝ ⎛⎭⎪⎫12x -π4,所以函数仅存在单调递减区间. 由 k π-π2<12x -π4<k π+π2(k ∈Z ),得2k π-π2<x <2k π+32π(k ∈Z ),所以函数 y =tan ⎝ ⎛⎭⎪⎫-12x +π4的单调递减区间是⎝⎛⎭⎪⎫2k π-π2,2k π+32π,k ∈Z ,函数 y =tan ⎝ ⎛⎭⎪⎫-12x +π4的最小正周期 T =π⎪⎪⎪⎪-12=2π.[A 基础达标]1.函数f (x )=|tan 2x |是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为π2的奇函数D .周期为π2的偶函数解析:选D.f (-x )=|tan(-2x )|=|tan 2x |=f (x )为偶函数,T =π2.2.(2019·河南林州一中月考)函数 y =1-tan ⎝⎛⎭⎫x -π4 的定义域为( )A.⎝⎛⎦⎤k π,k π+π4,k ∈ZB.⎝⎛⎦⎤k π,k π+π2,k ∈ZC.⎝⎛⎦⎤k π-π4,k π+π2,k ∈ZD.⎝⎛⎦⎤k π-π4,k π+π4,k ∈Z解析:选 C .由 1-tan ⎝ ⎛⎭⎪⎫x -π4≥0,得 tan ⎝ ⎛⎭⎪⎫x -π4≤1,所以 k π-π2<x -π4≤k π+π4,k∈Z ,解得 k π-π4<x ≤k π+π2,k ∈Z ,故所求函数的定义域为⎝ ⎛⎦⎥⎤k π-π4,k π+π2,k ∈Z ,故选 C.3.函数y =tan ⎝⎛⎭⎫12x -π3在一个周期内的图象是下图中的( )解析:选A.由函数周期T =π12=2π,排除选项B 、D.将x =23π代入函数解析式中,得tan ⎝ ⎛⎭⎪⎫12×23π-π3=tan 0=0,故函数图象与x 轴的一个交点为⎝⎛⎭⎫23π,0.4.与函数y =tan ⎝⎛⎭⎫2x +π4的图象不相交的一条直线是( )A .x =π2B .x =-π2C .x =π4D .x =π8解析:选D.当x =π2时,y =tan ⎝ ⎛⎭⎪⎫2x +π4=tan 5π4=1;当x =-π2时,y =tan ⎝ ⎛⎭⎪⎫2x +π4=tan ⎝ ⎛⎭⎪⎫-3π4=1;当x =π4时,y =tan ⎝ ⎛⎭⎪⎫2x +π4=tan 3π4=-1;当x =π8时,y =tan ⎝⎛⎭⎪⎫2x +π4=tan π2,不存在.5.在(0,2π)内,使 tan x >1 成立的 x 的取值范围为( )A.⎝⎛⎭⎫π4,π2 B.⎝⎛⎭⎫54π,32π C.⎝⎛⎭⎫π4,π2∩⎝⎛⎭⎫54π,32π D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫54π,32π 解析:选 D .因为 x ∈(0,2π),由正切函数的图象,可得使 tan x >1 成立的 x 的取值范围为⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎫54π,32π. 6.函数y =3tan(π+x ),-π4<x ≤π6的值域为________. 解析:函数y =3tan(π+x )=3tan x ,因为正切函数在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, 所以-3<y ≤3,所以值域为(-3, 3 ].答案:(-3,3]7.函数 f (x )=tan ⎝⎛⎭⎫π4-x 的单调减区间为________. 解析:因为 f (x )=tan ⎝ ⎛⎭⎪⎫π4-x =-tan ⎝ ⎛⎭⎪⎫x -π4,所以原题即求函数 y =tan ⎝ ⎛⎭⎪⎫x -π4的单调增区间.由 k π-π2<x - π4<k π+π2,k ∈Z ,得 k π-π4<x <k π+3π4,k ∈Z ,即函数 f (x )=tan ⎝ ⎛⎭⎪⎫π4-x 的单调减区间为⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z . 答案:⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z . 8.函数y =tan x 2满足下列哪些条件________(填序号). ①在⎝⎛⎭⎫0,π2上单调递增; ②为奇函数;③以π为最小正周期;④定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π2,k ∈Z . 解析:令x ∈⎝ ⎛⎭⎪⎫0,π2,则x 2∈⎝ ⎛⎭⎪⎫0,π4, 所以y =tan x 2在⎝ ⎛⎭⎪⎫0,π2上单调递增正确;tan ⎝⎛⎭⎫-x 2=-tan x 2,故y =tan x 2为奇函数; T =πω=2π,所以③不正确; 由x 2≠π2+k π,k ∈Z ,得{x |x ≠π+2k π,k ∈Z }, 所以④不正确.答案:①②9.求函数 y =lg tan x +9-x 2的定义域.解:要使 y 有意义,则有⎩⎨⎧tan x >0,x ≠k π+π2(k ∈Z ),9-x 2≥0,即⎩⎨⎧k π<x <k π+π2(k ∈Z ),-3≤x ≤3 解得 -3≤x <-π2或 0<x <π2. 故所求的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2. 10.比较下列两个正切值的大小:(1)tan 167°,tan 173°;(2)tan ⎝⎛⎭⎫-11π4,tan ⎝⎛⎭⎫-13π5. 解:(1)因为90°<167°<173°<180°,y =tan x 在(90°,180°)上为增函数,所以tan 167°<tan 173°.(2)因为tan ⎝ ⎛⎭⎪⎫-11π4=tan π4, tan ⎝ ⎛⎭⎪⎫-13π5=tan 2π5, 且0<π4<2π5<π2,y =tan x 在⎝ ⎛⎭⎪⎫0,π2上为增函数, 所以tan π4<tan 2π5,即tan ⎝ ⎛⎭⎪⎫-11π4<tan ⎝ ⎛⎭⎪⎫-13π5. [B 能力提升]11.已知函数y =tan ωx 在⎝⎛⎭⎫-π2,π2内是减函数,则 ( ) A .0<ω≤1 B .-1≤ω<0C .ω≥1D .ω≤-1解析:选B.因为y =tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2内是减函数, 所以ω<0且T =π|ω|≥π. 所以|ω|≤1,即-1≤ω<0.12.已知点 M (-3,-1),若函数 y =tanπ4x [x ∈(-2,2)]的图象与直线 y =1 交于点 A ,则|MA |=__________.解析:令 y =tan π4x =1,解得 x =1+4k ,k ∈Z ,又 x ∈(-2,2),所以 x =1,所以函数 y =tan π4x 与直线 y =1 的交点为 A (1,1),又 M (-3,-1),所以|MA |=(1+3)2+(1+1)2=2 5.答案:2 513.设函数 f (x )=tan ⎝⎛⎭⎫x 2-π3. (1)求函数的定义域、最小正周期和单调区间.(2)求不等式 f (x )≤ 3 的解集.解:(1)根据函数 f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π3,可得x 2-π3≠k π+π2,k ∈Z ,得 x ≠2k π+5π3,k ∈Z . 故函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠2k π+5π3,k ∈Z . 它的最小正周期为π12=2π. 令 k π-π2<x 2-π3<k π+π2,k ∈Z ,得 2k π-π3<x <2k π+5π3,k ∈Z . 故函数的增区间为⎝⎛⎭⎪⎫2k π-π3,2k π+5π3,k ∈Z . (2)求不等式 f (x )≤ 3,即 tan ⎝ ⎛⎭⎪⎫x 2-π3≤ 3, 所以 k π-π2<x 2-π3≤k π+π3,k ∈Z , 求得 2k π-π3<x ≤2k π+4π3,k ∈Z , 故不等式的解集为⎝⎛⎦⎥⎤2k π-π3,2k π+4π3,k ∈Z . 14.(选做题)若x ∈⎣⎡⎦⎤-π3,π4,求函数y =1cos 2x +2tan x +1的最值及相应的x 的值. 解:y =1cos 2x+2tan x +1 =cos 2x +sin 2x cos 2x+2tan x +1 =tan 2x +2tan x +2=(tan x +1)2+1.因为x ∈⎣⎢⎡⎦⎥⎤-π3,π4, 所以tan x ∈[-3,1],所以当tan x =-1,即x =-π4时,y 取最小值1,当tan x =1, 即x =π4时,y 取最大值5.。

相关文档
最新文档