【原创】第二章 基本初等函数幂函数概念

合集下载

基本初等函数(Ⅰ) 幂函数

基本初等函数(Ⅰ) 幂函数
பைடு நூலகம்
解析 答案
类型二 幂函数的图象及应用 例 2 若点( 2,2)在幂函数 f(x)的图象上,点(-2,14)在幂函数 g(x)的图象上, 问当 x 为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).
解答
引申探究 若对于例 2 中的 f(x),g(x),定义 h(x)=fgxx,,ffxx≤>ggxx,, 试画出 h(x)的图象. 解 h(x)的图象如图所示:
类型三 幂函数性质的综合应用
命题角度1 比较大小
例3

a=23
2 3
,b=23
1 3
,c=25
2 3
,则a,b,c的大小关系是
A.a>b>c
B.b>a>c
C.b>c>a
D.c>b>a
解析 ∵y=23x 在 R 上为减函数,
∴23
2 3
<23
1 3
,即
a<b;∵f(x)=x
2 3
在(0,+∞)上为增函数,
1
1
A.16
B.16
C.2
√D.2
12345
答案
3.设α∈{-1,1,1 ,3},则使函数y=xα的定义域为R的所有α的值为
2
√A.1,3
B.-1,1
C.-1,3
D.-1,1,3
12345
答案
2
4.下列是y=x 3 的图象的是

12345
答案
5.以下结论正确的是 A.当α=0时,函数y=xα的图象是一条直线 B.幂函数的图象都经过(0,0),(1,1)两点 C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大

第2章 函数概念与基本初等函数Ⅰ 第4节 幂函数与二次函数

第2章 函数概念与基本初等函数Ⅰ 第4节 幂函数与二次函数

知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理 1.幂函数
(1)幂函数的定义 一般地,形如___y_=__x_α___的函数称为幂函数,其中x是自变量,α为常数. (2)常见的五种幂函数的图象
索引
(3)幂函数的性质 ①幂函数在(0,+∞)上都有定义; ②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
索引
感悟提升
求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二 次函数解析式的形式,一般选择规律如下:
索引
训练1 (1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值 为f(-1)=0,则f(x)=______x_2+___2_x_+__1. 解析 设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a, 由已知f(x)=ax2+bx+1, 所以a=1,b=2a=2,故f(x)=x2+2x+1.
D.f(m+1)<0
索引
角度2 二次函数的单调性与最值
例3 (1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取
值范围是( D )
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
解析 当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意. 当 a≠0 时,f(x)的对称轴为直线 x=3- 2aa,
第二章 函数概念与基本初等函数Ⅰ
索引
考试要求
1.了解幂函数的概念;结合函数 y=x,y=x2,y=x3,y=x12,y=1x的图象, 了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、 不等式之间的关系解决简单问题.

幂函数的基本概念与性质

幂函数的基本概念与性质

幂函数的基本概念与性质幂函数是数学中一类重要的函数类型,其表示形式为$f(x) = ax^b$,其中a和b为常数,且b是实数。

幂函数的基本概念包括定义域、值域、图像特征等,而幂函数的性质则涉及到增减性、奇偶性、最值和渐近线等方面。

本文将详细探讨幂函数的基本概念与性质,以帮助读者更好地理解这一函数类型。

一、幂函数的基本概念1. 定义域:幂函数的定义域为所有使得底数$x$的幂指数$b$合法的实数。

通常来说,当$b$为有理数时,定义域为全体实数;若$b$为无理数,定义域则需根据具体情况进行讨论。

2. 值域:幂函数的值域根据幂指数$b$的正负以及常数$a$的正负可以得到不同的结果。

当$b$为正数时,如果$a$也为正数,则值域为全体正实数;若$a$为负数,则值域为全体负实数。

当$b$为负数时,根据奇偶性的不同,值域也有所不同。

3. 图像特征:幂函数的图像特征主要与幂指数$b$的正负、常数$a$的正负以及其他可能的变化因素有关。

当$b$为正数时,幂函数呈现递增趋势,且随着$b$的增大,图像会更加陡峭;当$b$为负数时,幂函数会呈现递减趋势,且随着$b$的增大,图像会更加平缓。

二、幂函数的性质1. 增减性:当幂函数的幂指数$b$为正数时,函数是递增的,即随着自变量$x$的增大,函数值$f(x)$也随之增大。

相反,当$b$为负数时,函数是递减的,即随着自变量$x$的增大,函数值$f(x)$会减小。

2. 奇偶性:幂函数的奇偶性取决于底数$x$的幂指数$b$的奇偶性。

当$b$为偶数时,函数是偶函数,即$f(-x) = f(x)$;当$b$为奇数时,函数是奇函数,即$f(-x) = -f(x)$。

3. 最值:当幂函数的幂指数$b$为正数时,最小值为函数的定义域中最小的值,最大值为正无穷。

当幂指数$b$为负数时,最小值为负无穷,最大值为函数的定义域中最小的值。

同时,最值的具体取值还与常数$a$的正负有关。

4. 渐近线:当幂函数的幂指数$b$大于1时,函数的图像会趋近于$y=0$的水平渐近线;当幂指数$b$小于1时,函数的图像会趋近于$x$轴的正半轴。

全国版高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第3讲二次函数与幂函数课件理

全国版高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第3讲二次函数与幂函数课件理
方法技巧 识别二次函数图象应学会“三看”
一看符号 看二次项系数的符号,它的正负决定二次函数图象的开口方向.
二看对称轴 看对称轴和最值,它们决定二次函数图象的具体位置.
三看特殊点
看函数图象上的一些特殊点,如函数图象与y轴的交点、与轴
的交点,函数图象的最高点或最低点等.
从“三看”入手,能准确判断出二次函数的图象.反之,也能从图象中得到如
调递增.
上单调递.
在(-∞,0)和
(0,+∞)
上单调递减.
图象
过定点
(0,0),(1,1)
(1,1)
考点2 幂函数
规律总结 (1)幂函数在(0,+∞)上都有定义,且图象过定点(1,1).
(2)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增.当
α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
考情解读
考点内容
课标
要求
考题取样
情境
载体
对应
考法
预测
热度
核心
素养
逻辑推理
1.二次函数
掌握
2017浙江,T5 探索创新 考法1,2 ★★★ 数学运算
直观想象
2.幂函数
了解
2020江苏,T7 课程学习 考法3
★☆☆
逻辑推理
直观想象
考情解读
本讲在高考中很少单独命题,常与其他函数、不等式、方程
命题分
等知识综合考查,命题热点为二次函数的图象和性质,对幂函数
单调性
考点1 二次函数
奇偶性
当b=0时为偶函数,当b≠0时为非奇非偶函数.
顶点

高考数学知识点总结 第二章函数概念与基本初等函数

高考数学知识点总结 第二章函数概念与基本初等函数

第二章函数概念与基本初等函数知识点与方法1.函数解析式的求法主要有换元法和待定系数法等:利用函数的解析式研究问题时要特别注意分析自变量x与函数值y的关系,尤其要注意分段函数各段的自变量所对ƒ的解析式.已知函数解析式,计算有限个函数值的和.fl类问题一般都具有明显的规律,或者函数具有周期性,或者函数具有对称性(自变量具有某种关系,其函数值和fi定值).如£(x)=,求+的值(这$£(x)+£(1—x)=).².确定函数定义域的基本原则.(1)分式函数y=中,满足分母g(x)≠0.(²)偶次式y=(n∈N*)中,满足被开方式£(x)≥0.(3)对数函数y=log£(x)g(x)中,满足且£(x)≠1.(4)幂函数y=[£(x)]0中,满足£(x)≠0.(±)fl切函数y=tanx中,满足x≠kπ+(k∈Z).(6)在实际问题中考虑自变量的实际意义.3.函数值域(最值)的求法.(1)二次型函数——配方法.(²)©曲函数——均值н等式.(3)利用换元法转化fi二次型函数或©曲函数.(4)函数单调性法.(±)导数法.对于н等式恒成立、fl在性问题h要通过求函数最值的方法解决.4.判断函数单调性的方法.(1)定义法:一般地,设函数y=£(x)的定义域fiA,区间W⊆A,∀x1,x²∈W,(x1—x²)[£(x1)—£(x²)]>0⇔>0⇔£(x)在区间W L是增函数.若£(x)在区间W L fi增函数,x1, x²∈W,则有x1<x²⇔£(x1)<£(x²),减函数有类似结论.(注意:在涉þ到н等式的求解、证明等有关问题时可以考虑构造函数,利用函数单调性求解).(²)用已知函数单调性判断(下列函数都在¿共单调区间L): ķ增函数+增函数=增函数:ĸ减函数+减函数=减函数:③复合函数单调性:④奇(偶)函数在对称区间L的单调性相¼(相反).(3)借助图像判断函数单调性.(4)导数法:对可导函数£(x),x∈(a,b ),£′(x)≥0⇔£(x)在(a,b)L是增函数:£′(x)≤0⇔£(x)在(a,b)L 是减函数(其中导致导数fi0的点是孤立的).±.函数的奇偶性.(1)判定函数奇偶性的方法.函数具有奇偶性的必要条fl是定义域fi 关于原点对称的区间.判断函数奇偶性首先确定函数定义域.ķ定义法:∀x∈D£,£(x)±£(—x)=0: ĸ用已知函数奇偶性判定:(i)奇±奇=奇:偶±偶=偶:奇±偶=非奇非偶(非零函数): 奇×偶=奇:奇×奇=偶:偶×偶=偶.(ii)复合函数奇偶性,内偶则偶,两奇fi奇.③借助图像确定奇偶性.(²)奇偶函数的性质.ķ定义域含0的奇函数图像必过原点: ĸ奇函数若fl在最大(小)值,则它们的和fi0:③£(x)是偶函数,则有£(—x)=£(x)=£(|x|):④既奇又偶的函数的解析式必fi£(x)=0:⑤对于奇(偶)函数,已知y轴一侧的图像、解析式、单调性,能够确定y轴另一侧的图像、解析式、单调性.题目中出现x与—x的函数值问题,需考虑函数的奇偶性.(3)奇偶函数性质推广(对称性问题).已知函数£(x),x∈D.ķ满足£(a+x)=£(b—x)⇔£(x)关于直线x=对称, 特别地,£(—x)=£(x)⇔£(x)关于y轴(x=0)对称: ĸ满足£(a+x)=—£(b—x)⇔£(x)关于点,0 对称, 特别地,£(—x)=—£(x)⇔£(x)关于原点(0,0)中心对称:③函数y=£(x)与y=£(—x)的图像关于y轴对称:④函数y=£(x)与y=—£(x)的图像关于x轴对称:⑤函数y=£(a+x)与y=£(b—x)的图像关于x=对称. 6.函数的周期性.(1)定义:已知函数y=£(x),x∈D,若对任意x∈D,fl在非零fl 常数T,满足:ķ£(x+T)=£(x),周期fiT:ĸ£(x+T)=—£(x),周期fi²T:£(x+T)+£(x)=G,周期fi²T:③£(x+T)=±,周期fi²T:£(x+T)·£(x)=G(G≠0),周期FI²T:④£(x+T)=—£(x—T),周期fi4T:⑤£(x+T)+£(x—T)=£(x),周期fi6T.(²)对称性与周期性关系:若函数£(x)具有两个对称性(中心、轴)þ周期性三个性质中的两个,则必定具有第三个性质.例如:ķ若£(x)的图像关于直线x=a和x=b对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.ĸ若£(x)的图像关于点(a,0)和(b,0)对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.③若£(x)的图像关于直线x=aþ点(b,0)对称(a≠b),则£(x)是周期fi4|a—b|的周期函数.7.三个二次(一元二次方程、二次н等式、二次函数)间的问题可相互转化.如二次函数零点是相ƒ二次方程的,二次н等式的求解依赖于二次方程与二次函数的图像等.(1)一元二次方程.ķ判别式,求¿式, 与系数关系:ĸ的分布问题,要由判别式、对称轴、端点值三者确定.例如:(i)二次方程ax²+BX+G=0(A>0)两都大于k⇔(ii)一大于k,一小于k⇔£(k)<0.(²)二次函数的三种表现形式. y=ax²+bx+G=a(x—m)²+n=a (x—x1)(x—x²)(a≠0),其中(m,n)是顶点,x1,x²fi零点.对于限定区间L的二次函数最值要注意对称轴与区间的ƒ置关系.(3)一元二次н等式解法依赖于相ƒ方程与二次函数图像.(4)对于二次函数£(x)=ax²+bx+G,若£(x1 )=£(x²), x1≠x²,则x1+x²=—.8.关于幂、指数、对数函数问题.(1)幂函数£(x)=xα在第一象限的图像如图1—3所示,单调性fi:当α>0时,函数£(x)在(0,+∞)Lfi增函数:当α<0时,函数£(x)在(0,+∞)Lfi减函数.图1-3(²)指数与对数.a b=N⇔b=log a N(a>0,a≠1),a log a N=N,log a a b=b,=,log a m b n=log a b.(3)指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0, a≠1).ķ互fi反函数: ĸ定义域、值域之间的关系fl好相反:③单调性:在各自定义域L,当0<a<1时,均fi减函数:当a>1 时,均fi增函数.(4)以各自的䘀算规则fi模型的抽象函数的表示法.ķ幂函数:£(xy)=£(x)£(y),£=(y≠0,£(y)≠0),£(1)=1:ĸ指数函数:£(x+y)=£(x)·£(y),£(x—y)=,£(0)=1:③对数函数:£(x y)=£(x)+£(y),£=£(x)—£(y),£(1)=0.(±)会画y=a|x|,y=log a|x|,y=|log a x|(a>0,a≠1)的图像.9.图像问题.(1)注意以下两个函数图像.ķ形如y=的函数能变fi形如y=n±的函数,其图像是关于点(m,n)对称的反比例函数图像:ĸ形如y=ax+ 的“©曲函数”,若ab>0,则fi“对勾函数”: 若ab<0,则fi单调函数.(²)图像变换.ķᒣ移变换:ĸ伸缩变换:③对称变换:函数y=£(—x)的图像与函数y=£(x)的图像关于y轴对称.函数y=—£(x)的图像与函数y=£(x)的图像关于x轴对称.函数y=—£(—x)的图像与函数y=£(x)的图像关于原点对称.④翻折变换:y=£(|x|)与y=£(x)之间的关系,y=£(x)与y=£(x)之间的关系.(3)研究问题方法.会由图像特征研究函数性质,能用性质描函数图像,养成用图像、性质分析思考问题,即数形结合思想解题的习惯.查漏补缺1. 函数是数集到数集的特殊映射,其对应法则必须满足自变量在定义域内的任意性,函数值的唯一性例8 已知集合A=(1,²,3,…,²3),求证:нfl在这fi的函数£:A→(1,²,3),使得对任意的整数x1,x²∈A,若|x1—x²|∈(1,²,3),则£(x1)≠£(x²).变式1 函数y=£(x)的图像与直线x=a(a∈R)的交点个数fi ().A.0B.1 C.0或 1 D.可多于12. 结合函数图像研究函数性质如图1—4所示,以函数fi核心,其核心内容包括函数的图像与性质,函数的图像包括基本初等函数的图像的作法þ图像变换,函数的性质主要包括函数的定义域、解析式、值域、奇偶性、单调性、周期性, 对称性þ特殊点.函数知识的外延主要体现在函数与方程(函数零点)þ函数与н等式的结合.而函数与方程(函数零点)þ函数与н等式问题可通过转化思想,利用函数图像与性质求解.图1-4例9 关于x的方程(x—a)(x—b)=²(a<b)的两实fiα, β,且α<β,试比较α,β,a,b的大小.变式1 已知函数£(x)=,若£(²—a²)>£(a),则实数a的ᒣ值范围是().(—1,²)A.(—∞,—1)∪(²,+∞) B.C.(—²,1)D.(—∞,—²)∪(1,+∞)3. 已知函数的解析式研究函数的性质给出函数的解析式,常常需要¼学们能够有意识地通过函数的解析式来研究函数的性质,如函数的奇偶性、单调性、周期性þ函数值的分布等,进而解决函数的有关问题.已知函数£(x)=x²—GOSX,对于L的任意x1 ,x²,有如下条fl:ķx1>x²:ĸ>:③|x1|>x²,其中能使£(x1 )>£(x²)恒成立的条fl序号是.4. 构造函数的解析式研究函数的性质看似与函数无关的问题,如果我们能够分析其本质特点,引入变量并根据其模型构造函数,利用函数性质求解.这才是函数的真正魅力例10 若α,β∈,且αsinα—βsinβ>0,则下列结论fl确的是().A.α>βB.α+β>0C.α<βD.α²>β²变式1 比较, ,ln 这三个实数的大小,并说明理由.变式2 比较, , 的大小.。

幂函数 知识点总结

幂函数 知识点总结

幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。

其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。

1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。

当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。

1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。

1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。

二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。

图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。

2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。

图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。

2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。

当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。

2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。

2019_2020学年高中数学第二章基本初等函数(Ⅰ)2.3幂函数课件新人教A版必修1

2019_2020学年高中数学第二章基本初等函数(Ⅰ)2.3幂函数课件新人教A版必修1

(A)2
(B)1
(C) 1 2
(D)0
解析:(1)因为函数 f(x)=ax2a+1+b+1 是幂函数,
所以
a b
1, 1
0,

a b

1, 1,
所以 a+b=0,故选 D.
(2)(2018·福建龙岩期中)若函数f(x)=(m2-m-1)xm是幂函数,且图象与坐
标轴无交点,则f(x)( )
.
24
解析:(2)因为幂函数 f(x)=xa 的图象过点( 1 , 1 ), 24
所以( 1 )a= 1 ,解得 a=2, 24
所以 loga8=log28=3. 答案:(2)3
题型二 幂函数的图象 [例 2] (1)与下列幂函数对应的图象序号正确的一组是( )
a.y=x5;b.y=
x
4 3
;c.y=
(A)是偶函数
(B)是奇函数
(C)是单调递减函数 (D)在定义域内有最小值
解析:(2)幂函数f(x)=(m2-m-1)xm的图象与坐标轴无交点,可得m2-m1=1,且m≤0,解得m=-1,则函数f(x)=x-1,所以函数是奇函数,在定义 域上不是减函数,且无最值,故选B.
易错警示
(1)幂函数解析式的结构特征:①解析式是单项式;②幂指数为常数, 底数为自变量,系数为1. (2)幂函数y=xα的图象与坐标轴无交点,则α≤0,而不是α<0.
3
2
(4)4. 15
,3.

8
2 3
和(-1.9)
3 5
.
2
2
解:(4)因为幂函数 y= x 5 在(0,+∞)上为增函数,且 4.1>1,所以 4.15 >1,

第二章 基本初等函数幂函数

第二章 基本初等函数幂函数

[0,+∞) [0,+∞) 非奇非偶 增
(1,1)
| R且x 0 xx y|y R且y 0
奇 (0,+∞)减 (-∞,0)减
(1,1)
单调性 公共点
(1)幂函数在(0,+∞)都有 定义,第四象限都没定义且图象都 通过点(1,1) (2) 如果a>0,
5.幂函数的性质
在 区间[0,+∞)上是 增函数 如果a<0, 在区间(0,+∞)上是减函数 (3) 当a为奇数时, 奇函数 幂函数为 当a为偶数时,
幂函数为 偶函数;
例1:
如果函数 f ( x) (m m 1)x
2 m2 2m3
是幂函数,
且在区间(0,+∞)内是减函数,求满足条件的
实数m的集合。
解:依题意,得 m m 1 1 解方程,得 m=2或m=-1 3 检验:当 m=2时,函数为 f ( x) x 0 符合题意.当m=-1时,函数为 f ( x) x 1 不合题意,舍去.所以m=2
-2
x
-3
-2
-1
1
2
3
y x1
-3
-1/3
-1/2
-1
1
1/2
1/3
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4 6
-1
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
-6 -4 -2

基本初等函数幂函数

基本初等函数幂函数
探索基本初等函数幂函数 的神奇世界
基本初等函数幂函数是数学中的基石之一,从人口增长到放射性衰变,它们 的应用无处不在。让我们一起探索这个神奇的世界!
什么是基本初等函数幂函数?
初等函数
可以由代数运算、初等函数和常数函数复合得到的函数。
幂函数
形如 $f(x)=x^a$,其中 $a$ 是实数。
基本初等函数
指数函数的导数和导函数
1
定义
对于 $a>0$ 且 $a\neq1$,$f'(x)=a^x\ln a$。
2
求解
注意到 $a^x=e^{x\ln a}$,则有 $f'(x)=a^x\ln a$。
3
导函数
导函数即为指数函数本身,$\dfrac{\mathrm{d}}{\mathrm{d}x}a^x=a^x$。
是一组特殊的初等函数,包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数 函数。
幂函数的定义及其性质
定义
形如 $f(x)=x^a$,其中 $a$ 是实数。
增减性
当 $a>0$ 时,$f(x)$ 在 $[0,\infty)$ 上单调递增;当 $a<0$ 时,$f(x)$ 在 $(0,\infty)$ 上单调递减。
最值
当 $a>0$ 时,$f(x)$ 在 $[0,\infty)$ 上无最小值和最 大值;当 $a<0$ 时,$f(x)$ 在 $(0,\infty)$ 上有最大
变换
图像的左右移动、上下移动、翻折等变换会影响 $a$,而图像的纵向伸缩会影响 $a$ 的绝对值。
幂函数的导数和导函数
1
定义
对于 $a\neq0$,$f'(x)=ax^{a-1}$。

高中数学 第二章 基本初等函数(I)2.3 幂函数课件 新人教版必修1

高中数学 第二章 基本初等函数(I)2.3 幂函数课件 新人教版必修1

课前自学
课堂互动
课堂达标
规律方法 1.幂函数 y=xα的图象恒过定点(1,1),且不 过第四象限. 2.解决幂函数图象问题,需把握两个原则:(1)幂指数 α 的正负决定函数图象在第一象限的升降;(2)依据图象确 定幂指数 α 与 0,1 的大小.在第一象限内,直线 x=1 的右侧,y=xα的图象由上到下,指数 α 由大变小;在 第一象限内,直线 x=1 的左侧,y=xα的图象由上到下, 指数 α 由小变大.
1
B.y=x-2 C.y=x4 D.y=x2
1
1
解析 函数 y=x3,y=x2在各自定义域上不是
偶函数,y=x-2 的图象不过点(0,0).选 C.
答案 C
课前自学
课堂互动
课堂达标
4.幂函数f(x)=xα的图象过点(3,9),那么函数f(x)的单调增区间 是________. 解析 由题意得9=3α, 所以32=3α,所以f(x)=x2. 所以幂函数f(x)=x2的单调增区间是[0,+∞). 答案 [0,+∞)
课前自学
课堂互动
课堂达标
【训练 1】 (1)下列几个函数中,为幂函数的是________. ①y=4x,②y=3 x2,③m-1)x-m 在 x∈(0,+∞)上为减函数, 则 m 的值为________.
课前自学
课堂互动
课堂达标
解析 (1)因为 y=3 x2=x23 根据幂函数的结构特征,只有②是幂函数,其它都不是幂函数. (2)由 m2-m-1=1,得 m=2 或 m=-1. 又当 m=2 时,y=x-2 在 x∈(0,+∞)上为减函数; 当 m=-1 时,y=x 在 x∈(0,+∞)上为增函数,舍去. ∴m=2. 答案 (1)② (2)2
公共点

幂函数的定义与性质

幂函数的定义与性质

幂函数的定义与性质幂函数是一类基本的数学函数,它的定义形式是f(x) = ax^k,其中a和k是常数,且a不等于零。

幂函数在数学中有着广泛的应用,无论是在代数、几何还是在物理等领域,都有重要的作用。

本文将重点介绍幂函数的定义与性质。

一、幂函数的定义幂函数是一种基本的数学函数,它的定义形式如下:f(x) = ax^k其中,a是一个不等于零的常数,k是一个实数。

a被称为幂函数的系数,k被称为幂指数。

幂指数k可以是正数、负数、零或分数。

具体的取值范围决定了幂函数的性质。

二、幂函数的性质1. 幂函数的定义域和值域幂函数的定义域是实数集R,即所有实数x都可以作为幂函数的自变量。

根据幂函数定义,当幂指数k是正数或分数时,幂函数的值域是正实数集(0,+∞);当幂指数k是负数时,幂函数的值域是(0,+∞)的倒数集(0,1);当幂指数k是零时,幂函数的值域是{a},即幂指数为零时函数的值固定为系数a。

2. 幂函数的图像特征幂函数的图像特征与幂指数k的正负有关。

当幂指数k大于1时,幂函数呈现出单调递增的特性,图像在原点右侧上升;当幂指数k介于0和1之间时,幂函数呈现出单调递减的特性,图像在原点右侧下降;当幂指数k小于0时,幂函数图像会关于x轴对称,且在增大的过程中逐渐趋近于0。

3. 幂函数的性质与幂指数k的关系幂函数的性质与幂指数k的取值有关。

当幂指数k大于1时,幂函数是增长的加速函数;当幂指数k小于1但不等于零时,幂函数是增长的减速函数;当幂指数k小于0时,幂函数是单调递减函数;当幂指数k等于0时,幂函数是常数函数。

4. 幂函数与其他函数的关系幂函数是一类重要的基本函数,它与指数函数、对数函数和三角函数等有着紧密的关系。

通过对幂函数和其他函数的组合运算,可以得到更为复杂的函数表达式。

这种关系在数学建模、物理学和工程学等领域的问题求解中得到广泛应用。

结语:幂函数作为一类基本的数学函数,具有丰富的性质和广泛的应用。

它的定义形式简明扼要,通过对幂指数k的取值范围进行分析,我们可以得到不同性质的幂函数。

高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)

高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)

二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x )=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0)。

③零点式:f(x)=a(x-x1)(x-x2)(a≠0)。

(2)二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图像定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在x∈错误!上单调递减;在x∈错误!上单调递增在x∈错误!上单调递增;在x∈错误!上单调递减对称性函数的图像关于x=-错误!对称2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;④当α〈0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减。

【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。

(×)(2)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( ×)(3)在y=ax2+bx+c(a≠0)中,a决定了图像的开口方向和在同一直角坐标系中的开口大小.(√)(4)函数y=2x 12是幂函数。

( ×)(5)如果幂函数的图像与坐标轴相交,则交点一定是原点。

( √)(6)当n〈0时,幂函数y=x n是定义域上的减函数。

(×)1.已知a,b,c∈R,函数f(x)=ax2+bx+c。

若f(0)=f(4)〉f(1),则()A.a>0,4a+b=0B.a〈0,4a+b=0C.a>0,2a+b=0 D。

a〈0,2a+b=0答案A解析因为f(0)=f(4)〉f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-错误!=2,所以4a+b=0,故选A.2.已知函数f(x)=ax2+x+5的图像在x轴上方,则a的取值范围是()A.错误!B.错误!C。

2.3幂函数

2.3幂函数
必修1-第二章 基本初等函数-2.2.3幂函数
1.幂函数的定义 y=xa(a∈R) 的函数叫 一般地,形如
做幂函数,其中x是自变量,a是常数.对 于幂函数,一般只讨论a=1, 2, 3,,-1 时的情形.
必修1-第二章 基本初等函数-2.2.3幂函数
2.幂函数的图象与性质
3.5
qx = x3
【思路点拨】由题目可获取以下主要信息: ①f(x)=(m2-m-1)x2m-1是幂函数; ②当x>0时,f(x)是增函数. 解答本题可严格根据幂函数的定义形式列方程求出m,再由单调性确定m.
必修1-第二章 基本初等函数-2.2.3幂函数
1.设
1 α∈-1,1,2,3,则使函数
解析:代入验证. 答案:-1或2
必修1-第二章 基本初等函数-2.2.3幂函数
4.已知函数f(x)=x ,且f(2x-1)<f(3x), 则x的取值范围是________.
解析:由 2x-1< 1 ∴ x≥2.
2x-1≥0, 3x得:3x>0, 2x-1<3x,
必修1-第二章 基本初等函数-2.2.3幂函数
5.已知f(x)=(m2+2m)xm2+m-1,m为何值 时,f(x)是: (1)正比例函数; 解:(1)若 f(x)为正比例函数,则 (2)反比例函数; m +m-1=1, ⇒m=1. m +2m≠0 (3)二次函数; (2)若 f(x)为反比例函数,则 m +m-1=-1, ⇒m=-1. (4)幂函数. m +2m≠0
2 2 2 2
(3)若 f(x)为二次函数,则
m2+m-1=2, 2 m +2m≠0
⇒m=
-1± 13 2

第二章-基本初等函数知识点

第二章-基本初等函数知识点

第二章-基本初等函数知识点-CAL-FENGHAI.-(YICAI)-Company One1第二章 基本初等函数知识点一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)r a ·sr r a a +=(2)rs s r a a =)((3)sr r a a ab =)( (二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;二、对数函数 (一)对数1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x =⇔=log ;○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .指数式与对数式的互化幂值 真数b a = N ⇔log a N = b底数对数(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NMa log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论 (1)b mnb a n a mlog log =;(2)a b b a log 1log =. N a log(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

高中数学第二章基本初等函数(Ⅰ)2.3幂函数课件新人教A版必修14

高中数学第二章基本初等函数(Ⅰ)2.3幂函数课件新人教A版必修14

幂函数的图象及应用
(1)如图,图中曲线是幂函数 y=xα在第一象限的大致图 象,已知 α 取-2,-12,12,2 四个值,则相应于曲线 C1,C2, C3,C4 的 α 的值依次为( )
A.-2,-12,12,2 C.-12,-2,2,12
B.2,12,-12,-2 D.2,12,-2,-12
(2)已知幂函数 f(x)=xα 的图象过点 P2,14,试画出 f(x)的图象 并指出该函数的定义域与单调区间.
下列函数为幂函数的是( )
A.y=2x3
B.y=2x2-1
C.y=1x
D.y=x32
解析:选 C.y=2x3 中,x3 的系数不等于 1,故 A 不是幂函数;y
=2x2-1 不是 xα的形式
数;y=x32=3x-2 中 x-2 的系数不等于 1,故 D 不是幂函数.
y=x2
y=x3
y=x12
y=x-1
奇偶性 _奇___
__偶__
_奇___
_非__奇___ _非__偶___
_奇___
单调性
_增___
x∈[0,+∞), _增___ x∈(-∞,0], _减___
_增___
x∈(0,+ _增___ ∞),_减___
x∈(-∞, 0),_减___
公共点
都经过点__(1_,__1_)__
2.比较下列各组数的大小: (1)3-52和 3.1-52; (2)-8-78和-1978; (3)4.125,3.8-23和(-1.9)35.
解:(1)函数 y=x-52在(0,+∞)上为减函数,又 3<3.1,所以 3-52 >3.1-52. (2)-8-78=-1878,函数 y=x78在(0,+∞)上为增函数,又18>19, 则1878>1978,从而-8-78<-1978. (3)4.125>125=1;0<3.8-23<1-32=1;(-1.9)35<0, 所以(-1.9)35<3.8-23<4.125.

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点基本初等函数是数学中常见的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

它们在数学和科学领域应用广泛,对于理解和解决实际问题具有重要意义。

本文将介绍基本初等函数的定义、性质和应用,以帮助读者全面理解和掌握这些知识点。

一、常数函数常数函数是指函数的函数值始终保持不变的函数。

它的定义域是全体实数,通常表示为f(x) = c,其中c为常数。

常数函数的图像是一条水平的直线,平行于x轴。

无论自变量取何值,函数值始终为常数。

常数函数在数学中的应用较少,但在物理、经济学等学科中有时会用到。

二、幂函数幂函数是指自变量的指数和函数值之间的关系为幂关系的函数。

幂函数的表达式可以写作f(x) = x^a,其中a为实数。

幂函数的图像形状与指数a的正负、大小有关。

当a为正数时,函数图像是递增的曲线;当a为负数时,函数图像是递减的曲线;当a为0时,函数图像是一条常数函数的直线。

三、指数函数指数函数是自变量为指数的函数。

指数函数的一般形式为f(x) = a^x,其中a为正实数且不等于1。

指数函数的图像是一条递增或递减的曲线。

当a大于1时,函数图像是递增曲线;当a介于0和1之间时,函数图像是递减曲线。

指数函数在经济学、生物学、物理学等领域有广泛的应用。

四、对数函数对数函数是指自变量和函数值之间的关系为指数关系的函数。

对数函数的一般形式为f(x) = logₐ(x),其中a为正实数且不等于1。

对数函数的图像是一条递增或递减的曲线。

当a大于1时,函数图像是递增曲线;当a介于0和1之间时,函数图像是递减曲线。

对数函数在科学计算、数据处理等领域被广泛运用。

五、三角函数三角函数是指以角度或弧度为自变量的函数。

常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。

三角函数的图像是周期性曲线。

它们的性质和图像形态与角度或弧度的取值范围有关。

三角函数在物理学、几何学、信号处理等领域具有重要应用价值。

高考数学大一轮复习 第二章 函数概念与基本初等函数 4 第4讲 二次函数与幂函数课件 理

高考数学大一轮复习 第二章 函数概念与基本初等函数 4 第4讲 二次函数与幂函数课件 理

12/11/2021
第四页,共四十九页。
2.二次函数
(1)二次函数解析式的三种形式 ①一般式:f(x)=_____ax_2_+__bx_+__c_(a_≠__0_)_____. ②顶点式:f(x)=_____a_(x_-__m_)_2+__n_(a_≠__0_)____. ③零点式:f(x)=____a_(x_-__x_1)_(x_-__x_2)_(a_≠__0_)___.
12/11/2021
第二十三页,共四十九页。
法二:(利用顶点式) 设 f(x)=a(x-m)2+n(a≠0). 因为 f(2)=f(-1), 所以抛物线的对称轴为 x=2+(2-1)=12. 所以 m=12.又根据题意函数有最大值 8,所以 n=8, 所以 f(x)=ax-122+8. 因为 f(2)=-1,所以 a2-122+8=-1, 解得 a=-4,所以 f(x)=-4x-122+8=-4x2+4x+7.
调递减,则 a 的取值范围是( )
A.a≥3
B.a≤3
C.a<-3
D.a≤-3
解析:选 D.函数 f(x)=x2+4ax 的图象是开口向上的抛物线,其 对称轴是 x=-2a,由函数在区间(-∞,6)内单调递减可知, 区间(-∞,6)应在直线 x=-2a 的左侧, 所以-2a≥6,解得 a≤-3,故选 D.
4a .( )
12/11/2021
第十页,共四十九页。
(5)二次函数 y=ax2+bx+c,x∈R 不可能是偶函数.( ) (6)在 y=ax2+bx+c(a≠0)中,a 决定了图象的开口方向和在同 一直角坐标系中的开口大小.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√
调 在____-__2_ba_,__+__∞_____上单 性

数学(理)一轮复习 第二章 基本初等函数、导数及其应用 第讲 二次函数与幂函数

数学(理)一轮复习 第二章 基本初等函数、导数及其应用 第讲 二次函数与幂函数

第4讲二次函数与幂函数1.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x错误!,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α〈0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质解析式f(x)=ax2+bx+c(a〉f(x)=ax2+bx+0)c(a<0)图象定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在错误!上单调递减;在错误!上单调递增在错误!上单调递增;在错误!上单调递减对称性函数的图象关于x=-错误!对称1.辨明两个易误点(1)对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.2.会用两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.1.错误!幂函数y=f(x)经过点(2,错误!),则f(9)为( )A.81 B.错误!C。

错误!D.3D 设f(x)=xα,由题意得错误!=2α,所以α=错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (x1) f (x2)
(
x1 x2
x1 x2 x1 x2
x1 x2) ( x1 x2) x1 x2
方法技巧:分子有理化
因为x1x2, x1, x2 [0,],所以x1 x2 0, x1 x20,
所以f (x1) f (x2),即幂函数f (x) x在[0,]上的增函数.
y x2 y x3
1
y x2
R R
x0
y0
R
偶函数 奇函数
(0,0),(1,1)
增函数 (0,0),(1,1)
y 0 非奇非偶 增函数 (0,0),(1,1)
y x1 x 0 y 0 奇函数
(1,1)
一般幂函数的性质:
★幂函数的定义域、奇偶性,单调性,
α 因函数式中 的不同而各异.
★所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1).
看看未知数x是指数还是底数
指数函数
幂函数
例1:
判断下列函数是否为幂函数.
(1) y=x4
1 (2) y x2
1
(4) y x 2
(5) y=2x2
(3) y= -x2
(6) y=x3+2
P87练习
这个是幂函数
这个是幂函数
1.在函数y x2 , y 2x, y x2 x, y 1中,
哪几个是幂函数
2.已知幂函数y f (x)的图象过点(2, 2),
试求出这个函数的解析式.
解 : 设所求幂函数为y x ,
因为函数过点(2,
2), 所以
2
2
,
所以 log 2
2
log 2
1
22
1 2
1
故所求的幂函数为y x2 .
作出下列函数的图象:
yx
y x2 y x3
1
y x2
y x1
这里V是a函数;
y
3
x
3
a
,
(4)如果一个正方形场地的面积为S,那么这个正方形的
s 边长a
1
2,
这里S是a的函数;
1
y x2
(5)如果人ts内骑车行进了1km,那么他骑车的平均速度
t v 1 km/ s, 这里v是t的函数.
y
1
x
若将它们的自变量全部用x来表示,函数值用y来表
示,则它们的函数关系式将是:
x … -3 -2 -1 0 1 2 3 …
y x … -3 -2 -1 0 1 2 3 …
y x2 … 9 4 1 0 1 4 9 …
y x3 … -27 -8 -1 0 1 8 27 …
1
y x2 … \ \ \ 0 1 2 3 …
y x1

1 1 32
-1
\
1
1 1…
23
作出下列函数的图象:
例3 :比较下列各组数的大小
练习:如果函数
f (x) = (m2-m-1) x m 是幂函数,
求实数m的值。
m= -1 或 m= 2
小结
一. 定 义 二. 图 象 三. 性 质 四. 应 用
高中数学必修 ①人教版A
§2.3幂函数
毓英中学 曾庆国
问题引入
我们先看几个具体问题:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需
要支付p=w元,这里p是w的函数; y x
(2) 如果正方形的边长为a,那么正方形的面积
这里S是a的函数;
y x2
S
2
a
,
(3) 如果立方体的边长为a,那么立方体的体积V
y
x
定义
一般地,函数y x 叫做幂函数,其中x是自变量,
是常量.
几点说明:
1、y x中x 前面的系数为1,并且后面没为常数项.
2、 定义域没有固定, 与的值有关.
幂函数与指数函数的对比
式子 a
指数函数: y=a x 底数
名称 x
指数
y
幂值
幂函数: y= x a 指数
底数
幂值
判断一个函数是幂函数还是指数函数切入点
y x2 y x3
(-2,4)
4
(2,4)
3
yx
2
(-1,1)
1
(1,1)
1
y x2
-4
-2
(-1,-1)
-1
-2
-3
2
4
6
从图象能得出他 们的性质吗?
几个幂函数的性质:
y x y x2
1
y x3 y x2 y x1
定义域 值域 奇偶性 单调性 公共点
yx R
R
奇函数 增函数 (0,0),(1,1)
★如果α>0,则幂函数的图象过点(0,0),(1,1) 并在(0,+∞)上为增函数.
★如果α<0,则幂函数的图象过点(1,1),并在 (0,+∞)上为减函数.
★当α为奇数时,幂函数为奇函数,
★当α为偶数时,幂函数为偶函数.
例2.证明幂函数f (x) x在[0,]上是增函数.
证明: 任取 x1, x2 [0,],且 x1x2,则
相关文档
最新文档