荧光定量PCR的原理及使用

合集下载

荧光定量pcr原理及应用

荧光定量pcr原理及应用

荧光定量PCR原理及应用一、引言荧光定量PCR(Quantitative Polymerase Chain Reaction)是一种广泛应用于生物学和医学领域的分子生物学技术,它能够在短时间内扩增DNA序列并定量测量样品中特定DNA的数量。

本文将深入探讨荧光定量PCR的原理和应用。

二、荧光定量PCR原理2.1 PCR基本原理回顾在了解荧光定量PCR原理前,我们首先回顾一下PCR的基本原理。

PCR是一种通过反复复制DNA片段的技术,它基于DNA复制的三个基本步骤:变性、引物结合和延伸。

1.变性:将DNA加热到95℃,使其两个链分离成单链。

2.引物结合:将温度降至适合引物结合的温度。

引物是针对待扩增的DNA片段设计的短寡核苷酸序列,它们与待扩增片段的两端互补。

引物结合到待扩增片段上。

3.延伸:在适当的酶的作用下,延伸引物,合成互补链。

通过重复这个循环,DNA片段会指数增加。

2.2 荧光定量PCR原理荧光定量PCR在PCR的基础上进行了改进,引入荧光染料和荧光探针。

荧光染料可以与DNA结合并发出荧光信号,荧光探针可以在PCR过程中实时检测DNA的扩增情况。

1.引物设计:荧光定量PCR需要设计两个引物,一个用于扩增目标DNA,另一个用于扩增内参(house-keeping gene),作为对比和标准。

2.荧光染料:在PCR反应体系中添加荧光染料,如SYBR Green。

SYBR Green可以结合到PCR产物的DNA上,并发出荧光信号。

3.荧光探针:荧光定量PCR还可以使用荧光探针,如TaqMan探针。

TaqMan探针是一种特殊的寡核苷酸序列,它含有两个荧光染料(荧光报告染料和荧光阻断染料)和一个酶切位点。

在PCR反应中,当探针与待扩增片段结合时,酶会切除探针,导致荧光信号的降低。

4.实时检测:荧光定量PCR可以实时检测PCR反应体系中的荧光信号。

荧光信号的强度与PCR产物的数量成正比,通过检测荧光信号的变化,可以定量测量待扩增片段的数量。

荧光定量PCR的原理及其应用

荧光定量PCR的原理及其应用
荧光信号通过特定的光谱仪器进行检测。这些仪器能够测量不同波长的光,并记录荧光信号的强度。通过比较不 同循环周期的荧光信号强度,可以计算出DNA或RNA的起始浓度。
荧光定量PCR的循环过程
变性
在95℃下,DNA双链被打开,形成单 链模板。
延伸
在72℃下,DNA聚合酶从引物3'端开 始延伸DNA链。
退火
感谢您的观看
THANKS
定量分析。
引物设计
引物是荧光定量PCR反应的关 键,用于扩增特定的DNA片 段。引物设计需遵循一定的 原则,如特异性、长度、GC 含量等。
反应条件
荧光定量PCR反应需要设置适 当的反应条件,如温度、时 间、循环数等。这些条件直 接影响扩增效率和准确性。
荧光信号的收集和分析
荧光信号收集
在荧光定量PCR反应过程中,仪器会自动收集每个循环的 荧光信号。这些信号可以实时监测扩增过程,并用于定量 分析。
由于荧光定量PCR技术采用了标准曲线法, 可以建立统一的定量标准,使得不同实验 之间的结果具有可比性和可重复性。
缺点
成本较高
荧光定量PCR技术需要特殊的仪器设备和荧光染料,因此 相对于传统PCR技术,其成本较高。
操作复杂
荧光定量PCR技术的操作相对较为复杂,需要经过一定的 培训和技术指导才能获得准确的结果。
用将更加深入和广泛。
对未来发展的展望和挑战
要点一
展望
荧光定量PCR技术将继续发展,新方法和新技术的应用将 进一步提高其灵敏度、特异性和自动化程度。同时,荧光 定量PCR的应用领域也将不断拓展,为临床诊断和生物科 学研究提供更多有效的工具。
要点二
挑战
尽管荧光定量PCR技术已经取得了很大的进展,但仍存在 一些挑战和限制,如提高检测灵敏度和特异性、降低成本 和提高检测速度等。未来需要不断改进和完善技术,以适 应不断变化的需求和应用场景。

1、试述荧光定量pcr技术的原理、方法、注意事项及其在临床与科研中的应用

1、试述荧光定量pcr技术的原理、方法、注意事项及其在临床与科研中的应用

1、试述荧光定量pcr技术的原理、方法、注意事项及其在临床与科研中的应用
荧光定量PCR是一种在PCR反应过程中,通过荧光信号的检测来对PCR产物进行实时定量分析的技术。

1. 原理:
荧光定量PCR利用荧光染料或者荧光探针,标记扩增过程中的每一个循环的产物,这些荧光标记的产物在激发光的作用下会发出荧光。

随着反应的进行,PCR产物不断累积,荧光信号也随之增强。

通过对荧光信号的实时监测,可以推断出样本中起始模板的数量。

2. 方法:
主要方法包括探针法、SYBR Green I染料法和分子信标法等。

探针法使用与目标序列特异性结合的荧光探针来标记PCR产物。

SYBR Green I染料法则是利用染料与双链DNA的结合特性,将染料添加到反应体系中,随着PCR产物的增加,染料的荧光信号也增强。

3. 注意事项:
荧光定量PCR对样品纯度要求较高,应避免杂质的干扰。

反应体系中的成分和浓度需要精确控制,以确保实验结果的准确性。

荧光定量PCR的结果解读需要参考标准曲线,以确定未知样本中的目标序列数量。

4. 在临床与科研中的应用:
在临床应用中,荧光定量PCR被广泛用于病原体检测、基因突变分析、遗传病诊断以及癌症研究等。

例如,用于检测病毒如HIV、HBV等的载量,或者检测癌症相关基因的表达水平。

在科研领域,荧光定量PCR可用于基因表达分析、基因组学和表观遗传学研究中。

例如,比较不同组织或细胞类型的基因表达差异,或者研究表观遗传修饰对基因表达的影响。

总的来说,荧光定量PCR技术是一种高灵敏度、高特异性的核酸定量分析方法,对于临床诊断和科学研究具有重要意义。

荧光定量PCR原理及操作步骤.课件

荧光定量PCR原理及操作步骤.课件

THANK YOU
感谢观看
荧光定量PCR的原理
• 在PCR反应过程中,随着DNA的扩增,荧光染料或荧光探针会 与新合成的DNA结合,产生荧光信号。荧光信号的积累与DNA 的扩增数量呈线性关系,通过荧光信号的实时监测,可以精确 地计算出起始模板的浓度。
荧光定量PCR的应用
• 荧光定量PCR广泛应用于基因表达分析、突变检测、病原体 检测和基因分型等领域。通过实时监测PCR反应进程,可以 精确定量目标基因的表达水平,检测基因突变,以及鉴定病 原体种类和基因型等。
实验结果解读注意事项
数据解读与处理
荧光定量PCR实验产生的数据需要进行解读和处理。实验人员应熟悉数据分析方 法,正确解读实验结果,避免因数据处理不当导致误判。
结果报告与交流
荧光定量PCR实验结果应按照相关规定进行报告和交流。实验人员应确保结果的 准确性和可靠性,避免因结果报告不准确导致误导或决策失误。同时,实验人员 还应与其他相关人员进行有效沟通,共同探讨实验结果和问题解决方案。
案例二:突变检测
总结词
荧光定量PCR是突变检测的有效手段,能够快速准确地检测DNA序列中的点突变、插入或缺失。
详细描述
针对目标基因的特定区域,设计包含突变信息的引物或探针,通过荧光定量PCR扩增后,利用熔解曲 线或高分辨率溶解分析等技术,判断是否存在突变。这种方法在遗传性疾病诊断、癌症研究等方面具 有重要应用。
解决方案3
对于引物二聚体问题,可以通过优化引物设计、 降低引物浓度等方法来解决。
建议3
在实验前对引物进行充分的评估和验证,避免使 用易形成二聚体的引物。
问题解决方案及建议
解决方案4
对于假阳性结果问题,可以通过 增加重复实验次数、设置阴性对 照等方法来避免。

荧光定量pcr实验原理与应用

荧光定量pcr实验原理与应用

荧光定量pcr实验原理与应用荧光定量PCR(qPCR)是一种高灵敏度、高特异性的DNA扩增技术,通过检测PCR反应体系中的荧光信号实时监测DNA的合成量。

这种技术结合了传统PCR的高效性和荧光探针的高度特异性,广泛应用于基因表达分析、病原体检测、基因定量、基因型鉴定等领域。

一、原理荧光定量PCR利用荧光信号与PCR产物数量呈正比的原理,通过实时监测PCR反应过程中荧光信号的强度变化来确定反应体系中模板DNA的初始量。

在PCR反应中,荧光探针与特定的DNA序列结合,并发出荧光信号。

随着PCR反应的进行,产物数量逐渐增加,荧光信号也随之增加。

通过检测荧光信号的增长曲线,可以确定初始模板DNA的数量。

二、应用1.基因表达分析:荧光定量PCR可用于实时监测基因的表达水平,通过检测靶基因的mRNA量来研究基因在不同条件下的表达情况。

2.病原体检测:荧光定量PCR可用于快速准确地检测病原体的存在,如病毒、细菌等,对临床诊断和疾病监测具有重要意义。

3.基因定量:荧光定量PCR可用于定量分析基因拷贝数、基因表达水平等,对基因功能研究和疾病诊断有重要作用。

4.基因型鉴定:荧光定量PCR可用于检测基因型多态性,如单核苷酸多态性(SNP)、插入缺失等,用于遗传学研究和个体鉴定。

三、优势与传统PCR技术相比,荧光定量PCR具有以下优势:1.高灵敏度:荧光信号与PCR产物数量呈正比,可实现低拷贝数DNA的检测。

2.高特异性:荧光探针设计精准,可准确识别靶基因序列,避免非特异性扩增。

3.实时监测:可实时监测PCR反应过程中的荧光信号,得到实时、准确的反应动态信息。

4.高准确性:荧光定量PCR结果稳定可靠,可用于定量分析和比较研究。

荧光定量PCR作为一种高效、高灵敏的DNA定量技术,在生命科学研究、临床诊断、食品安全监测等领域具有广泛应用前景。

随着技术的不断发展和完善,荧光定量PCR将在更多领域发挥重要作用,为科学研究和临床实践提供强有力的支持。

荧光定量PCR的原理及应用

荧光定量PCR的原理及应用

荧光定量PCR的原理及应用荧光定量聚合酶链反应(qPCR)是一种基于荧光信号的分子生物学技术,用于定量检测目标DNA序列的数量。

它结合了传统的聚合酶链反应(PCR)技术和荧光探针技术,通过检测盘细胞PCR扩增过程中产生的荧光信号的数量来确定目标序列的初始模板DNA的量。

以下是荧光定量PCR的原理和应用相关内容。

1.原理:荧光定量PCR基于PCR扩增技术,通过DNA的双链不断不断的分离和扩增,形成指数级别的增加,从而使DNA数量可检测,实现定量的目标DNA检测。

在PCR反应体系中加入DNA荧光探针,该探针含有一个荧光染料和一个阻断器。

在PCR反应中,荧光探针与引物结合,并通过荧光染料发射荧光信号。

当引物与靶DNA序列结合时,即在扩增成产物的过程中,荧光探针被水解,导致发射的荧光不再受到阻断器的遮挡,荧光信号显著增加。

通过检测PCR反应中荧光信号的强度,来确定目标序列的初始模板DNA量。

2.应用:(1)基因表达分析:荧光定量PCR可用于分析特定基因在不同组织、细胞类型或疾病状态下的表达水平差异。

通过测量目标基因的荧光信号,可以定量表达水平。

(2)病原体检测:荧光定量PCR可用于检测并定量常见病原体的存在。

例如,通过检测病毒或细菌的DNA或RNA来确定其感染程度。

(3)遗传疾病诊断:荧光定量PCR可用于检测一些遗传疾病相关基因突变的存在,并定量突变的数量。

(4)细菌或病毒负荷检测:在一些感染疾病的监测中,荧光定量PCR可用于检测和定量病菌或病毒在患者体内的负荷,可用于监测治疗效果。

(5)环境微生物分析:荧光定量PCR可用于分析和定量土壤、水样和空气等环境中的微生物(如细菌、真菌和病毒)的存在和变化。

(6)转基因分析:在转基因研究中,荧光定量PCR可用于检测和定量外源基因的存在并分析其表达水平。

(7)单细胞分析:荧光定量PCR可用于对单个细胞中目标基因或突变的检测和定量。

这对于研究单细胞的异质性和功能以及肿瘤细胞的进化和耐药性等方面的研究具有重要意义。

定量PCR基本原理及方法

定量PCR基本原理及方法

✓ Ct值与起始模板的关系
logN=log N0 +nlogE n=Ct 每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系。利用已知起始拷贝数 的标准品作出标准曲线,根据未知样品的Ct值,即可计算出该样品的起始拷贝数。
Y轴—Ct值
6
X—起始拷贝数的对数
✓ 绝对定量——未知浓度的样品与标准曲线相比较
Excitation
R
3’
11
3’
3’
5’
QQQ
Q
5’
分子信标(Molecular Beacon Probe)
R ExcitatEiomnission Q
Excitation
12
荧光共振能量传递(FRET Probe)
Oligo 1: Fluorescein Excitation
Transfer
野生型 突变型 杂合型
21
利用熔解曲线检测基因突变 FRET探针进行熔解曲线分析确定基因型
FRET探针与模板结合时,因共振能量的传递而信号增强,而当在Tm 值时, FRET探针与PCR产物分开,荧光信号减弱。通过实时捕捉到的PCR产物在熔解过程 中荧光信号的变化,得到PCR产物的熔解曲线。因为发生基因突变的PCR产物有特定 的Tm 值,通过测定探针与PCR产物分开时的熔解温度Tm值,就能确定样品的基因型。
8
内掺式染料 SYBR-Green I
Excitation
5’
3’
SG
Emission
SG
SG
3’
SG
5’
SG
9
内掺式染料 SYBR-Green I
Excitation
SG
5’
3’

荧光定量pcr原理和步骤

荧光定量pcr原理和步骤

荧光定量pcr原理和步骤荧光定量PCR(quantitative polymerase chain reaction,qPCR)是一种常用的分子生物学技术,能够快速、准确地定量检测DNA或RNA的含量。

下面将介绍荧光定量PCR的原理和步骤。

荧光定量PCR的原理主要基于传统PCR技术和荧光探针技术的结合。

传统PCR通过不断复制DNA模板,使其数量呈指数增加,但并不能定量测定模板初始含量。

为了解决这一问题,qPCR引入了特定的荧光标记探针,该探针可与扩增产物特异性结合,通过荧光信号的增加来反映模板的初始数量。

荧光定量PCR的步骤如下:1. DNA模板制备:从待检测样本中提取DNA,并进行纯化处理,确保所得到的DNA质量较高。

2. 反应体系配置:根据实验需要,准备PCR反应液,包括DNA模板、引物(forward primer和reverse primer)、DNA聚合酶、核苷酸和缓冲液等。

3. 反应条件设定:根据引物序列的特性和所需扩增产物的长度,确定PCR反应的温度周期条件,包括退火温度、延伸时间和循环次数等。

4. 荧光探针设计:根据待检测序列的特点,设计合适的荧光探针,通常这些探针包括一个荧光染料和一个猪尾巴。

5. 温度循环程序:将配置好的PCR反应液放入热循环仪中,根据反应条件进行温度循环,使DNA发生退火、延伸和复性,并产生大量的扩增产物。

6. 荧光检测:热循环仪会不断读取PCR反应体系中荧光信号的变化,通过荧光强度来定量检测DNA的含量。

荧光信号的强度与模板DNA的初始含量成正比。

7. 数据分析:通过计算荧光信号和模板DNA的标准曲线,可以得到待检测样本中目标序列的初始含量。

8. 结果解读:根据数据分析的结果,可确定待检测样本中目标DNA的绝对或相对含量。

荧光定量PCR凭借其高度敏感和快速准确的特点,已广泛应用于基因表达分析、病原体检测、遗传病筛查等领域。

随着技术的不断发展,荧光定量PCR将在医学诊断和疾病预测中发挥更加重要的作用。

荧光定量PCR的原理及应用

荧光定量PCR的原理及应用

荧光定量PCR的原理及应用1. 荧光定量PCR的原理荧光定量PCR(Quantitative PCR,简称qPCR)是一种能够准确测量DNA模板数量的分子生物学技术。

它是传统PCR技术的一种改进和发展,通过引入荧光探针来实现DNA模板的定量测量。

1.1 PCR的基本原理PCR是一种在体外复制DNA的方法,它是由DNA的三个步骤循环不断重复而实现的。

这三个步骤分别是变性、退火和延伸。

•变性:将反应体系中的DNA加热至95°C,使其双链DNA解链成两条单链。

•退火:降温至较低的温度,使引物(引导复制的短链DNA)与目标序列特异性结合。

•延伸:在适宜的温度下,DNA聚合酶进行DNA链的合成。

1.2 荧光定量PCR的原理荧光定量PCR在PCR的基础上引入了荧光探针,通过测量PCR反应产生的荧光信号来实现DNA模板的定量。

•引物:在荧光定量PCR中,通常需要设计一对引物,一个为前向引物,一个为反向引物。

引物的选择应具有高度特异性,能够特异性地与目标DNA序列结合。

•荧光探针:荧光探针是一种含有荧光染料和荧光猝灭剂的双标记探针。

当荧光探针与其靶序列结合时,荧光染料和猝灭剂之间的距离变远,荧光信号被释放出来,可以被测量到。

荧光定量PCR的原理是基于荧光探针的特性。

在PCR反应中,引物与荧光探针特异性结合目标DNA序列,DNA聚合酶在合成DNA链的过程中会加上荧光探针。

当PCR反应进行时,荧光探针结合的DNA链会被逐渐增加,荧光信号也会相应增强。

通过实时测量PCR反应体系中荧光信号的强度,可以推断出目标DNA序列的起始数量。

2. 荧光定量PCR的应用荧光定量PCR在现代生物学研究中广泛应用于许多领域。

以下是一些主要的应用范围:2.1 基因表达分析荧光定量PCR可以用于研究基因的表达水平。

通过测量不同样品中特定基因的mRNA复制数目,可以判断该基因在不同生物样品中的表达水平差异。

这对于研究基因功能、寻找治疗靶点以及评估药物的有效性都具有重要意义。

实时荧光定量PCR原理及应用

实时荧光定量PCR原理及应用

实时荧光定量PCR原理及应用一、原理:1.荧光探针原理:a. TaqMan探针:TaqMan探针是由小分子荧光染料和一个捕获目标序列的DNA探针构成。

在PCR过程中,TaqMan探针会结合到特定的目标序列上,当DNA聚合酶在PCR反应中扩增特定序列时,探针被加性外切酶活性所降解,导致荧光信号逐渐降低,通过荧光信号的减弱来量化目标DNA的数量。

b. SYBR Green探针:SYBR Green探针是一种可以与双链DNA特异性结合的染料,当SYBR Green与PCR产物结合时,荧光信号增加。

通过测量荧光信号的增加来量化目标DNA的数量。

c. Molecular Beacons:Molecular Beacons是由在末端带有荧光分子和淬灭荧光的猝灭体构成的。

在PCR过程中,当Molecular Beacons与目标序列匹配时,荧光信号释放,通过测量荧光信号的释放来量化目标DNA的数量。

2.PCR反应原理:a.变性:将含有目标DNA序列的模板DNA样品与引物和荧光探针混合,加热至高温,使DNA双链解除成两股单链DNA。

b.引物结合:将反应体温度降低,引物结合到目标DNA序列的特定区域,并与模板DNA进行互补组装。

c.扩增:在DNA聚合酶的作用下,引物在模板上逐渐沿着DNA链延伸,产生新的DNA片段。

每一轮PCR循环结束后,荧光信号会相应地增加。

二、应用:1.目标基因表达分析:可以用实时荧光定量PCR测定特定目标基因的表达水平,从而研究基因的功能、调控机制或者生理功能的变化。

2.病原体检测:实时荧光定量PCR可以检测和定量各种病原体,例如病毒、细菌、真菌等。

常见的应用包括检测呼吸道病原体、性传播疾病病原体、食物中污染的细菌等。

3.肿瘤检测:实时荧光定量PCR可以用于肿瘤相关标志物的检测,帮助早期筛查和诊断肿瘤。

4.遗传突变检测:可以通过实时荧光定量PCR检测人类基因中的突变位点,提供遗传病检测和个体基因组分析的支持。

荧光定量pcr实验原理与应用

荧光定量pcr实验原理与应用

荧光定量pcr实验原理与应用荧光定量PCR(Polymerase Chain Reaction)是一种基于PCR技术的一种变种,它利用荧光探针实现对PCR产物的定量检测。

荧光定量PCR结合了PCR扩增和实时荧光检测技术,能够快速、准确地检测目标DNA的含量。

本文将介绍荧光定量PCR的原理及其在科研和临床应用中的重要性。

一、荧光定量PCR的原理荧光定量PCR的原理基本与常规PCR相似,也包括三个步骤:变性、退火和延伸。

其区别在于,在PCR反应体系中加入了含有荧光素的探针,这些探针与目标DNA序列特异性结合,并在PCR反应中被DNA聚合酶酶切,导致荧光信号的释放。

在PCR反应进行过程中,荧光信号与PCR产物量成正比,通过检测荧光信号的强度,可以实时监测PCR反应的进程,从而实现对目标DNA的定量检测。

荧光定量PCR可以通过不同的荧光探针来检测多个靶标,实现多重PCR检测。

二、荧光定量PCR的应用1. 病原微生物检测:荧光定量PCR广泛应用于病原微生物的检测,包括细菌、病毒、真菌等。

通过荧光定量PCR技术,可以实现对微生物的快速、准确的检测,有助于早期诊断和治疗。

2. 癌症诊断:荧光定量PCR可用于癌症早期筛查和诊断。

通过检测癌基因的表达水平,可以帮助医生判断肿瘤的类型、分级和预后,指导个体化治疗方案。

3. 遗传病检测:荧光定量PCR可用于遗传病的基因检测。

通过对患者DNA样本进行荧光定量PCR分析,可以准确检测遗传突变,帮助家庭规划和遗传咨询。

4. 食品安全监测:荧光定量PCR可以用于食品中致病微生物和转基因成分的检测。

通过对食品样品中目标DNA的定量检测,可以确保食品安全,保障公众健康。

5. 环境微生物监测:荧光定量PCR可用于环境微生物的监测和鉴定。

通过对环境样品中微生物的定量检测,可以了解微生物种类和数量,指导环境保护和生态恢复工作。

荧光定量PCR作为一种高灵敏、高特异性的分子生物学技术,在医学、生物学、食品安全和环境科学等领域发挥着重要作用。

荧光定量PCR

荧光定量PCR

荧光定量PCR(Quantitative Real-Time PCR,简称qPCR)是一种分子生物学技术,用于精确测定样本中特定核酸序列的数量。

其基本原理基于PCR(聚合酶链式反应)技术和实时荧光检测,能够在PCR扩增过程中连续监测荧光信号的变化,从而实现对起始模板量的定量分析。

荧光定量PCR原理简述:1.PCR扩增:qPCR采用传统的PCR方法,包括变性(DNA双链解开成单链)、退火(引物与靶序列配对)和延伸(DNA聚合酶合成新链)这三个基本步骤,反复进行使得目标序列指数级扩增。

2.荧光标记与检测:SYBR Green法:SYBR Green是一种非特异性的双链DNA结合染料,在游离状态下几乎不发出荧光,但一旦与双链DNA结合后,荧光强度显著增强。

因此,随着PCR过程中的产物增加,荧光信号也相应增加,荧光强度与PCR产物的数量成正比。

TaqMan探针法:此方法更为特异,使用一种特殊的寡核苷酸探针,其两端分别标记了荧光报告基团和淬灭基团。

在PCR反应中,当探针与靶序列配对时,位于中间的探针被Taq 酶水解,导致荧光报告基团与淬灭基团分离,从而产生荧光信号。

只有当特定的扩增产物生成时才会释放荧光。

荧光定量PCR实验步骤概览:1.样品制备:RNA提取:从组织、细胞或其他生物样本中提取总RNA,常用TRIZOL或类似试剂进行裂解、离心分相和乙醇沉淀来纯化RNA。

cDNA合成:对于mRNA的定量,需要先将RNA逆转录为cDNA。

2.设计与合成引物:针对目标基因设计一对特异性的PCR引物,用于扩增目的片段。

3.PCR反应体系构建:将纯化的cDNA或DNA模板、特异性引物、Taq聚合酶、缓冲液、dNTPs和其他必要成分如SYBR Green染料或TaqMan探针等加入至PCR管中,配置成最终的PCR反应体系。

4.实时荧光PCR扩增与检测:在荧光定量PCR仪上进行PCR反应,仪器在每次循环的适当阶段收集荧光信号,并记录下来。

荧光定量PCR原理及实验步骤

荧光定量PCR原理及实验步骤

荧光定量PCR原理及实验步骤
一、实时荧光定量PCR原理
常规PCR技术对PCR扩增反应的终点产物进行定量和定性分析无法对起始模板准确定量,无法对扩增反应实时检测。

实时定量PCR技术,在PCR反应体系中加入荧光基团,利用荧光信号的变化实时检测PCR扩增反应中每一个循环扩增产物量的变化,通过Ct值和标准曲线的分析对起始模板进行定量分析。

几个概念:
(1)扩增曲线:
(2)荧光阈值:
(3)Ct值:
(4)标准曲线
SYBR Green工作原理:
1、SYBR Green 能结合到双链DNA的小沟部位
2、SYBR Green 只有和双链DNA结合后才发荧光
3、变性时,DNA双链分开,无荧光
4、复性和延伸时,形成双链DNA,SYBR Green 发荧光,在此阶段采集荧光
信号。

二、实验步骤
1. 实验前先在大型仪器共享平台上预约多元荧光定量PCR仪。

1、将所需引物和SYBgreen(避光)拿出,解冻。

计算好所有引物和SYBgreen
的用量。

2、反应体系(25μL)如下:
H2O 11μL
SYBgreen 12.5Μl
上游引物0.25μL
下游引物0.25μL
cDNA 1μL
可先将H2O 和SYBgreen按照所需量配好后,分装,再根据需要加引物和模板。

4、加完所有试剂后,盖上盖子,混匀,离心。

上机。

荧光定量PCR的原理及其应用PPT课件

荧光定量PCR的原理及其应用PPT课件

操作复杂
荧光定量PCR的操作过程相对复杂, 需要专业人员进行操作。
荧光染料和探针的干扰
荧光染料和探针有时会对PCR扩增产 生干扰,影响结果的准确性。
样本中存在抑制剂的可能性
某些样本中可能存在PCR抑制剂,影 响荧光定量PCR的检测结果。
05 荧光定量PCR的发展前景
技术改进与优化
01
02
03
高效多重检测
合成新的DNA链。
的DNA链结合,产生荧
光信号,通过检测荧光
信号的积累,可以实时
监测DNA的扩增过程。
02 荧光定量PCR的种类
SYBR Green I法
原理
SYBR Green I是一种荧光染料,可以与双链DNA结合并发出荧光信号。在PCR扩增过程 中,随着DNA的合成,SYBR Green I荧光信号会逐渐增强,通过监测荧光信号的增强程 度可以实时监测DNA的合成。
通过荧光定量PCR技术,可以检测肿瘤组织中特定基因的 表达水平,从而评估肿瘤的恶性程度、转移风险和预后情 况。
在传染性疾病诊断中的应用
传染性疾病的病原微生物种类繁多,荧光定量PCR技术可以用于快速检测和鉴定 病原微生物,为传染性疾病的诊断提供准确依据。
通过荧光定量PCR技术,可以检测出病原微生物的核酸序列,从而确定传染性疾 病的病原体类型、感染部位和传播途径。
结合微流体技术和数字 PCR技术,实现单分子检 测,提高检测的灵敏度和 分辨率。
纳米材料增强
利用纳米材料增强荧光信 号,降低背景噪声,提高 检测的信噪比。
基因编辑技术
结合基因编辑技术,对基 因组进行定点编辑和改造, 为疾病治疗和基因治疗提 供新手段。
未来发展方向与展望
临床应用拓展

简述荧光定量PCR的原理及应用

简述荧光定量PCR的原理及应用

简述荧光定量PCR的原理及应用1. 荧光定量PCR的原理荧光定量聚合酶链式反应(quantitative polymerase chain reaction,qPCR)是一种通过荧光信号来定量测量PCR反应产物数量的方法。

它是PCR技术的一种变体,通过引入荧光染料来实现高灵敏度和高特异性的DNA检测和定量。

荧光定量PCR的主要原理如下:1.1 反应物准备首先,需要准备PCR反应体系,包括DNA模板、引物(primer)、核酸酶、核苷酸三磷酸酶(polymerase)、适当的缓冲液和荧光探针。

其中荧光探针是关键,它在PCR反应过程中与目标DNA序列特异性结合,并通过荧光信号的产生反映PCR产物的数量。

1.2 PCR反应过程PCR反应由若干个循环组成,每个循环包括DNA的变性、引物的结合和延伸,以及荧光探针的结合和信号发生。

具体步骤如下:1.反应体系加热至94°C,使DNA模板变性为单链。

2.使反应体系温度降低至引物的退火温度,使引物与单链DNA特异性结合。

3.延伸阶段,引物提供的3’端作为DNA的起始点,并与DNA模板的互补碱基配对,聚合酶在此基础上合成新的DNA链。

4.荧光探针降解为引物,释放出一个荧光信号。

5.利用PCR仪测量荧光信号的强度,并与已知浓度的标准品进行比较,从而计算出待测样品中目标DNA序列的含量。

2. 荧光定量PCR的应用荧光定量PCR广泛应用于各个领域的生物研究和临床诊断中。

以下列举了一些常见的应用:2.1 基因表达分析荧光定量PCR可用于测量目标基因在不同组织、细胞或生物样品中的表达水平。

通过定量PCR可以准确测量少量目标基因的RNA表达,从而比较不同条件下基因的表达差异。

2.2 病原微生物检测荧光定量PCR在病原微生物的快速检测和定量分析中具有重要作用。

例如,可以用荧光定量PCR检测病原体感染引起的特定基因片段的存在和数量,从而诊断疾病。

2.3 突变分析荧光定量PCR也可以用于检测基因的突变。

荧光定量PCR的原理及使用

荧光定量PCR的原理及使用

荧光定量PCR的原理及使用荧光定量PCR(FQ-PCR)是新近出现的一种定量PCR检测方法。

其基本特点是:1、用产生荧光信号的指示剂显示扩增产物的量。

2、荧光信号通过荧光染料嵌入双链DNA,或双重标记的序列特异性荧光探针或能量信号转移探针等方法获得,大大提高了检测的灵敏度、特异性和精确性。

3、动态实时连续荧光检测,免除了标本和产物的污染,且无复杂的产物后续处理过程,高效、快速。

下面介绍常用的几种检测方法:1、双链DNA内插染料某些染料如SYBR GreenⅠ能选择性地与双链DNA结合,同时产生强烈荧光。

在PCR过程中SYBR GreenⅠ可与新合成的双链DNA结合,产生的荧光信号与双链DNA成正比。

SYBR Green I荧光染料技术原理SYBR Green I是一种只与DNA双链结合的荧光染料。

当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。

因此,在一个体系内,其信号强度代表了双链DNA分子的数量。

SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green 染料与DNA双链结合时发出荧光。

2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。

3、在聚合延伸过程中,引物退火并形成PCR产物。

4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。

SYBR Green I荧光染料与DNA双链的结合SYBR Green I荧光染料能与所有的DNA双链相结合,对DNA模板没有选择性,所以特异性不如TaqMan探针。

要想用荧光染料法得到比较好的定量结果,对PCR引物设计的特异性和PCR反应的质量要求就比较高。

在此前提下,本法是一种成本低廉的选择。

2、TaqMan探针技术原理TaqMan探针法是高度特异的定量PCR技术,其核心是利用Taq酶的3′→5′外切核酸酶活性,切断探针,产生荧光信号。

由于探针与模板是特异性结合,所以荧光信号的强弱就代表了模板的数量。

荧光定量PCR的原理及使用

荧光定量PCR的原理及使用

荧光定量PCR的原理及使用荧光定量PCR(FQ-PCR)就是新近出现的一种定量PCR检测方法。

其基本特点就是:1、用产生荧光信号的指示剂显示扩增产物的量。

2、荧光信号通过荧光染料嵌入双链DNA,或双重标记的序列特异性荧光探针或能量信号转移探针等方法获得,大大提高了检测的灵敏度、特异性与精确性。

3、动态实时连续荧光检测,免除了标本与产物的污染,且无复杂的产物后续处理过程,高效、快速。

下面介绍常用的几种检测方法:1、双链DNA内插染料某些染料如SYBR GreenⅠ能选择性地与双链DNA结合,同时产生强烈荧光。

在PCR过程中SYBR GreenⅠ可与新合成的双链DNA结合,产生的荧光信号与双链DNA成正比。

SYBR Green I荧光染料技术原理SYBR Green I就是一种只与DNA双链结合的荧光染料。

当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。

因此,在一个体系内,其信号强度代表了双链DNA分子的数量。

SYBR Green荧光染料法定量PCR的基本过程就是:1、开始反应,当SYBR Green 染料与DNA双链结合时发出荧光。

2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。

3、在聚合延伸过程中,引物退火并形成PCR产物。

4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。

SYBR Green I荧光染料与DNA双链的结合SYBR Green I荧光染料能与所有的DNA双链相结合,对DNA模板没有选择性,所以特异性不如TaqMan探针。

要想用荧光染料法得到比较好的定量结果,对PCR引物设计的特异性与PCR反应的质量要求就比较高。

在此前提下,本法就是一种成本低廉的选择。

2、TaqMan探针技术原理TaqMan探针法就是高度特异的定量PCR技术,其核心就是利用Taq酶的3′→5′外切核酸酶活性,切断探针,产生荧光信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荧光定量PCR的原理及使用
荧光定量PCR(FQ-PCR)是新近出现的一种定量PCR检测方法。

其基本特点是:1、用产生荧光信号的指示剂显示扩增产物的量。

2、荧光信号通过荧光染料嵌入双链DNA,或双重标记的序列特异性荧光探针或能量信号转移探针等方法获得,大大提高了检测的灵敏度、特异性和精确性。

3、动态实时连续荧光检测,免除了标本和产物的污染,且无复杂的产物后续处理过程,高效、快速。

下面介绍常用的几种检测方法:
1、双链DNA内插染料
某些染料如SYBR Green Ⅰ能选择性地与双链DNA结合,同时产生强烈荧光。

在PCR过程中SYBR Green Ⅰ可与新合成的双链DNA结合,产生的荧光信号与双链DNA成正比。

SYBR Green I荧光染料技术原理SYBR Green I是一种只与DNA双链结合的荧光染料。

当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。

因此,在一个体系内,其信号强度代表了双链DNA分子的数量。

SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green染料与DNA双链结合时发出荧光。

2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。

3、在聚合延伸过程中,引物退火并形成PCR产物。

4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。

SYBR Green I荧光染料与DNA双链的结合
SYBR Green I荧光染料能与所有的DNA双链相结合,对DNA模板没有选择性,所以特异性不如TaqMan探针。

要想用荧光染料法得到比较好的定量结果,对PCR引物设计的特异性和PCR反应的质量要求就比较高。

在此前提下,本法是
一种成本低廉的选择。

2、TaqMan探针技术原理
TaqMan探针法是高度特异的定量PCR技术,其核心是利用Taq酶的3′→5′外切核酸酶活性,切断探针,产生荧光信号。

由于探针与模板是特异性结合,所以荧光信号的强弱就代表了模板的数量。

在TaqMan探针法的定量PCR反应体系中,包括一对PCR引物和一条探针。

探针只与模板特异性地结合,其结合位点在两条引物之间。

探针的5′端标记有报告基团(Reporter, R),如FAM、VIC等,3′端标记有荧光淬灭基团(Quencher, Q),如TAMRA等。

当探针完整的时候,报告基团所发射的荧光能量被淬灭基团吸收,仪器检测不到信号。

随着PCR的进行,Taq酶在链延伸过程中遇到与模板结合的探针,其5′→3′外切核酸酶活性就会将探针切断,报告基团远离淬灭基团,其能量不能被吸收,即产生荧光信号。

所以,每经过一个PCR循环,荧光信号也和目的片段一样,有一个同步指数增长的
过程。

信号的强度就代表了模板DNA的拷贝数。

5,TaqMan探针的荧光信号产生机制
根据其3′端标记的荧光淬灭基团的不同分为两种:普通的TaqMan探针和TaqMan MGB探针。

MGB探针的淬灭基团采用非荧光淬灭基团(Non-Fluorescent Quencher),本身不产生荧光,可以大大降低本底信号的强度。

同时探针上还连接有MGB (Minor Groove Binder)修饰基团,可以将探针的Tm值提高10°C左右。

因此为了获得同样的Tm值,MGB探针可以比普通TaqMan探针设计得更短,既降低了合成成本,也使得探针设计的成功率大为提高。

因为在模板的DNA碱基组成不理想的情况下,短的探针比长的更容易设计。

实验证明,TaqMan MGB探针对于富含A/T的模板可以区分得更为理想。

TaqMan MGB探针
探针设计一般应符合以下条件:1、探针长度应在20~40个碱基左右,以保证结合的特异性。

2、G、C碱基含量在40%-60%,避免单核苷酸序列的重复。

3、避免与引物发生杂交或重叠。

4、探针与模板结合的稳定程度要大于引物与模板结合的稳定程度,因此探针的Tm值要比引物的Tm值至少高出5℃。

3、分子信标技术
分子信标技术(molecular beacon)也是在同一探针的两末端分别标记荧光分子和淬灭分子,与TaqMan探针不同的是该探针5′和3′末端自身可形成一个8个碱基左右的发卡结构,此时荧光分子和淬灭分子邻近,因此不会产生荧光。

当溶液中有特异模板时,该探针与模板杂交,从而破坏了探针的发卡结构即FRET消失,于是溶液便产生荧光,荧光的强度与溶液中模板的量成正比,因此可用于PCR定量分析。

Ct 值的含义是:每个反应管内的荧光信号达到设定的域值时所经历的循环数。

研究表明 ,每个模板的 Ct 值与该模板的起始拷贝数的对数存在线性关系 ,起始拷贝数越多 ,Ct 值越小。

利用已知起始拷贝数的标准品可作出标准曲线 ,因此
只要获得未知样品的 Ct 值 ,即可从标准曲线上计算出该样品的起始拷贝数。

1、双链DNA内插染料
常用的是SYBR Green I荧光染料,其技术原理:SYBR Green I是一种只与DNA双链结合的荧光染料。

当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。

因此,在一个体系内,其信号强度代表了双链DNA分子的数量。

SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green染料与DNA双链结合时发出荧光。

2、DNA变性时,SYBR Green 染料释放出来,荧光急剧减少。

3、在聚合延伸过程中,引物退火并形成PCR产物。

4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。

荧光染料检测法一般主要是利用荧光染料(如SYBR Green I)与双链DNA分子结合发光的特性来指示扩增产物的增加,优点是:无需另外设计荧光探针,无需特别优化条件,简便易行,成本较低,能适用于任何一款定量PCR仪。

荧光染料法实质上是常规的PCR反应中添加了荧光染料,借助染料和双链DNA的结合所发出的荧光实时监控反应的进程。

由于不需要设计序列特异性探针和优化反应条件,价格低廉,通用性强,而且荧光染料法可用于任何一种型号的定量PCR仪,因而同样得到广泛采用。

在PCR反应体系中,加入过量SYBR Green I荧光染料,SYBR荧光染料掺入DNA双链后荧光信号显著增强;当DNA变性时SYBR Green I染料释放出来,荧光急剧减少;随后在聚合延伸过程中引物退火并形成PCR产物,SYBR Green染料与双链产物结合,经检测获得荧光的净增量。

荧光信号的增加与PCR产物的增加完全同步。

荧光染料可以在反应末尾对扩增产物进行溶解,称为溶解曲线分析。

在溶解曲线分析过程中,随着温度从低于产物溶解点缓慢升到高于产物溶解点,定量PCR仪连续监测每个样品的荧光值。

基于产物长度和G/C含量的不同,扩增产物会在不同的温度点解链。

随着产物的解链就可以看到荧光值的降低并被仪器所测量。

对溶解曲线进行微分可以计算出溶解峰。

溶解峰可以反映反应中扩增到的
产物,因此用溶解曲线数据就可以进行定量检测了。

的RNA模板做10倍倍比稀释后,用紫外分光光度计测定其浓度,将强毒株H
2
然后按下面的公式转换成模板的拷贝数:拷贝数=NDV模板浓度×阿氏常数/(一个碱基的平均分子量×NDV模板的总长度)其中,阿氏常数为6.02×1023,一个碱基的平均分子量为324.5,NDV模板的总长度为15 186 bp,标准品的RNA模板分别进行10-1、10-2 、10-3、10-4、10-5、10-6、10-7稀释后,用紫外分光光度计测定病毒RNA模板的OD值,分别计算其浓度,用于制作标准曲线,同时做一个阴性对照。

相关文档
最新文档