正余弦定理高考题练习

合集下载

正余弦定理练习题(含答案)

正余弦定理练习题(含答案)

A.6B.2 C.3 D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .42 B .43 C .46 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135°B .135°C .45°D .以上答案都不对.以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6B .6∶5∶1 C .6∶1∶5 D .不确定.不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =b.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC C.32或3 D.34或3、b 、c .若c =2,b =6,B =120°,则a 等于( ) A.6 B .2 C.3 D.2 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________. 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解. 的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.的长.1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形.等腰三角形或直角三角形 7的面积为( ) A.32B.3428.△ABC 的内角A 、B 、C 的对边分别为a 17.如图所示,货轮在海上以40 40 km/h km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°A2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b,那么26 6 6 =3-A.3 B.2 5 c 2+3bc =3A.π B.π C.π或5π D.π或2π =3,c A.3 .23 C.323 3,则边32=13,则=a +b -c 1为3,则(3-(3∶1023x 为2=2sin 的面积为1sin =5,-π)A.6B.2 3 6 应用正弦定理得:=,求得== 6. 42 43 46 D.32= 6. 3,42,则角由正弦定理=得:==2,又∵=2,则B.1 D.1,由=得=2×2×sin 30°sin 30°=中,若cos A =,则△∵=sin B ,∴cos A =sin B ,π. 3A.3 B.3 C.3或3 D.3或3D.=,求出=3,∵1AB ,6A.6 C.3 D.2 由正弦定理得6=2,= 2. 3,π,则=2=1. A =csin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =bsin B ⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×12×sin30°sin30°sin120°=43, ∴.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×12×sin60°sin60°sin60°××c =183, ∴c =6. 答案:12 6 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C =________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°, ∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C , ∴a -2b +c sin A -2sin B +sin C =2R s in A -2sinB +sin C sin A -2sin B +sin C =2R =2. 答案:2 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:由解析:由正弦定理正弦定理得:a sin a +c =8 3. 答案:83 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得,得 2R sin A =2·2·22R ·sin B ·cos C , 所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:答案:等腰三角形等腰三角形13解析:依题意,sin C =223,S △ABC =12ab s in C =43,解得b =2 3. 答案:23 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解.解析:∵b sin C ==BC ·sin ∠ABCsin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是102 2 km. km. 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c . 解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A2,得,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得,变形得 cos B cos C +sin B sin C =1, 即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =csin C ,得,得b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009所对应的边分别为a 、b 、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值. 43×12=23且c =2,∴c <b sin C ,∴此三角形无解.,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°140°))+65°=105°, 所以∠A =180°-(30°+105°105°))=45°, 由正弦定理得AC 年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C=10,=1-sin 2B =310. =3,∴=5,25,25×310-5×10=2. π. 3π2==得5a =10b =2c 2b =5-b =2-,∴2=2-=2,c = 5. 603×3×sin =1,∴∠3,sin A =sin B ,∴215. 21,那么6 6 46 AC =AB 2+BC 2-2AB ·BC cos B = 42+62-2×2×4×4×4×6×6×13=6. .在△ABC 中,a =2,b =3A.3 2 C.5 2(3-2×((32. +3bc ==-3bc 2bc =-32,:603153=1153115. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac 2-b 22ac =32·1tan B =32·cos Bsin B . 显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3. 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1 ) A .2 B .-2 C .4 D .-4 解析:选A.S △ABC =3=12|AB →|·|·||AC →|·|·sin sin A=12×4×4×1×1×1×sin sin A , ∴sin A =32,又∵△ABC 为锐角三角形,为锐角三角形,∴cos A =12,∴AB →·AC →=4×4×1×1×12=2. 8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) A.3 B .23 C.3或23 D .2 解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3. 9.已知△ABC π3. 在△ABD 中,中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×2×1×1×1×2×2×12= 3. 答案:3 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10. 设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),,联想到余弦定理,代入得到余弦定理,代入得cos B =a 2+c C .c D .以上均不对.以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c . 6.如果把.如果把直角三角形直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形三角形 B .直角三角形.直角三角形 C .钝角三角形.钝角三角形 D .由增加的长度决定.由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m ,△ABC 的面积为3,则AB →·AC →的值为( 的三个的三个内角内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的上的中线中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B ==-1,3,=1ab =3,∴===11,7,=-132,43=1,∴=22. 1ab 431·32·22=432 3. 答案:23 = =49+25-36 19,-19) ±12,又∵=21或61. 答案:21或61 ,则角1ab ==·1ab4=78. 答案:723x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12) =a 2+b 2+ab =(a +b )2-ab =(23)2-2=10, ∴AB =10. 18.已知△ABC AC =2+1,BC +AC =2AB , 两式相减,得AB =1. (2)由△ABC 的面积12BC ·AC ·sin C =AC 2+BC 2-AB 22AC ·BC=A C +BC 2-2AC ·BC -AB 22AC ·BC =12,所以C =60°60°. . 19.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;的值;(2)求sin(2A -π4)的值.的值.解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A ,得AB =sin Csin A BC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210. 则îïíïìk 2+k -12-k +12<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的∴最小角的余弦余弦值为32+42-222×2×3×3×817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;的长; (2)若△ABC 的面积为16sin C ,求角C 的度数.的度数. 解:(1)由题意及由题意及正弦定理正弦定理得AB +BC +=16sin C ,得BC ·AC =13, 由余弦定理得cos C=. sin C ,所以=,得sin C =,。

正弦定理和余弦定理-高考数学一轮复习基础练习试题训练

正弦定理和余弦定理-高考数学一轮复习基础练习试题训练

4.7 正弦定理和余弦定理A 组 基础题组1.在△ABC 中,a,b,c 分别为角A,B,C 所对的边,若a,b,c 成等差数列,∠B=30°,△ABC 的面积为32,则b=( )A.1+√32B.1+√3C.2+√32D.2+√3答案 B 由条件知12acsin B=32,得ac=6,又a+c=2b,则由余弦定理得b 2=a 2+c 2-2accos B=(a+c)2-2ac-√3ac,即b 2=4b 2-12-6√3,解得b 1=b 2=1+√3.2.如图,正三棱锥P-ABC 的所有棱长都为4.点D,E,F 分别在棱PA,PB,PC 上,则满足DE=EF=3,DF=2的△DEF 的个数是( )A.1B.2C.3D.4答案 C 令PD=x,PE=y,PF=z,则{x 2+x 2-xy =9,x 2+x 2-zy =9,x 2+x 2-xz =4,当x=z 时,{x =x =2,x =1+√6,当x≠z 时,有两解.3.(2017浙江镇海中学模拟)在△ABC 中,BC=2,AC=2√2,则A 的最大值是( ) A.30° B.45° C.60° D.90° 答案 B 由余弦定理,知cos A=x 2+8-42x ×2√2=14√2(x +4x )≥√22(当且仅当c=2时,取等号),故A 的最大值为45°,故选B.4.(2017浙江台州调研)在△ABC 中,内角A,B,C 的对边分别为a,b,c,已知a=1,2b-√3c=2acos C,sin C=√32,则△ABC 的面积为( ) A.√32 B.√34 C.√32或√34 D.√3或√32答案 C 由正弦定理知,2sin B-√3sin C=2sin Acos C,又sin B=sin(A+C)=sin Acos C+cos Asin C,所以cos A=√32,故A=30°.因为sin C=√32,所以C=60°或C=120°.当C=60°时,B=90°,由x sin x =xsin x,得c=√3,故S=12×√3×1×1=√32;当C=120°时,B=30°,此时b=a=1,故S=12×1×1×sin 120°=√34.故选C.5.(2018杭州高三期末)设点P 在△ABC 的BC 边所在的直线上从左到右运动,设△ABP 与△ACP 的外接圆面积之比为λ,当点P 不与B,C 重合时( )A.λ先变小再变大B.当M 为线段BC 中点时,λ最大C.λ先变大再变小D.λ是一个定值答案 D 设△ABP 与△ACP 的外接圆半径分别为r 1,r 2,则2r 1=xx sin∠xxx ,2r 2=xxsin∠xxx ,因为∠APB+∠APC=180°,所以sin∠APB=sin∠APC,所以x 1x 2=xxxx ,所以λ=x 12x 22=xx 2xx 2.故选D.6.已知a,b,c 分别为△ABC 的内角A,B,C 所对的边,其面积满足S △ABC =14a 2,则xx 的最大值为( ) A.√2-1 B.√2C.√2+1D.√2+2答案 C 根据题意,有S △ABC =14a 2=12bcsin A,应用余弦定理,可得b 2+c 2-2bccos A=2bcsin A,令t=xx ,于是t 2+1-2tcos A=2tsin A.于是2tsin A+2tcos A=t 2+1,所以2√2sin (x +π4)=t+1x ,从而t+1x ≤2√2,解得t的最大值为√2+1.7.(2017浙江测试)在△ABC 中,内角A,B,C 所对的边分别是a,b,c,若a=2√3,C=π3,tan A=34,则sinA= ,b= . 答案 35;4+√3解析 由tan A=34得sin A=35,cos A=45,由正弦定理,得c=sin xsin x a=5,又sin B=sin(A+C)=sin Acos C+cos Asin C,∴b=acos C+ccos A=4+√3.8.(2017浙江名校协作体)已知在△ABC 中,内角A,B,C 所对的边分别为a,b,c,S 为△ABC 的面积.若a=4,b=5,C=2A,则c= ,S= . 答案 6;15√74解析 由题意可知,x sin x =x sin x =x sin(π-3x )=xsin3x , 所以asin 3A=bsin A, 即4(3sin A-4sin 3A)=5sin A, 整理得7=16sin 2A, 从而cos 2A=916,即cos A=34.由正弦定理得,c=sin xsin x ·a=2cos A·a=6. ∴S=12bcsin A=12×5×6×√74=15√74. 9.(2018杭州七校高三联考)设△ABC 的三个内角A 、B 、C 所对的边依次为a 、b 、c,若△ABC 的面积为S,且S=a 2-(b-c)2,则sin x1-cos x = . 答案 4解析 因为△ABC 的面积为S,且S=a 2-(b-c)2=a 2-b 2-c 2+2bc=12bc·sin A, 所以由余弦定理可得-2bc·cos A+2bc=12bc·sin A, 所以4-4cos A=sin A, 所以sin x1-cos x =4-4cos x1-cos x =4.10.(2017浙江稽阳联谊学校联考)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知csin A=√3acos C,则C= ;若c=√31,△ABC 的面积为3√32,则a+b= .答案π3;7解析 由正弦定理可得sin Csin A=√3sin Acos C, 因为sin A≠0,所以tan C=√3,所以C=π3. 由12absin C=3√32,得ab=6.又由余弦定理得(√31)2=a 2+b 2-2abcos C=(a+b)2-3ab, 所以a+b=7.11.(2017浙江台州质量评估)已知在△ABC 中,内角A,B,C 的对边分别为a,b,c,且b=√2a,√3cos B=√2cos A,c=√3+1,则△ABC 的面积为 . 答案√3+12解析 由√3cos B=√2cos A,得 √3·x 2+x 2-x 22xx =√2·x 2+x 2-x 22xx, 又b=√2a,c=√3+1,所以上式可化简为a 2=√3-√3+1c 2=2, 所以a=√2,b=2. 所以cos B=x 2+x 2-x 22xx=√22,所以sin B=√1-cos 2B =√22.故△ABC 的面积S=12acsin B=12×√2×(√3+1)×√22=√3+12. 12.(2017浙江宁波期末)已知△ABC 的三边分别为a,b,c,且a 2+c 2=b 2+ac,则边b 所对的角B 为 ;此时,若b=2√3,则xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最大值为 . 答案π3;6+4√3解析 由余弦定理得cos B=x 2+x 2-x 22xx =12,∴B=π3,由正弦定理得c=x sin xsin x=4sin C. ∴xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bccos A=8√3sin Ccos A,又C=2π3-A,∴xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =8√3(√32cos x +12sin x )cos A=12cos 2A+4√3·sin Acos A=6(1+cos 2A)+2√3sin 2A=6+4√3sin (2x +π3).∵0<A<2π3,∴π3<2A+π3<5π3,故当2A+π3=π2,即A=π12时,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 有最大值,最大值为6+4√3.13.(2017浙江金华十校调研)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,若2cos 2B=4cos B-3. (1)求角B 的大小;(2)若S △ABC =√3,asin A+csin C=5sin B,求b.解析 (1)2cos 2B-4cos B=-3⇒4cos 2B-4cos B+1=0,所以cos B=12,故B=π3.(2)S △ABC =√3=12acsin B ⇒ac=4. 由asin A+csin C=5sin B 得a 2+c 2=5b,由b 2=a 2+c 2-2accos B 得b 2-5b+4=0,解得b=1或4. 又a 2+c 2=5b≥2ac=8,所以b≥85,所以b=4.14.(2017湖州期末)在锐角△ABC 中,内角A,B,C 所对的边分别是a,b,c.已知sin Asin C=34,b 2=ac. (1)求角B 的值;(2)若b=√3,求△ABC 的周长.解析 (1)由b 2=ac 得,sin 2B=sin Asin C, 因为sin Asin C=34,所以sin 2B=34,因为sin B>0, 所以sin B=√32,因为三角形ABC 为锐角三角形,所以B=π3. (2)已知b=√3,则3=a 2+c 2-2accos π3 =a 2+c 2-ac=(a+c)2-3ac, 所以a+c=2√3,所以三角形ABC 的周长为3√3.15.已知f(x)=sin x·(cos x+sin x)-1,x∈R. (1)求函数f(x)的单调递减区间;(2)在锐角△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知f(A)=0,a=1,求a 2+b 2+c 2的取值范围. 解析 (1)f(x)=sin xcos x+sin 2x-1=12sin 2x+1-cos2x2-1=√22sin (2x -π4)-12.令π2+2kπ≤2x -π4≤2kπ+3π2(k∈Z),得3π8+kπ≤x≤kπ+7π8(k∈Z).故函数f(x)的单调递减区间为[3π8+kπ,7π8+kπ](k∈Z).(2)由f(A)=0得sin (2x -π4)=√22.∵A∈(0,π2),∴2A -π4∈(-π4,3π4),∴2A -π4=π4,∴A=π4. 易得bc=(x sin x )2sin Bsin C=2sin Bsin C=cos(B-C)-cos(B+C)=cos(B-C)-cos(π-A)=√22+cos(B-C),又在锐角△ABC 中,A=π4,故B-C∈(-π4,π4),bc∈(√2,1+√22], 又cos A=x 2+x 2-x 22xx,∴b 2+c 2-a 2=√2bc, ∴a 2+b 2+c 2=√2bc+2∈(4,3+√2].B 组 提升题组1.(2018金华东阳二中高三调研)在△ABC 中,角A,B,C 所对的边分别为a,b,c,若3bcos A=ccos A+acos C,则tan A 的值是( )A.-2√2B.-√2C.2√2D.√2 答案 C 在△ABC 中,由余弦定理得ccos A+acos C=c×x 2+x 2-x 22xx +a×x 2+x 2-x 22xx=b.所以3bcos A=ccos A+acos C=b, 两边约去b,得3cos A=1,所以cos A=13>0,所以A 为锐角,且sin A=√1-cos 2A =2√23,因此,tan A=sin xcos x =2√2.2.若满足条件AB=√3,C=π3的三角形ABC 有两个,则边BC 的长的取值范围是( ) A.(1,√2) B.(√2,√3) C.(√3,2)D.(√2,2)答案 C 设BC=a,∵C=π3,AB=√3, 由正弦定理得xx sin x =xx sin x ,即√3√32=x sin x ,∴sin A=x 2. 由题意得,当A∈(π3,2π3)且A≠π2时,满足条件的△ABC 有两个,∴√32<x2<1,解得√3<a<2,即BC 的取值范围是(√3,2).3.(2017浙江镇海中学模拟)在锐角△ABC 中,内角A,B,C 的对边分别是a,b,c,且acos B+bcos A=c 2,C=π3,则a+b 的取值范围是( ) A.[1,2] B.(1,2]C.[√3,2]D.(√3,2]答案 D 由正弦定理,知sin Acos B+sin Bcos A=sin C·c,即sin(A+B)=csin C,所以c=1. 又x sin x =x sin x =xsin x ,所以a+b=(sin xsin x +sin xsin x )·c=√3sin x +sin (23π-x )]=√3(32sin x +√32cos x )=2sin (x +π6).因为{0<x <π2,0<23π-x <π2,所以π6<A<π2, 所以π3<A+π6<2π3,所以a+b∈(√3,2],故选D.4.(2017浙江绍兴质量检测)在△ABC 中,内角A,B,C 所对的边分别为a,b,c,已知A=π4,b=√6,△ABC 的面积为3+√32,则c= ,B= .答案 1+√3;π3解析 由三角形的面积公式,知3+√32=12×√6×√22×c,所以c=1+√3.由正弦定理得,sin x sin x =xx ,即sin (34π-x )sin x=x x ,所以√6·(√22cos x +√22sin x )=(1+√3)sin B, 所以√3cos B=sin B,即tan B=√3,所以B=π3.5.(2017浙江杭州二模)设a,b,c 分别为△ABC 的内角A,B,C 的对边,且S △ABC =12c 2.若ab=√2,则a 2+b 2+c 2的最大值是 . 答案 4解析 由S △ABC =12c 2,知12absin C=12c 2,所以c 2=√2sin C;由c 2=a 2+b 2-2abcos C,可知a 2+b 2=c 2+2abcos C=√2sin C+2√2cos C. 所以a 2+b 2+c 2=2√2(sin C+cos C)=4sin (x +π4)≤4,当且仅当C=π4时,取等号.故a 2+b 2+c 2的最大值为4.6.已知在△ABC 中,M,N 分别为AC,AB 的中点,|AB|∶|AC|=2∶3,当△ABC 在上述条件下变化时,若|BM|≤λ|CN|恒成立,则λ的最小值为 . 答案 78解析 设角A,B,C 的对边分别为a,b,c,不妨设c=2,b=3,a=x(1<x<5).易求得|BM|2=x 22+x 22-x 24,从而|BM|=√2x 2-12.同理,|CN|=√2x 2+142,∴λ≥√2x 2-12x 2+14(1<x<5),从而λ≥78.7.已知△ABC 的面积为1,∠A 的平分线交对边BC 于D,AB=2AC,且AD=kAC,k∈R,则当k= 时,边BC 的长度最短. 答案2√105解析 由题可设在△ABC 中,内角A,B,C 所对的边分别是a,b,c,则c=2b,AD=kb.由角平分线定理知,S △ACD =13=12sin x2·kb 2,又1=12b·2b·sin A,两式联立,消去b 2,得cos x 2=34k.又a 2=b 2+(2b)2-2×b×2bcos A=b 2(5-4cos A)=5-4cos x sin x,所以a 2sin A+4cos A=5,利用辅助角公式,知√x 4+16sin(A+φ)=5(tan x =4x 2),所以a 4+16≥25,即a 2≥3(当sin x =35,cos x =45时,取等号),此时cos x2=√1+cos x 2=3√1010,故k=43cosx 2=25√10.8.(2018浙江,13,6分)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a=√7,b=2,A=60°,则sin B= ,c= . 答案√217;3 解析 本题考查正弦定理、余弦定理. 由x sin x =x sin x 得sin B=xx sin A=√217, 由a 2=b 2+c 2-2bccos A,得c 2-2c-3=0,解得c=3(舍负).9.(2017杭州四校期中)在△ABC 中,内角A,B,C 的对边分别为a,b,c,已知cos 2A+32=2cos A.(1)求角A 的大小;(2)若a=1,求△ABC 的周长l 的取值范围. 解析 (1)由题意得2cos 2A+12=2cos A, 即4cos 2A-4cos A+1=0, ∴(2cos A -1)2=0,∴cos A=12.又∵0<A<π, ∴A=π3.(2)根据正弦定理x sin x =x sin x =xsin x ,得b=√3sin B,c=√3sin C,∴l=1+b+c=1+√3(sin B+sinC),∵A=π3,∴B+C=2π3,∴l=1+√3sin x +sin (2π3-B )]=1+2sin (x +π6),∵0<B<2π3,∴π6<B+π6<5π6,∴l∈(2,3].10.在△ABC 中,内角A,B,C 所对的边分别是a,b,c,已知c=2,C=π3. (1)若△ABC 的面积等于√3,求a,b;(2)若sin C+sin(B-A)=3sin 2A,求△ABC 的面积. 解析 (1)在△ABC 中,由余弦定理及三角形面积公式得 {4=x 2+x 2-ab,√3=12ab ×√32,即{4=x 2+x 2-ab,xx =4,解得a=b=2. (2)3sin 2A=sin C+sin(B-A) =sin(B+A)+sin(B-A),化简得6sin Acos A=2sin Bcos A,又A 为△ABC 的内角,所以cos A≠0,所以sin B=3sin A, 即b=3a,由余弦定理可得a 2=47,故△ABC 的面积S=12absin C=3a 2×√34=3√37. 11.(2017温州中学月考)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且 a=2,2cos 2x +x2+sin A=45.(1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值. 解析 由2cos2x +x2+sin A=45,得1+cos(B+C)+sin A=45,所以sin A-cos A=-15,又0<A<π,且sin 2A+cos 2A=1,所以{sin x =35,cos x =45.(1)若满足条件的△ABC 有且只有一个,则有a=bsin A 或a≥b, 则b 的取值范围为(0,2]∪{103}. (2)设△ABC 的周长为l,则l=a+b+c. 由正弦定理得l=a+xsin x(sin B+sin C) =2+103[sin B+sin(A+B)]=2+103(sin B+sin Acos B+cos Asin B) =2+2(3sin B+cos B) =2+2√10sin(B+θ),其中θ为锐角,且sin θ=√1010,cos θ=3√1010,所以l max =2+2√10,且当cos B=√1010,sin B=3√1010时取到. 此时b=xsin x sin B=√10.。

正弦定理和余弦定理 高考数学真题详细解析 高考数学真题复习

正弦定理和余弦定理 高考数学真题详细解析 高考数学真题复习

4.6 正弦定理和余弦定理一、选择题1.在△ABC中,C=60°,AB=3,BC=2,那么A等于( ).A.135° B.105° C.45° D.75°解析由正弦定理知BCsin A=ABsin C,即2sin A=3sin 60°,所以sin A=22,又由题知,BC<AB,∴A=45°.答案 C2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ).A.60° B.90° C.120° D.150°解析由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab,∴c2=a2+b2+ab=a2+b2-2ab cos C,∴cos C=-12,∴C=120°.答案 C3.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=3λ(λ>0),A=45°,则满足此条件的三角形个数是( )A.0 B.1C.2 D.无数个解析:直接根据正弦定理可得asin A=bsin B,可得sin B=b sin Aa=3λsin 45°λ=62>1,没有意义,故满足条件的三角形的个数为0.答案:A4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ).A .-12 B.12C .-1D .1 解析 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B ,∴sin A cosA +cos 2B =sin 2B +cos 2B =1.答案 D5. 在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )B. 2C. 12D. 12- 解析 2122cos 2222222=+-≥-+=b a c c ab c b a C ,故选C. 答案 C6.在△ABC 中,sin 2 A ≤sin 2 B +sin 2 C -sin B sin C ,则A 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝ ⎛⎦⎥⎤0,π3D.⎣⎢⎡⎭⎪⎫π3,π 解析 由已知及正弦定理有a 2≤b 2+c 2-bc ,而由余弦定理可知a 2=b 2+c 2-2bc cos A ,于是可得b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12,注意到在△ABC 中,0<A <π,故A ∈⎝⎛⎦⎥⎤0,π3. 答案 C7.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ).A.43 B .8-4 3 C .1 D.23解析 依题意得⎩⎨⎧ a +b 2-c 2=4a 2+b 2-c 2=2ab cos 60°=ab ,两式相减得ab =43,选A. 答案 A二、填空题8.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.解析 在△ABC 中,∵AB =AC =2,BC =23,∴cos C =32,∴sin C =12;在△ADC 中,由正弦定理得,AD sin C =AC sin ∠ADC , ∴AD =2sin 45°×12= 2. 答案 2 9. 在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,角C =________.解析:根据正弦定理,asin A =csin C, 由3a =2c sin A ,得asin A =c32, ∴sin C =32,而角C 是锐角.∴角C =π3.答案:π310.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA ∶sinB ∶sinC 为______.答案 6∶5∶411.若AB =2,AC =2BC ,则S △ABC 的最大值________.解析 (数形结合法)因为AB =2(定长),可以令AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则A (-1,0),B (1,0),设C (x ,y ),由AC =2BC , 得 x +2+y 2= 2 x -2+y 2,化简得(x -3)2+y 2=8,即C 在以(3,0)为圆心,22为半径的圆上运动,所以S △ABC =12·|AB |·|y C |=|y C |≤22,故答案为2 2. 答案 2 212.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan C tan A+tan C tan B的值是________. 解析 法一 取a =b =1,则cos C =13,由余弦定理得c 2=a 2+b 2-2ab cos C =43,∴c =233,在如图所示的等腰三角形ABC 中,可得tan A =tan B =2,又sin C =223,tan C =22,∴tan C tan A +tan C tan B=4. 法二 由b a +a b =6cos C ,得a 2+b 2ab =6·a 2+b 2-c 22ab, 即a 2+b 2=32c 2,∴tan C tan A +tan C tan B =tan C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B = sin 2C cos C sin A sin B =2c 2a 2+b 2-c 2=4. 答案 4三、解答题13.叙述并证明余弦定理.解析 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C , 法一 如图(1),图(1) a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →)=AC →2-2AC →·AB →+AB →2=AC →2-2|AC →|·|AB →|cos A +AB →2=b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .法二图(2)已知△ABC 中A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,如图(2)则C (b cos A ,b sin A ),B (c,0),∴a 2=|BC |2=(b cos A -c )2+(b sin A )2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .14.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .解析:由余弦定理b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 2π3 =a 2+c 2+ac =(a +c )2-ac .又∵a +c =4,b =13,∴ac =3.联立⎩⎨⎧ a +c =4,ac =3,解得a =1或a =3.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b. (1)求sin C sin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长. 解析 (1)由正弦定理,设asin A =bsin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B, 所以cos A -2cos C cos B =2sin C -sin A sin B. 即(cos A -2cos C )sin B =(2sin C -sin A )cos B ,化简可得sin(A +B )=2sin(B +C ).又A +B +C =π,所以sin C =2sin A ,因此sin C sin A =2. (2)由sin C sin A =2得c =2a .由余弦定理及cos B=1 4得b2=a2+c2-2ac cos B=a2+4a2-4a2×14=4a2.所以b=2a.又a+b+c=5.从而a=1,因此b=2.。

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编:正弦定理与余弦定理

2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。

正余弦定理练习题(含答案)[1]

正余弦定理练习题(含答案)[1]

在“ABC 中,0, b, c 分別是角4 8. C 所对的边,若^ = 105% 8=45% 则c=(A. 1C. 2在茲 ABC 中,已知 a=3y[2. cosC=j, Sg=4品 则 b= ____________. 在茲ABC 中,b=4{i, C=30。

,c=2,则此三角形有 ________组解. 如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方 向线的水平转角)为140。

的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110% 航行半小时后船到达C 点,观测灯塔人的方位角是65。

・则货轮到达C 点时,与灯塔A 的距离是多少18. ii :A ABC 中,0、b 、c 分別为角 A 、8. C 的对边•若 a=2晶 sin|cos|=^r sin Bsin C=cos^.求 A 、 6 及 b 、c.19. (2009年高考四川卷)^A ABC 中,久B 为锐角•角久B 、C 所对应的边分別为6 b 、c,且cos 2A= sin ⑴求 A+B 的值:(2)若 o —/?=匹一1,求 a, b, c 的值.20. 'ABC 中,0b=65/5,sin fi=sinC △ ABC 的面枳为 15 羽,求边 b 的长.在AAfiC 中,Z&=45°, ZB=60°, a=2.2. 3. 已知 0=8, S=60°, C=75°, B ・ 45/3 C. 角A 、B 、C 的对边分別为a 、 B ・ 135" 正弦定理练习题则b 等于()D. 2& 则b 等于()4& b. G &=60。

,0=4羽,b=4品则角 5为( D.以上答案都不对 4. 在△ ABC 中, A. 4迈在△ ABC 中, A. 45°或 135° B ・ 135" C・ 45° 在 A ABC 中,o: b : c=i: 5 : 6.贝 IJsiM: sinB : sinC 等于( ) A. 1:5:6 B. 6:5:1 C. 6:1:5解析J 选 A.由正弦定理知 siM : 5in8 : sinC=o : b : c=l : 5 : 6.D-不确泄5. 6. 8.9.10. 在^ ABC 中,若签?=夕,则^ ABC 是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形 己知A ABC 中,AB=E AC=1, Z 8 = 30% 则A ABC 的面积为()或或誓'ABC 的内角A 、B 、C 的对边分别为a 、b. c •若c=迈,b=E S=120\则o 等于( B ・ 2 c"在4 ABC 中,角久B 、C 所对的边分別为6 b 、G 若0=1, c=Ql C 岭 则A=_ 已知 a=響,fa=4,4 = 30% 则 sin8= _____________________________________ .li:A ABC 中,11. 12. 在茲ABC 中, 在4 ABC 中, 已知ZA=30°, Z S = 120\ 6=12,贝I] o+c=o=2facosC,贝ijA^fiC 的形状为 ________ • 13.14- 在△AB C 中,人= 60°, O = 6A /3, 6=12, S“8c=18 羽,则;;活三篇行花a — 2b + cc —已知"阮中,ZA :ZB :Z C=l: 2:3. a-1,则 sM_2sinB+sinC15. 16. 17.2.3. 4. 5. 6- 1. 8. 9. 10. 11. 12. 13. 14- IS 16. 17. 余弦定理练习题在“ABC 中,如果BC=6, AB=4, cosB=p 那么AC 等于( A. 6 B. 2& C ・ 3yf6 在A ABC 中,0=2, C=30\ 则 c 等于( D. 2 在AAfiC 中,Q2=b2+s+羽be.则ZA 等于( ) A. 60° B ・ 45° C ・ 120° 在4 ABC 中,厶A 、Z 8、ZC 的对边分别为6 b 、c, T 、5n 2n riv tfV 以6 以3 在A ABC 中,0、b 、c 分别是A 、B 、C 的对边,则a cosB+bcosA 等于( A. o B. b C ・c D.以上均不对D. 150" 若(a^+c^—b2)tanB=dlac,则Z B 的值为( 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为() A-锐角三角形 B.直角三角形 C.钝角三角形 D ・由增加的长度决;4^ 已知锐角三角形A3C 中,I 為1=4, I 為1=1., A- 2 B. -2 C. 4在4 ABC 中,b=y[3, c=3, 0=30。

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

正余弦定理知识点总结高考考试题型

正余弦定理知识点总结高考考试题型

一、知识点 〔一〕正弦定理:2,sin sin sin a b c R A B C===其中R 是三角形外接圆半径. a=2RsinA, b=2RsinB, c=2RsinC〔二〕余弦定理:2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+- 由此可得:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===. 注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;〔三〕三角形面积公式:〔1〕111sin sin sin .222ABC Sab C bc A ac B === 二、例题讲解〔一〕求边的问题1、在△ABC 中,角,,A B C 的对边分别为,,a b c ,3A π=,1a b ==,则c =〔 〕A 、1B 、2 C1- D 、32、 在△ABC 中,,,a b c 分别为,,B C ∠∠的对边.如果,,a b c 成等差数列,B ∠=30°,△ABC 的面积为23,则b =〔 〕 A、 B 、31+ C、 D 、32+ 3、在△ABC 中,角,,A B C 所对的边长分别为,,a b c ,假设C ∠=120°,c =,则〔 〕A 、a b >B 、a b <C 、a b =D 、a 与b 的大小关系不能确定4、在△ABC 中,10a =,B ∠=60°,C ∠=45°,则c 等于〔 〕A 、310+B 、()1310-C 、13+D 、3105、假设△ABC 的周长等于20,面积是310,=A ∠60°,则BC 边的长是〔 〕A 、5B 、6C 、7D 、86、锐角三角形的边长分别为2、3、x ,则x 的取值围是〔 〕A 、51<<xB 、135<<xC 、50<<xD 、513<<x7、三角形的两边分别为5和3,它们夹角的余弦是方程25760x x --=的根,则三角形的另一边长为〔 〕A 、52B 、213 C 、16 D 、48、假设ABC ∆的角A 、B 、C 所对的边a 、b 、c 满足22a b 4()c +-=,且C=60°,则ab 的值为 〔A 〕43 〔B 〕83- (C) 1 (D)239、在△ABC 中,A =60°,C =45°,2b =,则此三角形的最小边长为。

正余弦定理的高考真题

正余弦定理的高考真题

一.正弦定理1(07湖南)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,c=3,C=3π则A=( ) 2(06湖北)在ABC ∆中,已知a=,30,4,3340==A b sinB=( ) 3(07北京)在ABC ∆中,若tanA=31,0150=∠C ,BC=1,则AB=( ) 4(07重庆)在ABC ∆中,AB=3,0075,45=∠=∠C A ,则BC=( ) A 3-3 B 2 C 2 D 3+35(06山东)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,已知A=3π,a=3,b=1,则c=( ) A 1 B 2 C 3-1 D 36(05北京)在ABC ∆中,AC=3,0075,45=∠=∠C A ,则BC 的长为( ) 7若ABC ∆的周长为7.5cm ,且sinA :sinB :sinC=4:5:6,则下列式子中成立的个数是( )① a :b :c=4:5:6 ②a :b :c=2:5:6 ③a=2,b=2.5c=3 ④A :B :C=4:5:6A 0B 1C 2D 38在ABC ∆中,A=600,13=a ,则=++++CB A c b a sin sin sin ( ) A 338 B 3392C 3326 D23 二.余弦定理1(06江苏)在ABC ∆中,已知BC=12,A=600,B=450,则AC=( )2(07重庆)在ABC ∆中,AB=1,BC=2,B=600,则AC=( )3(07湖南)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B=( )4(05上海)在ABC ∆中,若0120=∠A ,AB=5,BC=7,则AC=( )5(06辽宁)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,设向量m =(a+c ,b ),n =(b-a ,c-a)若m//n ,则角C 的大小为( ) A 6π B 3π C 2π D 32π 6(06全国)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若a,b,c 成等比数列,且c=2a ,则cosB=( ) A 41 B 43 C 42 D 32 7(06辽宁)已知等腰三角形ABC 的腰为底的2倍,则顶角A 的正切值为( ) A 23 B 3 C 815 D 715 8(06四川)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,则a 2=b(b+c)是A=2B 的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件9(07天津)在ABC ∆中,AB=2,AC=3,D 是边BC 的中点,则−→−∙−→−BCAD =( )10(07天津)在ABC ∆中,0120=∠BAC ,AB=2,AC=1,D 是BC 上一点,DC=2BD ,−→−∙−→−BCAD =( ) 11(06全国理)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若A ,B ,C 成等差数列,则AB=1,BC=4,则边BC 上的中线AD 的长为( )三.正弦定理与余弦定理的综合应用1(06北京)在ABC ∆中,若sinA :sinB :sinC=5:7:8,则B ∠的大小是( ) 2在ABC ∆中,sinA :sinB :sinC=3:2:4,则cosC 的值为( ) A-41 B 41 C-32 D 32 3在ABC ∆中,C C B B A 222sin sin sin sin sin ++=,则∠A=( )A300 B 060 C 0120 D 01504(05江苏)在ABC ∆中,A=3π,BC=3,则ABC ∆的周长为( ) A 3)3sin(34++πB B 3)6sin(34++πB C 3)3sin(6++πB D 3)6sin(6++πB5(05辽宁)若钝角三角形三内角的度数成等差数列,且最大边与最小边的比值为m ,则m 的范围是( )A (1,2)B (2,)∞+C [3,)∞+D (3,)∞+6锐角ABC ∆中,B=2A ,则ab 的取值范围是( ) A (-2,2) B (0,2) C (2,2) D 3,2)7钝角三角形边长为a,a+1,a+2,其最大角不超过1200,则a 的取值范围是( ) A (0,30 B[23,3) C (2,3] D[1,)25 8(07广东)已知三个顶点的直角坐标分别为A (3,4),B (0,0)C (c ,0)。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

正弦定理与余弦定理各地高考练习题

正弦定理与余弦定理各地高考练习题

一、选择题1.已知在△ ABC 中,sinA:sinB:sinC=3:2:4,那么cosC 的值为1_ 1 2 2A.- 4B. 4C.- 3D. _>2.在△ ABC中,a=入b=,隹入,A=45° ,则满足此条件的三角形的个数是A.0B.1C.2D.无数个3.在△ ABC中,bcosA=acosB,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150 °B.120°C.60°D.75°5.在4ABC中,出=1 , BC=2,(须+切)・(项+加)=5+2、5则边|4C|等于A-5 …而杼苕+增A. B .5-2 C. D.6.在△ ABC中,已知B=30° ,b=50,》,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ ABC 中,若b2sin2C+c2sin2B=2bccosBcosC,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是 A.RtA B.锐角△ C.钝角△ D.任意△9.已知△ ABC 中,a=10,B=60° ,C=45° ,贝U c=A.10+ 万B.10(Q-1)C.(而+1)D.10万10.在4ABC中,bsinAvav b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7 x-6=0的根,则三角形的另一边长为A.52B.2 L~C.16D.412.在4ABC 中,a2=b2+c2+bc,则A 等于A.60 °B.45°C.120D.30°= 7c=-13.在△ ABC中, 2 4,则△ ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ ABC 中,a=2, A=30° ,C=45° ,则^ ABC 的面积S”BC等于18. 4ABC 中,sin 2A=sin 2B+sin 2C,则△ ABC 为19. 4ABC 中,A=60° ,b=1,这个三角形的面积为 』’3 ,则^AB C 外接圆的直径为15.已知三角形ABC 的三边A.cos 2BB.1-cos 2B16 .在△ ABC 中, A.充分不必要条件条件17 .在△ ABC 中, A.直角三角形C. + +11D ; ( +1)a 、b 、c 成等比数列,它们的对角分别是A 、B 、C,则 sinAsinC 等C.1+cos 2BD.1+sin 2BsinA > sinB 是 A > B 的 B.必要不充分条件 C.充要条件 D.既不充分也不必要bCosA=acosB,贝U 三角形为 B.锐角三角形 C.等腰三角形D.等边三角形A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形26^3A.yB. 2届岳C.二D.-20.在△ ABC 中, ——k:C ,则k 为A.2RB.RC.4R-RD. 2(R 为△ ABC 外接圆半径)二、填空题1.在△ ABC 中, A=60° , C=45° , b=2,则此三角形的最小边长为2.在△ ABC 中, dbc口‘十/十白’3 .在△ ABC 中,a : b :c=(0+1):痴:2,则^ ABC 的最小角的度数为 4 .在△ ABC 中,已知 sinA : sinB : sinC=6 : 5 : 4,贝U secA=5 . 4ABC 中,匕1ns 2m 方,则三角形为6 .在△ ABC 中,角 A 、B 均为锐角且 cosA>sinB,则△ ABC 是7 .在△ ABC 中,若此三角形有一解,则 a 、b 、A 满足的条件为8 .已知在△ ABC 中,a=10,b=5v6,A=45° JU B= 9 .已知△ ABC 中,a=181,b=209,A=121° 14',此三角形解.10.在△ ABC 中,a=1,b=1,C=120° 贝U c=.11.在△ ABC 中,若a2>b2+c2,则△ ABC 为;若a2=b2+c2,则△ ABC 为;若a2 v b2+c2且b2v a2+c2且c2< a2+b2,则^ ABC 为.12.在△ ABC 中,sinA=2cosBsinC,则三角形为.sn C 2 yr 外—=—6 +1)13.在△ ABC 中,BC=3, AB=2,且41 8 5 , A=.14.在△ ABC 中,B= V3,C=3,B=30° ,贝(J A=.15.在△ ABC 中,a+b=12,A=60° , B=45° ,贝U a=,b=.16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ ABC 中,化简bcosC+ccosB=.18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题1.已知在^ ABC 中,c=10, A=45° , C=30° ,求a、b 和B.2.已知△ ABC的三边长a=3, b=4, c= 437 ,求三角形的最大内角.3.已知在△ ABC中,/ A=45° , a=2, c=^ ,解此三角形.4.在四边形ABCD中,BC=a, DC=2a,四个角A、B、C、D度数的比为3 : 7 : 4 : 10,求AB.5.在△ ABC中,A最大,C最小,且A=2C, A+C=2B,求此三角形三边之比.7.在△ ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2, OA=2, B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ ABC 中,若sinA : sinB : sinC=m : n : l,且a+b+c=S,求a.10.根据所给条件,判断△ ABC的形状(1) acosA=bcosB值_ b _ 白oosA. 8s R oosC(2)11.△ABC中,a+b=10,而cosC是方程2x2—3x— 2=0的一个根,求^ ABC周长的最小值.12.在△ ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A—C= 3 ,求sinB的值.13.已知△ ABC 中,a=1,b= J^,A=30°,求B、C 和c.14.在△ ABC中,c=242, tanA=3,tanB=2,试求a、b及此三角形的面积.15.已知S AABC=10,》,一个角为60° ,这个角的两边之比为5 : 2,求三角形内切圆的半径.* ”------ - 二二口,且7cosm =bcosA16.已知△ ABC中,a-\-b-c,试判断^ ABC的形状.l7tanC=-217.已知△ ABC的面积为1, tanB=2 ,求4ABC的各边长.18.求值:an cos2 800+ j5an20o<xK80c19.已知△ ABC勺面积S=底口 = = 2解此三角形.20.在△ ABC 中,a="G,b=2,c=^^+1 ,求A、B、C 及&.21.已知(a2+bc) x2+2 V* * + 1=0是关于x的二次方程,其中a、b、c是4ABC的三边,⑴若/ A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求/ A的度数.22.在4ABC 中,(a2+b2) sin(A-B)=(a2-b2)sin(A+B),判断△ ABC 的形状.元23.在△ ABC中,u = 2J",a>b,C= 4 ,且有tanA • tanB=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ ABC的三内角A、B、C所对的边分别为a、b、c二+ A = 7/ < 3(1)若方程组国+D有实数解,求k的值.向-7^ ,, N T 2 (2)对于(1)中的k值,若“且有关系式- 上,试求A、B、C的度数.试题本一地区:四川文科卷年份:2012分值:5.0 难度:31. 如图,正方形&C0的边长为1 ,延长至1T ,使= l ,连接因.即snZ.<^D=()4.在△山C 中,角凡及U 对应的边分别是 值力£.已知他门乂-3期(8+0-1 . (I )求角X 的大小;(n )若 MBC 的面积& =5邛,匕=5 ,求sm £sinC 的值.地区:浙江理科卷 年份:2013 分值:4.0 难度:3血NBA 财'=—5. △ABC 中,IZC = 90。

高考数学 3.7 正弦定理和余弦定理练习

高考数学 3.7 正弦定理和余弦定理练习

课时提升作业(二十二)正弦定理和余弦定理(25分钟 60分)一、选择题(每小题5分,共25分)1.在△ABC 中,B=45°,C=60°,c=2,则最短边的长为( )A.263B. 6C.1D.3【解析】选A.因为B=45°,C=60°,所以A=180°-(B+C)=75°,B<C<A.故最短的边为b,由正弦定理,得b c sin B sin C =,所以b=2sin 4526.sin 603︒=︒g2.在△ABC 中,A=3π,BC=3,AB=6,则C=( )【解题提示】把用大写字母表示的边长改为小写字母,再用正弦定理求解.【解析】选C.BC=a=3,A B=c=6,由正弦定理,得sin C=csin A 2,a= 又a=3,c=6,所以a>c,即A>C,故C 为锐角,所以C=4π.【误区警示】本题容易由sin C=csin A a 得sin C=22,没有利用a>c 判断A>C,就得出C=4π或34π.从而导致增解.3.(2015·温州模拟)在△ABC 中,角A,B,C 的对边分别为a,b,c,若a2-b2=3bc,3则A=( )A.30°B.60°C.120°D.150°【解析】选A.因为sin C=23sin B,所以由正弦定理得 c=23b, 因为a2-b2=3bc,所以a2=b2+3b ·23b=7b2,即a=7b,cos A=222222bc a 32bc 22b 23b 43+-===g因为0°<A<180°,所以A=30°. 【加固训练】(2014·唐山模拟)若△ABC 的内角A,B,C 满足6sin A=4sin B=3sin C,则cos B=( )【解析】选D.由6sin A=4sin B=3sin C,得sin A ∶sin B ∶sin C=2∶3∶4.设角A,B,C 所对的边分别为a,b,c,则由正弦定理知a ∶b ∶c=2∶3∶4,令a=2k,b=3k,c=4k(k>0),则cos B=()2222222243k a c b 11.2ac 22k 4k 16+-+-==⨯⨯g4.(2015·海淀模拟)在△ABC 中,a=3,b=4,sin A=35,则sin C=( )A.1B.1或725C.1或-725D.1或59 【解题提示】先由正弦定理求sin B,再由内角和定理转化求sin C.【解析】选B.因为a b sin A sin B =,所以sin B=34bsin A 45a 35⨯==,因为b>a,所以B>A,故A 为锐角,B 为锐角或钝角,所以241sin A ,5-=当B 为锐角时231sin B ,5-=此时sin C=sin(A+B)=sin Acos B+cos Asin B =33445555⨯+⨯=1. 当B 为钝角时,cos B=231sin B ,5--=- 此时,sin C=sin(A+B)=sin Acos B+cos Asin B=33447().555525⨯-+⨯= 故选B.【误区警示】解答本题易误选A.出错的原因是求出sin B 的值后,没有根据a<b 讨论B 为钝角的情况.5.(2015·临沂模拟)在△ABC 中,若sin B ·sin C=cos2A2,且sin2B+sin2C=sin2A,则△ABC 是( )A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【解题提示】把每个等式化简变形,逐一进行判断.【解析】选D.因为sin Bsin C=cos2A 2=1cos A2+,所以2sin Bsin C=1+cos[π-(B+C)]=1-cos(B+C)=1-cos Bcos C+sin Bsin C,即cos Bcos C+sin Bsin C=1,所以cos(B-C)=1.因为B,C 是△ABC 的内角,所以B-C=0,即B=C,又因为sin2B +sin2C=sin2A,即b2+c2=a2.所以A=90°,故△ABC 为等腰直角三角形.二、填空题(每小题5分,共15分)6.(2015·大同模拟)△ABC 的三个内角A,B,C 所对的边分别为a,b,c,已知c=3,C=3π,a=2b,则b 的值为 .【解析】由余弦定理,得c2=a2+b2-2abcos C,即32=(2b)2+b2-2·2b ·b ·cos 3π,解得3.答案: 3【加固训练】若A=60°,a=7,b=5,则c= .【解题提示】直接用余弦定理列出关于c 的方程求解.【解析】由余弦定理得a2=b2+c2-2bccos A,所以49=25+c2-2×5×c ×cos 60°,即c2-5c-24=0,解得c=8(c=-3舍去).答案:87.(2015·中山模拟)在△ABC 中,角A,B,C 所对的边分别为a,b,c,若acos A=bsin B,则sin 2A+cos 2B= .【解题提示】化边为角,把二倍角化为单角,利用整体代入的方法求值.【解析】由正弦定理,得sin Acos A=sin2B,sin 2A+cos 2B=2sin Acos A+2cos2B-1=2sin2B+2cos2B-1=2(sin2B+cos2B)-1=1.答案:1 8.已知以2,3,x 为边长的三角形不是钝角三角形,则x 的取值范围是 .【解题提示】由较大的边对的角都不是钝角,根据余弦定理列不等式组求解.【解析】因为2<3,所以只需2222222x 3,23x ,⎧+≥⎪⎨+≥⎪⎩即5≤x2≤13,又因为x>0,所以5≤x ≤13.答案:[ 5, 13]三、解答题(每小题10分,共20分)9.(2014·安徽高考)设△ABC 的内角A,B,C 所对边的长分别是a,b,c,且b=3,c=1,A=2B.(1)求a 的值. (2)求sin(A+4π)的值.【解题提示】根据三角函数的和角、倍角公式及正、余弦定理解答.【解析】(1)因为A=2B,所以sin A=sin 2B=2sin Bcos B,由正、余弦定理得a=2b ·222a cb 2ac +-,因为b=3,c=1,所以a2=12即3.(2)由余弦定理得cos A=222b c a 91121,2bc 63+-+-==-因为0<A<π,所以2221cos A 3-=故sin(A+4π)=sin Acos 4π+cos Asin 4π=46-10.(2015·大连模拟)在△ABC 中,a2+c2-b2=ac,(1)求角B 的大小.(2)求sin Asin C 的最大值.【解题提示】(1)由余弦定理求B 的大小.(2)利用内角和定理消元,转化成关于C 或A 的三角函数,然后求函数的最大值.【解析】(1)在△ABC 中,由已知和余弦定理, cos B=222a c b 1,2ac 2+-= 因为B ∈(0,π),所以B=3π.(2)在△ABC 中,sin C=sin(A+B)=sin(A+3π) =12sin A+cos A,所以sin Asin C=sin A(12sin A+cos A) =12=11cos2A (sin2A)222-+ =12sin(2A-6π)+14,因为0<2A<43π,所以-6π<2A-6π<76π,故当A=3π时,sin Asin C 有最大值34.【加固训练】(2015·天津模拟)已知锐角△ABC 中,角A,B,C 对应的边分别为a,b,c,tan A=(1)求A 的大小.(2)求cos B+cos C 的取值范围.【解析】(1)由余弦定理知b2+c2-a2=2bccos A,所以tan A=33sin A ,2cos A 2⇒= 因为A ∈(0,2π),所以A=3π.(2)因为△ABC 为锐角三角形且B+C=23π,所以6π<B=23π-C<2π,cos B+cos C=cos B+cos(23π-B)=cos B+cos 23πcos B+sin 23πsin B=12cos B+3sin B=sin(B+6π).因为3π<B+6π<23π,所以3<sin(B+6π)≤1,即cos B+cos C 的取值范围是(32,1].(20分钟 40分)1.(5分)(2013·新课标全国卷Ⅰ)已知锐角△ABC 的内角A,B,C 的对边分别为a,b ,c,23cos2A+cos 2A=0,a=7,c=6,则b=( )A.10 B .9 C.8 D.5【解析】选D.因为23cos2A+cos 2A=0,所以23cos2A+2cos2A-1=0,解得cos2A=125,因为△ABC为锐角三角形,所以cos A=15,sin A=265.由正弦定理a csin A sin C=得,6.sin C26=sin C=126,cos C=1935.又B=π-(A+C),所以sin B=sin(A+C)=sin Acos C+cos Asin C=26191126506. 535535175⨯+⨯=由正弦定理a bsin A sin B=得,26506=,解得b=5.【一题多解】本题还可如下解答选D.因为23cos2A+cos 2A=0,所以23cos2A+2cos2A-1=0,即cos2A=1 25,因为△ABC为锐角三角形,所以cos A=1 5,由余弦定理,得a2=b2+c2-2bccos A,即49=b2+36-125b,5b2-12b-65=0,解得b=5或b=-135(舍去),故b=5.2.(5分)(2015·合肥模拟)在△ABC中,a,b,c分别为角A,B,C的对边,且cos 2B+cos B+cos(A-C)=1,则()A.a,b,c成等差数列B.a,b,c成等比数列C.a,c,b成等差数列D.a,c,b成等比数列【解析】选B.由cos 2B+cos B+cos(A-C)=1变形得:cos B+cos(A-C)=1-cos 2B, 因为cos B=cos[π-(A+C)]=-cos(A+C),cos 2B=1-2sin2B,所以上式化简得:cos(A-C)-cos(A+C)=2sin2B,所以2sin Asin C=2sin2B,即sin Asin C=sin2B,由正弦定理a b c sin A sin B sin C ==得:ac=b2,则a,b,c 成等比数列.故选B.3.(5分)(2015·攀枝花模拟)已知函数f(x)=x3-3x,若△ABC 中,角C 是钝角,那么( )A.f(sin A)>f(cos B)B.f(sin A)<f(cos B)C.f(sin A)>f(sin B)D.f(sin A)<f(sin B)【解题提示】利用三角函数的单调性判断sin A 和cos B 的大小或sin A 与sin B 的大小,再利用函数f(x)的单调性进行判断.【解析】选A.因为f(x)=x3-3x,所以f ′(x)=3x2-3=3(x+1)(x-1).故函数f(x)在区间(-1,1)上是减函数,又角C 是钝角,所以A+B<2π且A,B 都是锐角,所以0<A<2π-B<2π,所以sin A<sin(2π-B)=cos B,故f(sin A)>f(cos B),选A.4.(12分)(2015·哈尔滨模拟)在△ABC 中,a,b,c 分别为内角A,B,C 的对边,且2asin A=(2b+c)sin B+(2c+b)sin C.(1)求A 的大小.(2)若sin B+sin C=1,试判断△ABC 的形状.【解析】(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bccos A,故cos A=-12,A=120°.(2)由(1)得sin2A=sin2B+sin2C+sin B sin C,变形得34=(sin B+sin C)2-sin Bsin C,又sin B+sin C=1,得sin Bsin C=14,上述两式联立得sin B=sin C=12,因为0°<B<90°,0°<C<90°,故B=C=30°,所以△ABC 是等腰的钝角三角形.【方法技巧】判断三角形的形状的思路与依据(1)思路:必须从研究三角形的边与边的关系,或角的关系入手,充分利用正弦定理与余弦定理进行转化,即化边为角或化角为边,使边角统一.(2)判断依据:①等腰三角形:a=b 或A=B.②直角三角形:b2+c2=a2或A=90°.③钝角三角形:a2>b2+c2,A>90°.④锐角三角形:若a 为最大边,且满足a2<b2+c2或A 为最大角,且A<90°.5.(13分)(能力挑战题)已知a,b,c 分别为△ABC 三个内角A,B,C 的对边, acos C+3asin C-b-c=0.(1)求A 的大小.(2)若△ABC 的面积S=3,b+c=4,求sin Bsin C 的值.【解题提示】(1)利用正弦定理及三角恒等变换求角A.(2)利用面积公式、余弦定理、正弦定理求解.【解析】(1)因为3asin C-b-c=0,所以由正弦定理,得3sin Asin C-sin B-sin C=0, 因为B=π-(A+C),所以33因为sin C ≠0,3sin A-cos A=1,即2sin(A-6π)=1,sin(A-6π)=12,因为A ∈(0,π),所以A-6π=6π,即A=3π.(2)因为S △=12bcsin A=3bc=3,所以bc=43,又因为b+c=4,所以a2=b2+c2-2bccos A=b2+c2-bc=(b+c)2-3bc=16-4=12,即3由正弦定理,得b c a 234,sin B sin C sin A sin 3====所以sin B=b 4,sin C=c 4,sin Bsin C=bc 1.1612=。

2024年高考数学专题12 正余弦定理妙解三角形问题和最值问题(练习)(原卷版)

2024年高考数学专题12 正余弦定理妙解三角形问题和最值问题(练习)(原卷版)

01 倍长定比分线模型
1.(2023·四川成都·统考一模)在 VABC 中,角 A, B,C 所对的边分别为 a,b, c ,且 B = π , AB = 2, M 是 3
BC 的中点, AM = 2 3 ,则 AC =
, cos ÐMAC =
.
2.(2023·广东广州·高三华南师大附中校考阶段练习)在① 3b - 3c cos A = a sin C ,②
b
+
c
=
2a
sin
æ çè
C
+
π 6
ö ÷ø

(1)求 A;
(2)若 a = 2
3

uuur BA
×
uuur CA
=
3 2

Ð
BAC
的角平分线交
BC
于点
D,求
AD
的长.
13.(2023·四川绵阳·统考二模)在三角形 ABC 中,角 A、B、C 所对边分别为 a,b,c.已知
a sin A + C = b sin B + C , a = 7 .
(2)若 b2 + c2 = 2aR cos A + a2 ,求 tan A + tan B + tan C 的最小值.
19.(多选题)(2023·湖北咸宁·高三统考期末) VABC 的内角 A , B , C 的对边分别为 a , b , c ,且
VABC , BC = 6,sin B = 1 sin C ,当 VABC 的面积最大时,则 AC 的长为
.
2
16.(2023·四川·校联考二模)阿波罗尼奥斯是古希腊时期与阿基米德、欧几里得齐名的数学家,以其

考点测试29 正弦定理和余弦定理

考点测试29 正弦定理和余弦定理

考点测试29 正弦定理和余弦定理高考概览本考点是高考必考知识点,常考题型为选择题、填空题和解答题,分值为5分、12分,中、低等难度考点研读掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题一、基础小题1.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,A =60°,a =43,b =4,则B =( )A .60°B .45°C .30°D .60°或120°答案 C解析 ∵A =60°,a =43,b =4,∴sin B =b sin A a =4×sin60°43=12,∵a >b ,∴B <60°,∴B =30°,故选C.2.在△ABC 中,若AB =8,A =120°,其面积为43,则BC =( ) A .213 B .413 C .221 D .47 答案 C解析 因为S △ABC =12AB ·AC ·sin A =43,故AC =2;由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC cos A =84,故BC =221.故选C.3.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin2A =a sin B ,且c =2b ,则ab等于( ) A .32B .43C .2D . 3 答案 D解析 由b sin2A =a sin B ,得2sin B sin A cos A =sin A sin B ,得cos A =12.又c =2b ,由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得ab= 3.故选D.4.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知ac sin B =10sin C ,a +b =7,且cos C 2=155,则c =( )A .4B .5C .26D .7答案 B解析 ∵ac sin B =10sin C .由正弦定理可得abc =10c ,即ab =10.∵cos C 2=155,∴cos C=2×⎝⎛⎭⎫1552-1=15,则c =a 2+b 2-2ab cos C =72-2×10-20×15=5.故选B .5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C =( )A .34B .43C .-43D .-34答案 C解析 △ABC 中,∵S =12ab ·sin C ,由余弦定理得c 2=a 2+b 2-2ab cos C ,且2S =(a +b )2-c 2,∴ab sin C =(a +b )2-(a 2+b 2-2ab cos C ),整理得sin C -2cos C =2,∴(sin C -2cos C )2=4.∴(sin C -2cos C )2sin 2C +cos 2C =4,化简可得3tan 2C +4tan C =0.∵C ∈(0,180°),∴tan C =-43,故选C.6.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A k =sin B 3=sin C4(k 为非零实数),则下列结论正确的是( )A .当k =5时,△ABC 是直角三角形B .当k =3时,△ABC 是锐角三角形 C .当k =2时,△ABC 是钝角三角形D .当k =1时,△ABC 是钝角三角形 答案 ABC解析 当k =5时,sin A 5=sin B 3=sin C4,根据正弦定理不妨设a =5m ,b =3m ,c =4m ,显然△ABC 是直角三角形,A 正确;当k =3时,sin A 3=sin B 3=sin C4,根据正弦定理不妨设a =3m ,b =3m ,c =4m ,显然△ABC 是等腰三角形,a 2+b 2-c 2=9m 2+9m 2-16m 2=2m 2>0,说明∠C 为锐角,故△ABC 是锐角三角形,B 正确;当k =2时,sin A 2=sin B 3=sin C4,根据正弦定理不妨设a =2m ,b =3m ,c =4m ,a 2+b 2-c 2=4m 2+9m 2-16m 2=-3m 2<0,说明∠C 为钝角,故△ABC 是钝角三角形,C 正确;当k =1时,sin A 1=sin B 3=sin C4,根据正弦定理不妨设a =m ,b =3m ,c =4m ,此时a +b =c ,不能构成三角形,D 错误.故选ABC.7.设a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,已知a =2,c =6,A =45°,则角C =________.答案 60°或120°解析 ∵在△ABC 中,已知a =2,c =6,A =45°,由a sin A =c sin C ,可得sin C =c ·sin A a=6×222=32,∵c >a ,可得45°<C <180°,∴C =60°或120°. 8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,且△ABC 外接圆半径为3,则a =________,若b +c =33,则△ABC 的面积为________.答案 3332解析 ∵A =60°,且△ABC 外接圆半径R 为3,∴由正弦定理asin A =2R ,可得a =2R sin A=2×3×sin60°=3.∵b +c =33,∴由余弦定理a 2=b 2+c 2-2bc cos A ,可得9=b 2+c 2-bc =(b +c )2-3bc =27-3bc ,解得bc =6,∴S △ABC =12bc sin A =12×6×32=332.二、高考小题9.(2020·全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23答案 A解析 ∵在△ABC 中,cos C =23,AC =4,BC =3,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C =42+32-2×4×3×23=9,∴AB =3,∴cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.故选A .10.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( )A .6B .5C .4D .3答案 A解析 ∵a sin A -b sin B =4c sin C ,∴由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c 22bc =-14,∴bc=6.故选A .11.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( ) A .π2B .π3C .π4D .π6答案 C解析 由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C .由余弦定理得a 2+b 2-c 2=2ab cos C ,所以sin C =cos C .因为C ∈(0,π),所以C =π4,故选C.12.(2020·全国卷Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.答案 -14解析 ∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD = 6.在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ·AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1.在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ·BC =1+4-62×1×2=-14.13.(2019·浙江高考)在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD =__________,cos ∠ABD =________.答案1225 7210解析 如图,易知sin ∠C =45,cos ∠C =35.在△BDC 中,由正弦定理可得BDsin ∠C=BCsin ∠BDC,∴BD =BC ·sin ∠Csin ∠BDC =3×4522=1225.由∠ABC =∠ABD +∠CBD =90°,可得cos ∠ABD =cos(90°-∠CBD )=sin ∠CBD =sin[π-(∠C +∠BDC )]=sin(∠C +∠BDC ) =sin ∠C ·cos ∠BDC +cos ∠C ·sin ∠BDC =45×22+35×22=7210. 三、模拟小题14.(2020·湖北黄冈期末)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A =-35,a =8,b =5,则B =( )A .π4B .π6C .π3D .5π6答案 B解析 △ABC 中,cos A =-35,所以A ∈⎝⎛⎭⎫π2,π,所以sin A =1-cos 2A =45.又a =8,b =5,由正弦定理得a sin A =b sin B ,解得sin B =b sin A a =5×458=12,又B ∈⎝⎛⎭⎫0,π2,所以B =π6.故选B .15.(2020·山东实验中学期中)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( )A .1B .2C .3D .4 答案 A解析 由余弦定理得AB 2=BC 2+AC 2-2BC ·AC cos C ,将各值代入得AC 2+3AC -4=0,解得AC =1或AC =-4(舍去),故选A .16.(2020·广东化州市高三模拟)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac=2cos C ,则c =( )A .27B .4C .23D .3 3答案 C 解析a cos B +b cos Ac =sin A cos B +sin B cos A sin C =sin (A +B )sin (A +B )=1,即有2cos C =1,可得C =60°,若S △ABC =23,则12ab sin C =23,即有ab =8,又a +b =6,由c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -ab =(a +b )2-3ab =62-3×8=12,解得c =2 3.故选C.17.(多选)(2020·湖北荆州中学上学期月考)在△ABC 中,D 在线段AB 上,且AD =5,BD =3,若CB =2CD ,cos ∠CDB =-14,则( )A .sin ∠CDB =310B .△ABC 的面积为215 C .△ABC 的周长为12+2 6D .△ABC 为钝角三角形 答案 BCD解析 由cos ∠CDB =-14,可得sin ∠CDB =1-116=154,故A 错误;设CD =x ,CB =2x .在△CBD 中,由余弦定理得-14=9+x 2-4x 26x ,整理,得2x 2-x -6=0,解得x =2,即CD =2,BC =4,所以S △ABC =S △BCD +S △ADC =12×3×2×154+12×5×2×154=215,故B 正确;由余弦定理得cos B =BC 2+BD 2-CD 22BC ·BD =BC 2+AB 2-AC 22BC ·AB ,即16+9-42×4×3=16+64-AC 22×4×8,解得AC =26,故周长为AB +AC +BC =8+26+4=12+26,故C 正确;由余弦定理可得,cos ∠ACB =16+24-642×4×26=-64<0,故∠ACB 为钝角,故D 正确.故选BCD.18.(多选)(2020·金版原创)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(a +b )∶(a +c )∶(b +c )=9∶10∶11,则下列结论正确的是( )A .sin A ∶sinB ∶sinC =4∶5∶6 B .△ABC 是钝角三角形C .△ABC 的最大内角是最小内角的2倍D .若c =6,则△ABC 外接圆的半径为877答案 ACD解析 (a +b )∶(a +c )∶(b +c )=9∶10∶11,可设a +b =9t ,a +c =10t ,b +c =11t ,解得a =4t ,b =5t ,c =6t ,t >0,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,故A 正确;由c 为最大边,可得cos C =a 2+b 2-c 22ab =16t 2+25t 2-36t 22·4t ·5t =18>0,即C 为锐角,故B错误;cos A =b 2+c 2-a 22bc =25t 2+36t 2-16t 22·5t ·6t =34,cos2A =2cos 2A -1=2×916-1=18=cos C ,由2A ,C ∈(0,π),可得2A =C ,故C 正确;若c =6,可得2R =csin C =61-164=1677,△ABC外接圆的半径为877,故D 正确.故选ACD.19.(2021·日照市高三校际联考)在△ABC 中,B =π4,AB =2,BC =3,则sin A =________.答案31010解析 由题意得AC 2=AB 2+BC 2-2AB ·BC ·cos B =2+9-62×22=5,即AC =5,则BC sin A =AC sin B ,即3sin A =522,得sin A =31010. 20.(2020·海南省高三大联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos2B +2sin A sin C =1,则B 的最大值为________;若b =2,则△ABC 的面积的最大值为________.答案 π33解析 由cos2B +2sin A sin C =1,可得1-2sin 2B +2sin A sin C =1,即sin 2B =sin A sin C ,由正弦定理,可得b 2=ac ,由余弦定理,可得cos B =a 2+c 2-b 22ac ≥2ac -ac 2ac =12,当且仅当a =c时,等号成立,所以0<B ≤π3,于是B 的最大值为π3,△ABC 的面积S =12ac sin B ≤12×4×32=3.一、高考大题1.(2020·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a =3c ,b =27,求△ABC 的面积; (2)若sin A +3sin C =22,求C .解 (1)由余弦定理可得b 2=28=a 2+c 2-2ac cos150°=7c 2, ∴c =2,a =23,∴△ABC 的面积S =12ac sin B = 3.(2)∵A +C =30°,∴sin A +3sin C =sin(30°-C )+3sin C =12cos C -32sin C +3sin C =12cos C +32sin C =sin(C +30°)=22. ∵0°<C <30°,∴30°<C +30°<60°, ∴C +30°=45°,∴C =15°.2.(2020·天津高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =22,b =5,c =13.(1)求角C 的大小; (2)求sin A 的值; (3)求sin ⎝⎛⎭⎫2A +π4的值. 解 (1)在△ABC 中,由a =22,b =5,c =13及余弦定理得cos C =a 2+b 2-c 22ab =8+25-132×22×5=22,又因为C ∈(0,π),所以C =π4.(2)在△ABC 中,由C =π4,a =22,c =13及正弦定理,可得sin A =a sin Cc =22×2213=21313. (3)由a <c 知角A 为锐角,由sin A =21313,可得cos A =1-sin 2A =31313, 所以sin2A =2sin A cos A =1213,cos2A =2cos 2A -1=513,所以sin ⎝⎛⎭⎫2A +π4=sin2A cos π4+cos2A sin π4=1213×22+513×22=17226. 3.(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________?解 解法一:由sin A =3sin B 可得ab =3,不妨设a =3m ,b =m (m >0),则c 2=a 2+b 2-2ab cos C =3m 2+m 2-2×3m ×m ×32=m 2, 即c =m . 选择条件①:据此可得ac =3m ×m =3m 2=3,∴m =1,此时c =m =1. 选择条件②:据此可得cos A =b 2+c 2-a 22bc =m 2+m 2-3m 22m 2=-12,则sin A =1-⎝⎛⎭⎫-122=32,此时c sin A =m ×32=3, 则c =m =2 3. 选择条件③: 可得c b =mm=1,c =b ,与条件c =3b 矛盾,则问题中的三角形不存在. 解法二:∵sin A =3sin B ,C =π6,B =π-(A +C ),∴sin A =3sin(A +C )=3sin ⎝⎛⎭⎫A +π6, 即sin A =3sin A ·32+3cos A ·12,∴sin A =-3cos A ,∴tan A =-3, ∴A =2π3,∴B =C =π6.若选①,ac =3,∵a =3b =3c ,∴3c 2=3,∴c =1. 若选②,c sin A =3,则3c2=3,c =2 3. 若选③,b =c 与条件c =3b 矛盾,则问题中的三角形不存在. 二、模拟大题4.(2021·河北省邯郸市高三摸底考试)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a sin2B =b sin A .(1)求角B 的大小;(2)给出三个条件:①b =2,②△ABC 外接圆的半径r =233,③a +c =23,试从中选择两个可以确定△ABC 的条件,并求△ABC 的面积.解 (1)因为a sin2B =b sin A ,所以2a sin B cos B =b sin A . 由正弦定理得2ab cos B =ba ,所以cos B =12.因为B ∈(0,π),所以B =π3.(2)显然可知当选择条件①②时,△ABC 不唯一. 当选择条件①③时,△ABC 唯一.此时, 由余弦定理b 2=a 2+c 2-2ac cos B ,即4=a 2+c 2-ac =(a +c )2-3ac =12-3ac , 解得ac =83.所以△ABC 的面积S =12ac sin B =12×83×32=233.当选择条件②③时,△ABC 唯一.此时, 由正弦定理可知b =2r ·sin B =2. 由余弦定理b 2=a 2+c 2-2ac cos B ,即4=a 2+c 2-ac =(a +c )2-3ac =12-3ac , 解得ac =83.所以△ABC 的面积S =12ac sin B =12×83×32=233.5.(2021·新高考八省联考)在四边形ABCD 中,AB ∥CD ,AD =CD =BD =1. (1)若AB =32,求BC ;(2)若AB =2BC ,求cos ∠BDC .解 (1)在△ABD 中,AD =CD =BD =1,AB =32,由余弦定理,可得cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =34,因为CD ∥AB , 所以∠BDC =∠ABD ,在△BCD 中,已知CD =BD =1,由余弦定理可得BC 2=BD 2+CD 2-2BD ·CD cos ∠BDC =12, 故BC =22. (2)设BC =x ,则AB =2x ,在△ABD 中,cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =4x 24x=x , 在△BCD 中,cos ∠BDC =BD 2+CD 2-BC 22BD ·CD =2-x 22, 由AB ∥CD 可知,∠BDC =∠ABD ,所以cos ∠BDC =cos ∠ABD ,即2-x 22=x , 整理可得x 2+2x -2=0,因为x >0,解得x =3-1,因此,cos ∠BDC =cos ∠ABD =x =3-1.6.(2021·江苏省百校联考高三第一次考试)在①(a -c )·(sin A +sin C )=b (sin A -sin B ),②2c cos C =a cos B +b cos A ,③△ABC 的面积为12c (a sin A +b sin B -c sin C )这三个条件中任选一个,补充在下面的问题中,并加以解答.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且________.(1)求角C ;(2)若D 为AB 的中点,且c =2,CD =3,求a ,b 的值.解 (1)选择条件①:∵(a -c )(sin A +sin C )=b (sin A -sin B ),∴(a -c )(a +c )=b (a -b )⇒a 2-c 2=ab -b 2,cos C =a 2+b 2-c 22ab =12, 又C ∈(0,π),∴C =π3. 选择条件②:∵2c cos C =a cos B +b cos A ,∴由正弦定理得2sin C cos C =sin A cos B +sin B cos A =sin(A +B ).∵在△ABC 中,A +B +C =π,∴sin(A +B )=sin C ,∴2sin C cos C =sin C .∵在△ABC 中,C ∈(0,π),∴sin C ≠0,则cos C =12,∴C =π3. 选择条件③:∵S △ABC =12c (a sin A +b sin B -c sin C )=12bc sin A , ∴a sin A +b sin B -c sin C =b sin A ,∴由正弦定理得a 2+b 2-c 2=ab ,∴由余弦定理得cos C =a 2+b 2-c 22ab =12. ∵在△ABC 中,C ∈(0,π),∴C =π3.(2)CD →=12(CA →+CB →)⇒CD →2 =14⎝⎛⎭⎫b 2+a 2+2·b ·a ·12, 得a 2+b 2+ab =12.由余弦定理c 2=a 2+b 2-2ab cos C ,得a 2+b 2-12×2ab =4⇒a 2+b 2-ab =4, ∴⎩⎪⎨⎪⎧a 2+b 2=8,ab =4⇒a =b =2.。

高考数学 正弦定理和余弦定理 专题

高考数学  正弦定理和余弦定理  专题

高考数学 正弦定理和余弦定理 专题一、选择题1.在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C 的值为( )A.2633B.2393C.393D.1333解析:∵S △ABC =3,即12bc sin A =3,∴c =4.由余弦定理a 2=b 2+c 2-2bc cos A =13,∴a=13, ∴a +b +c sin A +sin B +sin C =a sin A =2133=2393.答案:B2.在△ABC 中,已知∠B =45°,c =22,b =433,则∠A 等于( )A .15°B .75°C .105°D .75°或15°解析:根据正弦定理c sin C =b sin B ,sin C =c sin B b =22×22433=32.∴C =60°或C =120°,因此A =75°或A =15°. 答案:D3.在△ABC 中,设命题p :a sin B =b sin C =c sin A,命题q :△ABC 是等边三角形,那么命题p是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:若△ABC 是等边三角形,则a sin B =b sin C =c sin A ;若a sin B =b sin C =csin A ,又a sin A =b sin B =csin C,则⎩⎪⎨⎪⎧a 2=bc ,b 2=ac ,c 2=ab ,即a =b =c .∴p 是q 的充要条件. 答案:C4.若钝角三角形三内角成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是( )A.(1,2) B.(2,+∞) C.=sin(B+C)=sin B cos C+cos B sin C=32cos C+12sin C,∴3+12sin C=32cos C+12sin C,即sin C=cos C.又0°<C<180°,∴C=45°,A=180°-(B+C)=75°.解法二:设最大边长为a,最小边长为c,则ac=3+12,由a2+c2-b22ac=12,则b2=a2+c2-ac.cos C=a2+b2-c22ab=2a2-ac2a a2+c2-ac=2·a2c2-ac2·aca2c2-ac+1=22.又0°<C<180°,∴C=45°,则A=180°-(B+C)=75°.1.在△ABC中,角A、B、C所对应的边分别为a、b、c,a=23,tanA+B2+tanC2=4,2sin B cos C=sin A,求A,B及b,c.解答:由tanA+B2+tanC2=4得cotC2+tanC2=4,∴cosC2sinC2+sinC2cosC2=4,∴1sinC2cosC2=4.∴sin C=12,又C∈(0,π),∴C=π6,或C=5π6,由2sin B cos C=sin A得2sin B cos C=sin(B+C),即sin(B-C)=0,∴B=C,B=C=π6,A=π-(B+C)=2π3,由正弦定理asin A=bsin B=csin C得b=c=asin Bsin A=23×1232=2.2.如下图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明sin α+cos 2β=0;(2)若AC=3DC,求β的值.解答:(1)证明:∵AB=AD,则∠ADB=β,∴∠C=β-α.又∠B+∠C=90°,即2β-α=90°,则2β=90°+α,cos 2β=-sin α,即cos 2β+sin α=0.①(2)在△ADC中,DCsin α=ACsin β,即sin β=3sin α.②①代入②整理得:23sin2β-sin β-3=0.解得sin β=32,或sin β=-33舍去,又β为锐角,则β=60°.。

高中数学高考总复习正弦定理与余弦定理习题及详解

高中数学高考总复习正弦定理与余弦定理习题及详解

高中数学高考总复习正弦定理与余弦定理习题及详解一、选择题1.(2010·聊城市、银川模拟)在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,且sin 2A -sin 2C =(sin A -sin B )sin B ,则角C 等于( )A.π6B.π3C.5π6D.2π3 [答案] B[解析] 由正弦定理得a 2-c 2=(a -b )·b ,由余弦定理得cos C =a 2+b 2-c 22ab =12, ∵0<C <π,∴C =π3. 2.(文)(2010·泰安模拟)在△ABC 中,若A =60°,BC =43,AC =42,则角B 的大小为( )A .30°B .45°C .135°D .45°或135°[答案] B[解析] ∵AC ·sin60°=42×32=26<42<43,故△ABC 只有一解,由正弦定理得,42sin B =43sin60°, ∴sin B =22,∵42<43,∴B <A ,∴B =45°. (理)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,A =π3,a =3,b =1,则c =( ) A .1B .2 C.3-1D. 3[答案] B[解析] ∵b sin A =32<1<3,∴本题只有一解. ∵a =3,b =1,A =π3, ∴根据余弦定理,cos A =b 2+c 2-a 22bc =1+c 2-32c =12, 解之得,c =2或-1,∵c >0,∴c =2.故选B.3.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =22,且三角形有两解,则角A 的取值范围是( )A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π4,3π4D.⎝⎛⎭⎫π4,π3[答案] A[解析] 由条件知b sin A <a ,即22sin A <2,∴sin A <22, ∵a <b ,∴A <B ,∴A 为锐角,∴0<A <π4. [点评] 如图,AC =22,以C 为圆心2为半径作⊙C ,则⊙C上任一点(⊙C 与直线AC 交点除外)可为点B 构成△ABC ,当AB 与⊙C 相切时,AB =2,∠BAC =π4,当AB 与⊙C 相交时,∠BAC <π4,因为三角形有两解,所以直线AB 与⊙C 应相交,∴0<∠BAC <π4. 4.(2010·湖南理)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c .若∠C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 [答案] A[解析] ∵∠C =120°,c =2a ,c 2=a 2+b 2-2ab cos C∴a 2-b 2=ab ,又∵a >0,b >0,∴a -b =ab a +b >0,所以a >b . 5.(文)(2010·天津理)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°[答案] A[解析] 由余弦定理得:cos A =b 2+c 2-a 22bc, ∵sin C =23sin B ,∴c =23b ,∴c 2=23bc ,又∵b 2-a 2=-3bc ,∴cos A =32, 又A ∈(0°,180°),∴A =30°,故选A.(理)(2010·山东济南)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 [答案] D[解析] 由(a 2+c 2-b 2)tan B =3ac 得,a 2+c 2-b 2ac·tan B =3,再由余弦定理cos B =a 2+c 2-b 22ac 得,2cos B ·tan B =3,即sin B =32,∴角B 的值为π3或2π3,故应选D. 6.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 3[答案] C[解析] 12ac sin B =12,∴ac =2, 又2b =a +c ,∴a 2+c 2=4b 2-4,由余弦定理b 2=a 2+c 2-2ac cos B 得,b =3+33. 7.(2010·厦门市检测)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a =1,b =3,则S △ABC 等于( )A. 2B. 3C.32 D .2 [答案] C[解析] ∵A 、B 、C 成等差数列,∴B =60°,∵b sin B =a sin A ,∴sin A =a sin B b =1×323=12, ∴A =30°或A =150°(舍去),∴C =90°,∴S △ABC =12ab =32. 8.(2010·山师大附中模考)在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .直角三角形B .正三角形C .等腰三角形D .等腰三角形或直角三角形[答案] A [解析] ∵cos 2B 2=a +c 2c ,∴1+cos B 2=sin A +sin C 2sin C, ∴sin C cos B =sin A ,∴sin C cos B =sin(B +C ),∴sin B cos C =0,∵0<B ,C <π,∴sin B ≠0,cos C =0,∴C =π2,故选A. 9.(2010·四川双流县质检)在△ABC 中,tan A =12,cos B =31010,若最长边为1,则最短边的长为( ) A.455B.355C.255D.55[答案] D[解析] 由tan A >0,cos B >0知A 、B 均为锐角, ∵tan A =12<1,∴0<A <π4,cos B =31010>32, ∴0<B <π6,∴C 为最大角, 由cos B =31010知,tan B =13,∴B <A ,∴b 为最短边, 由条件知,sin A =15,cos A =25,sin B =110, ∴sin C =sin(A +B )=sin A cos B +cos A sin B=15×310+25×110=22, 由正弦定理b sin B =c sin C 知,b 110=122,∴b =55. 10.(2010·山东烟台)已知非零向量AB →,AC →和BC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AC →·BC →|AC →|·|BC →|=22,则△ABC 为( ) A .等边三角形B .等腰非直角三角形C .直角非等腰三角形D .等腰直角三角形[答案] D[解析] ∵AC →·BC →|AC →|·|BC →|=cos ∠ACB =22, ∴∠ACB =45°,又∵⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, ∴∠A =90°,∴△ABC 为等腰直角三角形,故选D.二、填空题11.(文)判断下列三角形解的情况,有且仅有一解的是________.①a =1,b =2,B =45°;②a =5,b =15,A =30°;③a =6,b =20,A =30°;④a =5,B =60°,C =45°.[答案] ①④[解析] ①一解,a sin B =22<1<2,有一解. ②两解,b ·sin A =152<5<15,有两解; ③无解,b ·sin A =10>6,无解.④一解,已知两角和一边,三角形唯一确定.(理)在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________.[答案] 3<c < 5[解析] 边c 最长时:cos C =a 2+b 2-c 22ab =1+4-c 22×1×2>0, ∴c 2<5.∴0<c < 5.边b 最长时:cos B =a 2+c 2-b 22ac =1+c 2-42c>0, ∴c 2>3.∴c > 3.综上,3<c < 5.12.(2010·上海模拟)在直角坐标系xOy 中,已知△ABC 的顶点A (-1,0),C (1,0),顶点B 在椭圆x 24+y 23=1上,则sin A +sin C sin B的值为________.[答案] 2[解析] 由题意知△ABC 中,AC =2,BA +BC =4,由正弦定理得sin A +sin C sin B =BC +BA AC=2. 13.(文)(2010·沈阳模拟)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若b 2+c 2=a 2+bc ,且AC →·AB →=4,则△ABC 的面积等于________.[答案] 2 3[解析] ∵b 2+c 2=a 2+bc ,∴cos A =b 2+c 2-a 22bc =12, ∵AC →·AB →=4,∴b ·c ·cos A =4,∴bc =8,∴S =12AC ·AB sin A =12×bc ·sin A =2 3. (理)(2010·北京延庆县模考)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =c=2b 且sin B =45,当△ABC 的面积为32时,b =________. [答案] 2[解析] ∵a +c =2b ,∴a 2+c 2+2ac =4b 2(1)∵S △ABC =12ac sin B =25ac =32,∴ac =154(2) ∵sin B =45,∴cos B =35(由a +c =2b 知B 为锐角), ∴a 2+c 2-b 22ac =35,∴a 2+c 2=92+b 2(3) 由(1)、(2)、(3)解得b =2.14.(2010·合肥市质检)在△ABC 中,sin A -sin B sin (A +B )=2sin A -sin C sin A +sin B,则角B =________. [答案] π4[解析] 依题意得sin 2A -sin 2B =sin(A +B )(2sin A -sin C )=2sin A sin C -sin 2C ,由正弦定理知:a 2-b 2=2ac -c 2, ∴a 2+c 2-b 2=2ac ,由余弦定理知:cos B =a 2+c 2-b 22ac =22, ∴B =π4. 三、解答题15.(文)(2010·广州六中)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值.[解析] (1)∵cos A 2=255, ∴cos A =2cos 2A 2-1=35,sin A =45. 又由AB →·AC →=3得,bc cos A =3,∴bc =5,∴S △ABC =12bc sin A =2. (2)∵bc =5,又b +c =6,∴b =5,c =1或b =1,c =5,由余弦定理得a 2=b 2+c 2-2bc cos A =20,∴a =2 5.(理)(2010·山东滨州)已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.[解析] (1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ).在△ABC 中,由于sin(A +B )=sin C .∴m ·n =sin C .又∵m ·n =sin2C ,∴sin2C =sin C ,∴2sin C cos C =sin C .又sin C ≠0,所以cos C =12.而0<C <π,因此C =π3. (2)由sin A ,sin C ,sin B 成等差数列得,2sin C =sin A +sin B ,由正弦定理得,2c =a +b .∵CA →·(AB →-AC →)=18,∴CA →·CB →=18.即ab cos C =18,由(1)知,cos C =12,所以ab =36. 由余弦定理得,c 2=a 2+b 2-2ab cos C=(a +b )2-3ab .∴c 2=4c 2-3×36,∴c 2=36.∴c =6.16.(文)在△ABC 中,已知AB =3,BC =2.(1)若cos B =-36,求sin C 的值; (2)求角C 的取值范围.[解析] (1)在△ABC 中,由余弦定理知,AC 2=AB 2+BC 2-2AB ·BC ·cos B=3+4-2×23×⎝⎛⎭⎫-36=9. 所以AC =3.又因为sin B =1-cos 2B =1-⎝⎛⎭⎫-362=336, 由正弦定理得AB sin C =AC sin B. 所以sin C =AB AC sin B =116. (2)在△ABC 中,由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos C ,∴3=AC 2+4-4AC ·cos C ,即AC 2-4cos C ·AC +1=0.由题意知,关于AC 的一元二次方程应该有解,令Δ=(4cos C )2-4≥0,得cos C ≥12,或cos C ≤-12(舍去,因为AB <BC ) 所以,0<C ≤π3,即角C 的取值范围是⎝⎛⎦⎤0,π3. [点评] 1.本题也可用图示法,如图:A 为⊙B 上不在直线BC 上的任一点,由于r =AB =3,故当CA 与⊙B 相切时∠C 最大为π3,故C ∈⎝⎛⎦⎤0,π3. 2.高考命题大题的第一题一般比较容易入手,大多在三角函数的图象与性质、正余弦定理、平面向量等内容上命制,这一部分要狠抓基本原理、公式、基本方法的落实.(理)(2010·东北师大附中、辽宁省实验中学联考)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a cos C +12c =b . (1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.[解析] (1)由a cos C +12c =b 得 sin A cos C +12sin C =sin B又sin B =sin(A +C )=sin A cos C +cos A sin C∴12sin C =cos A sin C , ∵sin C ≠0,∴cos A =12, 又∵0<A <π,∴A =π3. (2)解法1:由正弦定理得:b =a sin B sin A =23sin B ,c =23sin C l =a +b +c =1+23(sin B +sin C ) =1+23(sin B +sin(A +B )) =1+2⎝⎛⎭⎫32sin B +12cos B =1+2sin ⎝⎛⎭⎫B +π6 ∵A =π3,∴B ∈⎝⎛⎭⎫0,2π3,∴B +π6∈⎝⎛⎭⎫π6,5π6, ∴sin ⎝⎛⎭⎫B +π6∈⎝⎛⎦⎤12,1. 故△ABC 的周长l 的取值范围是(2,3].解法2:周长l =a +b +c =1+b +c由(1)及余弦定理a 2=b 2+c 2-2bc cos A ,∴b 2+c 2=bc +1,∴(b +c )2=1+3bc ≤1+3⎝⎛⎭⎫b +c 22,∴b +c ≤2,又b +c >a =1,∴l =a +b +c ∈(2,3],即△ABC 的周长l 的取值范围为(2,3].17.(文)△ABC 中内角A 、B 、C 的对边分别为a 、b 、c ,向量m =(2sin B ,-3),n =(cos2B,2cos 2B 2-1)且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求△ABC 的面积S △ABC 的最大值.[分析] (1)问利用平行向量的坐标表示将向量知识转化为三角函数,利用三角恒等变换知识解决;(2)问利用余弦定理与基本不等式结合三角形面积公式解决.[解析] (1)∵m ∥n ,∴2sin B ⎝⎛⎭⎫2cos 2B 2-1=-3cos2B ∴sin2B =-3cos2B ,即tan2B =- 3又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3. (2)∵B =π3,b =2, ∴由余弦定理cos B =a 2+c 2-b 22ac得, a 2+c 2-ac -4=0又∵a 2+c 2≥2ac ,∴ac ≤4(当且仅当a =c =2时等号成立)S △ABC =12ac sin B =34ac ≤3(当且仅当a =c =2时等号成立), [点评] 本题将三角函数、向量与解三角形有机的结合在一起,题目新疑精巧,难度也不大,即符合在知识“交汇点”处构题,又能加强对双基的考查,特别是向量的坐标表示及运算,大大简化了向量的关系的运算,该类问题的解题思路通常是将向量的关系用坐标运算后转化为三角函数问题,然后用三角函数基本公式结合正、余弦定理求解.(理)(2010·山师大附中模考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知sin B =513,且a 、b 、c 成等比数列. (1)求1tan A +1tan C的值; (2)若ac cos B =12,求a +c 的值.[解析] (1)依题意,b 2=ac由正弦定理及sin B =513得,sin A sin C =sin 2B =25169. 1tan A +1tan C =cos A sin A +cos C sin C =sin (A +C )sin A sin C =sin B sin A sin C =135. (2)由ac cos B =12知cos B >0,∵sin B =513,∴cos B =1213(b 不是最大边,舍去负值) 从而,b 2=ac =12cos B=13. 由余弦定理得,b 2=(a +c )2-2ac -2ac cos B .∴13=(a +c )2-2×13×⎝⎛⎭⎫1+1213. 解得:a +c =37.。

高考数学专题复习题:正弦定理和余弦定理

高考数学专题复习题:正弦定理和余弦定理

高考数学专题复习题:正弦定理和余弦定理一、单项选择题(共8小题)1.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a ,b ,c 是三个连续的自然数,且a b c <<,最大角是最小角的两倍,则cos C =( ) A .0B .112C .18D .342.在锐角ABC V cos cos sin sin A C A B C a c ⎛⎫+= ⎪⎝⎭cos 2C C +=,则a b +能取到的值有( )A .5B .4C .D .33.在ABC V 中,角,,A B C 的对边分别是,,a b c ,若cos sin ,a B b A c a +==222sin a b c ab C +−=,则( )A .tan 1C =B .π3A =C .b =D .ABC V 的面积为4.已知点,A F 分别为椭圆22:143x yC +=的左顶点、右焦点,点M 为C 上一点,且OM为AMF ∠的平分线,60AMF ∠=︒,则AFM △的内切圆的半径为( )A B C .12D 5.ABC V 的内角,,A B C 所对的边分别为,,a b c .若17,6,cos 5b c B ===,则a =( )A .5B .6C .8D .106.如图,在正四棱柱1111ABCD A B C D −中,14AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .717B .1417C .1617D .8177.在ABC V 中,1202ACB BC AC ∠=︒=,,D 为ABC V 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=( )A.B C D 8.已知双曲线2222:1(0,0)x y C a b a b−=>>的右焦点为F ,圆222:O x y a +=与C 的渐近线在第二象限的交点为P ,若tan FPO ∠C 的离心率为( ) A .2BC .3D 二、多选题(共3小题)9.ABC V 的内角A B C 、、的对边分别为a b c 、、,则下列说法正确的是( ) A .若A B >,则sin sin A B >B .若ABC V 为钝角三角形,则222a b c +> C .若30,4,3A b a ===,则ABC V 有两解D .若三角形ABC 为斜三角形,则tan tan tan tan tan tan A B C A B C ++=10.如图,在ABC V 中,2,3,60AB AC BAC ∠===,若O 为ABC V 外接圆的圆心,且(),,AO AB AC λμλμ=+∈R ,则以下结论中正确的是( )A .43AO AB λμ⋅=+ B .92AO AC ⋅= C .ABC V 外接圆的面积为2πD .5233λμ+=11.在ABC V 中,AD AB λ=,BE BC μ=,CF tCA =,,,0t λμ>且1t λμ++=,则( ) A .()DEF ABC S t t S λμλμ=++△△ B .3ABC DEF S S ≥△△CD .λ∃,μ,t三、填空题(共2小题)12.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则2a c +的最小值为________. 13.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .若3π4B =,6b =,22a c +=,则ABC V 的面积为________.四、解答题(共5小题)14.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,且22cos 0b c a C +−=. (1)求角A .(2)射线AB 绕A 点旋转90交线段BC 于点E ,且1AE =,求ABC V 的面积的最小值.15.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知()2cos cos 0a c B b C −−=. (1)求B .(2)已知b =122a c +的最大值.16.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且()1cos cos cos 02B c B bC a ++=. (1)求角B 的大小.(2)若7,8,b a c a c =+=<,求,a c 的值;求()sin 2A C +的值.17.记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2b ac =,点D 在边AC 上,且BD b =.(1)求证:sin sin BD ABC a C ∠=. (2)若2AD DC =,求cos ABC ∠.8.记ABC V 的内角,,A B C 的对边分别为,,a b c ,若()()3a b c a b c +++−=,且ABC V 的(1)求角C .(2)若2AD DB =,求CD 的最小值.参考答案1.C2.B3.C4.D5.A 6.C 7.B 8.C 9.ACD 10.ABD 11.ABCD12.3+13.314.(1)2π3A =(215.(1)π3B = (216.(1)2π3B =(2)35a c =⎧⎨=⎩17.(1)证明:设ABC V 的外接圆半径为R ,由正弦定理得2sin ,2sin R ABC b R C c ∠==,因为2b ac =,BD b =,所以b BD ac ⋅=,由此可得2sin 2sin BD R ABC a R C ⋅∠=⋅,所以sin sin BD ABC a C ∠=(2)71218.(1)2π3C = (2。

高考数学考点过关检测19__正弦定理和余弦定理

高考数学考点过关检测19__正弦定理和余弦定理

考点过关检测19__正弦定理和余弦定理一、单项选择题1.[2022·福建上杭模拟]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,b =3,B =60°,则A =( )A .30°B .30°或150°C .60°D .60°或120°2.[2022·河北保定月考]在△ABC 中,sin A =sin B cos C ,则△ABC 是( )A .直角三角形B .等腰直角三角形C .等腰三角形D .等边三角形3.[2022·山东莱芜一中月考]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b sin A =a cos B ,b =2,c =6,则角C 为( )A.2π3B.5π6C.π6或5π6D.π3或2π34.[2022·北京顺义模拟]在△ABC 中,b =3,c =3a ,B =π6,则cos C =( ) A.32 B.12C .-32D .-125.[2022·广东河源模拟]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知(a +b )(sin A -sin B )=c sin C +b (1+cos A )sin C ,则cos A =( )A .-13B .-23C.13D.236.[2022·山东济南模拟]在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,a =23,且b +c =6若12b cos A =sin B ,则△ABC 等于( ) A .2 B .4C .2 3D .437.[2022·天津十四中月考]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S,3c 2=16S +3(b 2-a 2),则tan B =( )A.23B.32C.43D.348.[2022·江苏盐城中学月考]在平行四边形ABCD 中,AB =2,AD =1,∠BAD =60°,则cos ∠BAC 的值是( )A.5714 B .-5714C .-2114 D.2114二、多项选择题9.[2022·江苏扬州月考]不解三角形,则下列对三角形解的个数的判断中正确的是( )A .a =30,b =25,A =150°,有一解B .a =7,b =14,A =30°,有两解C .a =6,b =9,A =45°,有两解D .a =3,b =6,A =60°,无解10.[2022·山东淄博实验中学月考]在△ABC 中,下列结论中正确的是( )A .若A <B ,则sin A <sin BB .若A <B ,则cos 2A <cos 2BC .若A <B ,则cos A >cos BD .若A <B ,则1sin 2A <1sin 2B11.已知△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC ,下列结论正确的是( )A .sin C =2sin BB .若∠B =30°,则△ABC 为直角三角形C .若∠BAC =60°,则△ADC 为等边三角形D .若∠BAD =30°,则△ABD 为等腰三角形12.[2022·广东顺德模拟]在△ABC 中,A 、B 、C 所对的边为a 、b 、c ,设BC 边上的中点为M ,△ABC 的面积为S ,其中a =23,b 2+c 2=24,下列选项正确的是( )A .若A =π3,则S =33 B .S 的最大值为33C .AM =3D .角A 的最小值为π3三、填空题13.[2022·清华附中月考]在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知A =120°,a =7,cos B =1114,则b =________. 14.[2022·浙江金华一中月考]在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若A =B ,b +a cos C =c =1,则b =________.15.[2022·辽宁大连模拟]在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若cos C =14,c =6,且a cos A =b cos B,则△ABC 的面积等于________. 16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知c sin A =3a cos C ,则角C =________,若c =2,则a 2+b 2的最大值为________.四、解答题17.[2022·山东青岛模拟]在①2b sin A =a tan B ,②a 2-b 2=ac -c 2,③3sin B =cos B +1这三个条件中任选一个,补充在下面横线上,并解答.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且________.(1)求角B 的大小;(2)若b =2,△ABC 的面积为32,求△ABC 的周长. 注:如果选择多个条件分别解答,按第一个解答计分.18.[2021·新高考Ⅱ卷]在△ABC中,角A,B,C所对的边长分别为a,b,c,b=a+1,c=a+2.(1)若2sin C=3sin A,求△ABC的面积;(2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;若不存在,说明理由.。

新高考数学正弦定理、余弦定理和面积公式专题测试题

新高考数学正弦定理、余弦定理和面积公式专题测试题
A.60°B.45°C.120°D.30°
5.在 中,已知 , , ,则角 为()
A. B. C. D.
6.在 中,角 所对的边分别为 ,若 ,则 ()
A. B. C. D.
7.已知锐角 的面积为 , ,则角C的大小为()
A.60°或120°B.120°C.60°D.30°
8.在△AB C中,若 ,则A=()
A. 是 的充要条件
B. , ,若 ,则这样的三角形有两个
C.若 ,则 为钝角三角形
D. 的面积公式为
19.钝角△ABC内角A,B,C的对边分别为a,b,c,已知a=7,b=5, ,则()
A. B.
C. D.
20.在 中角 的对边分别为 , ,则()
A.
B. 的面积为 或
C. 是锐角三角形
D. 的外接圆面积是
当 时, ,
当 时, ,
所以 的面积为 或 ,故B正确;
当 时, ,此时 为钝角三角形,故C错误;
设 的外接圆半径为 ,由正弦定理可得 ,所以 ,所以外接圆面积为 ,故D正确.故选:BD.
21.ACD【详解】因为 , ,所以角 是锐角,
, , ,所以三角形是等边三角形.
故选:ACD
整理得:ac=3,①
由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2+ac=(a+c)2﹣ac=(a+c)2﹣3,
整理得:a+c=2 ,②
联立①②,解得:a=c ,则△ABC为等腰三角形,故选:C.
16.D【详解】解:因为 ,所以 .
由 ,得 .
由余弦定理 ,得 ,
得 ,即 ,所以 的周长为 .故选:D
故选:AD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档