电催化水还原催化剂的研究进展
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电催化水还原催化剂的研究进展
1
内容框架
研究背景 电催化水还原的基本原理 金属及合金催化剂 过渡金属化合物催化剂 总结与展望 参考文献
2
研究背景
1800: Nicholson and Carlisle
电催化水还原催化剂——Pt族金属:储量稀少,价格昂贵。
Xiumin Li and Guoqing Guan et al. J. Mater. Chem. A, 2016, 4, 11973–12000; Peter C. K. Vesborg and Thomas F. Jaramillo RSC Adv., 2012, 2, 7933–7947; 3
过渡金属化合物催化剂
过渡金属硫族化物
过渡金属碳化物和氮化物
过渡金属磷化物
过渡金属硫族化物
层状结构 MX2: M = Mo, W; X = S, Se, Te; MoS2 Li离子插层,溶剂化剥离
更稳定、Байду номын сангаас导体 η @10mA/cm2 >320 mV
金属性、HER更好
η @10mA/cm2 =187 mV
Ni-Mo-Fe: long term stability and tolerance to electrochemical corrosion
Ni-Mo nanopowders: η @10mA*cm-2 <100mV
1M NaOH
I. Arul Raj and K. I. Vasu J. Appl. Electrochem., 1990, 20, 32–38; I. A. Raj and K. I. Vasu, J. Appl. Electrochem., 1992, 22, 471–477; J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis and H. B. Gray, ACS Catal., 2013, 3, 166–169;
金属及合金催化剂—降低贵金属用量
贵金属与其他过渡金属形成合金
Computational high-throughput screening for |ΔGH| on 256 pure metals and surface alloys. The rows indicate the identity of the pure metal substrates, and the columns indicate the identity of the solute embedded in the surface layer of the substrate.
Hydrogen evolution after each stage of BiPt surface alloy synthesis on a fluorine-doped tin-oxide substrate. (1) Pt film after deposition and anneal (2) immediately after Bi UPD (3) after second anneal to form the BiPt surface alloy. The inset represents a control sample—Pt film without Bi—after first and second anneals. Current densities are normalized to the surface area of the initial, pure Pt sample, determined by H UPD.
过渡金属碳化物和氮化物
WC, W2C, and Mo2C:类贵金属(Pt)性质。
MoN, Mo2N, NiMoNx/C
S. T. Hunt and Y. Rom´an-Leshkov et al. Angew. Chem., Int. Ed., 2014, 53, 5131–5136; W. F. Chen and R. R. Adzic et al. Angew. Chem., Int. Ed., 2012, 51, 6131–6135;
电催化水还原的基本原理
Butler-Volmer方程:
η < 0.005V时
η > 0.05V时
Tafel 斜率
Min Zeng and Yanguang Li. J. Mater. Chem. A, 2015, 3, 14942–14962; 孙世刚等 厦门大学出版社 物理化学(下),P340-P347;
过渡金属硫族化物
层状结构: WS2, MoSe2, WSe2, MoS2(1−x)Se2x; 硫铁矿结构:MX2: M = Fe, Co, Ni; X = S, Se;
η
onset=61
mV,酸碱都稳定。
第一周期过渡金属硫族化物
Fengmei Wang and Jun He et al. Nanoscale, 2015, 7, 19764–19788; H. Zhang and X. Sun et al. J. Mater. Chem. A, 2015, 3, 6306–6310; Desheng Kong and Yi Cui et al. Energy Environ. Sci., 2013, 6, 3553–3558;
金属及合金催化剂—降低贵金属用量
在合适载体 上覆盖单层 贵金属原子
Pt, Pd, or Au on WC, W2C or Mo2C.
Relationship between cost of Pt and overlayer thickness for a planar catalyst configuration.
电催化水还原的基本原理
酸性条件下:
碱性条件下:
Tafel 斜率 决速步骤
118 mV per decade Volmer reaction
39 mV per decade Heyrovsky reaction
29.5 mV per decade Tafel reaction
Xiumin Li and Guoqing Guan et al. J. Mater. Chem. A, 2016, 4, 11973–12000
E. J. Popczun and R. E. Schaak et al. J. Am. Chem. Soc., 2013, 135, 9267–9270; E. J. Popczun and R. E. Schaak et al. Angew. Chem., Int. Ed., 2014, 53, 5427–5430; J. M. McEnaney and R. E. Schaak et al. Chem. Mater., 2014, 26, 4826–4831; J. M. McEnaney and R. E. Schaak et al. Chem. Commun., 2014, 50, 11026–11028;
稳定性筛选:稳定化自由能
Jeff Greeley and Jens K. Norskov et al. Nat. Mater. 2006, 5, 909-913;
金属及合金催化剂—过渡金属替代
碱性条件下水还原用Ni,不足:催化活性不够高,逐渐失活。 Electrolytic codeposition
过渡金属磷化物
(Fe, Co, Ni, Cu, Mo, W)xP: 目前非贵金属基最高效的水还原催化剂之一。
P的存在减少了活泼Ni位点, 形成适中的键合能力
Ping Liu and Jose´ A. Rodriguez J. Am. Chem. Soc. 2005, 127, 14871-14878;
Fengmei Wang and Jun He et al. Nanoscale, 2015, 7, 19764–19788; M. A. Lukowski and S. Jin et al. J. Am. Chem. Soc., 2013, 135, 10274–10277;
过渡金属硫族化物
底面无活性,唯硫化的钼边是HER活性位
过渡金属磷化物
次亚磷酸钠300℃分解作为磷源。
1.0M PBS (pH 7)
1.0M KOH (pH 14)
η @10 mA/cm2 =67 mV
pH=0-14范围内较好的稳定性 扩展到FeP和Cu3P的合成
J. Q. Tian and X. P. Sun et al. J. Am. Chem. Soc., 2014, 136, 7587–7590; P. Jiang and X. P. Sun et al. Angew. Chem., Int. Ed., 2014, 53, 12855–12859; J. Tian and X. P. Sun et al. Angew. Chem., Int. Ed., 2014, 53, 9577–9581;
制造尽可能多的边位
介孔氧化硅模板: 双螺旋二十四面体 η @10mA/cm2 =150-200 mV
以边为终端的竖直 排列的MoS2膜 j0 = 2.2*10-6 A/cm2,TOF=0.013 S-1
GO稳定纳米MoS2 η onset =100 mV,稳定性好
硫脲加入:更多缺陷
J. Kibsgaard and T. F. Jaramillo et al. Nat. Mater., 2012, 11, 963–969; D. S. Kong and Y. Cui et al. Nano Lett., 2013, 13, 1341–1347; Y. G. Li and J. Dai et al. J. Am. Chem. Soc., 2011, 133, 7296–7299; J. F. Xie and Yi Xie et al. Adv. Mater., 2013, 25, 5807–5813;
B. Hinnemann and J. K. Norskov et al. J. Am. Chem. Soc., 2005, 127, 5308–5309; T. F. Jaramillo and I. Chorkendorff et al. Science, 2007, 317, 100–102
过渡金属硫族化物
金属及合金催化剂—功能材料杂化
碱性条件下水解离较慢:氧化物或者氢氧化物促进水解离。
R. Subbaraman and N. M. Markovic et al. Science, 2011, 334, 1256–1260; N. Danilovic and N. M. Markovic et al. Angew. Chem. 2012, 124, 12663 –12666; M. Gong, W. Zhou and H. J. Dai, Nat. Commun., 2014, 5, 4695;
过渡金属磷化物
三辛基磷(TOP)加热到320℃作为磷源。
Ni2P:η @20 mA/cm2 =130 mV CoP:η @20 mA/cm2 =85 mV CoP 活性更好,二者在 碱性中活性都快速衰减 MoP:η @10 mA/cm2 =90 mV WP:η @10 mA/cm2 =120 mV
HER exchange current density (i0) as a function of Pt coverage on WC thin film.
0.5M H2SO4 0.1M HClO4 Daniel V. Esposito and Jingguang G. Chen Energy Environ. Sci., 2011, 4, 3900–3912; Daniel V. Esposito and and Jingguang G. Chen et al. J. Am. Chem.Soc. 2012, 134, 3025−3033; Yagya N. Regmi and Brian M. Leonard et al. J. Mater. Chem. A, 2015, 3, 10085–10091;
1
内容框架
研究背景 电催化水还原的基本原理 金属及合金催化剂 过渡金属化合物催化剂 总结与展望 参考文献
2
研究背景
1800: Nicholson and Carlisle
电催化水还原催化剂——Pt族金属:储量稀少,价格昂贵。
Xiumin Li and Guoqing Guan et al. J. Mater. Chem. A, 2016, 4, 11973–12000; Peter C. K. Vesborg and Thomas F. Jaramillo RSC Adv., 2012, 2, 7933–7947; 3
过渡金属化合物催化剂
过渡金属硫族化物
过渡金属碳化物和氮化物
过渡金属磷化物
过渡金属硫族化物
层状结构 MX2: M = Mo, W; X = S, Se, Te; MoS2 Li离子插层,溶剂化剥离
更稳定、Байду номын сангаас导体 η @10mA/cm2 >320 mV
金属性、HER更好
η @10mA/cm2 =187 mV
Ni-Mo-Fe: long term stability and tolerance to electrochemical corrosion
Ni-Mo nanopowders: η @10mA*cm-2 <100mV
1M NaOH
I. Arul Raj and K. I. Vasu J. Appl. Electrochem., 1990, 20, 32–38; I. A. Raj and K. I. Vasu, J. Appl. Electrochem., 1992, 22, 471–477; J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis and H. B. Gray, ACS Catal., 2013, 3, 166–169;
金属及合金催化剂—降低贵金属用量
贵金属与其他过渡金属形成合金
Computational high-throughput screening for |ΔGH| on 256 pure metals and surface alloys. The rows indicate the identity of the pure metal substrates, and the columns indicate the identity of the solute embedded in the surface layer of the substrate.
Hydrogen evolution after each stage of BiPt surface alloy synthesis on a fluorine-doped tin-oxide substrate. (1) Pt film after deposition and anneal (2) immediately after Bi UPD (3) after second anneal to form the BiPt surface alloy. The inset represents a control sample—Pt film without Bi—after first and second anneals. Current densities are normalized to the surface area of the initial, pure Pt sample, determined by H UPD.
过渡金属碳化物和氮化物
WC, W2C, and Mo2C:类贵金属(Pt)性质。
MoN, Mo2N, NiMoNx/C
S. T. Hunt and Y. Rom´an-Leshkov et al. Angew. Chem., Int. Ed., 2014, 53, 5131–5136; W. F. Chen and R. R. Adzic et al. Angew. Chem., Int. Ed., 2012, 51, 6131–6135;
电催化水还原的基本原理
Butler-Volmer方程:
η < 0.005V时
η > 0.05V时
Tafel 斜率
Min Zeng and Yanguang Li. J. Mater. Chem. A, 2015, 3, 14942–14962; 孙世刚等 厦门大学出版社 物理化学(下),P340-P347;
过渡金属硫族化物
层状结构: WS2, MoSe2, WSe2, MoS2(1−x)Se2x; 硫铁矿结构:MX2: M = Fe, Co, Ni; X = S, Se;
η
onset=61
mV,酸碱都稳定。
第一周期过渡金属硫族化物
Fengmei Wang and Jun He et al. Nanoscale, 2015, 7, 19764–19788; H. Zhang and X. Sun et al. J. Mater. Chem. A, 2015, 3, 6306–6310; Desheng Kong and Yi Cui et al. Energy Environ. Sci., 2013, 6, 3553–3558;
金属及合金催化剂—降低贵金属用量
在合适载体 上覆盖单层 贵金属原子
Pt, Pd, or Au on WC, W2C or Mo2C.
Relationship between cost of Pt and overlayer thickness for a planar catalyst configuration.
电催化水还原的基本原理
酸性条件下:
碱性条件下:
Tafel 斜率 决速步骤
118 mV per decade Volmer reaction
39 mV per decade Heyrovsky reaction
29.5 mV per decade Tafel reaction
Xiumin Li and Guoqing Guan et al. J. Mater. Chem. A, 2016, 4, 11973–12000
E. J. Popczun and R. E. Schaak et al. J. Am. Chem. Soc., 2013, 135, 9267–9270; E. J. Popczun and R. E. Schaak et al. Angew. Chem., Int. Ed., 2014, 53, 5427–5430; J. M. McEnaney and R. E. Schaak et al. Chem. Mater., 2014, 26, 4826–4831; J. M. McEnaney and R. E. Schaak et al. Chem. Commun., 2014, 50, 11026–11028;
稳定性筛选:稳定化自由能
Jeff Greeley and Jens K. Norskov et al. Nat. Mater. 2006, 5, 909-913;
金属及合金催化剂—过渡金属替代
碱性条件下水还原用Ni,不足:催化活性不够高,逐渐失活。 Electrolytic codeposition
过渡金属磷化物
(Fe, Co, Ni, Cu, Mo, W)xP: 目前非贵金属基最高效的水还原催化剂之一。
P的存在减少了活泼Ni位点, 形成适中的键合能力
Ping Liu and Jose´ A. Rodriguez J. Am. Chem. Soc. 2005, 127, 14871-14878;
Fengmei Wang and Jun He et al. Nanoscale, 2015, 7, 19764–19788; M. A. Lukowski and S. Jin et al. J. Am. Chem. Soc., 2013, 135, 10274–10277;
过渡金属硫族化物
底面无活性,唯硫化的钼边是HER活性位
过渡金属磷化物
次亚磷酸钠300℃分解作为磷源。
1.0M PBS (pH 7)
1.0M KOH (pH 14)
η @10 mA/cm2 =67 mV
pH=0-14范围内较好的稳定性 扩展到FeP和Cu3P的合成
J. Q. Tian and X. P. Sun et al. J. Am. Chem. Soc., 2014, 136, 7587–7590; P. Jiang and X. P. Sun et al. Angew. Chem., Int. Ed., 2014, 53, 12855–12859; J. Tian and X. P. Sun et al. Angew. Chem., Int. Ed., 2014, 53, 9577–9581;
制造尽可能多的边位
介孔氧化硅模板: 双螺旋二十四面体 η @10mA/cm2 =150-200 mV
以边为终端的竖直 排列的MoS2膜 j0 = 2.2*10-6 A/cm2,TOF=0.013 S-1
GO稳定纳米MoS2 η onset =100 mV,稳定性好
硫脲加入:更多缺陷
J. Kibsgaard and T. F. Jaramillo et al. Nat. Mater., 2012, 11, 963–969; D. S. Kong and Y. Cui et al. Nano Lett., 2013, 13, 1341–1347; Y. G. Li and J. Dai et al. J. Am. Chem. Soc., 2011, 133, 7296–7299; J. F. Xie and Yi Xie et al. Adv. Mater., 2013, 25, 5807–5813;
B. Hinnemann and J. K. Norskov et al. J. Am. Chem. Soc., 2005, 127, 5308–5309; T. F. Jaramillo and I. Chorkendorff et al. Science, 2007, 317, 100–102
过渡金属硫族化物
金属及合金催化剂—功能材料杂化
碱性条件下水解离较慢:氧化物或者氢氧化物促进水解离。
R. Subbaraman and N. M. Markovic et al. Science, 2011, 334, 1256–1260; N. Danilovic and N. M. Markovic et al. Angew. Chem. 2012, 124, 12663 –12666; M. Gong, W. Zhou and H. J. Dai, Nat. Commun., 2014, 5, 4695;
过渡金属磷化物
三辛基磷(TOP)加热到320℃作为磷源。
Ni2P:η @20 mA/cm2 =130 mV CoP:η @20 mA/cm2 =85 mV CoP 活性更好,二者在 碱性中活性都快速衰减 MoP:η @10 mA/cm2 =90 mV WP:η @10 mA/cm2 =120 mV
HER exchange current density (i0) as a function of Pt coverage on WC thin film.
0.5M H2SO4 0.1M HClO4 Daniel V. Esposito and Jingguang G. Chen Energy Environ. Sci., 2011, 4, 3900–3912; Daniel V. Esposito and and Jingguang G. Chen et al. J. Am. Chem.Soc. 2012, 134, 3025−3033; Yagya N. Regmi and Brian M. Leonard et al. J. Mater. Chem. A, 2015, 3, 10085–10091;