钢铁工业废弃物处理技术
钢铁制造过程中的环境保护措施有哪些
钢铁制造过程中的环境保护措施有哪些钢铁制造是现代工业的重要支柱之一,但同时也是一个对环境产生较大影响的行业。
在钢铁生产过程中,会排放大量的废气、废水和废渣,如果不加以有效控制和治理,将对生态环境和人类健康造成严重威胁。
因此,采取有效的环境保护措施至关重要。
一、废气治理钢铁生产过程中产生的废气主要包括二氧化硫、氮氧化物、颗粒物等。
为了减少废气排放,企业通常会采取以下措施:1、安装先进的废气处理设备脱硫装置:通过化学吸收或吸附的方法,去除废气中的二氧化硫,常见的脱硫技术有石灰石石膏法、氨法等。
脱硝装置:采用选择性催化还原(SCR)或选择性非催化还原(SNCR)技术,将氮氧化物转化为无害的氮气和水。
除尘设备:如电除尘器、布袋除尘器等,能够有效去除废气中的颗粒物,降低粉尘排放。
2、优化生产工艺采用清洁燃料:例如使用天然气代替煤炭,减少燃烧过程中污染物的生成。
改进燃烧技术:提高燃烧效率,降低不完全燃烧产物的排放。
实行富氧燃烧:增加氧气供应,减少废气产生量。
3、加强废气监测与管理建立完善的废气监测系统,实时监测废气排放浓度和排放量,确保达标排放。
对废气处理设备进行定期维护和检修,保证其正常运行。
二、废水处理钢铁制造过程中产生的废水含有大量的悬浮物、重金属、有机物等污染物。
为了实现废水达标排放和回用,通常采取以下措施:1、物理处理沉淀:通过重力作用使废水中的悬浮物沉淀下来,去除较大颗粒的杂质。
过滤:利用过滤介质(如砂、活性炭等)过滤废水,进一步去除细小的悬浮物和部分有机物。
2、化学处理中和:调节废水的酸碱度,使其达到适宜的处理范围。
混凝沉淀:加入混凝剂(如明矾、聚合氯化铝等),使废水中的细小颗粒和胶体物质凝聚成较大的颗粒,便于沉淀去除。
氧化还原:利用氧化剂(如氯气、高锰酸钾等)或还原剂(如亚硫酸钠、硫酸亚铁等),将废水中的有害物质转化为无害物质。
3、生物处理活性污泥法:通过培养微生物菌群,利用微生物的代谢作用分解废水中的有机物。
钢铁冶炼废弃物处理的新技术
钢铁冶炼废弃物处理的新技术钢铁产业是世界工业的重要组成部分,但由于冶炼过程产生的废渣和废气等副产品,给环境带来了严重的污染问题,成为当前环保工作的难点之一。
废渣中最主要的为钢渣和炉渣。
传统的废弃物处理方式只是采用填埋、倾倒等手段,不仅浪费资源而且污染环境。
为了减少废弃物的产生和更有效地处理钢铁冶炼废弃物,人们开发出了新的处理技术,采用高科技手段解决废弃物处理问题。
本文将介绍一些钢铁冶炼废弃物处理的新技术。
1. 钢渣资源化利用技术钢渣是钢铁冶炼过程中产生的主要废弃物,传统处理方式是倾倒或填埋。
但随着资源的日益紧缺,以及环保意识的不断提高,对钢渣的资源化利用提出了新的要求。
现在,钢渣可以被冶金、建筑、水泥、路基等多个领域用作原材料。
其中,冶金行业利用钢渣可以生产钢材、铁合金等。
比如利用电弧炉钢渣熔炼技术可以生产低碳钢、不锈钢等;利用炼钢渣加热技术可以生产钢坯,同样还可以配合其他原料生产铁合金。
此外,热处理钢渣也可以生产泡沫玻璃、砖块、陶瓷等,这些产品在建筑行业中应用广泛。
2. 炉渣综合利用技术炉渣是冶炼过程中铁水脱碳后的副产物,也是一种常见的钢铁冶炼废弃物,传统处理方式同样是倾倒或填埋。
但是,炉渣中含有大量的SiO2、FeO、CaO等物质,因此可以通过特殊的处理手段变废为宝。
炉渣综合利用技术中,最重要的是炉渣水淬技术。
这种技术是将炉渣加快冷却,使其玻璃化,进而制成微粉。
炉渣微粉可以用于耐火材料、水泥、建筑材料等领域。
另外,炉渣中的FeO、CaO等元素也可以用于水泥、钙硅磷肥料、玻璃纤维、陶瓷等行业,甚至还可以用于生产高纯的金属铁和加工炉渣制成道路建设用的环保型材石料。
3. 废气回收技术在钢铁冶炼过程中,除废渣外,还伴随着大量的废气产生,这些废气经常包含有一定量的CO、CO2、SO2、NOx等物质。
这些废气直接排放,会对空气造成严重污染,危害人民的身体健康。
所以,废气回收技术是冶炼工业环保的重要手段之一。
高炉炉渣中铁的回收和利用技术
高炉炉渣中铁的回收和利用技术随着钢铁工业的不断发展,生产中产生的废渣也越来越多。
其中,高炉炉渣作为钢铁生产废弃物的重要组成部分,一直被认为是一种资源性材料,固体回收利用具有广泛的应用前景。
高炉炉渣是一种带有一定氧化性的铁质物质,其中含有大量的铁,因此实现高炉炉渣中铁的回收和利用技术具有重要意义。
1.高炉炉渣中铁的含量高炉炉渣中含有的铁主要来源于铁矿石和焦炭。
在高炉内,铁矿石被还原为高炉渣中的还原铁,这样高炉内的铁就可以得到充分利用。
根据炉渣的不同组成成分,炉渣中所含的还原铁也不断变化,因此高炉炉渣中的铁含量的大小也是一个关键性问题。
炉渣中铁含量通常在20%到60%之间。
当炉渣中含有较高的铁时,可以采取回收和回用的方式使其得到充分利用。
回收的铁要求质量良好、不能受到污染,否则会对炉渣的利用产生不利影响。
2.高炉炉渣中铁的回收技术(1)重力选别技术重力选别技术是一种非常常见的采用的高炉炉渣铁的回收技术。
通过重力分离的作用,将铁和其他物质分开,这种技术能够有效地降低炉渣中铁的含量,从而提高资源的利用效率。
重力选别技术的基本原理是利用重力张力的不同,让炉渣中的铁与其他物质分离。
首先通过不同大小的筛网进行筛分,将炉渣分为不同的颗粒大小。
然后,将这些不同大小的颗粒进行分类,分别提取铁和其他物质,从而达到回收并循环利用的目的。
(2)磁选技术磁选技术是利用磁性材料本身所具备的特性,通过磁场作用将非磁性材料与磁性材料分开的一种技术。
高炉炉渣中含有大量的铁,其中些铁是具有磁性的,所以采用磁选技术可以获得高炉炉渣中铁的良好回收效果。
磁选技术的原理是利用磁性颗粒被磁场吸附的能力,使磁性颗粒与非磁性颗粒分离。
将高炉炉渣样品在磁场的作用下进行分离,可以得到不同富含铁矿物的产品。
(3)气固两相分离技术气固两相分离技术是利用气体和固体之间的密度差异来分离炉渣中的铁。
本技术是在熔融状况下对炉渣中的铁进行分离的。
通过高速流动的气体对炉渣进行喷浆,将含有可回收铁的气体部分与不含铁的固体部分分离出来。
冶金工业固体废物处理与利用
列出危险废物的种类、识别标志及相应的管理要求。
《关于进一步加强冶金工业固体废物处理与利用的意见》
提出加强冶金工业固体废物处理与利用的目标、任务、政策措施等。
行业标准规范介绍
《冶金工业固体废物处理与利用技术规范》
规定冶金工业固体废物的收集、运输、贮存、处理、处置及利用等技术要求。
品。
混凝土制备
将冶金固体废物作为骨料或掺合 料,制备混凝土,用于建筑和土
木工程。
砖瓦制造
利用冶金固体废物生产砖瓦等建 筑材料,替代部分黏土资源。
用于农业领域
土壤改良剂
01
将冶金固体废物加工成土壤改良剂,提高土壤肥力和改善土壤
结构。
肥料生产
02
利用冶金固体废物中的有益元素生产肥料,为农作物提供必要
的养分。
稀土尾矿是稀土元素提取后的废弃物,含有一定量的稀土元素和其他有价金属。通过浮选 、重选等选矿方法,可实现稀土元素的进一步回收。同时,尾矿可用于生产陶瓷、玻璃等 建材。
稀土冶炼渣处理与利用
稀土冶炼渣是稀土元素提取过程中的废弃物,含有较高的稀土元素和其他金属元素。通过 酸浸、萃取等工艺,可实现稀土元素的回收。同时,冶炼渣可用于生产水泥、砖等建材。
废水处理污泥处理与利用
稀土元素提取过程中产生的废水经处理后会产生大量污泥。这些污泥含有一定量的稀土元 素和其他金属元素。通过压滤、干燥等工序,污泥可用于生产肥料或作为其他工业原料使 用。
05 政策法规及标准规范解读
国家政策法规要求
《中华人民共和国固体废物污染环境防治法》
明确固体废物污染环境防治的监督管理、污染防治措施、危险废物管理、法律责任等方面的规定 。
酸碱浸出
钢铁厂废弃物处理与资源化利用规定
信息公开
钢铁厂应将废弃物处理与资源化 利用情况向社会公开,接受公众
监督。
05
钢铁厂废弃物处理与资源化利用 经济效益分析
经济效益评估方法与指标体系建立
评估方法
采用成本效益分析、投资回报率、净现值等评估方法,对钢铁厂废弃物处理与资 源化利用项目进行经济效益评估。
指标体系
建立包括投资成本、运行成本、资源回收量、销售收入、利润等在内的指标体系 ,全面衡量项目的经济效益。
设备要求
安全要求
采用先进的设备,提高资源化利用效 率。
在资源化利用过程中,应确保设备和 设施的安全运行,防止事故发生。
设施要求
建设完善的资源化利用设施,包括废 弃物储存设施、加工处理设施等。
04
钢铁厂废弃物处理与资源化利用 监管措施
监管机构与职责分工
环保部门
负责制定钢铁厂废弃物处理与资源化 利用相关政策和标准,并监督实施。
目的
为了规范钢铁厂废弃物的处理和资源化利用,提高资源利用效率,减少环境污 染,促进可持续发展。
背景
随着钢铁工业的快速发展,钢铁厂废弃物产生量不断增加,对环境造成了严重 污染。为了解决这一问题,需要制定相应的规定,规范废弃物的处理和资源化 利用。
汇报范围
钢铁厂废弃物处理与资源化利用规定适用于所有钢铁企业。 本规定涉及的废弃物包括废渣、废气、废水等。
THANKS
感谢观看
钢铁厂废弃物处理与资源化利用规 定
汇报人:XXX 2023-12-14
目录
• 引言 • 钢铁厂废弃物处理规定 • 钢铁厂废弃物资源化利用规定 • 钢铁厂废弃物处理与资源化利用监管
措施
目录
• 钢铁厂废弃物处理与资源化利用经济 效益分析
钢铁工业固体废物处理与资源化
钢铁工业固体废物处理与资源化12.1 概述消耗能源和资源最多的行业是钢铁工业,并且其在冶炼过程中会产生大量的固体废物。
钢铁工业废物的数量随着钢铁产量的迅速增长而增加,因此,钢铁工业废物的处理成为走经济循环道路的重要问题,是实现可持续发展的重要前提。
但是,我国钢铁工业废物的利用率仍然不高,部分企业仍采用简单的方法处理钢铁工业废物,不仅造成钢铁工业废物没有全部利用,浪费资源,而且还会影响生态环境,使企业和社会的可持续发展面临挑战。
12.1.1 钢铁工业固体废物的来源、分类及特点1.来源我国钢铁工业固体废物的年产生量大约为1.7亿吨,包括铁矿开采时产生的剥离废石、高炉炉渣、选矿时产生的尾矿、转炉炉渣、铁合金炉渣、电炉炉渣、电镀金属污泥、含铁尘泥、六价铬渣等。
钢铁工业中不同的生产工艺会产生不同的固体废物。
2.分类钢铁工业固体废物主要有钢渣、高炉渣和赤泥等,目前大部分的废弃物都已经得到了利用,但是还缺乏高附加值和全量的利用技术。
3.特点钢铁工业产生的固体废物的主要特点:①产生量大,全国各个主要城市都会产生钢铁工业固体废物,使得处理的工作量加大;②钢铁工业固体废物含有铁、锰、钒、钼、铬、镍、稀土、钙、铝、硅、镁等金属和非金属元素,是一项可再生利用的二次资源;③除了电炉粉尘和铬渣等有毒废物,其他固体废物,如钢渣、尾矿、含尘铁泥,尽管量比较大,但是基本属于一般工业固体废物,不属于危险废物。
12.1.2 钢铁工业固体废物污染情况与利用现状目前,钢铁工业固体废物的综合利用主要在高炉渣与钢渣等固体废物处理综合回收与利用过程中余热回收利用系统集成优化、高附加值冶金加工利用技术、钢渣微粉技术、冶金尾矿渣高效综合利用、生产新型复合材料技术等方面。
12.2 钢渣的处理与利用12.2.1 钢渣的来源和性质1.钢渣的来源钢渣是炼钢过程中排出的固体废物。
炼钢的基本原理与炼铁是相反的,炼钢的原理是利用空气或者氧气除去炉料里的碳、硅、锰、磷等元素,并在高温下与石灰石发生反应,形成熔渣。
钢铁工业废弃物处理技术
钢铁工业固体废弃物处理技术1.1中国钢铁工业废弃物排放状况钢铁工业不仅消耗大量的资源和能源,还要排放大量的废弃物。
钢铁企业生产规模大、物流吞吐量大,生产流程工序多、结构复杂,生产过程伴随着大量物质和能量的流动、排放,构成了钢铁企业密集的物质流、能量流及环境负荷。
钢铁联合企业的生产规模一般是年产800~ 600万t 、400~300万t 和200~100万t 。
生产1t 钢约消耗1.5~ l.65t 铁矿石,3~8t 新水,排放2t 左右的气体(C02、S02、NOx 等)。
同时,生产1t 钢可处理150~200kg 废钢,处理10~40kg 废塑料。
由此可见,钢铁厂生产规模大、工艺流程复杂、物质流和能量流密集的特点易于在物质和能源量级上与循环经济社会对接[1]。
近十年来,钢铁工业得到迅速发展,对环境的污染也越来越严重,冶金工业的所制造的环境问题也日益引起人们的重视。
冶金企业污染物具有排放量大/成分复杂的特点,治理的技术难度很大。
这不仅需要国家有关环境保护政策的和法规的保证,更需要环境工程技术的支撑。
表1一3 2002年我国钢铁工业环保现状及与国际水平比较工业的对环境的污染物可以分为三类:废气、废水、固体废弃物,这三类污染物从不同 的角度和程度污染我们周围的环境。
在冶金生产中不同的工艺过程生产出的污染物也是不同的,因此我们在处理冶金工业对环境污染问题时首先要知道各个生产工业过程所产生的废弃物有哪些,再去寻找处理污染物的方法。
现代钢铁冶金最大一部分是采用的火法冶金的方法冶炼钢铁。
火法冶金是在项目 全国平均宝钢 国际某些先进企业水平 2000 2002 工业水重复利用率,% 87.04 89.53 96.59 98冶金渣利用率,% 46.79 52.96 100 100吨钢新水耗量, m 3/t 钢 24.75 15.05 5.31 5.5吨钢外排废水, m 3 /t 钢 17.22 9.07 1.29 1.1吨钢排S02,kg/t 钢 5.56 3.34 1.79 1.28吨钢排尘,kg/t 钢 5.08 2.69 0.5 0.5高温下从冶金原料提取或精炼金属的冶炼工艺,是物理化学原理在高温化学反应中的应用。
钢厂废物再利用管理制度
钢厂废物再利用管理制度一、钢厂废物种类及特点1. 废钢:包括废旧钢材、生产中产生的废钢、废旧设备等。
废钢资源较为丰富,可以通过熔化再生产成新的钢材。
2. 废渣:包括转炉炉渣、炼钢渣、铸造废渣等。
废渣中含有一定的铁分,可以通过技术手段进行回收再利用。
3. 废水:钢厂生产中产生的废水中含有大量的油脂、矿渣等物质,需要经过处理后才能排放。
4. 废气:钢厂生产中产生的废气主要是烟尘、硫化物、氮氧化物等,对环境造成严重污染。
二、钢厂废物再利用管理制度1. 制定规范的废物管理制度:钢厂应根据《环境保护法》、《固体废物污染环境防治法》等相关法律法规,制定规范的废物管理制度,包括废物的分类、收集、运输、处理、利用等方面的管理办法。
2. 加强废物资源化利用技术研究:钢厂应加大对废钢、废渣、废水、废气等的资源化利用技术研究力度,不断提高废物资源化利用率。
3. 完善废物收集、运输、处理设施:钢厂应建立完善的废物收集、运输、处理设施,确保废物得到有效的收集和处置,不对环境造成污染。
4. 加强对废物再利用企业的监管:钢厂需要与废物再利用企业建立合作关系,加强对废物再利用企业的监管力度,确保废物再利用过程中不违法排放。
5. 建立废物再利用运输和配送网络:钢厂应建立独立的废物再利用运输和配送网络,减少废物的二次污染,确保再利用后的产品质量。
6. 提高员工废物再利用意识:钢厂应做好员工废物再利用意识的宣传教育工作,提高员工的环保意识,促使员工积极参与到废物再利用工作中。
7. 完善废物再利用报告制度:钢厂应建立完善的废物再利用报告制度,定期上报废物再利用的情况,接受相关主管部门的监督和检查。
三、钢厂废物再利用管理制度的意义1. 有效地管理和再利用钢厂废物,可以减少资源的浪费,降低生产成本,提高企业经济效益。
2. 通过废物再利用管理制度的实施,可以减少环境污染,改善环境质量,促进生态文明建设。
3. 加强废物再利用管理制度的意义,可以提高企业的社会形象,增强企业的可持续发展能力。
钢铁冶炼废弃物资源化利用技术
钢铁冶炼废弃物资源化利用技术随着工业化进程的不断加速,钢铁冶炼业在我国的经济发展中占据了重要的地位,但是伴随着钢铁冶炼过程,也会产生大量的废弃物。
这些废弃物不仅占据了大量的土地,同时也对环境造成了极大的污染,因此如何对钢铁冶炼废弃物进行资源化利用技术的研究,就显得尤为重要。
钢铁冶炼废弃物主要有钢渣、钢粉、废钢、废渣等。
其中,钢渣是指在钢铁冶炼过程中产生的固态副产物。
钢粉是指在钢铁冶炼过程中产生的细小钢渣,直径在0.1-1.0mm之间。
废钢一般分为废钢屑和废钢材两种,废钢屑是指产生于钢铁生产、切割等过程中的碎钢渣,而废钢材是指不符合生产标准的新钢材或者回收的废旧钢材。
废渣则是指在钢铁生产过程中产生的含铁杂质,与钢水分离后产生的熔渣。
目前,钢铁冶炼废弃物资源化利用技术主要有以下几种形式:一、钢渣资源化利用技术钢渣是目前钢铁冶炼过程中产生的主要废弃物之一,如何对钢渣进行资源化利用,一直是钢铁冶炼行业关注的热点问题。
经过多年的研究,目前钢渣资源化利用已经取得了一定的突破。
主要针对钢渣中的二氧化硅和氧化铝等成分进行提取,然后进行其它二次利用,例如:砖石等构造材料、制备矿物填充材料、水泥填充材料以及道路铺装材料等。
二、钢粉和废钢资源化利用技术钢粉和废钢是在钢铁冶炼过程中产生的同样重要的废弃物,目前,这两种废弃物也得到了很好的应用和利用。
钢粉的主要应用领域是在金属注射成形、水泥制品、冶金加工等领域。
而废钢的利用则主要包括铸造、钢厂重熔以及工艺加工等方面。
其中,废钢的重熔利用是目前最为常用和有效的技术手段。
三、钢渣和废渣联合利用技术钢渣和废渣联合利用则是将钢渣和废渣混合利用的一种技术形式,它不仅有效减少了废渣造成的环境污染,也可以同钢渣一起被再次利用。
例如:钢渣和废渣混合后能够形成较好的水泥原料,同样也可以利用废渣的化学活性成分,来对钢渣进行改性,从而提高其综合利用价值。
总体而言,对于如何对钢铁冶炼废弃物进行资源化利用技术的研究,需要从废弃物的特性、资源的可利用性、工业技术的成熟度、环保和生态保护等方面全面考虑,制定科学、合理的资源利用方案。
钢铁工业环境保护和废料综合利用新技术
内 蒙 古石 油化 工
3 5
钢 铁 工 业 环 境 保 护 和废 料 综 合 利 用 新 技 术
翟永 臻 董 方 。 ,
(. 1宣化钢铁 集团有限责任公司技术 中心 , 河北 张家 口 0 5 1 ;. 7 10 2 内蒙古科技大学材 料与冶金学院 , 内蒙古 包头 041) 1 00
的环境 保 护和 资 源综 合利 用 技术 将 更 为 重要 , 现将
废 气 净 化 和 资 源 综 合 利用 方 面 的 技 术 现 状 综 述 如
下。
收 稿 日期 :0 7 O 一O 20一 6 2
洗涤器系统的内部管线中。 目 前采用锥性环缝洗涤
器 取代 B AUMC 文 氏管 系 统 , 以用 在 钢 厂 烟 气 O 可
净化 系统 中 , 以较低 的能 源 消耗 实现高 效 废气 净化 。
湿 法 净 化 系统 的投 资 成本 较 低 , 尘 清 除 效率 灰
较高。
1 2 干法 净化 系统 .
类 似 , 使用 不 同设备 来迎 合 高压 饱和 气体 的需 要 。 但 系 统 改 善包 括 奥 钢联 B UMC 喷 嘴 系统 , 点 为 A O 特 使 用洗 涤 水和 蒸 汽 的 高效 双 流 喷 嘴 , 轻 易安 装 在 可
轧钢厂固体废弃物综合利用详解
• 影响氧化铁皮生成的因素
• 加热温度、时间、炉内气氛与原料的化学成分是影响生成 氧化铁皮的主要因素。在低温阶段加热时生成的氧化铁皮 较少, 当加热温度超过850-900℃
粉末冶金原料
在粉末冶金工业中,氧化铁皮是生产还原铁粉的主要原料。生产还 原铁粉的工艺流程是:氧化铁皮经干燥炉干燥去油去水后,经磁选、破 碎、筛分入料仓,作为还原剂的焦粉配入10%-20%的脱硫剂(石灰石
)后经干燥处理入料仓。将氧化铁皮按环装法装入碳化硅还原罐内 ,中心和最外边装焦炭粉,将装好料的还原罐放在窑车上送入隧道窑 进行一次还原,停留90h后冷却出窑。此时氧化铁皮被还原成海绵铁, 含铁量98%以上,卸锭机将还原铁卸出,经清渣、破碎、筛分磁选后, 进行二次精还原,生产出合格的还原铁粉。
海绵铁作为废钢短缺的一种补充, 随着电炉产钢量的不断上升, 海 绵铁显得越来越重要。用矿粉生产海绵铁由于设备投资大, 工艺复杂, 目前在我国仍难以取得迅速发展。用氧化铁皮生产海绵铁可以解决以上 间题。
➢
用煤粉还原氧化铁皮和转炉烟尘生产海绵铁生产设备简单, 投资少,
工艺简便可行。
➢➢ 用氧化铁皮生产的海绵铁含铁量高, 杂质含量低且成分稳定 ➢ , 较之用矿石生产的海绵铁不含脉石杂质, 可作优质废钢使用。
• 轧制法去除氧化铁皮
• 一是利用一种用剪切式轧制法的轧机, 通过减小辊径, 用机械法去除热轧板表面的氧化物。
• 二是通过改变粗轧中各道次的压下率和精轧前的累计压 下率, 可提高氧化铁皮的剥离性。
• 化学法去除氧化铁皮
钢铁工业大宗固废综合利用现状及展望
THANKS
谢谢您的观看
理水平。
03
社会效益
钢铁工业大宗废综合利用有助于提升社会效益。通过资源化利用,可
以缓解资源短缺问题,促进循环经济发展。同时还可以为社会创造就业
机会,推动区域经济的可持续发展。
03
钢铁工业大宗固废综合利用的 挑战与问题
技术瓶颈与难题
高效分选技术缺乏
目前钢铁工业大宗固废的分选技术尚不成熟,难以实现高精度、 高效率的固废分选。
市场需求持续增长
随着环保意识的提高和资源的日益紧缺,钢铁工 业大宗固废综合利用的市场需求将持续增长。
商业模式创新
钢铁企业将探索新的商业模式,如与上下游企业 合作、建立产业联盟等,共同推动大宗固废的综 合利用。
拓展应用领域
钢铁工业大宗固废综合利用的产品将不断拓展应 用领域,如建筑、道路、化工等,为经济发展提 供新的动力。
政策与法规展望
01
02
03
强化政策引导
政府将出台相关政策,鼓 励钢铁企业开展大宗固废 综合利用,推动产业绿色 发展。
完善法规标准
制定和完善大宗固废综合 利用的相关法规和标准, 规范行业秩序。
加大资金支持
设立专项资金,支持钢铁 企业开展大宗固废综合利 用技术研发和产业化。
市场前景与商业模式创新
1 2 3
相关法规对钢铁工业大宗固废综合利用的规定执行不力,缺乏
有效的监管措施。
环保标准不严格
03
环保标准对钢铁工业大宗固废综合利用的要求不严格,导致一
些企业缺乏环保意识。
市场接受度与经济性考量
市场接受度低
由于公众对钢铁工业大宗固废再生产品的认知度低,市场接受度普遍较低。
经济性不佳
钢铁工业固体废弃物资源化无害化处理实践及发展趋势
钢铁工业固体废弃物资源化无害化处理实践及发展趋势冶金固体废物综合治理利用体现了资源节约与高效利用,是保证我国钢铁工业科学、可持续健康发展的重要工作,是钢铁工业污染防治、保护环境的重要措施,同时也是增强企业竞争力的重要手段。
钢铁生产过程中产生的固体副产品主要有:高炉渣、钢渣、含铁尘泥(含氧化铁皮、除尘灰、高炉瓦斯灰等)、粉煤灰、石膏、废耐火材料等。
宝钢等在全国循环经济试点企业实施方案中使用“副产品”或“次生资源”来替代通常所说的“废弃物”,以此倡导企业节约资源、保护资源的意识和行为。
1 固废(副产品)的利用现状冶金固体废物(副产品)综合治理与利用现状见图1。
图 1 冶金固体废物(副产品)的利用现状中国钢铁工业应该成为一棵枝繁衍叶茂抵御风寒酷暑的大树。
详见示意图2。
图2 中国钢铁工业应该成为大树示意图2 将冶金固体废物综合治理利用钢铁企业循环经济建设紧密结合循环经济采用的是“资源-产品-再生资源”的循环发展模式。
见图3。
图 3 “资源-产品-再生资源”的循环发展模式在钢产量不断增加的情况下,固废产生量也在不断地增加,如将其废弃,不但要占土地、污染土壤,刮风等产生的扬尘还将污染堆场周围环境空气及植物,雨水冲刷进入水体将淤积河沟或湖泊,并可对地表水、地下水水质产生污染。
钢铁生产中尽可能地减少铁素体的流失,尽可能多地回收利用钢铁生产过程中含铁废弃物和自产废钢。
含铁废弃物包括高炉瓦斯灰,烧结、炼铁、炼钢过程中产生的各种含铁尘泥,轧钢过程中产生的氧化铁皮和酸洗泥等的高效利用。
自产废钢包括炼铁过程中的渣铁,炼钢过程中的渣钢、钢包底,连铸过程中的漏钢、中间包铸余钢,轧钢过程中的切头、切尾、切边、中间轧废等分类利用。
回收利用钢铁生产过程中含铁废弃物和自产废钢工艺过程见图4。
图 4 回收利用钢铁生产过程中含铁废弃物和自产废钢工艺过程钢铁工业还与其它流程工业之间的有着密切关联。
详见图5。
图5 钢铁工业与其它流程工业之间的关联示意图在德国,高炉渣利用率达到100 %,炼钢渣利用率超过90 %,总体循环利用率接近95 %。
介绍几种钢渣处理工艺
1)热泼工艺.热熔钢渣倒入渣罐后,用车辆运到钢渣热泼车间,利用吊车将渣罐的液态渣分层泼倒在渣床上(或渣坑内)喷淋适量的水,使高温炉渣急冷碎裂并加速冷却,然后用装载机、电铲等设备进行挖掘装车,再运至弃渣场.需要加工利用的,则运至钢渣处理间进行粉碎、筛分、磁选等工艺处理。
(2)盘泼水冷(ISC法)。
在钢渣车间设置高架泼渣盘,利用吊车将渣罐内液态钢渣泼在渣盘内.渣层一般为30一120mm厚,然后喷以适量的水促使急冷破裂.再将碎渣翻倒在渣车上,驱车至池边喷水降温,再将渣卸至水池内进一步降温冷却.渣子粒度一般为5—100mm,最后用抓斗抓出装车,送至钢渣处理车间,进行磁选、破碎、筛分、精加工。
(3)钢渣水淬工艺。
热熔钢渣在流出、下降过程中,被压力水分割、击碎.再加上熔渣遇水急冷收缩产生应力集中而破裂,使熔渣粒化。
由于钢渣比高炉矿渣碱度高、粘度大,其水淬难度也大。
为防止爆炸,有的采用渣罐打孔,在水渣沟水淬的方法并通过渣罐孔径限制最大渣流量.(4)风淬法.渣罐接渣后,运到风淬装置处,倾翻渣罐,熔渣经过中间罐流出,被一种特殊喷嘴喷出的空气吹散,破碎成微粒,在罩式锅炉内回收高温空气和微粒渣中所散发的热量并捕集渣粒。
经过风淬而成微粒的转炉渣,可做建筑材料;由锅炉产生的中温蒸汽可用于干燥氧化铁皮。
(5)钢渣粉化处理。
由于钢渣中含有未化台的游离CaO,用压力0.2一0.3MPa,l00℃的蒸汽处理转炉钢渣时,其体积增加23%一87%,小于0.3mm的钢渣粉化率达50%一80%。
在渣中主要矿相组成基本不变的情况下,消除了未化合CaO,提高了钢渣的稳定性。
此种处理工艺可显著减少钢渣破碎加工量并减少粉碎设备磨损.钢渣综合利用途径及处理工艺的选择摘要:钢渣综合利用途径及处理工艺的选择钢铁工业是国民经济的基础产业,在国家经济快速发展的形势下,钢铁工业也呈现出跳跃式发展的态势,钢产量近几年不断提高,钢渣作为炼钢工艺流程的衍生物随着钢产量的提高年产量不断递增。
工业固体废弃物的资源化利用
工业固体废弃物的资源化利用随着工业发展,工业固体废弃物也在不断增加。
这些废弃物通
常被看作是垃圾,需要被处理掉或填埋,但实际上,这些废弃物
有很高的资源利用价值。
下面将介绍其中一些典型的资源化利用
方法。
I. 金属废弃物的再利用
金属废弃物可以被回收利用,其回收率可以高达90%以上。
废
金属主要分为两类:铁和非铁金属。
废铁主要来自废旧汽车、建
筑等,主要回收方式是通过高温熔炼成新型钢铁产品。
非铁金属
包括铝、铜、锌等,其回收主要是通过融化、升华、电解等方式
进行。
II. 废塑料的再利用
废塑料是另一个重要的废弃物,其资源化利用率远远低于金属
废弃物。
废塑料主要来自于生活和工业生产,例如塑料瓶、袋子、包裹等。
废塑料的再利用方式包括回收制作新型塑料产品、制造
燃料、生产石油、化肥和有机材料等。
III. 废电池的资源化利用
废电池中的有害物质包括重金属、有机化合物和臭氧层破坏物,所以废电池的再利用需要特别注意废弃物的安全处理。
废电池的
资源化利用方式包括了铅酸蓄电池的回收再制造和锂离子电池的二次利用等。
IV. 有机废弃物的资源化利用
有机废弃物主要来自生活一个废品。
现代生活越来越注重环保和节能,所以有机废弃物的资源化利用自然成了重点。
有机废弃物的再利用方式包括了发酵制肥、废物气化和产生清洁能源等。
总的来说,工业固体废弃物的资源化利用是节约资源、减少环境污染和消除危险的有效措施。
在未来几年中,这种方式将得到进一步推广和发展。
钢铁协同处置污泥方案
钢铁协同处置污泥方案随着钢铁工业的发展,污泥这一废弃物的处理越来越受到人们的关注。
污泥的处置方式多种多样,但是由于其含有重金属等有毒有害物质,传统的处理方式往往会对环境造成不可逆转的影响。
为了更好地处理钢铁行业产生的污泥,各个企业开始探索采用协同处置的方式,以减少对环境的影响,并达到资源的可持续利用。
本文将介绍钢铁协同处置污泥的方案。
1. 协同处置协同处置是指利用多种技术手段协同作用,对污染物进行处置。
协同处置本质上就是化学过程中的催化反应,通过选用适当的催化剂,使不同的反应达到更快、更高效的结果。
协同处置中,以钢铁行业为主要生产源的污泥,通常采用加热和化学反应等方式进行处理。
2. 加热加热是钢铁行业协同处置污泥的常见方式。
加热可分为干式加热加气氛和湿式加热加气氛两种,钢铁企业一般采用干式加热加气氛的方式。
具体来说,采取间接加热方式对污泥进行干燥,将含水量减少到一定程度。
这样可以降低处理污泥所需的系统能量、加快反应速率等,提高资源利用率。
3. 化学反应钢铁行业企业在处理污泥时通常采用化学反应方法,主要是通过氧化、加氢、烷化、烷基化等化学反应使废水中的有机物降解或转化成无机物。
此外,还可以利用光化学、超声波、离子束等物理手段或利用由生物、微生物所产生的代谢产物帮助反应的进行。
4. 污泥综合利用协同处置不仅可以有效降解污泥降低其污染物排放,而且还能够实现污泥资源化的利用,提高稀有金属等资源的回收率。
例如,协同处置后的污泥可用于筛分出细粒度物料作为烧结用原料、制作生态砖等环保建材,也可以进行压缩处理、化学冶金提取、回收肥料等方式进行污泥资源化。
5. 结论总之,协同处置是钢铁行业处理污泥时的一个重要方法。
钢铁行业的污泥处理不仅是企业的社会责任,也是实现可持续发展的必要手段。
通过协同处置,可以有效降低钢铁行业的污染物排放,实现污泥的无害化、减量化、可持续利用。
当然,钢铁行业企业在协同处置时也需要遵循环保法律、规定,合理利用资源,尽可能货值化废弃物,减少环境的破坏。
废钢铁研究报告
废钢铁研究报告引言废钢铁是指经过使用后无法继续使用的钢铁材料。
在现代社会,废钢铁的处理和回收已成为环境保护和资源再利用的重要议题。
本文将对废钢铁的研究进行深入探讨,包括废钢铁的来源、处理方法、应用领域等方面,旨在为推动废钢铁的有效管理和循环利用提供参考。
废钢铁的来源废钢铁的来源主要包括以下几个方面: 1. 工业废弃物:各种钢铁制品的生产过程会产生大量废弃物,如废钢材、废钢筋等。
2. 废旧机械设备:随着技术的不断进步和产品更新换代,大量的机械设备也会被淘汰报废,其中包括大量的废钢铁。
3. 建筑废弃物:建筑施工过程中会产生大量废弃的钢铁材料,如废钢结构、废钢筋等。
废钢铁的处理方法废钢铁的处理方法主要包括以下几种: 1. 分拣和分类:将废钢铁进行分拣和分类,根据不同的材质和尺寸进行分堆存放,以便后续的加工和利用。
2. 清洗和破碎:对于表面附着有污物的废钢铁,需要先进行清洗处理,去除污物和附着物;然后通过机械破碎或其他方法将废钢铁进行粉碎。
3. 熔炼和冶炼:将粉碎后的废钢铁进行熔炼和冶炼,将其中的杂质和其他非金属元素去除,得到高纯度的铁水。
4. 再生利用:经过熔炼和冶炼处理后的废钢铁可以用于再生制造钢材、铁合金等产品,实现资源的循环利用。
废钢铁的应用领域废钢铁经过处理后,可以广泛应用于以下领域: 1. 钢铁制品的生产:经过再生利用的废钢铁可以作为原料,用于再生制造各种钢铁制品,如钢板、钢管等。
2.建筑业:废钢铁可以作为建筑材料的组成部分,用于建造基础设施、房屋等。
通过废钢铁的再利用,可以减少新钢铁的生产,降低能源消耗和环境压力。
3. 能源领域:废钢铁可以作为能源回收的材料,用于生产煤气、燃料等,提供更多的能源选择。
废钢铁的环境影响和管理措施废钢铁的处理和回收对环境具有重要意义,但同时也会带来一些环境影响。
为了有效管理废钢铁的处理过程,需要采取一系列的管理措施,包括: 1. 环保监管:建立相关的法规和标准,对废钢铁的处理和回收进行监管,加强对环境污染的防控。
钢铁行业固废堆场及含锌尘泥处置技术实践
钢铁行业固废堆场及含锌尘泥处置技术实践摘要:钢铁产品生产制造周期相对较长,整个过程中消耗大量资源、能源,并排放污染物和温室气体,但钢铁产品的应用领域非常广泛,且具有高性能、长寿命等特点,能够循环利用。
在固废物临时存放时,堆场处置情况直接关系着固废物和环境的关系,为此,应加强固废堆场处理,提高固废物资源化利用水平,降低固废物对环境产生的危害。
关键词:钢铁行业;固废堆场;资源化利用引言在经济快速发展,物质资源不断丰富,乡镇日趋城市化的形势下,固体废物的产生量呈现出较为明显的增长趋势,环境污染的防治自然成了建设生态文明社会的必要措施。
新《固体废物污染环境防治法》(下文中简称“新固废法”或“新法”) 的实施不但关系产废企业的发展与国家生态环境观念的构建,同时也与人民健康息息相关。
因此,产废企业只有走科技含量高、经济效益好、资源消耗低、环境污染少、人力资源优势足的道路,才能在环境与经济的和谐共生道路上走得更远。
1.钢铁固废减污降碳协同钢铁行业固废具有种类多、成分复杂、排放量大等特点。
开展钢铁固废资源高效利用,可减少矿石资源消耗,同时与建材等行业构建循环经济产业链,替代高能耗的建材原料加工环节,是我国钢铁行业及建材行业协同落实碳达峰、碳中和目标任务的重要途径之一。
近年来,我国钢铁行业积极开展资源综合利用项目建设,实施绿色转型升级发展,虽然工业固废总量增加,但资源综合利用率指标在保持较高的水平下仍有一定进步,高炉渣、钢渣、含铁尘泥综合利用技术也取得了创新发展与推广应用。
钢铁行业钢结构产品和固废资源均可以作为建筑、建材等下游行业协同降碳的原材料,通过钢铁产品的碳足迹评估分析和钢铁产品碳披露,为下游行业提供绿色循环材料;通过完善技术先进、经济合理的钢结构全生命周期标准体系,建立钢铁产品绿色标准体系;促进冶金渣等固废资源综合利用关键技术和成套技术研究成果转化为标准规范,加快钢材产品标准和冶金渣利用设计规范有效衔接。
钢铁工业固体废物资源回收
钢铁工业固体废物资源回收摘要:近年来,伴随我国环境问题日趋严峻,此时人类和环境问题日趋严峻。
但是,我国社会发展在很大程度上需要自然资源的加持。
怎样才能愈发高效地维护环境,实现自然生态均衡成为当下值得关注的问题。
基于此,本文将进一步详尽地阐述钢铁工业固体废物资源回收技术,希望能够给同行带来一定的参考价值。
关键词:钢铁;工业固体;废物;资源回收;技术分析1引言当前,我国绿色环保理念获得了大范围传播,在各个行业中都主张清洁生产,合理利用资源。
钢铁工业固体废物通常包括尾矿、高炉渣以及钢渣,上述固体废物包含铁、硅、钙、镁等氧化物,总体含量高达八成,怎样愈发灵活地处理上述资源,已经成为当下亟待处理的问题。
通过长时间的科学探索,不难看出,我国钢铁工业固体废物能够做到减量化、资源化。
就当前来说,钢铁渣大多被应用至建筑材料中,尤其是在水泥产业,钢铁渣粉的发展潜力较大。
2高炉渣的处理技术分析高炉渣就是指在高炉冶炼期间,通过矿石内脉石、燃料内较少的灰分以及溶剂(通常为石灰石)等材料中的非挥发组分构成固体废弃物。
根据冶炼生铁类型的差异性,此时可以划定成锻造生铁渣、特种生铁治、炼钢生铁渣以及炼合金钢生铁渣四种类型。
高炉渣的化学成分包括了CaO、SiO2,AL2O3以及MgO,他们的整体含量超过90%;次要成分就涵括了部分MnO、TiO2、S、Na2O以及K2O。
虽然高炉渣渐渐降温后会产生钙黄长石、硅酸二钙、镁方柱石、钙镁橄榄石等的固熔体以及玻璃体矿物。
高炉渣生成规模受到矿石品位的影响,就当前来说,如果要冶炼1吨生铁,此时我国就会释放出0.6吨至0.8吨高炉渣[1]。
而日本、美国等国大致是0.27吨至0.3吨。
而当下我国大约有2100万吨高炉渣,而日本、美国大约可以排放2700万吨。
在发展前期,各个国家在处理高炉渣的过程中,往往都花费大量的资源建设堆渣场。
而伴随我国新型技术水平的逐渐提升,此时出现了多种多样的加工处置形式,他们把高炉渣加工为可资源化应用的材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢铁工业固体废弃物处理技术1.1中国钢铁工业废弃物排放状况钢铁工业不仅消耗大量的资源和能源,还要排放大量的废弃物。
钢铁企业生产规模大、物流吞吐量大,生产流程工序多、结构复杂,生产过程伴随着大量物质和能量的流动、排放,构成了钢铁企业密集的物质流、能量流及环境负荷。
钢铁联合企业的生产规模一般是年产800~ 600万t 、400~300万t 和200~100万t 。
生产1t 钢约消耗1.5~ l.65t 铁矿石,3~8t 新水,排放2t 左右的气体(C02、S02、NOx 等)。
同时,生产1t 钢可处理150~200kg 废钢,处理10~40kg 废塑料。
由此可见,钢铁厂生产规模大、工艺流程复杂、物质流和能量流密集的特点易于在物质和能源量级上与循环经济社会对接[1]。
近十年来,钢铁工业得到迅速发展,对环境的污染也越来越严重,冶金工业的所制造的环境问题也日益引起人们的重视。
冶金企业污染物具有排放量大/成分复杂的特点,治理的技术难度很大。
这不仅需要国家有关环境保护政策的和法规的保证,更需要环境工程技术的支撑。
表1一3 2002年我国钢铁工业环保现状及与国际水平比较工业的对环境的污染物可以分为三类:废气、废水、固体废弃物,这三类污染物从不同 的角度和程度污染我们周围的环境。
在冶金生产中不同的工艺过程生产出的污染物也是不同的,因此我们在处理冶金工业对环境污染问题时首先要知道各个生产工业过程所产生的废弃物有哪些,再去寻找处理污染物的方法。
现代钢铁冶金最大一部分是采用的火法冶金的方法冶炼钢铁。
火法冶金是在高温下从冶金原料提取或精炼金属的冶炼工艺,是物理化学原理在高温化学反应中的应用。
在项目 全国平均宝钢 国际某些先进企业水平 2000 2002 工业水重复利用率,% 87.04 89.53 96.59 98冶金渣利用率,% 46.79 52.96 100 100吨钢新水耗量, m 3/t 钢 24.75 15.05 5.31 5.5吨钢外排废水, m 3 /t 钢 17.22 9.07 1.29 1.1吨钢排S02,kg/t 钢 5.56 3.34 1.79 1.28吨钢排尘,kg/t 钢 5.08 2.69 0.5 0.5火法冶金中天然矿石或人工精炼矿中的部分或者全部矿物在高温下经过经过一系列物理化学变化,生成另一种新形态的化合物或者单质,分别富集在气体、液体或固体产物中,达到所要提取的金属与脉石级其他杂质分离的目的。
实现火法冶金过程所需的热能通常是依靠燃料燃烧来供给,也有依靠过程中的化学反应来供给。
火法冶金一般包括三大过程:原料的制备、熔炼吹炼、精炼。
其中进行的化学反应则有热分解、还原、氧化、等等。
过程中的产物出金属或金属化合物以外,还有炉渣、烟气和烟尘。
现代炼钢的过程也是如此,炼钢的步骤可以概述为:首先选矿,然后将铁矿石烧结成适合高炉冶炼的烧结矿,将优质的烧结矿跟焦炭等加入高炉内,在高炉里还原铁矿石得到铁水,然后铁水经过预处理送到炼钢厂,铁水在炼钢厂的转炉内脱碳、磷、硫等有害元素跟杂质,然后将优质的钢水连铸,连轧得到我们需要的钢铁产品。
在这过程中,选矿跟烧结以粉尘为主要污染源;高炉炼铁以高炉煤气的气态污染物为主;连铸跟连轧以冷却水为主要污染物;同时在这过程中还有很多的矿渣、炼铁渣、炼钢渣的固体废弃物以及运输途中的烟尘污染。
这些污染物如果不加以处理而直接排放到环境中,对环境的损害是不可估计的。
同时这些污染物中也有很多有价元素以及一些可回收的资源直接排放也是一种对资源的浪费。
图1一钢铁生产长流程的演式2.1钢铁行业固体废弃物综合利用研究现状2.1.1钢铁行业固体废弃物综合利用概述近年来,随着我国冶金行业的迅猛发展,产生的大量冶金固体废弃物也成为资源再利用和环境保护的一大难题。
从矿山开采、选矿、冶炼到金属加工都排放固体废弃物,如采矿废石、选矿尾矿、冶炼炉渣、粉尘污泥等,统称为冶金固体废弃物。
我国钢铁产量连续多年位居世界第一,2005年钢铁产量超过4×108吨,占世界总产量的50%左右,产生高炉矿渣1.55×108吨,钢渣7000万吨,矿山废石、选矿尾矿数倍于此。
有的冶金企业渣场堆高达数十米,不仅占用大量土地,而且严重污染环境,尾矿库占地更多,管理费用高,约占矿产品成本10%-30%,且污染风险大,尾矿坝倒塌事故时有发生[2]。
而作为钢铁生产必然产物的冶渣,其产生量也随之增大,大量废弃的冶金渣占用土地、污染环境、浪费资源,钢铁工业可持续发展战略面临着严峻的挑战。
钢铁行业以其资源、能源密集,生产规模大,工序流程长等特点,产生大量固体废弃物,成为环境污染大户。
钢铁生产的固体废弃物主要有矿业废石和尾矿高炉渣、钢渣、各类尘泥、粉煤灰渣以及工业垃圾等。
如果不能很好的处理好这些固体废弃物,不仅会污染环境,还会导致资源的浪费。
目前,我国在钢铁固体废弃物方面的综合利用主要表现在以下几个方面[3-5]。
2.1.2矿物废石和尾矿的资源化钢铁工业的原料来自矿山,在矿物的开采过程中,除了开采出符合品位要求的矿物外,同时还会产生巨大数目的固体废弃物,其中矿山废石占了相当大的比重。
据统计,我国矿山固体废弃物产生量占工业固体废弃物产生量的90%[6] 。
这些废石如果处理不当,就会给人身安全造成危害,同时还会破坏生态环境所以,推行矿物废石和尾矿的资源化应用势在必行。
(1)回收有价金属尾矿中含有一定品位的金、银、铜、铁、铅、锌、镓金属等,作为矿山固体废弃物资源化的重要途径,这些有价值的各种金属必须要提取出来。
铁矿尾矿主要采用高梯度磁选机,从弱磁选、强磁选、重选和浮选中回收赤铁矿[7],除回收铁精矿外,还可以回收其它有用成分,如铜、金等。
这就意味着以前作为废弃物的尾矿,通过回收有价金属,可进一步提高资源的利用率。
(2)生产胶凝材料 [8]选矿尾矿SiO2含量高,且Fe2O3含量较高,代替粘土配烧水泥熟料,产量一般可提高20% ~30% ,能耗及成本显着降低。
根据火山灰成岩原理 ,运用地球化学、岩石矿物学理论进行胶凝材料分子设计,可将尾矿、粉煤灰以及冶金废渣等聚合生成类天然岩石的绿色胶凝材料,即所谓的凝石。
在某些场合,凝石可替代水泥。
2.1.3高炉渣的简述国外发达国家对高炉渣的利用已达到100%,我国高炉渣的利用率为仅为65%。
采用水淬工艺处理高炉渣是最为普遍的处理技术并沿用至今高炉渣的产出量与精矿品位、焦炭和助熔剂的质量以及高炉冶炼工艺有关,一般每吨生铁产渣量为300~900 kg。
高炉渣主要化学成分是SiO2,CaO,Al2O3等,三者占90%以上(表1)[9]。
除此之外,还含有一定量的MnO、FeO、K2O、Na2O以及硫化物等。
表1 高炉渣主要化学成分 (质量分数 %)高炉渣中的碱性氧化物之和与酸性氧化物之和的比值 ,称为高炉渣的碱度。
由于碱度比较直观地反映了炉渣中主要的碱性氧化物与酸性氧化物含量的比例关系 ,对于高炉冶炼和在建材领域的应用 ,都是很重要的参数。
高炉渣的组成也因生产原料以及炉渣冷却方式等的不同而不同[10]。
按照高炉渣的碱度可以把渣分为如下3类:①碱性高炉渣中主要矿物组成为钙铝黄长石、钙镁黄长石,以及一定量的硅酸二钙、假硅灰石、钙长石、钙镁橄榄石、镁蔷薇石和镁方柱石等;②酸性高炉渣中主要矿物为黄长石、假硅灰石、辉石和斜长石等;③中性高炉渣如锰铁渣中主要矿物是橄榄石;高铝渣中主要矿物为铝酸一钙、三铝酸五钙和二铝酸一钙。
以高炉渣作为材料的综合利用研究工作就是基于高炉渣以上化学组成或矿物组成而展开的。
2.1.4高炉渣的利用应该注意的问题(1)高炉渣是多化学成分的工业废渣,有的含有放射性元素和有毒有害成分,不能应用在和与人经常接触的环境。
(2)高炉渣中含有某些化学成分和矿物,影响建筑材料的安定性和耐久性,应用时应该注意成分的调整和矿物的处理。
(3)由于冶金工艺或原料的原因,造成某些高价值元素在渣中的残留,而在目前还没有较好的分离利用方法时,不应该盲目发展利用,以免造成资源的巨大浪费。
如我国有大量的含Ti高炉渣,其中含15%以上的TiO2,而其中的Ti目前还不能利用,在应用其开发建筑材料时应该考虑资源综合利用的问题。
(4)高炉渣是高温形成的多矿物的混合物,其经历了高温的过程,特别是淬冷渣含有大量的玻璃体,具有较大的潜能,在应用时应尽量应用这部分潜能,节约能源,同时在工艺上注意不破坏这部分潜能。
2.1.5高炉渣处理技术(1)重矿渣及膨胀矿渣高炉熔渣倒入热泼坑内,浇水冷却得到的矿渣,强度相当于中等天然石料,破碎后可作混凝土骨料。
高炉熔渣在渣坑或渣场自然冷却或淋水冷却,经过破碎、磁选和筛分,得到矿渣碎石,可用于混凝土骨料和填充地基,路基材料。
高炉渣碎石作骨料配制混凝土,不仅具有与普通混凝土相似的力学性能,而且还具有良好的保温隔热、耐热、抗渗和耐久性能,被广泛应用于各种建筑工程。
高炉重矿渣具有足够的强度,弹性模量较大,处理软土地基,稳定性好,提高持力层的承载力,加速地基的排水固结,较之深层搅拌法、灌注桩等方法,可以大大降低地基处理费用,同时缩短地基工期。
膨胀矿渣是适量冷却水急冷高炉熔渣形成的多孔轻质矿渣。
制备方法有喷射法、喷雾器堑沟法、滚筒法等。
如热熔矿渣经喷水急冷,在高速旋转的滚筒击碎冷却、膨胀,即膨胀渣;将熔渣水冲后膨胀,带叶片的滚筒旋转把它抛出,在空中冷却形成渣粒,落入膨珠池成为膨珠。
膨胀渣和膨珠可用作轻质骨料,也可作水泥混合材。
(2)水淬高炉渣水淬处理是我国高炉渣加工的主要方法,分为水冲渣法、水泡渣法和拉萨法。
水淬时,随同蒸汽产生有毒气体和矿渣棉污染环境,故水淬池上方须安装收气罩。
水淬急冷阻止结晶,因而形成大量的无定形体或玻璃体,具有较高的潜在胶凝活性。
冷却速度越快,玻璃体含量越高。
我国炼铁厂排放的快冷渣玻璃体含量在 80%左右。
水淬渣磨细后,水化时在水泥熟料及石灰、石膏等激发剂作用下,玻璃体网络结构解体,生成水化硅酸钙和水化铝硅酸钙等水化产物,水化产物的聚合导致凝结硬化产生胶凝作用。
2.1.6高炉渣的利用(1)有价金属的回收:由于冶金工艺或原料的原因,造成某些高价值元素在渣中的残留。
如攀枝花钢铁公司生产的高钛含钛高炉渣(渣中含TiO2达24%左右)。
经中南大学实验研究[11],用攀钢高炉渣为原料,开发了中品位人造金红石及硫酸法制取钦白的新工艺。
此工艺解决了高炉钛渣低钛高杂质的溶液处理问题,研制出符合国家标准的焊条级、搪瓷级、冶金级及颜料锐钛矿级钛白粉,并解决了制取钛白过程中的废渣和废酸的污染,形成了基本闭路循环的工艺流程。
东北大学基于“选择性析出原理”开发出一种选择性析出技术用于攀钢含钛高炉渣,确立了使含钛组分“选择性富集、长大、分离”,成为人造富矿的技术路线[12]。