后过渡金属催化剂综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
后过渡金属催化剂综述
1催化剂的意义
催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。
催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[3]。
2后过渡金属催化剂的性质
聚烯烃工业的发展是一个国家石化工业发展的重要标志。Ziegler - Natta催化剂、茂金属催化剂和后过渡金属催化剂仍然是烯烃聚合催化剂研发的3个主要方向[4]。
90年代,美国北卡罗来纳大学的Brookhart等人[5]报道了利用适当的配体, 可使元素周期表中的第Ⅷ族中Ni和Pd的配合物用来引发烯烃聚合, 从而由单一烯烃可获得高分子量的、有各种支化度的聚合物, 并能实现与极性单体的共聚。他们将这一类催化剂称为烯烃聚合后过渡金属催化剂。后过渡金属催化剂中金属元素的种类涉及到第Ⅷ族中的元素, 目前研究得比较多的为Fe、Co、Ni、Pd4种金属元素[6]。
这类金属配合物的亲氧性相对较弱,对空气和水分不太敏感,特别是催化烯烃以及环烯烃聚合的活性很高[7],而且对比茂金属催化剂, 后过渡金属催化剂具有稳定性好、生产费用低、能生产新品种聚烯烃以及能合成带有官能团的新型聚合物等优点。再加上后过渡金属催化剂合成相对简单, 产率较高,因而其成本远低于茂金属催化剂, 而且聚合时助催化剂用量比较低, 一般与负载的茂金属催化剂相当, 因此成为烯烃聚合用催化剂的新的研究热点[8]。
3 后过渡金属催化剂的种类
后过渡金属烯烃聚合催化剂是指以镍( Ⅱ) 、钯( Ⅱ) 、铁( Ⅱ) 、钴( Ⅱ) 、钌( Ⅱ)等后过渡金属原子为活性中心的一类金属配合物烯烃聚合催化剂。
3.1 镍系
镍系包括双亚胺类、P - O类和N - O类等。双亚胺类镍系烯烃聚合催化剂是指以双亚胺为配体的一类平面型镍(Ⅱ)阳离子配合物。当采用甲基铝氧烷(MAO)作助催化剂时,二溴化双亚胺合镍的衍生物具有很高的催化活性。这类催化剂在Lewis酸如MAO 的作用下形成阳
离子,不仅对烯烃聚合有良好的催化活性,而且可以通过控制反应条件与选择不同取代基的配体实现从高线性、高分子量(MW≈30 000~1 000 000)到中等支链化烯烃聚合物甚至齐聚物的调控。P - O型镍系催化剂是一类以P - O型阴离子为配体与Ni2 +离子形成的中性配合物催化剂。其中早期研究的最著名的实例要数Shell公司开发的SHOP催化剂。N - O型镍系催化剂为含N、O配位原子的镍系烯烃催化剂,对它的研究主要集中在配体为取代含氮杂环羧酸和含羟基席夫碱两类镍配合物。除上述3类镍系烯烃催化剂以外,目前也有一些含P, P 及双核配合物等镍系烯烃催化剂[9]。
3.2 铁、钴系
Fe、Co系单活性中心催化剂是聚烯烃催化剂的最新进展。美国Barron教授[10]认为, 这是自Kaminsky发现茂锆/甲基铝氧烷(MAO)高活性催化剂后,在聚烯烃领域取得的第一次真正的进步。Fe、Co系催化剂具有稳定性高、更高的聚合活性、易合成、污染少、成本低、耐受杂原子和极性基团等优点;制备的聚乙烯具有更宽的相对分子质量分布;能够催化某些极性单体的聚合;还能制得具有某种支链结构的聚合物[11]。Fe、Co系单活性中心催化剂是聚烯烃催化剂的最新进展。目前, 该类催化剂已经在乙烯聚合制备HDPE、α-烯烃以及与其他催化剂搭配制备LLDPE方面得到了广泛的应用[12]。
Fe、Co系催化剂可以制备高密度聚乙烯, 可通过改变配体的空间位阻使乙烯齐聚制
备α-烯烃,而且通过与茂金属催化剂匹配可以只用乙烯一种单体制备线型低密度聚乙烯。这类催化剂一般以甲基铝氧烷为助催化剂, 当然也可以其他路易斯酸作为助催化剂催化乙烯聚合。这类催化剂没有任何诱导期, 会立刻出现放热反应。在聚合反应过程中, 聚合活性降低, 最终活性大约是起始活性的10%-20%。与Ni、Pd催化剂不同, Fe、Co催化剂催化乙烯聚合仅得到线性产物, 即使是在高温和低乙烯压力条件下, 使用更大体积的配体, 也得不到支化的聚乙烯。除了中心金属的影响外, 催化剂配体的空间位阻、反应条件对聚合反应也有着很重要的影响[13]。
3.3 其他类型
对于其他类型的后过渡金属离子催化剂的报道不多。其中, 比较典型的有Timonen[14]研究的Rh,Pt 的三齿硫取代大环配体的配位物作为乙烯聚合的催化剂。他们认为, 配合物的大环配位基能够占据金属的一侧起保护作用, 留下另一侧作为聚合用的活性中心。但该配合物对乙烯聚合的活性不高。以MAO作为助催化剂, 当Al/Me为500时, Rh配合物的催化活性为67kg/mol·h , 而Pt配合物的催化活性只有120kg/mol·h。Nomura等人[15]合成了N,N N-三配位的Ru的化合物来催化乙烯的均聚及乙烯、丁烯的共聚。作者报道说该催化剂对乙烯的均聚、共聚反应的催化活性中等, 但他们没有给出具体的数据。该催化剂的性能同样受反应温度、助催化剂MAO的种类、溶剂环境等因素影响。从H-NMR结果得到的PE 与用Fe类催化剂得到的PE一样, 也是没有支链的。
4 总结
后过渡金属烯烃聚合催化剂活性高, 价廉易得, 对杂原子的容忍能力强, 有的还不需要MAO类助催化剂。它们不仅能够催化乙烯及α-烯烃聚合得到高分子量的聚合物, 而且还能催化极性单体与烯烃的共聚, 这是Ziegler-Natta 催化剂和茂金属催化剂所不具备的[16]。因此开发这类催化剂具有十分广阔的前景.。可以肯定, 此项技术的工业化以及进一步发展, 将会推动聚烯烃工业的迅猛发展。