纳米材料的结构和性质
材料科学中的纳米结构与性能
材料科学中的纳米结构与性能材料科学是一门研究各种材料物质运用、改变、塑造等方面的科学,涵盖了广泛的领域,而其中的纳米结构是近年来备受关注的焦点。
纳米结构是指在纳米尺度(1~100纳米)的范围内,材料的结构和性质发生了显著的变化,比如硬度、强度、导电性等。
这些性质的改变,带来了新的材料特性和应用前景。
在本文中,将会重点探讨纳米结构在材料科学中的应用和性能。
一、纳米结构对材料性能的影响纳米结构的出现,使得材料的物理、化学性质发生了明显的变化。
特别是在纳米尺度下,一些传统材料变得更加坚硬、强韧,而另一些则会出现松散、易碎等性质。
这些性质的变化,直接影响了材料的应用范围和使用效果。
1.硬度与强度研究表明,随着晶粒尺寸的减小,材料的硬度和强度会相应地提高。
这是因为晶粒越小,材料中的位错数量就会增加,导致材料的强度和硬度增加。
纳米晶材料的强度甚至可以与金刚石相媲美,因此在制造坚硬耐磨新型材料上有广泛的应用前景。
2.导电性对于电子学和光电学等领域来说,导电性是一项非常重要的性质。
研究表明,纳米结构的材料可以显著提高导电性,如纳米碳管、纳米颗粒等,均表现出了良好的导电性能。
这种性质的改善,使得纳米结构材料在制造高速电子器件、光电器件、甚至是高价值电子元件等领域都有非常广泛的应用。
3.热稳定性材料在使用过程中,不可避免地会受到一定的温度影响,其中的热稳定性是衡量材料抗高温性的重要指标。
研究发现,纳米结构材料中,晶粒的缺陷和杂质的扩散速率均发生了明显的降低,因此具有更好的热稳定性。
这种性质的改进,可以使材料在高温环境下更加稳定,从而使得材料可以扩展到更多的应用场景中。
二、纳米结构的制备技术纳米结构的制备技术对于纳米材料的性质和应用同样重要。
传统材料制备的方法不适用于纳米材料制备,因此需要专门的制备技术。
1.溶胶凝胶法溶胶凝胶法是指将一个溶解物内的分子或离子在适当的条件下形成胶体凝胶,再通过热处理或化学处理等方法,制备成具有特定纳米结构的材料。
纳米结构及其性能研究
纳米结构及其性能研究随着科学技术的迅猛发展,我们越来越多地关注到微观领域下的材料和结构。
其中,纳米结构受到了极大的关注,因为它们具有独特的物理和化学特性,能够应用于诸多领域,如Catalysis、biomedical imaging、battery、electronics、energy conversion等。
本文将介绍纳米结构及其性能研究的基本知识和进展。
一. 什么是纳米结构?纳米结构是指尺寸在1-100纳米之间的材料结构,是微观尺度下的物质组成单位。
具体地说,纳米结构的表面积非常大,因而具有较高的催化活性、许多量子效应及众多与体相材料不同的特殊性质。
在纳米技术领域,纳米结构通常指的是纳米级别的一维、二维、三维结构,如纳米线、纳米颗粒、纳米管等。
二、纳米结构的性能特点纳米结构的性质主要取决于三个方面:材料本身的特性、其结构形态和尺寸。
相较于纯单体材料,纳米结构具有以下性能特点:1. 较高的比表面积。
由于纳米材料尺度小于100 nm,因此纳米结构的比表面积通常非常大,其表面能量很高。
因此,纳米结构的催化性质,能量弛豫过程,纳米颗粒的吸附和表面动力学都会与普通材料有很大不同。
2. 尺寸相关性质。
与体相材料不同,纳米材料的特定尺寸限制了其某些性质。
在纳米级尺寸范围内,量子效应对电学性质、几何构象、光学性质等起到重要作用。
例如,在纳米结构中,金属修饰和催化剂负载的尺寸具有影响催化性质和选择性的作用。
3. 较强的量子效应。
对于小至数纳米的纳米结构,量子效应会成为物理和化学性质的关键影响因素。
量子效应可能会导致电子束缚、激子的形成,也可以影响光学性质。
4. 单轴磁性。
一些纳米结构材料(例如纳米磁性材料)展现出单轴磁性,这意味着它们对于磁场的反应是主要沿着一个方向的。
此特性极大地扩展了纳米结构在数据存储、磁性成像等领域的应用。
三、纳米结构的研究方法对于纳米结构的研究,研究方法至关重要。
目前常见的纳米结构研究方法有以下几种:1. 扫描电子显微镜(SSEM)。
无机纳米材料的结构和性质及其应用
无机纳米材料的结构和性质及其应用无机纳米材料是指粒径在1~100纳米之间的无机物质,具有与宏观材料不同的结构和性质。
它们的小尺寸和高特异表面积使它们具有良好的化学、物理、光学、热学、电学和磁学性质。
这些性质使得无机纳米材料在催化、电池、传感、生物医学、纳米电子学、纳米机械学等领域有着广泛的应用。
本文将介绍无机纳米材料的结构和性质,以及它们的应用前景。
一、无机纳米材料的结构无机纳米材料的结构可以分为两大类:一是晶格结构,即晶体结构的缩小版;二是非晶态结构,即没有规则有序排列的结构。
其中,晶体结构的纳米材料包括单晶纳米粒子和多晶纳米颗粒,它们是由原子或分子按照一定的空间排列方式组织起来的。
而非晶态结构的纳米材料具有类似于液体或气体状态的无序排列,如玻璃、纤维等。
晶格结构的无机纳米材料主要有四种类型:1)球形纳米粒子,2)棒状纳米颗粒,3)二维或三维纳米结构,常见的有纳米线、纳米管和多孔纳米结构,4)纳米晶体。
这些结构通过物理或化学方法可以制备出来,例如化学合成法、物理气相沉积法、熔融法、溶胶凝胶法等等。
非晶态结构的无机纳米材料主要有以下几种形态:1)无定形纳米材料(如非晶态SiO2);2)非晶态金属玻璃;3)纳米多晶体结构(如纳米金和镍等);4)非晶态或化学弱有序状态的铁磁材料。
这些结构通常采用熔融法、溶胶凝胶法和物理气相沉积法等制备。
二、无机纳米材料的性质无机纳米材料由于其小尺寸和高表面积/体积比,具有许多特殊的性质,其性质与普通材料有很大差异,主要有以下几点:1)量子效应。
纳米材料的电子与原子核之间的距离与纳米尺寸和粒径有关。
粒径小到一定程度,纳米材料的这些特性与量子力学联系紧密,表现出典型的量子效应,如发光效应、电子隧穿效应等。
2)表面效应。
由于其高表面积/体积比,纳米材料表面原子向外露出,而且表面结构与内部结构不同,导致表面具有很高的能量和活性。
这些表面效应使得纳米材料具有较强的催化、吸附和反应活性。
第三章 纳米材料的特性
(一)纳米材料的结构与形貌ZnO nanotube (一)纳米材料的结构与形貌1D ZnO nanostructures 热学性能电学性能磁学性能光学性能开热学性能开始烧结温度下降开始烧结温度下降TiO2微粒的烧结与尺寸关系纳米颗粒的晶化温度降低电阻特性介电特性压电效应电阻特性纳米金属与合金的电阻Gleiter等对纳米金属Cu,Pd,Fe块体的电阻与温度关系,电阻温度系数与颗粒尺寸的关系进行与常规材料相比,Pd纳米相固体z 随颗粒尺寸减小,电阻温度系Pd纳米固相的电阻温度系数与尺寸的关系例如,纳米银细粒径20nm18nm11nm纳米金属与合金的电阻电阻特性电阻特性介电特性是材料的基本物性•介电常数:•最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点常规材料的极化都与结构的有序相联系,而纳米材料在结构上与常规粗晶材料存在很大的差别.它的介电行为(介电常数、介电损耗)有自己的特点。
介电特性减小明显增大。
在低频范围内远高于体材料。
介电特性目前,对于不同粒径的纳米非晶氮化硅、纳米钛矿、金红石和纳米(个损耗峰.损耗峰的峰位随粒径增大移向高频。
7nm27nm 84nm 258nm介电特性压电效应压电效应纳米压电电子学(Nanopiezotronics)全新研究领域和学科,有机地把压电效应和半导体效应在纳米尺度结合起来高磁化率超顺磁性:当铁磁质的磁化达到饱和之后,如果将外磁场去掉,由于介质中的掺杂内应力阻碍磁畴恢复到原来的纳米微粒尺寸高于超顺磁临界尺寸时通常呈现高的矫顽力右图为用惰性气体蒸发冷凝方法制备的Fe纳米微粒居里温度降低居里温度降低居里温度降低随粒径下降而减小,根据铁磁学,原子间距减小会随着粒径减小而对9nm Ni微粒:高磁化率巨磁电阻效应z 巨磁电阻效应巨磁电阻效应纳米材料磁学特性小结纳米材料光学特性宽频带强吸收粒子的反射率为1%,Au 纳米粒子的反射率小于10%。
纳米氮化硅对红外有一个宽频强吸收谱纳米氮化硅红外光谱Si3N4热压片的红外吸收谱Si-N 键伸缩震动宽频带强吸收吸收光谱的兰移现象吸收光谱的兰移现象激子吸收带吸收光谱的红移现象吸收光谱的红移现象:激子吸收带纳米颗粒发光现象上图曲线1和2分别为掺了粒径大于10 纳米和5纳米的CdSexS1-x的玻璃的光吸收谱,尺寸变小后出现明显的激子峰。
纳米材料的种类和性质
纳米材料的种类和性质摘要:本文简述了纳米材料的基本概念、种类和性质。
关键词:纳米材料;概念;性质;种类正文:1纳米材料概念:从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。
纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。
2纳米材料种类:纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。
其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
2.1纳米粉末:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。
可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。
纳米材料的特性
块体半导体与半导体 纳米晶的能带示意图
2) 表面效应:纳米颗粒大 的表面张力使晶格畸变, 晶格常数变小。对纳米氧 化物和氮化物的研究表明, 第一近邻和第二近邻的距 离变短,键长的缩短导致 纳米颗粒的键本征振动频 率增大,结果使红外吸收 带移向高波数。
CdSe纳米颗粒的吸收光谱蓝移现象 A.P.Alivisatos, J. Phys. Chem. 100, 13227 (1996)
h
纳米氮化硅、碳化硅以及三氧化二铝粉等对红外有一个 宽频带强吸收谱。
不同温度退火下纳米三氧化二铝材料的红外吸收谱 1-4分别对应873,1073,1273和1473K退火4小时的样品
纳米材料的红外吸收谱宽化的主要原因
1) 尺寸分布效应:通常纳米材料的粒径有一定分布,不同颗粒的表面张 力有差异,引起晶格畸变程度也不同。这就导致纳米材料键长有一个分 布,造成带隙的分布,这是引起红外吸收宽化的原因之一。 2) 界面效应:界面原子的比例非常高,导致不饱和键、悬挂键以及缺陷 非常多。界面原子除与体原子能级不同外,互相之间也可能不同,从而 导致能级分布的展宽。与常规大块材料不同,没有一个单一的、择优的 键振动模,而存在一个较宽的键振动模的分布,在红外光作用下对红外 光吸收的频率也就存在一个较宽的分布。
5nm
>10nm
激子带的吸收系数随粒径的减小而增 加,即出现激子的增强吸收并蓝移。
CdSexS1-x玻璃的吸收光谱
曲线1所代表的粒径大于10nm 曲线2所代表的粒径为5nm
5、纳米微粒发光现象
当纳米微粒的尺寸小到一定值时可在 一定波长的光激发下发光。所谓光致发光 (photoluminescence)是指在一定波长光照射 下被激发到高能级激发态的电子重新跃回到 低能级被空穴俘获而发射出光子大块材料相比,纳米微粒的吸收带普遍存在“蓝移” 现象,即吸收带移向短波长方向。 例如,纳米 SiC 颗粒和大块 SiC 固体的红外吸收频率峰值 分别为814cm-1和794cm-1。纳米SiC颗粒的红外吸收频率较大 块固体蓝移了20cm-1。
纳米材料的基本概念和性质汇总
6、纳米复合材料
定义:纳米复合材料是由两种或两种以上的 固相(其中,至少在一维为纳米级大小)复合 而成的复合材料。这些固相可以是晶质、非晶 质、半晶质或兼而有之。也可以是有机物、无 机物或二者兼有。
纳米复合材料的特点:
可综合发挥各组分间协同效能 性能的可设计性
可按需加工材料的形状
纳米复合材料的性质:
团簇的研究是多学科的交叉
化学
合成化学 化学动力学 晶体化学 结构化学 原子簇化学
物理
原子、分子物理 非晶态
表面物理 晶体生长
其它
星际分子 矿岩成因 燃烧烟粒等
原子团簇的分类
按原子种类数目:
一元原子团簇
金属团簇,如Nan,Nin等
碳簇,如C60,C70等 非金属团簇
非碳簇,如B,P,S簇
二元原子团簇:包括InnPm,AgnSm等
应用:
含有20%超微钻颗粒的金属陶瓷是火箭喷气口的耐 高温材料。
金属铝中含进少量的陶瓷超微颗粒,可制成重量轻、 强度高、韧性好、耐热性强的新型结构材料。
超微颗粒亦有可能作为渐变(梯度)功能材料的原 材料。例如,材料的耐高的复合体,使其间连续地发生变化,这种材料可用于 温差达1000℃的航天飞机隔热材料。
小尺寸效应 表面效应 量子尺寸效应 宏观量子隧道效应
应用:
光、电、磁、敏感和催化材料 吸波材料 防辐射材料 高韧性陶瓷材料等
3、碳纳米管、纳米棒、纳米线
碳纳米管是纳米材料的一支新军。它由纯碳元素 组成,是由类似石墨六边形网格翻卷而成的管状物, 它一般为多层,直径为几纳米至几十纳米,长度可 达数微米甚至数毫米。
同步增韧、增强效应。无机填充材料具有刚性,有机材料具有韧性, 纳米无机材料对有机材料的复合改性,可在发挥无机材料增强效果的 同时起到增韧的效果。 新型功能高分子材料。纳米复合材料以纳米级水平平均分散在复合 材料中,可以直接或间接地达到具体功能的目的,比如高效催化剂、 紫外光屏蔽等。
举例说明纳米材料的结构与其性质的关系
代鹏程无机化学2009级硕博连读学号:200911461题目:举例说明纳米材料的结构与其性质的关系答:目录1、纳米材料定义2、纳米材料的结构3、纳米材料的性能4、以量子点为例说明纳米材料结构与其性质的关系5、以纳米线为例说明纳米材料结构与其性质的关系1、纳米材料定义纳米材料是纳米级结构材料的简称。
狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。
2、纳米材料的结构材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。
纳米材料也同样如此。
对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。
纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。
在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。
纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。
晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。
纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。
它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。
例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。
这些特点完全不同于普通的材料。
例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。
纳米材料的结构和性质
纳米材料的结构和性质纳米材料是一种具有独特结构和性质的材料,其粒径在1-100纳米之间。
由于其小尺寸和表面效应的存在,纳米材料具有许多优异的物理、化学、生物学等性质,因此在材料科学、物理学、化学、生物医学等领域有着广泛的应用前景。
本文将从纳米材料的结构和性质两个方面进行探讨。
一、纳米材料的结构纳米材料的结构是其独特性质的重要基础。
纳米材料的结构可以分为三类,即一维、二维和三维结构。
1. 一维结构一维纳米材料是指纳米尺寸下的线性结构,如纳米线、纳米管等。
这些结构的直径通常小于100纳米,长度则可能达到数微米至数十微米不等。
由于其结构形态呈现出高度的一致性,因此可用于生物传感、催化剂制备、分子分离、光电器件等领域的应用。
2. 二维结构二维纳米材料是指極薄厚度且沿两个方向同时集成了垂直层板状结构的纳米材料,如纳米片、纳米层等。
由于其大的表面积对材料的响应更为敏感,具有优异的光电、光学、催化等性质,在颜料、光电器件、电化学电容器等方面有着广泛应用。
3. 三维结构三维纳米材料是指纳米级别下三维有机会多孔织构,一般应用于电催化剂、储氢剂、传感器、催化剂等领域。
其特点在于孔隙性、比表面积大、微型孔或中心孔等结构可能使气体、液体或离子流体在内部获得较高效率的交换。
二、纳米材料的性质纳米材料表现出了与传统非纳米材料明显不同的性质,主要为其尺寸效应、表面效应和晶粒大小效应。
1. 尺寸效应纳米材料的尺寸在几纳米到数十纳米之间,因此导致其具有优异的电学、光学、热学性质。
例如,纳米材料的电和热导率可能随着其粒径的减小而增加,并增加化学反应区电离势的振动能、电子离散化能等因素,从而影响其特性。
2. 表面效应由于纳米材料表面积与体积的比值更大,因此其表面在结构、电学、磁学等方面由于体积表现出了显著的效应。
例如,金属纳米粒子的表面等离激元会导致其在光学、电化学等方面表现出了独特的效应。
3. 晶粒大小效应晶粒大小效应主要影响材料的机械、塑料、磁学性质,因为晶粒大小的减小增加了晶体中分子运动的抵触力。
纳米材料的基本概念与性质
从原子到宏观块体材料的演变
团簇是由几个至几百个原子、分子或离子通过物理或化学结 合力形成的相对稳定的聚集体。通常尺寸不超过1nm。
例如,Fen, CunSm, C60, C70等。团簇的物理和化学性质随所 含原子数目而变化,其许多性质既不同于单个原子、分子,又 不同于固体和液体,是介于原子、分子与宏观固体之间的物质 结构的新层次,有时被称为物质的“第五态”。 原子团簇不同于具有特定大小和形状的分子,不同于分子间 以弱的相互作用结合而成的聚集体以及周期性很强的晶体。其形 状可以是多种多样的,已知的有球状、骨架状、洋葱状、管状、 层状、线状等。除惰性气体外,均是以化学键紧密结合的聚集体。
不含碳富勒烯:
1991年以色列魏茨曼研究所R.Tenne首次合成出 二硫化钨笼形管状分子(右图)。
由二硫化钨分子层形成 的不含碳富勒烯
纳米粒子(纳米颗粒、纳米微粒、超微粒子、纳米粉):
一般指颗粒尺寸在1-100nm之间的粒状物质。它的尺度大于原 子簇,小于通常的微粉。早期称作超微粒子。 纳米颗粒是肉眼和一般的光学显微镜看不见的微小粒子。名古 屋大学的上田良二(R.Uyeda)给纳米颗粒的定义是:用电子显微 镜才能看到的颗粒称为纳米颗粒。 纳米颗粒所含原子数范围在103-107个(1-100nm)。其比表面 比块体材料大得多,加之所含原子数很少,通常具有量子效应、小 尺寸效应、表面效应和宏观量子隧道效应,因而展现出许多特异的 性质。
Si
电子能量
导带
3P 3S
价带
晶格间距
使孤立的硅原子彼此接近形成 金刚石结构晶体时形成能带
EF
硅能带中成键态与价带及反键态与导带之间的对应
原子间的相互作用导致能级发生分裂,形成能带结构。 当形成固体的原子数 n 非常大时,实际上形成了准连续 的能带。
纳米材料导论第一章纳米材料的基本概念与性质
1.1.5 纳米复合材料
❖ 0-0复合:不同成分、不同相或者不同种类的纳米粒子 复合而成的纳米固体;
❖ 0-3复合:把纳米粒子分散到常规的三维固体中;
❖ 0-2复合:把纳米粒子分散到二维的薄膜材料中.
均匀弥散:纳米粒子在薄膜中均匀分布; 非均匀弥散:纳米粒子随机地、混乱地分散在薄膜基体中。
18
高韧性陶瓷材料、
人体修复材料和抗癌制剂等。
12
1.1.3纳米粒子薄膜与纳米粒子层系
定义:含有纳米粒子和原子团簇的薄膜、纳米尺寸厚度的 薄膜、纳米级第二相粒子沉积镀层、纳米粒子复合涂层或 多层膜 具有特殊的物理性质和化学性质
13
纳米级第二相粒子沉积镀层举例
(Ni-P)-纳米Si3N4复合层 用具有很好悬浮性能的纳米Si3N4固体微粒作为镀液的第二相 粒子,通过搅拌使其悬浮在镀液中,用电刷镀的方法使Ni-P合金与 纳米Si3N4微粒共沉积于基体表面.它具有沉积速度快、镀层硬 度高和耐磨性好等优异的性能.
27
1.2.1电子能级的不连续性 - kubo理论
久保(Kubo)理论是关于金属粒子电子性质的理 论.它是由久保及其合作者提出的,以后久保和其他 研究者进一步发展了这个理论.1986年Halperin对这 一理论进行了较全面归纳,用这一理论对金属超微粒 子的量子尺寸效应进行了深人的分析。
久保理论是针对金属超微颗粒费米面附近电子能 级状态分布而提出来的,它与通常处理大块材料费米 面附近电子态能级分布的传统理论不同,有新的特点, 这是因为当颗粒尺寸进入到纳米级时由于量子尺寸效 应原大块金属的准连续能级产生离散现象.
采用两个石墨碳棒在惰性气体(He,Ar)中进行直流电 弧放电,并用围于碳棒周围的冷凝板收集挥发物。挥发 物中除了有C60外,还含有C70,C20等其它碳团簇。可以 采用酸溶去其它团簇,但往往还混有C70。
纳米材料的特性
纳米材料的特性纳米材料是一种具有特殊结构和性能的材料,其尺寸在纳米尺度范围内。
纳米材料的特性主要包括以下几个方面:1. 尺寸效应。
纳米材料的尺寸通常在1-100纳米之间,处于这一尺寸范围内的材料会呈现出许多特殊的物理、化学和生物学特性。
其中最主要的就是尺寸效应,即当材料的尺寸缩小到纳米级别时,其表面积相对于体积增大,从而导致其表面原子或分子的比例增加,使其表面活性增强,从而呈现出与传统材料不同的特性。
2. 光学特性。
纳米材料的光学特性是其最具有代表性的特性之一。
由于其尺寸与光波长处于同一数量级,因此纳米材料会呈现出许多特殊的光学现象,如量子尺寸效应、表面等离子共振、光学增强效应等。
这些特性使得纳米材料在光电子器件、传感器、光学材料等领域具有广泛的应用前景。
3. 电子特性。
纳米材料的电子特性也具有独特之处。
由于其尺寸效应和量子限制效应的影响,纳米材料的电子结构会发生改变,导致其电子输运性能、能带结构、电子密度等发生变化。
这些变化使得纳米材料在纳米电子器件、储能材料、传感器等领域具有重要应用价值。
4. 热学特性。
纳米材料的热学特性也备受关注。
由于其尺寸效应和表面效应的存在,纳米材料的热传导、比热容等性质会发生变化,使得其在热电材料、纳米催化剂、纳米传热材料等方面具有潜在应用前景。
5. 化学特性。
纳米材料的化学特性也与其尺寸密切相关。
由于其表面原子或分子的比例增大,纳米材料的化学反应活性会增强,从而在催化剂、吸附材料、传感器等领域发挥重要作用。
总之,纳米材料的特性是多方面的,涉及物理、化学、生物等多个领域,具有广泛的应用前景。
随着纳米技术的不断发展,纳米材料的特性将会得到更加深入的研究和应用,为人类社会的发展带来新的机遇和挑战。
纳米材料的结构与物理化学性质
纳米材料的结构与物理化学性质随着科技的进步和人们对于材料性能的不断追求,纳米材料作为一种特殊的材料一直备受关注。
纳米材料指的是尺寸在1到100纳米之间的材料,其尺寸与普通材料相比具有特殊的物理化学性质,因此在各个领域得到了广泛的应用。
而这些特殊性质的实现,与纳米材料的结构密切相关。
本文将重点讨论纳米材料的结构与物理化学性质的关系。
一、纳米材料的结构纳米材料的结构通常可以分为单晶、多晶和非晶三种。
单晶指的是由一个完整的晶体构成的纳米材料,其具有最完美的结晶结构。
而多晶则由多个不同晶向的晶体组合而成,其晶界是纳米材料的性能调控关键之一。
非晶表示纳米颗粒中原子结构的无序分布,这种结构不断实现着谷贵川所说的“尽量让原子挤在一起”,具有较好的应变容忍度和塑性形变。
这三种结构各自具有不同的物理化学性质,因此纳米材料的物性和结构密不可分。
除了晶结构外,纳米材料的形态也对其性质产生了影响。
例如球形纳米颗粒由于表面积大,因此具有更高的比表面积和更易于表面反应的特性。
纳米线、纳米棒等纳米材料具有量子尺寸效应,使得其在电学、磁学、光学等方面表现出独特的物理性质。
纳米材料的结构由其成分、制备方法和后处理等多种因素共同决定。
因此,在制备纳米材料时,需要选择合适的制备方法,并进行合适的后处理以调控纳米材料的结构,从而实现期望的物理化学性质。
二、纳米材料的物理化学性质纳米材料的物理化学性质是指在其尺寸范围内所表现出来的独特性质,包括量子效应、表面效应、劣化效应等。
下面将从几个方面对其进行分析。
1. 量子效应量子效应是指在纳米材料中,由于其尺寸的限制,量子力学效应与经典力学效应相互作用而引起的一系列物理现象。
纳米材料由于尺寸的限制而使得电子运动变得受限,使其结构、光电性质及相变过程等都产生了独特的变化。
量子效应基本上影响了纳米颗粒的所有物理化学性质。
例如,在纳米尺度下,普朗克常数极大地影响了自由电子的动量,从而改变了晶体缺陷、热容量、热导率等热力学性质。
纳米材料的结构与性质
2.1 纳米材料的分类及特性 2.2 纳米微粒的物理特性 2.3 纳米碳材料
2.1 纳米材料的分类及特性
纳米材料:三维空间中至少有一维处于1~100nm尺度
范围内或由纳米基本单元构成的材料。
一、纳米材料的分类 按结构(维度)分为4类: (1)零维纳米材料:空间三个维度上尺寸均为纳米
传统非晶氮化硅在1793K开始晶化成α相。 纳米非晶氮化硅微粒在1673K加热4h全部转
变成α相。
2. 磁学性能
主要表现为:超顺磁性、矫顽力、居里温度和磁化率。
超顺磁状态的起因: 在小尺寸下,当各向异性能减小到与热运动能可
相比时,磁化方向就不再固定在一个易磁化方向,易 磁化方向作无规律的变化,结果导致超顺磁性的出现。
例如,粒径为85nm的纳米镍Ni微粒,矫顽力很 高,而当粒径小于15nm时,其矫顽力Hc→0,即进 入了超顺磁状态。
粒径为65nm的纳米Ni微粒。矫顽力很高,χ服从居 里—外斯定律。
(这与传统材料不一致,说明粒径降低在一定范 围内可以提高矫顽力,阻止铁磁体向顺磁体转 变);
而粒径小于15nm的Ni微粒,矫顽力Hc—>0,如图 这说明它们进入了超顺磁状态,磁化率χ不再服从 居里—外斯定律。如下图
1.3 纳米微粒的物理特性
一、纳米微粒的结构与形貌
纳米微粒一般
为球形或类球形。
往往呈现多面体
或截角多面体。
Bi
蒸发
其他的形状可以与
不同合成方法和
其晶体结构有关。
Bi球形粒子
PMMA乳液聚合法,与无机物不同,高分子大多数是无定形 或结晶度比较低。表面能最低。
球形
Ni链蒸发
链状的,高温下,由许多粒子边界融合连 接而成。
纳米材料的物理和化学特性
纳米材料的物理和化学特性纳米材料是一种尺寸在1~100纳米之间的物质,具有比宏观物体更特殊的物理和化学特性。
与普通材料相比,纳米材料的表面积更大,颗粒间距较小,因此具有更高的化学反应活性和更快的反应速率。
此外,纳米材料的电子结构、热力学性质、磁性、光学特性等方面也与普通材料不同,使其具有很广泛的应用前景。
一、纳米材料的电子结构纳米材料的尺寸处于量子范围之内,因此其电子结构将受到量子尺寸效应的影响。
由于电子在纳米材料中的能量状态是量子化的,因此它们只能占据在量子态。
这使得纳米材料有很多电子态,比普通材料更复杂。
纳米材料的电子结构对其性质有很大影响,特别是对催化剂、光学材料和电子材料的性能有很大的影响。
二、纳米材料的热力学性质热力学是描述物质的热学性质的科学,包括温度、压力和热量等方面。
纳米材料的尺寸在量子尺度之内,具有特殊的热力学性质。
纳米材料的比表面积较大,导致其更容易与周围环境相互作用,因此具有更高的热力学活性。
这使得纳米材料经常用于催化剂和化学催化反应等方面。
三、纳米材料的磁性纳米材料具有在宏观材料中不会出现的磁性质。
由于磁性是由电子的自旋引起的,因此纳米材料的电子结构将影响其磁性质。
在某些情况下,纳米材料的磁性质可以被调节,例如通过改变其尺寸和组成等因素,因此具有广泛的应用前景。
四、纳米材料的光学特性纳米材料具有比宏观材料更特殊的光学特性,因为纳米材料的电子能够在可见光和紫外光范围内吸收和放射光能,因此可以产生很多特殊的光学效应,例如荧光、散射和吸收特性。
此外,纳米材料的颜色也会随着其尺寸和形态的改变而发生变化。
总之,纳米材料具有很多独特的物理和化学特性,这些特性是由其尺寸、形态和电子结构等因素所决定的。
由于这些特性,纳米材料在磁性材料、光学材料、电子材料和催化剂等领域中具有广泛的应用前景。
纳米材料结构分类-定义说明解析
纳米材料结构分类-概述说明以及解释1.引言1.1 概述概述部分:纳米材料是一种具有特殊结构和性质的材料,其尺寸在纳米尺度范围内。
纳米材料具有独特的物理、化学和生物学特性,因此在材料科学、化学工程、生物学、医学等领域具有广泛的应用前景。
本文将对纳米材料的结构分类进行详细介绍,以及纳米材料在不同领域的应用进行探讨,旨在加深对纳米材料的认识,并展望纳米材料的发展前景。
1.2 文章结构文章结构部分的内容如下:文章结构部分将介绍本文的组织结构和各个章节的内容概要。
本文包括引言、正文和结论三个部分。
在引言部分,将对纳米材料进行概述,并说明文章的目的和意义。
在正文部分,将详细介绍纳米材料的定义与特点,纳米材料的结构分类以及纳米材料在不同领域的应用。
结论部分将总结纳米材料在各个领域的重要性,并展望纳米材料的发展前景。
最后,通过结语部分对文章进行总结和展望。
本文将通过以上结构来全面探讨纳米材料的结构分类及其在不同领域的应用。
1.3 目的本文旨在系统性地介绍纳米材料结构分类,帮助读者更好地理解纳米材料在不同领域的应用。
通过对纳米材料的定义、特点和结构分类的深入探讨,读者可以更全面地了解纳米材料的特性和优势,以及其在生物、医学、材料科学、电子、光学等领域的广泛应用。
除此之外,本文还旨在为读者展望纳米材料的发展前景,强调其在未来科技领域的重要性,促进对纳米材料研究和应用的进一步关注和探索。
通过本文的阐述,我们希望读者能够深刻理解纳米材料的重要性,并对其未来发展充满期待。
2.正文2.1 纳米材料的定义与特点纳米材料是指至少在一维上具有至少一种尺寸小于100纳米(1纳米等于10的负9次方米)的材料。
这个定义是根据纳米尺度的特殊性质而确定的,纳米材料在尺寸上比传统的材料要小得多,因此具有许多独特的特点。
首先,纳米材料具有较大的比表面积。
由于其微观结构的特殊性,纳米材料在单位质量或体积下具有更多的表面积,这使得纳米材料在催化、吸附、传感等领域具有更广泛的应用前景。
纳米材料的特点及应用实例
纳米材料的特点及应用实例纳米材料是一种具有特殊结构和尺寸的材料,其尺寸通常在1到100纳米之间。
由于其特殊的结构和尺寸,纳米材料具有许多独特的性质和特点。
下面将详细介绍纳米材料的主要特点以及一些应用实例。
1.尺寸效应:由于纳米材料的尺寸处于纳米级别,与宏观材料相比具有较高的比表面积和更丰富的表面能量。
这使得纳米材料具有更高的反应活性和吸附能力,使其在催化剂、传感器和储能设备等方面具有广泛的应用。
2.量子效应:纳米材料的电子和光学性质受到量子效应的影响,如量子限制、量子隧道效应和量子尺寸效应。
这些效应使纳米材料在光电器件、光催化和光学传感器等领域有着重要的应用。
3.机械性能:纳米材料通常具有高硬度、高强度和良好韧性等优异的机械性能,这使得它们在增强材料、涂层材料和生物材料等领域具有广泛的应用。
4.热稳定性:纳米材料具有较高的表面能量,使其在热稳定性方面表现出优于宏观材料的性能。
这使得纳米材料在高温环境下的应用具有重要意义,例如高温催化剂和高温润滑剂等领域。
5.光学性能:纳米材料在可见光和红外光谱范围内具有特殊的吸收、散射和发射性质。
这使得纳米材料在太阳能电池、光催化和光学传感器等领域有着广泛的应用。
下面是一些常见的纳米材料及其应用实例:1.纳米金:纳米金具有良好的导电性和抗氧化性能,在电子器件、传感器和催化剂等领域有着广泛的应用。
2.纳米二氧化硅:纳米二氧化硅具有较高的比表面积和孔体积,广泛应用于催化剂、吸附剂和药物传递系统等领域。
3.纳米碳管:纳米碳管具有优异的电导性和力学性能,在电子器件、增强材料和储能设备等领域有着重要的应用。
4.纳米氧化锌:纳米氧化锌具有良好的光催化性能和抗菌性能,在太阳能电池、光催化和生物医学领域有广泛的应用。
5.纳米银:纳米银具有良好的导电性和抗菌性能,在电子器件、抗菌材料和生物传感器等领域有重要的应用。
综上所述,纳米材料具有许多独特的特点和性质,并在诸多领域中具有广泛的应用前景。
纳米材料在热学方面的背景
纳米材料在热学方面的背景纳米材料是一类具有特殊结构和性质的材料,其尺寸在纳米尺度范围内(1-100纳米)。
由于纳米材料具有大比表面积、高表面能量和尺寸效应等优势,它们在热学方面具有许多独特的性质和潜在应用。
首先,纳米材料在热传导方面呈现出与传统材料不同的行为。
由于纳米材料具有高比表面积,热传导在其表面上更加显著。
此外,纳米材料表现出尺寸效应,即相对于宏观尺寸材料,纳米材料的热传导性能会更强。
这些特点使得纳米材料成为高效热导体的候选材料,例如在电子器件中用作散热材料。
其次,纳米材料在热稳定性方面表现出独特的特性。
由于纳米材料具有高表面能量,其会表现出更高的熔点和较高的热稳定性。
这使得纳米材料能够承受更高的温度和压力,从而在高温环境下具有广泛的应用前景。
例如,纳米材料可以用于高温电池和太阳能电池,提高其性能和可靠性。
此外,纳米材料在相变储能方面也表现出潜在优势。
相较于传统材料,纳米材料具有更宽的相变温度范围和更快的相变速率。
这使得纳米材料具备更高的储能密度和更快的充放电速度,使其成为储能材料的理想选择。
例如,在新型电池和超级电容器中应用纳米材料,可以大幅提高电池的能量密度和循环寿命。
然而,纳米材料在热学方面也存在挑战和问题。
由于纳米材料具有较大的比表面积,其更容易受到表面缺陷和杂质的影响,从而影响热学性能。
同时,纳米材料的合成和制备过程也具有很高的难度和复杂性,需要精确的控制实验条件和工艺参数。
为了充分发挥纳米材料在热学方面的潜力,我们需要进一步深入研究纳米材料的热学行为和机制,并通过合理设计和优化材料结构,改善其热学性能。
同时,我们还需要加强纳米材料的制备技术和表征手段,以提高材料的质量和稳定性。
这将为纳米材料在能源、环境和电子等领域的应用提供重要的科学依据和技术支持。
综上所述,纳米材料在热学方面具有许多独特的性质和应用潜力。
通过深入研究纳米材料的热学行为和机制,并加强材料的设计和制备,我们将能够充分发挥纳米材料在热学方面的优势,为能源、环境和电子等领域的发展作出重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
纳个宽米频氮带化强硅吸、收SiC谱及.A这l2O是3粉由对纳红米外粒有子
一 大
的比表面导致了平均配位数下降,不饱
和键和悬键增多,与常规大块材料不同,
没有一个单一的,择优的键振动模,而
存在一个较宽的键振动模的分布,在红
外光场作用下它们对红外吸收的频率也
就存在一个较宽的分布,这就导致了纳
米粒子红外吸收带的宽化。
2.2 磁学性能
• 纳米微粒的小尺寸效应、量子尺寸效应、 表面效应等使得它具有常规粗晶粒材料 所不具备的磁特性.纳米微粒的主要磁 特性可以归纳如下:
• (1)超顺磁性 纳米微粒尺寸小因:在小 尺寸下,当各向异性能减小到与热运动能 可相比拟时,磁化方向就不再固定在一个 易磁化方向,易磁化方向作无规律的变化, 结果导致超顺磁性的出现.不同种类的纳 米磁性微粒显现超顺磁的临界尺寸是不相 同的.
2.纳米微粒的物理特性
• 纳米微粒具有大的比表面积,表面原 子数、表面能和表面张力随粒径的下降 急剧增加,小尺寸效应,表面效应、量 子尺寸效应及宏观量子隧道效应等导致 纳米微粒的热、磁、光、敏感特性和表 面稳定性等不同于常规粒子,这就使得 它具有广阔应用前景.
2.1热学性能
• 纳米微粒的熔点、开始烧结温度和晶化 温度均比常规粉体的低得多.由于颗粒 小,纳米微粒的表面能高、比表面原子 数多,这些表面原子近邻配位不全,活 性大以及体积远小于大块材料的纳米粒 子熔化时所需增加的内能小得多,这就 使得纳米微粒熔点急剧下降.
• 例在至1如一7,7定3常K条烧规件结A下l,2,O致3纳烧密米结度的温可A度达l2在O9392可.077%在3-.1241常2733规KK, S烧77i3结3NK4温烧加度结热降温呈低度现6出高73明于K至显227的7733致KK,密,纳化纳米,米氮而TiO化晶2硅在粒 仅比大有晶微粒小样的品增低加8,73致K使的纳温度米下微烧粒结TiO就2能在 达到类似的硬度.
(2)矫顽力
• 纳米微粒尺寸高于超顺磁临界尺寸时通常 呈现高的矫顽力Hc.例如,用惰性气体蒸 发冷凝的方法制备的纳米Fe微粒,随着颗 粒变小饱和磁化强度Ms有所下降,但矫顽 力却显著地增加.
(3)居里温度
• 居里温度Tc为物质磁性的重要参数.对于薄膜, 理论与实验研究表明,随着铁磁薄膜厚度的减 小,居里温度下降.对于纳米微粒,由于小尺 寸效应和表面效应而具有较低的居里温度.
• 除了球形外,纳米微 粒还具有各种其他形
状,这些形状的出现
与制备方法密切相
关.例如,由气相蒸
发法合成的铬微粒,
当铬粒子尺寸小于 20nm时,为球形并 形成链条状连结在一
起.对于尺寸较大的 粒子,α-Cr粒子的二 维形态为正方形或矩 形。
• 镁的纳米微粒呈六角条状或六角等轴 形. Kimoto和Nishida观察到银的纳米微 粒具有五边形10面体形状。
(1) 宽频带强吸收
• 大块金属具有不同颜色的光泽.这表明它们对 可见光范围各种颜色(波长)的反射和吸收能力不 同;而当尺寸减小到纳米级时各种金属纳米微 粒几乎都呈黑色.它们对可见光的反射率极低, 例如铂金纳米粒子的反射率为1%,金纳米粒子 的反射率小于10%.这种对可见光低反射 率.强吸收率导致粒子变黑.
• 许多实验证明,纳米微粒内原子间距随粒径下 降而减小.Apai等人用EXAFS方法直接证明了 Ni,Cu的原子间距随着颗粒尺寸减小而减小.
• 此外,纳米磁 性微粒还具备
许多其他的磁
特性.纳米金 属Fe(8nm)饱和
磁化强度比常 规α-Fe低40%, 纳米Fe的比饱
和磁化强度随
粒径的减小而 下降(见图);
1.纳米微粒的结构与形貌
• 纳米微粒一般为球 形或类球形(如图3 所 示 ) 。 图 中 ( a,b, c) 分 别 为 纳 米 γAl2O3,TiO2 和 Ni 的形貌像,可以看 出,这几种纳米微 粒均呈类球形.
• 最近,有人用高倍超高真空的电子显 微镜观察纳米球形粒子,结果在粒子
的表面上观察到原子台阶,微粒内部 的原子排列比较整齐。
• 例如,大块Pb的熔点为 600K,而20nm球形Pb微 粒熔点降低288K;纳米 Ag微粒在低于373K开始 熔化,常规Ag的熔点为 1173K左右.Wronski计 算出Ag微粒的粒径与熔
点的关系,结果如图所
示.由图中可看出,当 粒径小于10nm时,熔点 急剧下降.
• 所谓烧结温度是指把粉末先用高压压制 成形,然后在低于熔点的温度下使这些 粉末互相结合成块,纳米微粒尺寸小, 表面能高,压制成块材后的界面具有高 能量,在烧结中高的界面能成为原子运 动的驱动力,有利于界面中的孔洞收缩, 因此,在较低的温度下烧结就能达到致 密化的目的,即烧结温度降低.
• 许 多 纳 米 微 粒 , 例 如 , ZnO,Fe2O3 和 TiO2等,对紫外光有强吸收作用,而亚 微米级的TiO2对紫外光几乎不吸收.这 些纳米氧化物对紫外光的吸收主要来源 于它们的半导体性质,即在紫外光照射 下,电子被激发由价带向导带跃迁引起 的紫外光吸收.
(2)蓝移和红移现象
• 与大块材料相比,纳米微粒的吸收带普遍存在 “蓝移”现象,即吸收带移向短波长方向。
2.3光学性能
• 纳米粒子的一个最重要的标志是尺寸与物理的 特征量相差不多,例如,当纳米粒子的粒径与 超导相干波长、玻尔半径以及电子的德布罗意 波长相当时,小颗粒的量子尺寸效应十分显 著.与此同时,大的比表面使处于表面态的原 子,电子与处于小颗粒内部的原子、电子的行 为有很大的差别,这种表面效应和量子尺寸效 应对纳米微粒的光学特性有很大的影响.甚至 使纳米微粒具有同样材质的宏观大块物体不具 备的新的光学特性.主要表现为如下几方面:
• 例如,纳米SiC颗粒和大块SiC固体的峰值红外吸 收频率分别是814cm-1和794 cm-1.纳米SiC颗粒的 红外吸收频率较大块固体蓝移了20 cm-1.纳米氮 化硅颗粒和大块Si3N4固体的峰值红外吸收频率分 别是949 cm-1和935 cm-1,纳米氮化硅颗粒的红外 吸收频率比大块固体蓝移了14 cm-1.