2018中考数学基础知识要点总结

合集下载

2018中考数学重要知识点汇总

2018中考数学重要知识点汇总

2018中考数学重要知识点汇总2018中考数学重要知识点汇总知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。

2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限。

4.直角坐标系中,点A(-2,3)在第四象限。

5.直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数。

2.函数y=4x+1是正比例函数。

3.函数是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2)。

7.反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=。

2.sin260°+cos260°=1.3.2sin30°+tan45°=2.4.tan45°=1.5.cos60°+sin30°=1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角。

2.任意一个三角形一定有一个外接圆。

3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4.在同圆或等圆中,相等的圆心角所对的弧相等。

2018年中考数学知识点总结(完整版)

2018年中考数学知识点总结(完整版)

2018年中考数学知识点总结(完整版)WORD 版已编辑(可打印给学生自修用)第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2018年中考数学总复习知识点总结(最新版)

2018年中考数学总复习知识点总结(最新版)

中考数学复习资料第一章实数考点一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a= - b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

2018中考数学知识点总结(精简版)

2018中考数学知识点总结(精简版)

中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“a±”。

2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a≥0)a≥=aa2;注意a的双重非负性:=-a(a<0)a≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a-,这说明三次根号内的负号可以移到根号外=a-面。

2018中考数学知识点大全doc资料

2018中考数学知识点大全doc资料

项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
只供学习交流用
此文档来源于网络,如有侵权请联系网站删除 用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:( 1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。 ( 2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
注意:( 1)单项式乘单项式的结果仍然是单项式。
( 2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
( 3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
( 4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
2、实数大小比较的几种常用方法 ( 1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
( 2)求差比较:设 a、 b 是实数,
a b 0 a b,
a b 0 a b,
ab 0 a b
( 3)求商比较法:设 a、 b 是两正实数, a 1 b
a b; a 1 b
a b; a 1 b
( 4)绝对值比较法:设 a、 b 是两负实数,则 a b a b 。
此文档来源于网络,如有侵权请联系网站删除
2018 年中考数学知识点大全
第一章 实数
考点一、实数的概念及分类
( 3 分)
1、实数的分类
正有理数
实数
有理数
零 负有理数
有限小数和无限循环小数
正无理数
无理数
无限不循环小数
负无理数
2、无理数 在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
( 1)开方开不尽的数,如 7, 3 2 等;

2018年中考数学总复习知识点总结(最新版)

2018年中考数学总复习知识点总结(最新版)

中考数学复习资料第一章实数考点一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:( 1)开方开不尽的数,如7,3 2等;( 2)有特定意义的数,如圆周率π,或化简后含有π的数,如π +8 等;3(3)有特定结构的数,如 0.1010010001⋯等;(4)某些三角函数,如 sin60o等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有a+b=0,a= - b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| ≥0。

零的绝对值时它本身,也可看成它的相反数,若 |a|=a,则 a≥0;若|a|=-a,则 a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果 a 与 b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是 1 和 -1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做 a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数 a 的平方根记做“ a ”。

2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a ( a 0) a 0a 2 a ;注意 a 的双重非负性:- a ( a <0) a 03、立方根如果一个数的立方等于a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2018中考数学知识点大全

2018中考数学知识点大全

2018年中考数学知识点大全第一章实数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8等;3(3)有特定结构的数,如0.1010010001⋯等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1,零没有倒数。

考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“a”。

2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a0)a0a2a;注意a的双重非负性:-a(a<0)a03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:3a3a,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数(3—6分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2018中考数学知识点大全

2018中考数学知识点大全

2018 年中考数学知识点大全第一章实数考点一、实数的概念及分类(3 分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:( 1)开方开不尽的数,如7, 3 2 等;( 2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8等;3(3)有特定结构的数,如 0.1010010001 ⋯等;(4)某些三角函数,如 sin60o等考点二、实数的倒数、相反数和绝对值(3 分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有a+b=0, a=— b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离, |a|≥0。

零的绝对值是它本身,也可看成它的相反数,若 |a|=a,则a≥0;若 |a|=-a,则 a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果 a 与 b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是 1 和 -1,零没有倒数。

考点三、平方根、算数平方根和立方根(3—10 分)1、平方根如果一个数的平方等于a,那么这个数就叫做 a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数 a 的平方根记做“ a ”。

2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a( a 0)a0a 2a;注意 a 的双重非负性:- a(a <0)a03、立方根如果一个数的立方等于a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2018中考数学知识点【四篇】

2018中考数学知识点【四篇】

2018中考数学知识点【四篇】导读:本文2018中考数学知识点【四篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】1、反比例函数的概念一般地,函数(k是常数,k0)叫做反比例函数。

反比例函数的解析式也可以写成的形式。

自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质反比例函数k的符号k>0k y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x 的增大而减小。

①x的取值范围是x0,y的取值范围是y0;②当k 在第二、四象限。

在每个象限内,y随x 的增大而增大。

4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。

由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数的几何意义设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则(1)△OPA的面积.(2)矩形OAPB的面积。

这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

矩形PCEF面积=,平行四边形PDEA面积= 【第二篇】1、二次函数的概念一般地,如果,那么y叫做x 的二次函数。

叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线与坐标轴的交点:当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。

2018中考数学重要知识点整理

2018中考数学重要知识点整理

2018中考数学重要知识点整理2018中考数学重要知识点整理一、数与代数Ⅰ、数与式1.有理数的加法、乘法运算同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。

同号得正异号负,一项为零积是零。

【注】“大”减“小”是指绝对值的大小。

2.合并同类项合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。

3.去、添括号法则去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;括号前面是负号,去、添括号都变号。

4.单项式运算加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。

5.分式混合运算法则分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

6.平方差公式两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。

7.完全平方公式首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。

8.因式分解一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。

【注】一提(提公因式)二套(套公式)9.二次三项式的因式分解先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。

10.比和比例两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。

11.根式和无理式表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。

2018中考数学知识点大全

2018中考数学知识点大全

2018中考数学知识点大全D比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=- b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则ba b a <⇔>22。

考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 ab b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 baab = 4、乘法结合律 )()(bc a c ab = 5、乘法对加法的分配律 acab c b a +=+)(6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

第二章 代数式考点一、整式的有关概念 (3分) 1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分) 1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

2018中考数学知识点总结(精简版)

2018中考数学知识点总结(精简版)

中考数学复习资料 第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2018年中考数学总复习知识点总结(最新版)

2018年中考数学总复习知识点总结(最新版)

WORD格式可以编辑中考数学复习资料第一章实数类考点一、实数的概念及分类1、实数的分正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数类有四:“无限不循环”这一时之,归纳起来在理解无理数时,要抓住(1)开方开不尽的数,如7,等;3232π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3 (3)有特定结构的数,如0.1010010001⋯等;o(4)某些三角函数,如sin60 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

2、绝对值可|a|≥。

0零的绝对值时它本身,也一个数的绝对值就是表示这个数的点与原点的距离,a≤0。

正数大于零,负数小于零,正数大于一看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

1考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“a”。

2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a0)a0a 2;注意a的双重非负性:a-a(a<0)a03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

3a3a,这说明三次根号内的负号可以移到根号外面。

注意:考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2018年中考数学总复习知识点总结(最新版)

2018年中考数学总复习知识点总结(最新版)

WORD格式可以编辑中考数学复习资料第一章实数类考点一、实数的概念及分类1、实数的分正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数类有四:“无限不循环”这一时之,归纳起来在理解无理数时,要抓住(1)开方开不尽的数,如7,等;3232π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3 (3)有特定结构的数,如0.1010010001⋯等;o(4)某些三角函数,如sin60 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

2、绝对值可|a|≥。

0零的绝对值时它本身,也一个数的绝对值就是表示这个数的点与原点的距离,a≤0。

正数大于零,负数小于零,正数大于一看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

1考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“a”。

2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a0)a0a 2;注意a的双重非负性:a-a(a<0)a03、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

3a3a,这说明三次根号内的负号可以移到根号外面。

注意:考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年2019中考数学基础知识要点总结?实数⑴数轴的三要素为、和.数轴上的点与构成一一对应.⑵实数的相反数为 ______________ .若,互为相反数,则= .⑶非
零实数的倒数为_____ .若,互为倒数,则= .⑷绝对值.
⑸科学记数法:把一个数表示成的形式,其中1冬10的数,n是整数.⑹一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,
从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字.(略)
数的开方
⑴任何正数都有_____ 个平方根,它们互为_______ .其中正的平方根叫
_______________ 没. 有平方根,0 的算术平方根为___ .
⑵ 任何一个实数都有立方根,记为.
3. 实数的分类:和统称实数.
4.(其中0 且是)(其中0)
(略)
整式
(1)单项式:由数与字母的组成的代数式叫做单项式(单第 1 页独一个数
或也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这
个单项式的次数.(2)多项式:几个单项式的叫做多项式.在多项式中,每个单项
式叫做多项式的,其中次数最高的项的叫做这个多项式的次数.不含字母的项叫做.
(3)整式:与统称整式.
1/7
4. 同类项:在一个多项式中,所含相同并且相同字母的也分别相等的项叫做
同类项.合并同类项的法则是___.
5. ______________________________________ 幕的运算性质:am an二;(am)n二;am^ an= _________________________ ; (ab)n=.
(略)
因式分解
1.因式分解:就是把一个多项式化为几个整式的的形式.分解因式要进行到每一个因式都不能再分解为止.
2•因式分解的方法:⑴,⑵,⑶.
3.提公因式法:__________ ________ .
4•公式法:⑴
5.十字相乘法:.
6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式).7.易错知识辨析
(1)注意因式分解与整式乘法的区别;
第2页
(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.
1.简便计算:.
2.分解因式:_____________________ .
3.分解因式:_____________________ .
4.分解因式:_____________________ .
5.分解因式.
2/7
6.将分解因式的结果是.
分式
1•分式:整式A除以整式B,可以表示成的形式,如果除式B中含有,那么称为分式.若,则有意义;若,则无意义;若,则= 0.
2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的.用式子表示为.
3.约分:把一个分式的分子和分母的约去,这种变形称为分式的约
分. 4.通分:根据分式的基本性质,把异分母的分式化为的分式,这一过程称为分式的通分.
例1:( 1)当x时,分式无意义;
( 2)当x 时,分式的值为零.
例2:(1)已知,则=.
⑵已知,则代数式的值为.
第3页
例3:先化简,再求值:
(1) (-) 其中x= 1.
⑵ ,其中.
(略)
二次根式
1 .二次根式的有关概念
⑴式子叫做二次根式.注意被开方数只能是.并且根式•⑵简二次根式:被开方数所含因数是,因式是,不含能的二次根式,叫做最简二次根式.
3/7
(3)同类二次根式:化成最简二次根式后,被开方数的几个二次根式,叫做同类二次根式.
2.二次根式的性质:
⑴0;
⑵(》0 ;;
(略)
方程(组)和不等式
(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后
满足只含有一个未知数,并且未知数的次数是1,系数不等于0 的方程,像,等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:① 方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;② 去分母时,不要漏乘没有
第4页
分母的项;③ 解方程时一定要注意“移项”要变号.例1:当取什么整数时,关于的方程的解是正整数?例2:解下列方程:
;(2).
例3:解下列方程组:
(1)(2)
例4:某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8:20~12:00,下午
14 : 00~16: 00,每月25 天;
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于
60 件.
4/7
生产产品件数与所用时间之间的关系见下表:
生产甲产品件数(件)生产乙产品件数(件)
所用总时间(分)
10
10
350
30
20
850
信息三:按件计酬,每生产一件甲产品可得 1.50 元,每生第 5 页产一件乙产品可得 2.80 元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?
(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?例5:某同学在A、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8 元.
① 求该同学看中的随身听和书包单价各是多少元?
② 某一天该同学上街,恰好赶上商家促销,超市 A 所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
一元二次方程的常用解法
5/7
(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:① 化二次项系数为1,
即方程两边同时除以二次项系数;② 移项,使方程左边为二次项和一次项,右边为常数项,③ 配方,即方程两边都加上一次项系数一半的平方,④ 化原方程为的
第6页
形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解•如果n v 0,则原方程无解.
(3)公式法:一元二次方程的求根公式是
(4)因式分解法:因式分解法的一般步骤是:① 将方程的右边化为;② 将方程的左边化成两个一次因式的乘积;③ 令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.例1:选用合适的方法解下列方程:
(1);
(2);
(3);
(4).
例2:已知一元二次方程有一个根为零,求的值.
(略)
一元二次方程根的判别式
关于x 的一元二次方程的根的判别式为.
(1)>0 一元二次方程有两个实数根,即.
2)=0 一元二次方程有相等的实数根,即
6/7
(3)第7页7/7。

相关文档
最新文档