高中数学-三次函数的性质:单调区间和极值测试
湘教版 学案 三次函数的性质 单调区间和极值
![湘教版 学案 三次函数的性质 单调区间和极值](https://img.taocdn.com/s3/m/fa92f73ae009581b6ad9eba3.png)
3.3.3三次函数的性质:单调区间和极值1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值.极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质,但是我们往往更关心函数在某个区间上哪个值最大,哪个值最小,函数的极值与最值有怎样的关系?答:函数的最大值、最小值是比较整个定义区间的函数值得出的,函数的极值是比较极值点附近的函数值得出的,函数的极值可以有多个,但最值只能有一个;极值只能在区间内取得,最值则可以在端点处取得;有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点处取得必定是极值,所以在开区间(a,b)上若存在最值,则必是极值.三次函数的导数零点与其单调区间和极值设F(x)=ax3+bx2+cx+d(a≠0),F′(x)=3ax2+2bx+c(a≠0).填写下表:当a>0时,当a<0时,要点一求三次函数的单调区间和极值点例1求下列函数的单调区间和极值点:(1)f(x)=2x3+3x2+6x+1;(2)f(x)=-2x3+9x2-12x-7.解(1)f′(x)=6x2+6x+6=6(x2+x+1).由于f′(x)恒正,∴f(x)在(-∞,+∞)上递增.无极值点.(2)f′(x)=-6x2+18x-12=-6(x2-3x+2)=-6(x-1)(x-2).∴f′(x)在(-∞,1)和(2,+∞)上均为负,在(1,2)上为正,∴f(x)在(-∞,1)和(2,+∞)上递减,在(1,2)上递增,∴x=1是函数f(x)的极小值点,x=2为其极大值点.规律方法对此类题目,只要理解了f′(x)的符号对函数f(x)取极值的影响,所有问题便迎刃而解,所以重要的是方法的领悟.跟踪演练1求下列函数的单调区间和极值点:(1)f(x)=-x3+x2-x;(2)f(x)=x3-12x2-2x-5.解 (1)f ′(x )=-3x 2+2x -1, ∵Δ=22-4×(-3)×(-1)=-8<0, 又∵-3<0,∴f ′(x )<0恒成立. 故函数f (x )在R 上单调递减且无极值点. (2)f ′(x )=3x 2-x -2,令f ′(x )=0,即3x 2-x -2=0⇒x =1或x =-23. 所以当x ∈⎝ ⎛⎭⎪⎫-∞,-23时,f ′(x )>0,f (x )为增函数;当x ∈⎝ ⎛⎭⎪⎫-23,1时,f ′(x )<0,f (x )为减函数.当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.所以f (x )的递增区间为(-∞,-23)和(1,+∞),f (x )的递减区间为⎝ ⎛⎭⎪⎫-23,1.根据f (x )的单调性及f ′(x )=0的零点知x =1为函数f (x )的极小值点,x =-23为其极大值点.要点二 含参数的函数的最值问题例2 已知a 是实数,函数f (x )=x 2(x -a ),求f (x )在区间上的最大值. 解 ∵f (x )=x 2(x -a ),∴f ′(x )=x (3x -2a ). 令f ′(x )=0,解得x =0或x =2a 3. 当2a3≤0,即a ≤0时,f (x )在上单调递增, 从而f (x )max =f (2)=8-4a .当2a3≥2,即a ≥3时,f (x )在上单调递减, 从而f (x )max =f (0)=0. 当0<2a3<2,即0<a <3时,f (x )在⎣⎢⎡⎦⎥⎤0,2a 3上单调递减,在⎣⎢⎡⎦⎥⎤2a 3,2上单调递增,从而f (x )max =⎩⎨⎧8-4a (0<a ≤2),0 (2<a <3),综上所述,f (x )max =⎩⎨⎧8-4a (a ≤2).0 (a >2),规律方法 由于参数的取值不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化.所以解决这类问题常需要分类讨论,并结合不等式的知识进行求解.跟踪演练2 在本例中,将区间改为结果如何? 解 令f ′(x )=0,解得x 1=0,x 2=23a ,①当23a ≥0,即a ≥0时,f (x )在上单调递增,从而f (x )max =f (0)=0; ②当23a ≤-1,即a ≤-32时,f (x )在上单调递减, 从而f (x )max =f (-1)=-1-a ; ③当-1<23a <0,即-32<a <0时,f (x )在⎣⎢⎡⎦⎥⎤-1,23a 上单调递增;在⎣⎢⎡⎦⎥⎤23a ,0上单调递减,则f (x )max =f ⎝ ⎛⎭⎪⎫23a =-427a 3.综上所述:f (x )max=⎩⎪⎨⎪⎧-1-a ,a ≤-32,-427a 3,-32<a <0,0,a ≥0.要点三 函数极值的应用例3 设函数f (x )=tx 2+2t 2x +t -1(x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围. 解 (1)∵f (x )=t (x +t )2-t 3+t -1(x ∈R ,t >0), ∴当x =-t 时,f (x )取最小值f (-t )=-t 3+t -1, 即h (t )=-t 3+t -1.(2)令g (t )=h (t )-(-2t +m )=-t 3+3t -1-m ,由g ′(t )=-3t 2+3=0得t =1,t =-1(不合题意,舍去).当t变化时g′(t)、g(t)的变化情况如下表:maxh(t)<-2t-m对t∈(0,2)恒成立,也就是g(t)<0,对t∈(0,2)恒成立,只需g(t)max=1-m<0,∴m>1.故实数m的取值范围是(1,+∞)规律方法(1)“恒成立”问题向最值问题转化是一种常见的题型,一般地,可采用分离参数法进行转化.λ≥f(x)恒成立⇔λ≥max;λ≤f(x)恒成立⇔λ≤min.对于不能分离参数的恒成立问题,直接求含参函数的最值即可.(2)此类问题特别要小心“最值能否取得到”和“不等式中是否含等号”的情况,以此来确定参数的范围能否取得“=”.跟踪演练3设函数f(x)=2x3-9x2+12x+8c,(1)若对任意的x∈,都有f(x)<c2成立,求c的取值范围.(2)若对任意的x∈(0,3),都有f(x)<c2成立,求c的取值范围.解(1)∵f′(x)=6x2-18x+12=6(x-1)(x-2).∴当x∈(0,1)∪(2,3)时,f′(x)>0;当x∈(1,2)时,f′(x)<0.∴当x=1时,f(x)取极大值f(1)=5+8c.又f(3)=9+8c>f(1),∴x∈时,f(x)的最大值为f(3)=9+8c.∵对任意的x∈,有f(x)<c2恒成立,∴9+8c<c2,即c<-1或c>9.∴c的取值范围为(-∞,-1)∪(9,+∞).(2)由(1)知f(x)<f(3)=9+8c,∴9+8c≤c2即c≤-1或c≥9,∴c 的取值范围为(-∞,-19,+∞).1.函数f (x )=-x 2+4x +7,在x ∈上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5) C .f (2),f (5) D .f (5),f (3)答案 B解析 ∵f ′(x )=-2x +4, ∴当x ∈时,f ′(x )<0, 故f (x )在上单调递减,故f (x )的最大值和最小值分别是f (3),f (5). 2.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值答案 D解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.3.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A .π-1B .π2-1 C .π D .π+1答案 C解析 因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数在区间⎣⎢⎡⎦⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C.4.函数f (x )=x 3-3x 2-9x +k 在区间上的最大值为10,则其最小值为________.答案 -71解析 f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.1.求函数的最值时,应注意以下几点(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.(2)闭区间上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).2.求含参数的函数最值,可分类讨论求解.3.“恒成立”问题可转化为函数最值问题.。
三次函数性质解析版
![三次函数性质解析版](https://img.taocdn.com/s3/m/04dcee8c690203d8ce2f0066f5335a8102d26611.png)
三次函数的图像及性质形如的函数叫做三次函数,其中是自变量,是常数。
它具有以下性质:1、图像、单调区间与极值三次函数求导以后是二次函数,,它的零点个数决定了三次函数的极值情况与单调区间,下面是三次函数及其对应的导函数全部共六种图像:2、零点个数△=,若方程的判别式,则在R 上是单调函数,无极值,值域为,故有唯一的零点。
若方程的判别式,方程有两个不等的实根、,它们是函数的极值点,则:(i )当时,有一个零点;(ii )当时,有两个零点;32()(0)f x ax bx cx d a =+++≠x ,,,a b c d2()32f x ax bx c '=++xx 0a >0a <)3(412422ac b ac b -=-()0f x '=0∆≤()f x (,)-∞+∞()0f x '=0∆>1x 2x ()f x 12()()0f x f x ⋅>()fx xxxx12()()0f x f x ⋅=()f x(iii )当时,有三个零点。
3、对称中心三次函数的图象关于点对称,并且在处取得最小值,其图象关于直线对称. 证1 易知是奇函数,图象关于原点对称,则关于点对称. 4、过平面内一点能作三次函数图像切线的条数(1) (2012·大纲全国高考)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( )A .-2或2B .-9或3C .-1或1D .-3或1答案:A(2)函数f(x)=x 3-3x 2+x -1的图象关于( )对称A 、直线x=1B 、直线y=xC 、点(1,-2)D 、原点(3)已知函数f (x )=ax 3+bx 2+cx +d (a ≠0)的对称中心为M (x 0,y 0),记函数f (x )的导函数为f ′(x ),f ′(x )的导函数为f ″(x ),则有f ″(x 0)=0.若函数f (x )=x 3-3x 2,则f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+…+f ⎝⎛⎭⎫4 0322 017+f ⎝⎛⎭⎫4 0332 017=( )A .-8 066B .-4 033C .8 066D .4 033xxxx12()()0f x f x ⋅<()fx xx)0()(23>+++=a d cx bx ax x f ))3(,3(abf a b --)('x f a b x 3-=abx 3-=)3()3)(3()3()(2323abf a b x a b c a b x a d cx bx ax x f -++-++=+++=x ab c ax x g )3()(23-+=)(x f ))3(,3(a b f a b --2条1条【解析】由f (x )=x 3-3x 2得f ′(x )=3x 2-6x ,f ″(x )=6x -6,又f ″(x 0)=0,所以x 0=1且f (1)=-2,即函数f (x )的对称中心为(1,-2),即f (x )+f (2-x )=-4.令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+…+f ⎝⎛⎭⎫4 0322 017+f ⎝⎛⎭⎫4 0332 017,则S =f ⎝⎛⎭⎫4 0332 017+f ⎝⎛⎭⎫4 0322 017+…+f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫12 017,所以2S =4 033×(-4)=-16 132,S =-8 066.解析 由f(x)=ax 3+bx 2+cx+d(a ≠0)的图象关于成中心对称知选C(4)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图所示,则( )A 、b ∈(-∞,0)B 、b ∈(0,1)C 、b ∈(1,2)D 、b ∈(2,+ ∞解析 显然f(0)=d=0,由f(x)=ax(x -1)(x -2)知a>0,又 f(x)= ax 3-3ax 2+2ax 比较系数可知b=-3a<0,故选A(5) 试确定的a,b,c,d 符号(答:a>0,b<0,c>0,d=0)(6)(2013课标全国Ⅱ卷,10)已知函数f(x)=x 3+ax 2+bx+c ) (A )x α∈R,f(x α)=0 (B )函数y=f(x)的图像是中心对称图形 (C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若x 0是f (x )的极值点,则解析:由三次函数值域为R 知f(x)=0有解,A 正确;由性质可知B 正确;由性质可知若f(x)有极小值点,则由两个不相等的实数根,,则f(x)在(-∞,x 1)上为增函数,在上为减函数,在(x 2,,)上为增函数,故C 错。
三次函数图像与性质(解析版)
![三次函数图像与性质(解析版)](https://img.taocdn.com/s3/m/870bc32a03768e9951e79b89680203d8ce2f6a0e.png)
专题2-2三次函数图像与性质【题型1】求三次函数的解析式【题型2】三次函数的单调性问题【题型3】三次函数的图像【题型4】三次函数的最值、极值问题【题型5】三次函数的零点问题【题型6】三次函数图像,单调性,极值,最值综合问题【题型7】三次函数对称中心【题型8】三次函数的切线问题【题型9】三次函数根与系数的关系1/342/34【题型1】求三次函数的解析式(1)一般式:()³²f x ax bx cx d =+++(a ≠0)(2)交点式:()123()()()f x a x x x x x x =---(a ≠0)1.若三次函数()f x 满足()()()()00,11,03,19f f f f ''====,则()3f =()A .38B .171C .460D .965【解析】待定系数法,求函数解析式设()³²f x ax bx cx d =+++,则()232f x ax bx c '=++,由题意可得:()()()()0011031329f d f a b c d f c f a b c ⎧==⎪=+++=⎪⎨==⎪⎪=+'=⎩'+,解得101230a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩,则()3210123f x x x x =-+,所以()32310312333171f =⨯-⨯+⨯=.【题型2】三次函数的单调性问题三次函数是高中数学中的一个重要内容,其考点广泛且深入,主要涉及函数的性质、图像、最值、零点以及与其他函数的综合应用等方面。
以下是对三次函数常见考点的详细分析:1.三次函数的定义与形式∙定义:形如f (x )=ax 3+bx 2+cx +d (其中a ≠=0)的函数称为三次函数。
∙形式:注意系数a ,b ,c ,d 的作用,特别是a 的正负决定了函数的开口方向(a >0开口向上,a <0开口向下)。
三次函数的性质:单调区间和极值
![三次函数的性质:单调区间和极值](https://img.taocdn.com/s3/m/0bfade0352ea551810a687f7.png)
三次函数的性质:单调区间和极值典例剖析题型一 三次函数的单调区间和极值例1 设f (x )=x 3-3ax 2+2bx 在x =1处有极小值-1,试求a 、b 的值,并求出f (x )的单调区间.题型二 求待定常数例 2 已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.备选题例3:已知函数f (x )=ax 3+3x 2-x +1在R 上是减函数,求实数a 的取值范围.点击双基1.函数y =x 2(x -3)的减区间是( )A.(-∞,0)B.(2,+∞)C.(0,2)D.(-2,2) 2、函数y=3x -3x+2在闭区间[]0,3-上的最大值和最小值分别为 ( )A ,2,1,B 2 ,-18 C.1,-17 D 4,-16 3、函数3y x x =+的递增区间是( )A ),0(+∞B )1,(-∞C ),(+∞-∞D ),1(+∞4、若3'0(),()3f x x f x ==,则0x 的值为_________________;5、曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;课外作业一 选择题:1. 函数x x x f 12)(3-=的“驻点”是 A .1B.1- C .2-和2D. 02.函数x x x x f --=23)(的单调减区间是A .()31,-∞- B.),1(∞ C .()31,-∞-,),1(∞ D.)1,31(- 3. 已知c ax x y +-=32在),(+∞-∞上的单调递增,则 ( ) A 、a ≤0且R c ∈ B 、,0≥a 且R c ∈C 、,0<a 且0=cD 、,0≤a 且0≠c4. 已知函数a ax x y 3423-+=的导数为0的x 值也使y 值为0,则常数a 的( ) A 、0 B 、±3 C 、0或±3 D 、35. 已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A.-37B.-29C.-5D.56. 设)x (f y '=是函数)x (f y =的导数, )x (f y '=的 图象如图所示, 则)x (f y =的图象最有可能是( )7. 若对任意的x 有34)(x x f ='-2且1)1(-=f ,则此函数的解析式可能是( ) A 、4)(x x f =-2B 、2)(4+=x x fC 、2)(4-=x x f x+1D 、1)(4-=x x f8.54)(3++=x x x f 的图象在1=x 处的切线与圆5022=+y x 的位置关系是( ) A 、相切 B 、相交但不过圆心C 、过圆心D 、相离二 填空题9、函数5523--+=x x x y 的单调递增区间是___________________________10、函数f(x)=2x 3-3x 2-12x +5在闭区间[0,3]上的最大值与最小值的和是 .11、若函数y =-34x 3+bx 有三个单调区间,则b 的取值范围是________.三 解答题12、 已知函数23bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值13、设函数f(x)=ax 3+bx 2+cx+d 的图象与y 轴的交点为P ,且曲线f(x)在P 点出处的切线方程为24x+y -12=0,又函数在x=2出处取得极值-16,求该函数的单调递减区间.14、若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.思悟小结1. 形如 d cx bx ax y +++=23(a≠0,b,c,d 为常数)的函数叫做三次函数,三次函数的图像是一条曲线----回归式抛物线(不同于普通抛物线)。
中档题16单调性、极值、最值、零点问题(含答案,直接打印)
![中档题16单调性、极值、最值、零点问题(含答案,直接打印)](https://img.taocdn.com/s3/m/9080495c6529647d26285267.png)
12. 已知三次函数
= + 2 + + 在 = 1和
= 1 处取得极值,且 在 1ƥ 1 处的切线方程为
= +.
1 若函数 =
的图象上有两条与 x 轴平行的
切线,求实数 m 的取值范围;
2 若函数
= 2 2 + + 翿 与 在 2ƥ1 上有两个
交点,求实数 n 的取值范围.
10. 已知三次函数 = + 1,
2,
2= +
2+ =
2 由 1 知,
= 2 = +1
1 ,则当
ƥ 1ᝐ 1ƥ + 时,
;
当
1ƥ1ᝐ时,
;则函数 = 的增区间: ƥ 1ᝐ, 1ƥ + ;减区间: 1ƥ1ᝐ.
则 的极大值为 1 = , 的极小值为 1 = .
ቤተ መጻሕፍቲ ባይዱ
3.解: 1
=2
2令
൭ 得 < 2或 ൭ 1 令
< 得 2< <1
的递增区间为
ƥ 2 ƥ 1ƥ + ,递减区间为 2 ƥ1
2 由 1 知:
2
=
1ᝐ 2
ƥ
1 = 2ƥ
2 = 1ƥ 2 =
所以,最大值为 7,最小值为 1
4.解: 1 = 时, =
2
,
=2
,令
= ,则 = 或 1,
在 1ƥ ᝐ上单调递减,在 ƥ ᝐ上单调递增, 1 = , = 12 在 1ƥ ᝐ上的最大值为 1 = ,最小值为 = 1
= + 2 + + ƥb,
过点 ƥ ,且函数 在点 ƥ 处的切线恰好是直线
专题17 三次函数的图像与性质(解析版)
![专题17 三次函数的图像与性质(解析版)](https://img.taocdn.com/s3/m/58fc4bf54b73f242326c5f5b.png)
专题17 三次函数的图像与性质一、例题选讲题型一 运用三次函数的图像研究零点问题遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.例1,(2017某某,某某,某某,某某三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值X 围是.【答案】3(2)2-,【解析】:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即方程(Ⅰ)20x ax ax ≥⎧⎨-=⎩和(Ⅱ)3260x a x x ax <⎧⎨--=⎩共有2个不相等的根. 首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一个根,即30260x a x x ax <≤⎧⎨--=⎩有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足0x a <≤的唯一根,首先60a +>,其次解得的负根需满足0a <≤,从而解得302a -<≤,(2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即30260a x ax x ax ⎧>⎪<⎨⎪--=⎩有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a =+还有必须一满足,0x a a <>的非零实根,首先60a +>,a≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,综合(1),(2),得实数a 的取值X 围为3(,2)2-.例2,(2017某某学情调研)已知函数f (x )=⎩⎪⎨⎪⎧12x -x3,x ≤0,-2x ,x >0.)当x ∈(-∞,m ]时,f (x )的取值X 围为[-16,+∞),则实数m 的取值X 围是________.【答案】 [-2,8]【解析】思路分析 由于f (x )的解析式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值X 围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值X 围进行确定.当x ≤0时,f (x )=12x -x 3,所以f ′(x )=12-3x 2.令f ′(x )=0,则x =-2(正值舍去),所以当x ∈(-∞,-2)时,f ′(x )<0,此时f (x )单调递减;当x ∈(-2,0]时,f ′(x )>0,此时f (x )单调递增,故函数f (x )在x ≤0时的极小值为f (-2)=-16.当x >0时,f (x )=-2x 单调递减,f (0)=0,f (8)=-16,因此,根据f (x )的图像可得m ∈[-2,8].解后反思 根据函数的解析式来得到函数的相关性质,然后由此画出函数的图像,借助于函数的图像可以有效地进行解题,这就是数形结合的魅力.题型二 三次函数的单调性问题研究三次函数的单调性,往往通过导数进行研究.要特别注意含参的讨论.例3,已知函数32()3f x x x ax =-+()a ∈R ,()|()|g x f x =.(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点;(2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式;(3)设0a >,求()y g x =的单调增区间.解析 (1)2()36f x x x a '=-+,(2)f a '=,过点P 的切线方程为()224y a x a =-+-,即4y ax =-,它恒过点(0,- 4);(2)()g x kx ≤即32|3|x x ax kx -+≤. 当0x =时,上式恒成立;当(0,2]x ∈时,即2|3|x x a k -+≤对一切(0,2]x ∈恒成立,设2max ()|3|,[0,2]h a x x a x ∈=-+, ①当94a ≥时,2max |3|x x a -+在0x =时取得,∴()h a a =;②当94a <时,2max 99(),984|3|max{,}994()48a a x x a a a a a ⎧<<⎪⎪-+=-=⎨⎪-⎪⎩≤; 由①②,得9(),8()99()48a a g a a a ⎧>⎪⎪=⎨⎪-⎪⎩≤; (3)32()3f x x x ax =-+,22()363(1)3f x x x a x a '=-+=-+-,令()0f x =,得0x =或230x x a -+=,当94a <时,由230x x a -+=,解得132x =232x =令()0f x '=,得23(1)30x a -+-=,当3a <时,由23(1)30x a -+-=,解得31x =41x =+1)当3a ≥时,()y g x =的单调增区间为(0,)+∞;2)当934a <≤时,()y g x =的单调增区间为3(0,)x 和4(,)x +∞;3)当904a <<时,()y g x =的单调增区间为3(0,)x 和14(,)x x 和2(,)x +∞.例4,(2018某某期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值X 围是________.【答案】 (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解.函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|.令g(x)=x 3+(2-a)x 2+(1-2a)x -a,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a).令g ′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g ′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g ′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫-1,2a -13,(a,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值X 围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.,图3)例5,(2018某某期末)已知函数f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -ax ,x ≥0,其中常数a ∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,某某数a 的取值X 围;规X 解答 (1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x3+x2,x<0,ex -2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分)(2) 当x>0时,f(x)=e x -ax,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分) 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x2=(x -1)(2x2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分)所以g(x)的值域是[5,+∞),即实数a 的取值X 围是[5,+∞).(10分)题型三 三次函数的极值与最值问题①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.函数,方程和不等式的综合题,常以研究函数的零点,方程的根,不等式的解集的形式出现,大多数情况下会用到等价转化,数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.例6,(2018苏锡常镇调研)已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,① 当0a >时,求函数()f x 的极值(用a 表示);② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;规X 解答 (1)①由2()32f x x ax b '=++及02=+b a ,得22()32f x x ax a '=+-,令()0f x '=,解得3ax =或a x -=.由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-. ② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点; 当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-. 要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<,即332715a a <->或.不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<,则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=, ①3222222()10f x x ax a x =+-+=, ②3223333()10f x x ax a x =+-+=, ③②-①得222212121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=,因为310x x ->,所以2310x x x a +++=,又1322x x x +=,所以23ax =-.所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件.例7,(2017⋅某某)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:33b a >;(3)若(),'()f x f x 这两个函数的所有极值之和不小于72-,求a 的取值X 围.解析(1)2'()32f x x ax b =++有零点,24120a b ∆=->,即23a b >,又''()620f x x a =+=,解得3a x =-,根据题意,()03a f -=,即3210333a a a a b ⎛⎫⎛⎫⎛⎫-+-+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得2239b a a =+,又203a a b >⎧⎨>⎩,所以3a >,即223(3)9b a a a =+>;(2)设2433224591()3(427)(27)81381g a b a a a a a a a =-=-+=--,而3a >,故()0g a >,即23b a >;(3)设12,x x 为()f x 的两个极值点,令'()0f x =得12122,33b ax x x x =+=-, 法一:332212121212()()()()2f x f x x x a x x b x x +=++++++ 22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3324242232()202732739a ab a a a a =-+=-++=.记()f x ,()f x '所有极值之和为()S a ,12()()0f x f x +=,2'()33a a f b -=-, 则221237()()()'()3392a a a S a f x f x f b a =++-=-=--≥, 而23()()3a S a a =-在(3,)a ∈+∞上单调递减且7(6)2S =-,故36a <≤.法二:下面证明()f x 的图像关于(,())33a af --中心对称,233232()1()()()1333327a a a ab a f x x ax bx x b x =+++=++-++-+23()()()()3333a a a ax b x f =++-++-,所以()()2()0333a a a f x f x f --+-+=-=,所以12()()0f x f x +=,下同法一.例8,(2018某某学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax,a ∈R .(1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值X 围;(3) 若a >1,设函数f (x )在区间[1,2]上的最大值,最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.思路分析 第(3)问,欲求函数f(x)在区间[1,2]上的最值M(a),m(a),可从函数f(x)在区间[1,2]上的单调性入手,由于f ′(x)=6(x -1)(x -a),且a >1,故只需分为两大类:a ≥2,1<a <2.当1<a <2时,函数f(x)在区间[1,2]上先减后增,进而比较f(1)和f(2)的大小确定函数最大值,由f(1)=f(2)得到分类的节点a =53.规X 解答 (1) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a,所以曲线y =f(x)在x =0处的切线的斜率k =f ′(0)=6a,所以6a =3,所以a =12.(2分)(2) f(x)+f(-x)=-6(a +1)x 2≥12ln x对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2lnxx2.(4分)令g(x)=2lnx x2,x >0,则g ′(x)=2(1-2lnx )x3.令g ′(x)=0,解得x = e.当x ∈(0,e)时,g ′(x)>0,所以g(x)在(0,e)上单调递增;当x ∈(e,+∞)时,g ′(x)<0,所以g(x)在(e,+∞)上单调递减.所以g(x)max =g(e)=1e,(6分)所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值X 围为⎝⎛⎦⎥⎤-∞,-1-1e .(8分)(3) 因为f(x)=2x 3-3(a +1)x 2+6ax,所以f ′(x)=6x 2-6(a +1)x +6a =6(x -1)(x -a),令f ′(x)=0,则x =1或x =a.(10分)f(1)=3a -1,f(2)=4.由f(1)=f(2)得到分类的节点a =53.①当1<a ≤53时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=4-(-a 3+3a 2)=a 3-3a 2+4.因为h ′(a)=3a 2-6a =3a(a -2)<0,所以h(a)在⎝ ⎛⎦⎥⎤1,53上单调递减,所以当a ∈⎝ ⎛⎦⎥⎤1,53时,h(a)的最小值为h ⎝ ⎛⎭⎪⎫53=827.(12分)②当53<a <2时,当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减;当x ∈(a,2)时,f ′(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a -1,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ′(a)=3a 2-6a +3=3(a -1)2>0.所以h(a)在⎝ ⎛⎭⎪⎫53,2上单调递增,所以当a ∈⎝ ⎛⎭⎪⎫53,2时,h(a)>h ⎝ ⎛⎭⎪⎫53=827.(14分)③当a ≥2时,当x ∈(1,2)时,f ′(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a -1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a -1-4=3a -5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.(16分)二、达标训练1,(2017某某暑假测试) 已知函数f (x )=⎩⎪⎨⎪⎧1x,x >1,x3,-1≤x ≤1,)若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值X 围是________.【答案】 ⎝ ⎛⎭⎪⎫0,12【解析】思路分析 方程f (x )=k (x +1)的实数根的个数可以理解为函数y =f (x )与函数y =k (x +1)交点的个数,因此,在同一个坐标系中作出它们的图像,由图像来观察它们的交点的个数.在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图像,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =12.2,(2017苏北四市期末) 已知函数f (x )=⎩⎪⎨⎪⎧sinx ,x <1,x3-9x2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________.【答案】 {-20,-16}【解析】当x <1时,f(x)=sin x,联立⎩⎪⎨⎪⎧y =sinx ,y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x=0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=x 3-9x 2+25x +a,联立⎩⎪⎨⎪⎧y =x3-9x2+25x +a ,y =x ,得a =-x 3+9x 2-24x,令h(x)=-x 3+9x 2-24x(x ≥1),则h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).令h ′(x)=0得x =2或x =4,列表如下:32数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.3,(2019某某,某某二模)已知函数f(x)=⎪⎩⎪⎨⎧>+-≤+0,3120,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的图像经过四个象限,则实数k 的取值X 围为________.【答案】 ⎝⎛⎭⎪⎫-9,13【解析】解法1 y =⎩⎪⎨⎪⎧|x +3|-(kx +1),x ≤0,x 3-(k +12)x +2,x>0,若其图像经过四个象限.①当x>0时,y =x 3-(k +12)x +2,当x =0时,y =2>0,故它要经过第一象限和第四象限,则存在x>0,使y=x 3-(k +12)x +2<0,则k +12>x 2+2x ,即k +12>⎝ ⎛⎭⎪⎫x2+2x min .令h(x)=x 2+2x (x>0),h ′(x)=2x -2x2=2(x3-1)x2,当x>1时,h ′(x)>0,h(x)在(1,+∞)上递增;当0<x<1时,h ′(x)<0,h(x)在(0,1)上递减,当x =1时取得极小值,也是最小值,h(x)min =h(1)=3,所以k +12>3,即k>-9.②当x ≤0时,y =|x +3|-(kx +1),当x =0时,y =2>0,故它要经过第二象限和第三象限,则存在x<0,使y =|x +3|-(kx +1)<0,则k<|x +3|-1x,即k<⎝⎛⎭⎪⎫|x +3|-1x max .令φ(x)=|x +3|-1x=⎩⎪⎨⎪⎧-1-4x ,x ≤-3,1+2x ,-3<x<0,易知φ(x)在(-∞,-3]上单调递增,在(-3,0)上单调递减,当x =-3时取得极大值,也是最大值,φ(x)max =φ(-3)=13,故k<13.综上,由①②得实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.解法2 可根据函数解析式画出函数图像,当x>0时,f(x)=x 3-12x +3,f ′(x)=3x 2-12=3(x +2)(x -2),可知f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,且 f(2)=-13<0,当x ≤0时,f(x)=|x +3|.g(x)=kx +1恒过(0,1),若要使y =f(x)-g(x)经过四个象限,由图可知只需f(x)与g(x)在(-∞,0)和(0,+∞)上分别有交点即可(交点不可为(-3,0)和切点).①当k>0时,在(0,+∞)必有交点,在(-∞,0)区间内,需满足0<k<13.②当k<0时,在(-∞,0)必有交点,在(0,+∞)内,只需求过定点(0,1)与函数f(x)=x 3-12x +3(x>0)图像的切线即可,设切点为(x 0,x30-12x 0+3),由k =3x20-12=x30-12x 0+3-1x 0,解得x 0=1,切线斜率k =-9,所以k∈(-9,0).③当k =0也符合题意.综上可知实数k 的取值X 围为⎝⎛⎭⎪⎫-9,13.4,(2018苏中三市,苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤⎧⎪=⎨-+->⎪⎩, ,,的图象恰好经过三个象限,则实数a 的取值X 围是 ▲ .【答案】a <0或a >2【解析】当a <0时,10y ax x =-,≤的图象经过两个象限,3|2|0y x ax x =-+->在 (0,+∞)恒成立,所以图象仅在第一象限,所以a <0时显然满足题意; 当a ≥0时,10y ax x =-,≤的图象仅经过第三象限,由题意 3|2|0y x ax x x =-+->,的图象需经过第一,二象限.【解法1】(图像法)3|2|y x x =+-与y ax =在y 轴右侧的图象有公 共点(且不相切).如图,3|2|y x x =+-=332,022,2x xx x xx,设切点坐标为3000(,2)x x x ,231yx,则有32000231x x x x ,解得01x ,所以临界直线l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.【解法2】(函数最值法)由三次函数的性质知,函数图象过第一象限,则存()g x 在0x,使得3|2|0,yxax x即2|2|x a xx 设函数22221,02|2|()21,2x x x x g x x xx x x,当02x,322222()2x g x xx x()g x 在(0,1)单调递减,在(1,2)单调递增,又2x时,函数为增函数,所以函数的最小值为2,所以a >2,则实数a 的取值X 围为a <0或a >2.5,(2019某某期末)已知函数f(x)=ax 3+bx 2-4a(a,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a的值;(3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,某某数b 的取值X 围.解后反思 在第(2)题中,也可转化为b a =4x2-x 恰有两个不同的实数解.另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以⎩⎪⎨⎪⎧-(s +2t )=k ,2st +t2=0,-st2=-4,解得⎩⎪⎨⎪⎧s =1,t =-2,k =3.解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分)令f ′(x)>0,解得x>0或x<-23,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-∞,-23和(0,+∞).(4分)(2)法一:f ′(x)=3ax 2+2bx,令f ′(x)=0,得x =0或x =-2b3a,(6分)因为函数f(x)有两个不同的零点,所以f(0)=0或f ⎝ ⎛⎭⎪⎫-2b 3a =0.当f(0)=0时,得a =0,不合题意,舍去;(8分)当f ⎝ ⎛⎭⎪⎫-2b 3a =0时,代入得a ⎝ ⎛⎭⎪⎫-2b 3a +b ⎝ ⎛⎭⎪⎫-2b 3a 2-4a =0,即-827⎝ ⎛⎭⎪⎫b a 3+49⎝ ⎛⎭⎪⎫b a 3-4=0,所以ba =3.(10分)法二:由于a ≠0,所以f(0)≠0,由f(x)=0得,b a =4-x3x2=4x2-x(x ≠0).(6分)设h(x)=4x2-x,h ′(x)=-8x3-1,令h ′(x)=0,得x =-2, 当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增,当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增,当x>0时,h(x)的值域为R ,故不论b a取何值,方程b a=4-x3x2=4x2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)(3)当a =0时,因为f (x )<ln x ,所以bx 2<ln x ,设g (x )=ln x -bx 2,则g ′(x )=1x-2bx =1-2bx2x(x >0),当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0,所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分)当b >0时,令g ′(x )=1-2bx2x=0,得x =12b,所以g (x )在⎝ ⎛⎭⎪⎪⎫0,12b 递增,在⎝⎛⎭⎪⎪⎫12b ,+∞递减, 所以g (x )max =g ⎝⎛⎭⎪⎪⎫12b =ln12b -12,要使g (x )>0有解,首先要满足ln12b -12>0,解得b <12e. ①(13分)又因为g (1)=-b <0,g (e 12)=12-b e>0,要使f (x )<ln x 的解集(m ,n )中只有一个整数,则⎩⎪⎨⎪⎧g (2)>0,g (3)≤0,即⎩⎪⎨⎪⎧ln2-4b>0,ln3-9b ≤0,解得ln39≤b <ln24. ②(15分)设h (x )=lnx x,则h ′(x )=1-lnx x2,当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e,+∞)时,h ′(x )<0,h (x )递减.所以h (x )max =h (e)=1e>h (2)=ln22,所以12e >ln24,所以由①和②得,ln39≤b <ln24.(16分)(注:用数形结合方法做只给2分)6,(2019某某,某某一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.设函数f(x)=x 3-tx 2+1(t ∈R ).(1) 若函数f (x )在(0,1)上无极值点,求t 的取值X 围;(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.规X 解答 (1)由函数f(x)=x 3-tx 2+1,得f ′(x)=3x 2-2tx.由f ′(x)=0,得x =0,或x =23t.因为函数f(x)在(0,1)上无极值点,所以23t ≤0或23t ≥1,解得t ≤0或t ≥32.(4分)(2)令f ′(x)=3x 2-2tx =p,即3x 2-2tx -p =0,Δ=4t 2+12p.当p >-t23时,Δ>0,此时3x 2-2tx -p =0存在不同的两个解x 1,x 2.(8分)设这两条切线方程为分别为y =(3x21-2tx 1)x -2x31+tx21+1和y =(3x22-2tx 2)x -2x32+tx22+1.若两切线重合,则-2x31+tx21+1=-2x32+tx22+1,即2(x21+x 1x 2+x22)=t(x 1+x 2),即2=t(x 1+x 2).而x 1+x 2=2t 3,化简得x 1·x 2=t29,此时(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4t29-4t29=0,与x 1≠x 2矛盾,所以,这两条切线不重合.综上,对任意实数t,函数f(x)的图像总存在两条切线相互平行.(10分)(3)当t =3时f(x)=x 3-3x 2+1,f ′(x)=3x 2-6x.由(2)知x 1+x 2=2时,两切线平行.设A(x 1,x31-3x21+1),B(x 2,x32-3x22+1),不妨设x 1>x 2,则x 1>1.过点A 的切线方程为y =(3x21-6x 1)x -2x31+3x21+1.(11分)所以,两条平行线间的距离 d =|2x32-2x31-3(x22-x21)|1+9(x21-2x 1)2=|(x2-x1)|1+9(x21-2x 1)2=4,化简得(x 1-1)6=1+92,(13分)令(x 1-1)2=λ(λ>0),则λ3-1=9(λ-1)2,即(λ-1)( λ2+λ+1)=9(λ-1)2,即(λ-1)( λ2-8λ+10)=0.显然λ=1为一解,λ2-8λ+10=0有两个异于1的正根,所以这样的λ有3解.因为x 1-1>0,所以x 1有3解,所以满足此条件的平行切线共有3组.(16分)7,(2018某某,某某一调)已知函数g(x)=x 3+ax 2+bx(a,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1) 求b 关于a 的函数关系式;(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73.思路分析 (1) 易求得f(x)的极值点为-a -1,则g ′(-a -1)=0且g ′(x)=0有两个不等的实数解,解之得b 与a 的关系.(2) 求导得F ′(x)=(x +a +1)(e x -3x +a +3),解方程F ′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可.规X 解答 (1) 因为f ′(x)=e x +(x +a)e x =(x +a +1)e x ,令f ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,f(x)取得极小值.(2分)因为g ′(x)=3x 2+2ax +b,由题意可知g ′(-a -1)=0,且Δ=4a 2-12b>0,所以3(-a -1)2+2a(-a -1)+b =0,化简得b =-a 2-4a -3.(4分)由Δ=4a 2-12b =4a 2+12(a +1)(a +3)>0,得a ≠-32.所以b =-a 2-4a -3⎝⎛⎭⎪⎫a ≠-32.(6分)(2) 因为F(x)=f(x)-g(x)=(x +a)e x -(x 3+ax 2+bx),所以F ′(x)=f ′(x)-g ′(x)=(x +a +1)e x -[3x 2+2ax -(a +1)(a +3)]=(x +a +1)e x -(x +a +1)(3x -a -3)=(x +a +1)(e x -3x +a +3).(8分)记h(x)=e x -3x +a +3,则h ′(x)=e x -3,令h ′(x)=0,解得x =ln 3.列表如下:所以x =ln 3时,h(x)取得极小值,也是最小值,此时,h(ln 3)=e ln 3-3ln 3+a +3=6-3ln 3+a=3(2-ln 3)+a=3ln e23+a>a>0.(10分)所以h(x)=e x -3x +a +3≥h(ln 3)>0,令F ′(x)=0,解得x =-a -1.列表如下:所以x =-a -1时,F(x)取得极小值,也是最小值.所以M(a)=F(-a -1)=(-a -1+a)e -a -1-[(-a -1)3+a(-a -1)2+b(-a -1)]=-e -a -1-(a +1)2(a +2).(12分)令t =-a -1,则t<-1,记m(t)=-e t -t 2(1-t)=-e t +t 3-t 2,t<-1,则m ′(t)=-e t +3t 2-2t,t<-1.因为-e -1<-e t <0,3t 2-2t>5,所以m ′(t)>0,所以m(t)单调递增.(14分)所以m(t)<-e -1-2<-13-2=-73,即M(a)<-73.(16分)。
4.3.3三次函数的性质单调区间和极值
![4.3.3三次函数的性质单调区间和极值](https://img.taocdn.com/s3/m/a63932803086bceb19e8b8f67c1cfad6185fe902.png)
A.-1<a<2 B.-3<a<6 C.a<-1或a>2 D.a<-3或a>6
3.已知函数f (x) x3 ax在R上递增, 则a的取值范围是 _______ .
8
三次函数图象与x轴交点问题
三次函数f(x)=ax3 +bx2 +cx+d(a 0)图象的性质揭示了 一元三次方程ax3 +bx2 +cx+d=0(a 0)根的实质. 由f(x)的图象的性质不难看出: 方程实数根的个数即f(x)图象与轴的交点个数.
11
(3)三次函数f(x)图象与x轴有1个交点,即对应方程有1个实数根.
a>0 图①
a<0
图②
a>0
图③
a<0
此时f (x1) • f (x2 ) 0
图④
12
例3、设函数f (x) x3 9 x2 6x a. 2
(1)对任意实数x, f '(x) m恒成立,求m的最大值; (2)若方程f (x) 0有且只有一个实根,求a的取值范围.
F '(x) 3ax2 2bx c =4b2 12ac
a>0
Δ>0
Δ≤0
a<0
Δ>0
Δ≤0
F (x)有一个极大值 F (x)在R上 F (x)有一个极大值
和一个极小值 单调递增
和一个极小值
F (x)在R上 单调递减
5
例1.指出下列函数的单调区间和极值点。 (1)f(x)=x3 2x2 2x 7; (2)g(x) 3x3 2x2 4x 5; (3)u(x) x3 12x 8; (4)h(x) 37 36x 3x2 2x3.
三次函数的性质:单调区间和极值
![三次函数的性质:单调区间和极值](https://img.taocdn.com/s3/m/2e8ed0d4690203d8ce2f0066f5335a8102d26697.png)
基础自测 1.判断正误(正确的画“√”,错误的画“×”) (1)函数的最大值不一定是函数的极大值.( √ ) (2)函数f(x)在区间[a,b]上的最大值与最小值一定在区间端点处取 得.( × ) (3)有极值的函数一定有最值,有最值的函数不一定有极值.( × )
2.函数y=-x3+6x2(x≥0)的最大值为( ) A.32 B.27 C.16 D.40
题型探究·课堂解透
提醒1 求三次函数的最值 例1 已知函数f(x)=x3-x2+ax+b,若曲线y=f(x)在(0,f(0))处的切 线方程为y=-x+1. (1)求a,b的值; (2)求函数y=f(x)在[-2,2]上的最小值.
解析: (1)由已知可得f(0)=b=1. 又f′(x)=3x2-2x+a,所以f′(0)=a=-1. (2)由(1)可知f(x)=x3-x2-x+1,f′(x)=3x2-2x-1, 令f′(x)>0,解得x<-13或x>1, 所以f(x)在[-2,-13)和[1,2]上单调递增,在[13,1)上单调递减. 又因为f(-2)=-9,f(1)=0,所以函数y=f(x)在[-2,2]上的最小值为-9.
要点二 函数在区间[a,b]上最值的求法 一般地,求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤如下: (1)求函数y=f(x)在区间(a,b)内的___极__值___; (2)求函数y=f(x)在端点处的函数值f(a),f(b); (3) 将 函 数 y = f(x) 的 各 __极__值____ 与 f(a) , f(b) 比 较 , 其 中 最 大 者 是 __最_大__值___,最小者是__最__小__值__.
方法归纳 与最值有关的恒成立问题的解题策略
若不等式中含参数,则可考虑分离参数,以避免分类讨论.a>f(x)恒 成立⇔a>f(x)max,a<f(x)恒成立⇔a<f(x)min.
湘教版高中数学选修1-1第3章 3.3.3 三次函数的性质:单调区间和极值
![湘教版高中数学选修1-1第3章 3.3.3 三次函数的性质:单调区间和极值](https://img.taocdn.com/s3/m/60577317af45b307e8719770.png)
3.3.3三次函数的性质:单调区间和极值[读教材·填要点]设F(x)=ax3+bx2+cx+d(a≠0),则F′(x)=3ax2+2bx+c是二次函数,可能有以下三种情形:(1)函数F′(x)没有零点,F′(x)在(-∞,+∞)上不变号.①若a>0,则F′(x)恒正,F(x)在(-∞,+∞)上递增;②若a<0,则F′(x)恒负,F(x)在(-∞,+∞)上递减.(2)函数F′(x)有一个零点x=w.①若a>0,则F′(x)在(-∞,w)∪(w,+∞)上恒正,F(x)在(-∞,+∞)上递增;②若a<0,则F′(x)在(-∞,w)∪(w,+∞)上恒负,F(x)在(-∞,+∞)上递减.(3)函数F′(x)有两个零点x=u和x=v,设u<v.①若a>0,则F′(x)在(-∞,u)和(v,+∞)上为正,在(u,v)上为负;F(x)在(-∞,u)上递增,在(u,v)上递减,在(v,+∞)上递增.可见F(x)在x=u处取极大值,在x=v处取极小值.②若a<0,则F′(x)在(-∞,u)和(v,+∞)上为负,在(u,v)上为正;F(x)在(-∞,u)上递减,在(u,v)上递增,在(v,+∞)上递减.可见F(x)在x=u处取极小值,在x=v处取极大值.[小问题·大思维]1.在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,想一想,在[a,b]上一定存在最值和极值吗?在区间(a,b)上呢?提示:在区间[a,b]上一定有最值,但不一定有极值.如果函数f(x)在[a,b]上是单调的,此时f(x)在[a,b]上无极值;如果f(x)在[a,b]上不是单调函数,则f(x)在[a,b]上有极值;当f(x)在(a,b)上为单调函数时,它既没有最值也没有极值.2.若函数y=f(x)的图象是一条连续不断的曲线,且在区间[a,b]上有且只有一个极小值点,那么该极小值是否是函数的最小值?提示:借助图象可知,该极小值就是函数的最小值.求下列函数的单调区间和极值.(1)y=2x3+6x2-18x+3;(2)y=-x3+12x+6.[自主解答](1)函数的定义域为R.y′=6x2+12x-18=6(x+3)(x-1),令y′=0,得x=-3或x=1.当x变化时,y′,y的变化情况如下表:当x=-3时,函数有极大值,且y极大值=57;当x=1时,函数有极小值,且y极小值=-7.(2)y′=-3x2+12=-3(x+2)(x-2),令y′=0,则x1=-2,x2=2.当x变化时,y′,y的变化情况如下表:∴函数f(x)的单调减区间为(-∞,-2),(2,+∞);单调增区间为(-2,2).当x=-2时,y有极小值,且y极小值=f(-2)=-10;当x=2时,y有极大值,且y极大值=f(2)=22.(1)求多项式函数的单调区间,关键是求出f′(x)后,解不等式f′(x)>0和f′(x)<0.(2)单调区间可以是开区间,如果区间端点在定义域内,也可写成闭区间.1.求函数y=8x3-12x2+6x+1的极值.解:y′=24x2-24x+6=6(4x2-4x+1),令y′=6(4x2-4x+1)=0,解得x1=x2=1 2.当x变化时,y′,y的变化情况如表所示:所以此函数无极值.求下列各函数的最值.(1)f (x )=-x 3+x 2+x +1,x ∈[-3,2]; (2)f (x )=x 3-3x 2+6x -2,x ∈[-1,1]. [自主解答] (1)f ′(x )=-3x 2+2x +1, 令f ′(x )=-(3x +1)(x -1)=0,得 x =-13或x =1.当x 变化时f ′(x )及f (x )的变化情况如下表:∴当x =2时,f (x )取最小值-1; 当x =-3时,f (x )取最大值34.(2)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3, ∵f ′(x )在[-1,1]内恒大于0, ∴f (x )在[-1,1]上为增函数. 故x =-1时,f (x )最小值=-12; x =1时,f (x )最大值=2.即f (x )的最小值为-12,最大值为2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤:(1)求函数的导数f ′(x );(2)求方程f ′(x )=0的全部实根x 0,且x 0∈[a ,b ];(3)求最值,有两种方式:①是将f (x 0)的值与f (a ),f (b )比较,确定f (x )的最大值与最小值;②是判断各分区间上的单调性,然后求出最值.2.求函数f (x )=4x 3+3x 2-36x +5在区间[-2,2]上的最大值和最小值. 解:f ′(x )=12x 2+6x -36=6(2x 2+x -6), 令f ′(x )=0,解得x 1=-2,x 2=32.又f (-2)=57,f ⎝⎛⎭⎫32=-1154,f (2)=-23, ∴函数f (x )的最大值为57,最小值为-1154.设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.[自主解答] (1)由f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a , 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a ;令29+2a >0,得a >-19. 所以,当a ∈⎝⎛⎭⎫-19,+∞时,f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间. (2)令f ′(x )=0,得两根x 1=1-1+8a2, x 2=1+1+8a2.所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增.当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2),又f (4)-f (1)=-272+6a <0, 即f (4)<f (1).所以f (x )在[1,4]上的最小值为f (4)=8a -403=-163. 得a =1,x 2=2,从而f (x )在[1,4]上的最大值为f (2)=103.(1)f (x )在区间I 上为增函数⇒f ′(x )≥0在区间I 上恒成立,f (x )在区间I 上为减函数⇒f ′(x )≤0在区间I 上恒成立.(2)由函数的最值来确定参数的问题是利用导数求函数最值的逆向运用,解题时一般采用待定系数法,列出含参数的方程或方程组,从而求出参数的值,这也是方程思想的应用.3.已知函数f (x )=x 3+ax 2+bx +5,曲线y =f (x )在点P (1,f (1))处的切线方程为y =3x +1.(1)求a ,b 的值;(2)求y =f (x )在[-3,1]上的最大值.解:(1)依题意可知点P (1,f (1))为切点,代入切线方程y =3x +1可得,f (1)=3×1+1=4,∴f (1)=1+a +b +5=4,即a +b =-2, 又由f (x )=x 3+ax 2+bx +5得, 又f ′(x )=3x 2+2ax +b ,而由切线y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0,由⎩⎪⎨⎪⎧ a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4=(3x -2)(x +2), 令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f ⎝⎛⎭⎫23=9527, 又f (-3)=8,f (1)=4,∴f (x )在[-3,1]上的最大值为13.已知f (x )=x 3+ax 2+bx +c 在x =1与x =-2时都取得极值. (1)求a ,b 的值;(2)若x ∈[-3,2]时都有f (x )>2c -12恒成立,求c 的取值范围.[巧思] 解决不等式恒成立问题,大多可用函数的观点来审视,用函数的有关性质来处理,而导数是研究函数性质的有力工具,因而常将不等式f (x )>g (x )(f (x )<g (x ))恒成立问题转化为F (x )=f (x )-g (x )>0(F (x )=f (x )-g (x )<0)恒成立问题,再用导数方法探讨F (x )的单调性及最值.[妙解] (1)f ′(x )=3x 2+2ax +b ,由题意,得⎩⎪⎨⎪⎧ f ′(1)=0,f ′(-2)=0,即⎩⎪⎨⎪⎧3+2a +b =0,12-4a +b =0,解得⎩⎪⎨⎪⎧a =32,b =-6.(2)由(1)知f ′(x )=3x 2+3x -6. 令f ′(x )=0得x =-2或x =1.当x 变化时,f ′(x ),f (x )的变化情况如表所示:∴f (x )在[-3,2]上的最小值为c -72.即2c -12<c -72,∴c <-3,∴c 的取值范围为(-∞,-3).1.下面四幅图都是在同一坐标系中某三次函数及其导函数的图象,其中一定不.正确的序号是( )A .①③B .③④C .②③④D .②④解析:根据函数的单调性与其导函数函数值之间的关系,易得③④一定不正确. 答案:B2.函数f (x )=2x 3-9x 2+12x +1的单调递减区间为( ) A .(1,2) B .(2,+∞)C .(-∞,1)D .(-1,+∞),(2,+∞)解析:f ′(x )=6x 2-18x +12, 令f ′(x )<0,得1<x <2. 答案:A3.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值解析:f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值.答案:D4.若函数y =-x 3+6x 2+m 的极大值等于13,则实数m 等于________.解析:y ′=-3x 2+12x ,由y ′=0,得x =0或x =4,容易得出当x =4时函数取得极大值,所以-43+6×42+m =13,解得m =-19.答案:-195.若f (x )=ax 3+bx 2+cx +d (a >0)是R 上的增函数,则a ,b ,c 的关系式为________.解析:f ′(x )=3ax 2+2bx +c ≥0在R 上恒成立,则⎩⎪⎨⎪⎧a >0,Δ=4b 2-12ac ≤0,从而解得a >0,且b 2≤3ac .答案:a>0且b2≤3ac6.已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,求a的值及f(x)在[-2,2]上的最大值.解:f′(x)=6x2-12x=6x(x-2),由f′(x)=0得x=0,或x=2.当x变化时,f′(x),f(x)变化情况如下:∴当x=-2时,f(x)min=-40+a=-37,得a=3.故x=0时,f(x)最大值是3.一、选择题1.函数y=f(x)在[a,b]上()A.极大值一定比极小值大B.极大值一定是最大值C.最大值一定是极大值D.最大值一定大于极小值解析:由最值与极值的概念可知,D选项正确.答案:D2.函数y=x3-3x+3在区间[-3,3]上的最小值为()A.1B.5C.12 D.-15解析:y′=3x2-3,令y′=0,得3x2-3=0,∴x=1或x=-1.当-1<x<1时,y′<0;当x>1或x<-1时,y′>0,∴y极小值=1,y极大值=5.又当x=-3时,y=-15;当x=3时,y=21,∴y min=-15.答案:D3.若x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点,则有()A .a =-2,b =4B .a =-3,b =-24C .a =1,b =3D .a =2,b =-4解析:f ′(x )=3x 2+2ax +b ,依题意有-2和4是方程3x 2+2ax +b =0的两个根,所以有-2a 3=-2+4,b3=-2×4,解得a =-3,b =-24.答案:B4.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( ) A .-10 B .-71 C .-15D .-22解析:f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71. 答案:B 二、填空题5.函数f (x )=x 3-15x 2-33x +6的单调递减区间为________. 解析:f ′(x )=3x 2-30x -33=3(x -11)(x +1), 令f ′(x )<0,得-1<x <11. ∴f (x )的单调递减区间为(-1,11). 答案:(-1,11)6.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是________. 解析:f ′(x )=3x 2+2x +m ,∵f (x )在R 上是单调函数, ∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞7.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于________.解析:∵f ′(x )=12x 2-2ax -2b , ∴Δ=4a 2+96b >0,又x =1是极值点, ∴f ′(1)=12-2a -2b =0,即a +b =6.ab ≤(a +b )24=9,当且仅当a =b 时“=”成立,∴ab 的最大值为9.答案:98.函数f (x )=x 3-12x 2-2x +5,对任意x ∈[-1,2]都有f (x )>m ,则实数m 的取值范围是________.解析:由f ′(x )=3x 2-x -2=0,得x =-23或x =1,由题意知只要f (x )min >m 即可, 易知f (x )min =f (1)=72,所以m <72.答案:⎝⎛⎭⎫-∞,72 三、解答题9.求下列各函数的最值: (1)f (x )=-x 3+3x ,x ∈[-3,3]; (2)f (x )=x 2-54x (x <0).解:(1)f ′(x )=3-3x 2=3(1-x )(1+x ). 令f ′(x )=0,得x =1或x =-1,当x 变化时,f ′(x ),f (x )变化情况如下表:又因为f (x )在区间端点处的函数值为f (-3)=0, f (3)=-18,所以f (x )max =2,f (x )min =-18. (2)f ′(x )=2x +54x 2.令f ′(x )=0,得x =-3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以x 故f (x )的最小值为f (-3)=27,无最大值.10.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间.(2)若x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围. 解:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b ,因为f ′(1)=3+2a +b =0,f ′⎝⎛⎭⎫-23=43-43a +b =0,解得a =-12,b =-2, 所以f ′(x )=3x 2-x -2=(3x +2)(x -1),当x 变化时,f ′(x ),f (x )的变化情况如表: 单调递增 单调递减 单调递增所以函数f (x )的递增区间为⎝⎭⎫-∞,-23和(1,+∞); 递减区间为⎝⎛⎭⎫-23,1. (2)由(1)知,f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值,因为f (2)=2+c ,所以f (2)=2+c 为最大值.要使f (x )<c 2(x ∈[-1,2])恒成立,只需c 2>f (2)=2+c , 解得c <-1或c >2.故c 的取值范围为(-∞,-1)∪(2,+∞).。
高中数学新湘教版精品学案《三次函数的性质:单调区间和极值》
![高中数学新湘教版精品学案《三次函数的性质:单调区间和极值》](https://img.taocdn.com/s3/m/10323dc6b90d6c85ed3ac61e.png)
三次函数的性质:单调区间和极值
【学习目标】
1.了解三次函数的图象和简单性质,三次函数与二次函数的联系。
2.会用导数研究三次函数的单调性,并且求解出三次函数的单调区间,认识它们之间的内在联系,进一步培养运算能力。
3.会用导数研究三次函数的极值,并且学会求解,认识事物之间的相互联系,培养辨证思维能力
【学习重难点】
重点:理解并掌握三次函数的单调区间和极值。
难点:理解并掌握求解三次函数的单调区间和极值的步骤,会运用到解决实际问题当中。
【学习过程】
一、新课学习。
知识点一:三次函数的单调区间和极值。
三次函数的导数是二次函数,二次函数的零点是容易求出的。
所以,用导数方法可以彻底了解三次函数的增减变化和极大极小,这个增减区间,就是三次函数的单调区间,列出表格,对函数的极大极小值点就可以一目了然。
根据前面的知识做一做:
练习:
1.指出函数3234y x x =+-的单调递增区间。
2.指出函数32454y x x x =+-的单调递减区间。
3.若函数()323321y x ax a x =++++有极大值和极小值,求a 的取值范围。
4.函数326y x x a =-+的极值是什么?
二、课程总结。
1.这节课我们主要学习了哪些知识?
2.它们在解题中具体怎么应用?
三、习题检测。
1.求下列函数在指定闭区间上的最大值和最小值。
(1)()[]32241,2,1f x x x x =+-+-;(2)()()[]2e 43,3,2x f x x x =-+-。
2.求解函数322611y x x =-+的单调减区间及极值。
三次函数的几种基本题型
![三次函数的几种基本题型](https://img.taocdn.com/s3/m/4feb873b312b3169a451a4a7.png)
三次函数的几种基本题型题型1:求解函数的单调区间和极值问题一般解法:对函数求导,之后利用二次函数的图象来判断函数的增减性。
注意,所得的二次函数是导函数,其正负才是原函数的单调性的决定因素。
注意一点:导数有零点并不一定都有极值。
特别注意导函数为恰有一解的二次函数的三次函数没有极值。
题型2:求解函数等于某个函数值的解的个数问题。
例如:()f x m =有n 个实根,试求参数的取值范围。
一般解法:将其转化成函数图象与直线的交点问题 题型3:恒成立和存在性问题一般解法:(1)将所求参数移到一边,自变量移到另一边,之后构造新函数求解新函数的最值(2)直接将参数移至函数中,在利用导数等方法求解函数的最值。
注意,函数的另一边应该是常数。
例题1:设函数f (x )=x 3-6x +5,x ∈R . (1)求函数f (x )的单调区间和极值;(2)若关于x 的方程f (x )=a 有三个不同实根,求实数a 的取值范围;。
(3)已知当x ∈(1,+∞)时,f (x )≥k (x -1)恒成立,求实数k 的取值范围. 解析:(1)f ′(x )=3x 2-6,令f ′(x )=0,解得x 1=-2,x 2= 2. 因为当x >2或x <-2时,f ′(x )>0;当-2<x <2时,f ′(x )<0.所以f (x )的单调递增区间为(-∞,-2)和(2,+∞);单调减区间为(-2,2).当x =-2时,f (x )有极大值5+42;当x =2时,f (x )有极小值5-4 2. (2)由(1)的分析知y =f (x )的图象的大致形状及走向如图所示,当5-42<a <5+42时,直线y =a 与y =f (x )的图象有三个不同交点,即方程f (x )=a 有三个不同的解.(3)f (x )≥k (x -1),即(x -1)(x 2+x -5)≥k (x -1).因为x >1,所以k ≤x 2+x -5在(1,+∞)上恒成立.令g (x )=x 2+x -5,此函数在(1,+∞)上是增函数.所以g (x )>g (1)=-3,所以k 的取值范围是k ≤-3.例题2:(2012广西柳铁一中第一次月考)已知a 为实数,函数x a ax x x f )2()(23-++=的导函数)('x f 是偶函数,则曲线)(x f y =在原点处的切线方程是( )A. x y 3-=B. x y 2-=C. x y 3=D. x y 2= 答案:B"解析:32232()(2)'()322,'()0,()2,'()32,'(0)2,(0)02.f x x ax a x f x x ax a f x a f x x f x x f f y x =++-∴=++-∴=∴=-=-∴=-==-为偶函数,且,由点斜式方程可得例题3:若函数()bx ax x x f --=233,其中b a ,为实数. ()x f 在区间[]2,1-上为减函数,且a b 9=,则a 的取值范围解析:因为'2()36f x x ax b =--≤0对[1,2]x ∈-恒成立,所以'2()369f x x ax a =--≤0对[1,2]x ∈-恒成立, 2230x ax a --≤,因为230x +>,所以223x a x ≥+对[1,2]x ∈-恒成立,容易求得1≥a .答案1≥a 练习1:设ax x x x f 22131)(23++-=. (1)若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围;(2)当20<<a 时,)(x f 在]4,1[上的最小值为316-,求)(x f 在该区间上的最大值. 解析:(1))(x f 在),32(+∞上存在单调递增区间,即存在某个子区间),32(),(+∞⊆n m 使得0)('>x f .由a x a x x x f 241)21(2)(22'++--=++-=,)('x f 在区间),32[+∞上单调递减,则只需0)32('>f 即可。
【湘教版】2021年高中数学选修2-2(全集)课堂练习汇总
![【湘教版】2021年高中数学选修2-2(全集)课堂练习汇总](https://img.taocdn.com/s3/m/a614e9e26c85ec3a86c2c510.png)
(湘教版)高中数学选修2 -2 (全册)课堂练习汇总第4章导数及其应用4.1导数概念4.1.1问题探索- -求自由落体的瞬时速度1.一质点的运动方程是s=4-2t2, 那么在时间段[1,1+d]内相应的平均速度为() A.2d+4 B.-2d+4C.2d-4 D.-2d-4答案 D解析v(1, d)=4-2(1+d)2-4+2×12d=-4d+2d2d=-2d-4.2.物体位移s与时间t的函数关系为s=f(t).以下表达正确的选项是() A.在时间段[t0, t0+d]内的平均速度即是在t0时刻的瞬时速度B.在t1, t2, t3, t4=1.000 1, 这四个时刻的速度都与t=1时刻的速度相等C.在时间段[t0-d, t0]与[t0, t0+d](d>0)内当d趋于0时, 两时间段的平均速度相等D.以上三种说法都不正确答案 C解析两时间段的平均速度都是在t0时刻的瞬时速度.3.s=12gt2, v=________.答案g解析v=12g2-12g·323.1-3=g.4.如果质点M的运动方程是s=2t2-2, 那么在时间段[2,2+d]内的平均速度是________.答案8+2d解析v(2, d)=s(2+d)-s(2)d=8+2d.1.平均速度与瞬时速度的区别与联系平均速度是运动物体在某一段时间内位移的平均值, 即用时间除位移得到, 而瞬时速度是物体在某一时间点的速度, 当时间段越来越小的过程中, 平均速度就越来越接近一个数值, 这个数值就是瞬时速度, 可以说, 瞬时速度是平均速度在时间间隔无限趋于0时的 "飞跃〞.2.求瞬时速度的一般步骤设物体运动方程为s=f(t), 那么求物体在t时刻瞬时速度的步骤为:(1)从t到t+d这段时间内的平均速度为f(t+d)-f(t)d, 其中f(t+d)-f(t)称为位移的增量;(2)对上式化简, 并令d趋于0, 得到极限数值即为物体在t时刻的瞬时速度.4.问题探索- -求作抛物线的切线1.一物体作匀速圆周运动, 其运动到圆周A处时() A.运动方向指向圆心OB.运动方向所在直线与OA垂直C.速度与在圆周其他点处相同D.不确定答案 B2.假设函数f(x)=2x2-1的图象上的一点(1,1)及邻近一点(1+d,1+Δy), 那么Δy d等于() A.1 B.2+d C.4+2d D.4+d答案 C解析Δyd=2(1+d)2-1-(2×12-1)d=4+2d.3.过曲线y=2x上两点(0,1), (1,2)的割线的斜率为________.答案 1解析由平均变化率的几何意义知, k=2-11-0=1.4.函数f(x)=-x2+x的图象上一点(-1, -2)及邻近一点(-1+d, -2+Δy), 那么Δyd=________.解析Δy=f(-1+d)-f(-1)=-(-1+d)2+(-1+d)-(-2) =-d2+3d.∴Δyd=-d2+3dd=-d+3.答案-d+31.求曲线y=f(x)上一点(x0, y0)处切线斜率的步骤(1)作差求函数值增量Δy, 即f(x0+d)-f(x0).(2)化简Δyd, 用x0与d表示化简结果.(3)令d→0, 求Δyd的极限即所求切线的斜率.2.过某点的曲线的切线方程要正确区分曲线 "在点(u, v)处的切线方程〞和 "过点(u, v)的切线方程〞.前者以点(u, v)为切点, 后者点可能在曲线上, 也可能不在曲线上, 即使在曲线上, 也不一定是切点.3.曲线的割线与切线的区别与联系曲线的割线的斜率反映了曲线在这一区间上上升或下降的变化趋势, 刻画了曲线在这一区间升降的程度, 而曲线的切线是割线与曲线的一交点向另一交点逼近时的一种极限状态, 它实现了由割线向切线质的飞跃.4.导数的概念和几何意义1.f(x)在x=x0处可导, 那么limh→0f(x0+h)-f(x0)h()A.与x0、h都有关B.仅与x0有关, 而与h无关C.仅与h有关, 而与x0无关D.与x0、h均无关答案 B2.假设f(x0)-f(x0-d)=2x0d+d2, 以下选项正确的选项是() A.f′(x)=2 B.f′(x)=2x0C.f′(x0)=2x0D.f′(x0)=d+2x0答案 C3.函数y=f(x)图象如图, 那么f′(x A)与f′(x B)的大小关系是() A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不能确定答案 A4.在曲线f(x)=x2+x上取一点P(1,2), 那么在区间[1,1+d]上的平均变化率为________, 在点P(1,2)处的导数f′(1)=________.答案3+d 31.求导数的步骤主要有三步:(1)求函数值的增量: Δy=f(x0+d)-f(x0);(2)求平均变化率: Δyd=f(x0+d)-f(x0)d;(3)取极限: f′(x0)=Δy d.2.导数的几何意义(1)对于函数y=f(x)在x0处的导数是表示在x0处函数值变化快慢的一个量, 其几何意义为在x=x0处的切线的斜率.(2)f′(x)是指随x变化, 过曲线上的点(x, f(x))的切线斜率与自变量x之间的函数.4.导数的运算法那么1.以下结论不正确的选项是() A.假设y=3, 那么y′=0B.假设f(x)=3x+1, 那么f′(1)=3C.假设y=-x+x, 那么y′=-12x+1D.假设y=sin x+cos x, 那么y′=cos x+sin x答案 D解析利用求导公式和导数的加、减运算法那么求解.D项, ∵y=sin x+cos x,∴y ′=(sin x )′+(cos x )′=cos x -sin x . 2.函数y =cos x1-x的导数是 ( )A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C.cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1, -1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案 A 解析 ∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2,∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为y +1=2(x +1), 即y =2x +1.4.直线y =12x +b 是曲线y =ln x (x >0)的一条切线, 那么实数b =________. 答案 ln 2-1解析 设切点为(x 0, y 0), ∵ y ′=1x , ∴12=1x 0,∴x 0=2, ∴y 0=ln 2, ln 2=12×2+b , ∴b =ln 2-1.求函数的导数要准确把函数分割为根本函数的和、差、积、商, 再利用运算法那么求导数.在求导过程中, 要仔细分析出函数解析式的结构特征, 根据导数运算法那么, 联系根本函数的导数公式.对于不具备导数运算法那么结构形式的要进行适当恒等变形, 转化为较易求导的结构形式, 再求导数, 进而解决一些切线斜率、瞬时速度等问题.4.2导数的运算4.2.1几个幂函数的导数4.2.2一些初等函数的导数表1.f(x)=x2, 那么f′(3)=() A.0 B.2x C.6 D.9答案 C解析∵f(x)=x2, ∴f′(x)=2x, ∴f′(3)=6.2.函数f(x)=x, 那么f′(3)等于()A.36B.0 C.12xD.32答案 A解析∵f′(x)=(x)′=12x, ∴f′(3)=123=36.3.设正弦曲线y=sin x上一点P, 以点P为切点的切线为直线l, 那么直线l的倾斜角的范围是()A.⎣⎢⎢⎡⎦⎥⎥⎤0 π4∪⎣⎢⎢⎡⎭⎪⎪⎫3π4 π B .[0, π) C.⎣⎢⎢⎡⎦⎥⎥⎤π4 3π4 D.⎣⎢⎢⎡⎦⎥⎥⎤0 π4∪⎣⎢⎢⎡⎦⎥⎥⎤π2 3π4答案 A解析 ∵(sin x )′=cos x , ∵k l =cos x , ∴-1≤k l ≤1, ∴αl ∈⎣⎢⎢⎡⎦⎥⎥⎤0 π4∪⎣⎢⎢⎡⎭⎪⎪⎫3π4 π.4.曲线y =e x 在点(2, e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x , ∴k =e 2,∴曲线在点(2, e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时, y =-e 2, 当y =0时, x =1. ∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比拟简捷的求出函数的导数, 其关键是牢记和运用好导数公式.解题时, 能认真观察函数的结构特征, 积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数, 一是注意函数的变化, 二是注意符号的变化.4.3 导数在研究函数中的应用4.3.1 利用导数研究函数的单调性1.函数f (x )=x +ln x 在(0,6)上是( )A .单调增函数B .单调减函数C .在⎝ ⎛⎭⎪⎪⎫0 1e 上是减函数, 在⎝ ⎛⎭⎪⎪⎫1e 6上是增函数 D .在⎝ ⎛⎭⎪⎪⎫0 1e 上是增函数, 在⎝ ⎛⎭⎪⎪⎫1e 6上是减函数答案 A解析 ∵x ∈(0,6)时, f ′(x )=1+1x >0, ∴函数在(0,6)上单调递增. 2.f ′(x )是函数y =f (x )的导函数, 假设y =f ′(x )的图象如下图, 那么函数y =f (x )的图象可能是( )答案 D解析 由导函数的图象可知, 当x <0时, f ′(x )>0, 即函数f (x )为增函数; 当0<x<2时, f′(x)<0, 即f(x)为减函数; 当x>2时, f′(x)>0, 即函数f(x)为增函数.观察选项易知D正确.3.假设函数f(x)=x3-ax2-x+6在(0,1)内单调递减, 那么实数a的取值范围是() A.[1, +∞) B.a=1C.(-∞, 1] D.(0,1)答案 A解析∵f′(x)=3x2-2ax-1, 又f(x)在(0,1)内单调递减,∴不等式3x2-2ax-1≤0在(0,1)内恒成立, ∴f′(0)≤0, 且f′(1)≤0, ∴a≥1.4.函数y=x2-4x+a的增区间为________, 减区间为________.答案(2, +∞)(-∞, 2)解析y′=2x-4, 令y′>0, 得x>2; 令y′<0, 得x<2,所以y=x2-4x+a的增区间为(2, +∞), 减区间为(-∞, 2).1.导数的符号反映了函数在某个区间上的单调性, 导数绝|对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f(x)的单调区间的一般步骤为(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间.4.3.2函数的极大值和极小值1.以下关于函数的极值的说法正确的选项是() A.导数值为0的点一定是函数的极值点B.函数的极小值一定小于它的极大值C.函数在定义域内有一个极大值和一个极小值D.假设f(x)在(a, b)内有极值, 那么f(x)在(a, b)内不是单调函数答案 D解析由极值的概念可知只有D正确.2.函数f(x)的定义域为R, 导函数f′(x)的图象如下图, 那么函数f(x)() A.无极大值点, 有四个极小值点B.有三个极大值点, 两个极小值点C.有两个极大值点, 两个极小值点D.有四个极大值点, 无极小值点答案 C解析在x=x0的两侧, f′(x)的符号由正变负, 那么f(x0)是极大值; f′(x)的符号由负变正, 那么f(x0)是极小值, 由图象易知有两个极大值点, 两个极小值点.3.f(x)=x3+ax2+(a+6)x+1有极大值和极小值, 那么a的取值范围为() A.-1<a<2 B.-3<a<6C.a<-1或a>2 D.a<-3或a>6答案 D解析f′(x)=3x2+2ax+(a+6),因为f(x)既有极大值又有极小值,那么Δ=(2a)2-4×3×(a+6)>0,解得a>6或a<-3.4.设函数f(x)=6x3+3(a+2)x2+2ax.假设f(x)的两个极值点为x1, x2, 且x1x2=1, 那么实数a的值为________.解析f′(x)=18x2+6(a+2)x+2a.由f′(x1)=f′(x2)=0, 从而x1x2=2a18=1,所以a=9.1.在极值的定义中, 取得极值的点称为极值点, 极值点指的是自变量的值, 极值指的是函数值.2.函数的极值是函数的局部性质.可导函数f(x)在点x=x0处取得极值的充要条件是f′(x0)=0且在x=x0两侧f′(x)符号相反.3.利用函数的极值可以确定参数的值, 解决一些方程的解和图象的交点问题.4.3.3三次函数的性质: 单调区间和极值1.函数f(x)=-x2+4x+7, 在x∈[3,5]上的最|大值和最|小值分别是() A.f(2), f(3) B.f(3), f(5)C.f(2), f(5) D.f(5), f(3)答案 B解析∵f′(x)=-2x+4,∴当x∈[3,5]时, f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最|大值和最|小值分别是f(3), f(5).2.函数f(x)=x3-3x(|x|<1)() A.有最|大值, 但无最|小值B.有最|大值, 也有最|小值C.无最|大值, 但有最|小值D.既无最|大值, 也无最|小值解析 f ′(x )=3x 2-3=3(x +1)(x -1), 当x ∈(-1,1)时, f ′(x )<0, 所以f (x ) 在(-1,1)上是单调递减函数, 无最|大值和最|小值, 应选D. 3.函数y =x -sin x , x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2 π的最|大值是 ( )A .π-1 B.π2-1 C .π D .π+1 答案 C解析 因为y ′=1-cos x , 当x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2 π, 时, y ′>0, 那么函数在区间⎣⎢⎢⎡⎦⎥⎥⎤π2 π上为增函数, 所以y 的最|大值为y max =π-sin π=π, 应选C. 4.(2021·安徽改编)函数f (x )=e x sin x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0 π2上的值域为 ( )A. B.C.D.答案 A解析 f ′(x )=e x (sin x +cos x ). ∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤0 π2, f ′(x )>0. ∴f (x )在⎣⎢⎢⎡⎦⎥⎥⎤0 π2上是单调增函数, ∴f (x )min =f (0)=0, f (x )max =f ⎝ ⎛⎭⎪⎫π2=.5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最|大值为10, 那么其最|小值为________. 答案 -71解析 f ′(x )=3x 2-6x -9=3(x -3)(x +1).由f′(x)=0得x=3或x=-1.又f(-4)=k-76, f(3)=k-27,f(-1)=k+5, f(4)=k-20.由f(x)max=k+5=10, 得k=5,∴f(x)min=k-76=-71.1.求函数y=f(x)在[a, b]上的最|值(1)极值是局部区间内的函数的最|值, 而最|值是相对整个区间内的最|大或最|小值.(2)求最|值的步骤:①求出函数y=f(x)在(a, b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a), f(b)比拟, 其中最|大的一个是最|大值, 最|小的一个是最|小值.2.极值与最|值的区别和联系(1)函数的极值表示函数在某一点附近的局部性质, 是在局部对函数值的比拟;函数的最|值是表示函数在一个区间上的情况, 是对函数在整个区间上的函数值的比拟.(2)函数的极值不一定是最|值, 需要将极值和区间端点的函数值进行比拟, 或者考查函数在区间内的单调性.(3)如果连续函数在区间(a, b)内只有一个极值, 那么极大值就是最|大值, 极小值就是最|小值.(4)可导函数在极值点的导数为零, 但是导数为零的点不一定是极值点.例如,函数y=x3在x=0处导数为零, 但x=0不是极值点.4.4生活中的优化问题举例1.炼油厂某分厂将原油精炼为汽油, 需对原油进行冷却和加热, 如果第x小时,原油温度(单位: ℃)为f(x)=13x3-x2+8(0≤x≤5), 那么, 原油温度的瞬时变化率的最|小值是()A.8 B.203C.-1 D.-8答案 C解析原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5), 所以当x=1时, 原油温度的瞬时变化率取得最|小值-1.2.设底为等边三角形的直三棱柱的体积为V, 那么其外表积最|小时底面边长为()A.3VB.32VC.34V D.23V答案 C解析设底面边长为x, 那么外表积S=32x2+43x V(x>0).∴S′=3x2(x3-4V).令S′=0, 得x=34V.3. 在边长为60 cm的正方形铁皮的四角切去相等的正方形, 再把它的边沿虚线折起, 做成一个无盖的方底箱子, 箱底边长为多少时, 箱子容积最|大? 最|大容积是多少?解设箱底边长为x cm, 那么箱高h=60-x2cm, 箱子容积V(x)=x2h=60x2-x32(0<x<60).V′(x)=60x-32x2令V′(x)=60x-32x2=0,解得x=0(舍去)或x=40, 并求得V(40)=16 000.由题意知, 当x过小(接近0)或过大(接近60)时, 箱子容积很小, 因此, 16 000是最|大值.答当x=40 cm时, 箱子容积最|大, 最|大容积是16 000 cm3.4.统计说明: 某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).甲、乙两地相距100千米, 当汽车以多大的速度匀速行驶时, 从甲地到乙地耗油最|少? 最|少为多少升?解 当速度为x 千米/时时, 汽车从甲地到乙地行驶了100x 小时, 设耗油量为h (x )升,依题意得h (x )=⎝ ⎛⎭⎪⎫1128 000x 3-380x +8×100x =11 280x 2+800x -154(0<x ≤120),h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120). 令h ′(x )=0, 得x =80.因为x ∈(0,80)时, h ′(x )<0, h (x )是减函数; x ∈(80,120)时, h ′(x )>0, h (x )是增函数,所以当x =80时, h (x )取得极小值h (80)=11.25(升). 因为h (x )在(0,120]上只有一个极小值, 所以它是最|小值.答 汽车以80千米/时匀速行驶时, 从甲地到乙地耗油最|少, 最|少为.1.解有关函数最|大值、最|小值的实际问题, 在分析问题中的各个变量之间的关系的根底上, 列出符合题意的函数关系式, 并确定函数的定义域.注意所求得的结果一定符合问题的实际意义.2.利用导数解决生活中的优化问题时, 有时会遇到在定义域内只有一个点使f ′(x )=0, 如果函数在该点取得极大(小)值, 极值就是函数的最|大(小)值, 因此在求有关实际问题的最|值时, 一般不考虑端点.4.5.3 定积分的概念1.定积分⎠⎛011d x 的值等于( )A .0B .1 C.12 D .2 答案 B2.⎠⎛13f (x )d x =56, 那么 ( )A.⎠⎛12f (x )d x =28B.⎠⎛23f (x )d x =28C.⎠⎛122f (x )d x =56 D.⎠⎛12f (x )d x +⎠⎛23f (x )d x =56 答案 D3.如下图, ⎠⎛a b f 1(x )d x =M , ⎠⎛ab f 2(x )d x =N , 那么阴影局部的面积为( )A .M +NB .MC .ND .M -N 答案 D4.不用计算, 根据图形, 用不等号连接以下各式( )(1)⎠⎛01x d x ________⎠⎛01x 2d x (图1); (2)⎠⎛01x d x ________⎠⎛12x d x (图2); (3)⎠⎛024-x 2d x ________⎠⎛022d x (图3). 答案 (1)> (2)< (3)<1.定积分可以表示图形的面积从几何上看, 如果在区间[a , b ]上, 函数f (x )连续且恒有f (x )≥0, 那么定积分⎠⎛a bf (x )d x 就表示由直线x =a , x =b (a ≠b ), y =0和曲线y =f (x )所围成的曲边梯形的面积, 这就是定积分⎠⎛a b f (x )d x 的几何意义.2.定积分表示图形面积的代数和被积函数是正的, 定积分的值也为正, 如果被积函数是负的, 函数曲线在x 轴之下, 定积分的值就是带负号的曲边梯形的面积.当被积函数在积分区间上有正有负时, 定积分就是x 轴之上的正的面积与x 轴之下的负的面积的代数和.3.此外, 定积分还有更多的实际意义, 比方在物理学中, 可以用定积分表示功、路程、压力、体积等.4.定积分是一个数值(极限值), 它的值仅仅取决于被积函数与积分的上、下限, 而与积分变量用什么字母表示无关, 即⎠⎛a b f (x )d x =⎠⎛a b f (u )d u =⎠⎛a b f (t )d t =…(称为积分形式的不变性), 另外定积分⎠⎛a b f (x )d x 与积分区间[a , b ]息息相关, 不同的积分区间, 所得的值也不同, 例如⎠⎛01(x 2+1)d x 与⎠⎛03(x 2+1)d x 的值就不同.4.5.4 微积分根本定理1.(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2 答案 D解析 ∵(x +sin x )′=1+cos x ,=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝⎛⎭⎪⎫-π2=π+2. 2.假设⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2, 那么a 的值是( )A .5B .4C .3D .2 答案 D解析 ⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1x d x =x 2|a 1+ ln x ⎪⎪a1=a 2-1+ln a =3+ln 2, 解得a =2. 3.⎠⎛02⎝⎛⎭⎪⎫x 2-23x d x =________.答案 43解析 ⎠⎛02⎝ ⎛⎭⎪⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x=x 33⎪⎪⎪⎪⎪⎪20-x 2320=83-43=43.4.f (x )=⎩⎪⎨⎪⎧4x -2π0≤x ≤π2cos xπ2<x ≤π, 计算⎠⎛0πf (x )d x .取F 1(x )=2x 2-2πx , 那么F 1′(x )=4x -2π; 取F 2(x )=sin x , 那么F 2′(x )=cos x .1.求定积分的一些常用技巧(1)对被积函数, 要先化简, 再求积分.(2)假设被积函数是分段函数, 依据定积分 "对区间的可加性〞, 分段积分再求和.(3)对于含有绝|对值符号的被积函数, 要去掉绝|对值符号才能积分.2.由于定积分的值可取正值, 也可取负值, 还可以取0, 而面积是正值, 因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和, 而是在x 轴下方的图形面积要取定积分的相反数.4.5定积分与微积分根本定理4.5.1曲边梯形的面积4.5.2计算变力所做的功1.由直线x=1, x=2, y=0和y=x+1围成的图形的面积为()A.32B.2 C.52D.3答案 C解析 S =12(2+3)×1=52.2.抛物线y =x 2与直线x =0, x =1, y =0所围成的平面图形的面积为( )A.14B.13C.12 D .1 答案 B3.∑6k =1(1k -1k +1)=________.答案 674.和式1p +2p +3p +…+n pn p +1(p >0)当n →∞时, 能无限趋近于一个常数A , 此时, A的几何意义是表示由y =f (x )和x =0, x =1以及x 轴围成的图形面积, 根据和式, 可以确定f (x )=________. 答案 x p解析 因为1p +2p +3p +…+n pn p +1=1n ·[(1n )p +(2n )p +…+(n n )p ],所以当n →∞时, 和式表示函数f (x )=x p 和x =0, x =1, 以及x 轴围成的曲边梯形面积, 填x p .1.曲边梯形的面积要求一个曲边梯形的面积, 不能用已有的面积公式计算, 为了计算曲边梯形的面积, 可以将它分割成许多个小曲边梯形, 每个小曲边梯形用相应的小矩形近似代替, 对这些近似值求和, 就得到曲边梯形面积的近似值.当分割无限变细时, 这个近似值就无限趋近于所求曲边梯形的面积. 2.变力所做的功变力做功的计算和曲边梯形面积的计算所用的方法是一样的, 仍然是 "化整为零, 以直代曲〞的策略.虽然它们的意义不同, 但都可以归纳为求一个特定形式和的极限.通过这两个背景问题, 能使我们更好地了解定积分的概念.5.3 复数的四那么运算1.假设z-3-2i=4+i, 那么z等于() A.1+i B.1-iC.-1-i D.-1-3i答案 B解析z=(4+i)-(3+2i)=1-3i.2.假设复数z1=1+i, z2=3-i, 那么z1·z2=() A.4+2i B.2+i C.2+2i D.3+i答案 A解析z1·z2=(1+i)(3-i)=4+2i, 应选A.3.5-(3+2i)=________.答案2-2i4.复数11-i的虚部是________.答案1 2解析∵11-i=1+i(1-i)(1+i)=1+i2=12+12i.∴虚部为12.1.复数代数形式的加、减法运算法那么设z1=a+b i, z2=c+d i(a, b, c, d∈R), 那么有z1±z2=(a+b i)±(c+d i)=(a±c)+(b±d)i.即两个复数相加(减), 就是把实部与实部、虚部与虚局部别相加(减).2.复数代数形式的乘法运算法那么(1)复数乘法的法那么复数的乘法与多项式的乘法是类似的, 但必须在所得的结果中把i2换成-1, 并且把实部、虚局部别合并.(2)复数乘法的运算律对于任意的z1, z2, z3∈C, 有z1·z2=z2·z1(交换律),(z1·z2)·z3=z1·(z2·z3)(结合律),z1·(z2+z3)=z1z2+z1z3(乘法对加法的分配律).3.复数代数形式的除法运算法那么在无理式的除法中, 利用有理化因式可以进行无理式的除法运算.类似地, 在复数的除法运算中, 也存在所谓 "分母实数化〞问题.将商a+b ic+d i的分子、分母同乘以c-d i, 最|后结果写成实部、虚局部开的形式: a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=(ac+bd)+(-ad+bc)ic2+d2=ac+bdc2+d2+-ad+bcc2+d2i即可.5.4 复数的几何表示1.在复平面内, 复数z=i+2i2对应的点位于() A.第|一象限B.第二象限C.第三象限D.第四象限答案 B解析∵z=i+2i2=-2+i, ∴实部小于0, 虚部大于0, 故复数z对应的点位于第二象限.2.当0<m <1时, z =(m +1)+(m -1)i 对应的点位于( )A .第|一象限B .第二象限C .第三象限D .第四象限 答案 D解析 ∵0<m <1, ∴m +1>0, -1<m -1<0, 故对应的点在第四象限内. 3.在复平面内, O 为原点, 向量OA→对应的复数为-1+2i, 假设点A 关于直线y =-x 的对称点为B , 那么向量OB→对应的复数为( )A .-2-iB .-2+iC .1+2iD .-1+2i 答案 B解析 ∵A (-1,2)关于直线y =-x 的对称点B (-2,1), ∴向量OB →对应的复数为-2+i.4.在复平面内表示复数z =(m -3)+2m i 的点在直线y =x 上, 那么实数m 的值为________. 答案 9解析 ∵z =(m -3)+2m i 表示的点在直线y =x 上, ∴m -3=2m , 解之得m =9.1.复数的几何意义的理解中需注意的问题 (1)复数的实质是有序实数对.(2)复平面内的纵坐标轴上的单位长度是1, 而不是i.(3)当a =0时, 对任何b ≠0, a +b i =0+b i =b i(a , b ∈R )是纯虚数, 所以纵轴上的点(0, b )(b ≠0)都表示纯虚数.(4)复数z =a +b i(a , b ∈R )中的z , 书写时应小写, 复平面内点Z (a , b )中的Z , 书写时应大写. 2.共轭复数当两个复数的实部相等, 虚部互为相反数时, 这两个复数叫做共轭复数.设复数z =a +b i(a , b ∈R ), 那么其共轭复数z =a -b i.虚部不等于0的两个共轭复数也叫做共轭虚数.5.1 解方程与数系的扩充5.2 复数的概念1.复数z =a 2-(2-b )i 的实部和虚局部别是2和3, 那么实数a , b 的值分别是( )A.2, 1B.2, 5 C .±2, 5 D .±2, 1 答案 C解析 令⎩⎨⎧a 2=2-2+b =3, 得a =±2, b =5.2.以下复数中, 满足方程x 2+2=0的是( )A .±1B .±iC .±2iD .±2i 答案 C3.以下命题正确的选项是( )A .假设a ∈R , 那么(a +1)i 是纯虚数B .假设a , b ∈R 且a >b , 那么a +i>b +iC .假设(x 2-1)+(x 2+3x +2)i 是纯虚数, 那么实数x =±1D .两个虚数不能比拟大小 答案 D解析 对于复数a +b i(a , b ∈R ), 当a =0且b ≠0时为纯虚数.在A中, 假设a=-1, 那么(a+1)i不是纯虚数, 故A错误;在B中, 两个虚数不能比拟大小, 故B错误;在C中, 假设x=-1, 不成立, 故C错误; D正确.4.在以下几个命题中, 正确命题的个数为()①两个复数相等的一个必要条件是它们的实部相等;②两个复数不相等的一个充分条件是它们的虚部不相等;③1-a i(a∈R)是一个复数;④虚数的平方不小于0;⑤-1的平方根只有一个, 即为-i;⑥i是方程x4-1=0的一个根;⑦2i是一个无理数.A.3个B.4个C.5个D.6个答案 B解析命题①②③⑥正确, ④⑤⑦错误.1.对于复数z=a+b i(a, b∈R), 可以限制a, b的值得到复数z的不同情况.2.两个复数相等, 要先确定两个复数的实、虚部, 再利用两个复数相等的条件进行判断.第6章推理与证明6.1合情推理和演绎推理6.1.1 归纳1.关于归纳推理以下说法正确的选项是()A.归纳推理是一般到一般的推理B.归纳推理是一般到特殊的推理C.归纳推理的结论一定是正确的D.归纳推理的结论不一定正确答案 D2.由2+13+1>23,1+35+3>15, ,7+0.5)>37, 运用归纳推理, 可猜测出的合理结论是()A.c+ba+b>caB.1+1 n+1>1nC.假设a, b, c∈(0, +∞), 那么b+ca+c >b aD.假设a>b>0, c>0, 那么b+ca+c >b a答案 D3.数列2,5,11,20, x,47, …中的x等于________.答案324.观察以下不等式: |2+3|≤|2|+|3|, |(-3)+5|≤|-3|+|5|, |-2-3|≤|-2|+|-3|, |4+4|≤|4|+|4|, 归纳出一般结论为______________________(x, y∈R).答案|x+y|≤|x|+|y|解析观察易发现: 两个实数和的绝|对值不大于这两个数的绝|对值的和, 即|x+y|≤|x|+|y|.1.归纳推理的前提和结论不具有必然性联系, 前提正确, 其结论不一定正确.结论的正确性还需要理论证明或实践检验.2.归纳推理的特点: (1)归纳推理是由局部到整体、由特殊到一般的推理, 因此, 由归纳推理得出的结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质, 结论不一定真实, 因此它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理, 通过归纳推理得到的猜测可以作为进一步研究的起点, 帮助人们发现问题和提出问题.6.1.2类比1.下面几种推理是类比推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°, 归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分, 由此推出全班同学的成绩都是100分;④三角形的内角和为180°, 四边形的内角和为360°, 五边形的内角和为540°,由此推断出凸n边形内角和是(n-2)×180°.A.①②B.①③C.①D.②④答案 C2.下面使用类比推理恰当的是() A. "假设a·3=b·3, 那么a=b〞类推出 "假设a·0=b·0, 那么a=b〞B. "(a+b)c=ac+bc〞类推出 "a+bc=ac+bc〞C. "(a+b)c=ac+bc〞类推出 "a+bc=ac+bc(c≠0)〞D. "(ab)n=a n b n〞类推出 "(a+b)n=a n+b n〞答案 C解析由类比推理的特点可知.3.扇形的弧长为l, 半径为r, 类比三角形的面积公式S=底×高2, 可推知扇形的面积公式S扇形等于________.答案lr 24.由三角形的性质通过类比推理, 得到四面体的如下性质: 四面体的六个二面角的平分面交于一点, 且这个点是四面体内切球的球心, 那么原来三角形的性质为________.答案 三角形三条角平分线交于一点, 且这个点是三角形内切圆的圆心 解析 二面角类比角, 平分面类比平分线, 故原来三角形的性质为三角形三条角平分线交于一点, 且这个点是三角形内切圆的圆心.1.类比推理是在两个(或两类)不同的对象之间进行比照, 找出假设干相同或相似点之后, 推测在其他方面也可以存在相同或相似之处的一种推理模式, 类比推理所引出的结论并不一定真实.2.类比推理的特点: ①类比是从人们已经掌握了的事物的属性推测正在研究中的事物的属性, 它以旧的认识作根底, 类比出新的结果.②类比是从一种事物的特殊属性推测另一种事物的特殊属性.③类比的结果是猜测性的, 尽管不一定可靠, 但它却具有发现的功能.6.1.3 演绎推理6.1.4 合情推理与演绎推理的关系1.下面几种推理过程是演绎推理的是( )A .两条直线平行, 同旁内角互补, 如果∠A 与∠B 是两条平行直线的同旁内角, 那么∠A +∠B =180°B .某校高三1班有55人, 2班有54人, 3班有52人, 由此得高三所有班人数超过50人C .由平面三角形的性质, 推测空间四面体的性质D .在数列{a n }中, a 1=1, a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2), 由此归纳出{a n }的通项公式答案 A解析A是演绎推理, B、D是归纳推理, C是类比推理.2. "因为对数函数y=log a x是增函数(大前提), 又y=x是对数函数(小前提), 所以y=x是增函数(结论).〞以下说法正确的选项是() A.大前提错误导致结论错误B.小前提错误导致结论错误C.推理形式错误导致结论错误D.大前提和小前提都错误导致结论错误答案 A解析y=log a x是增函数错误.故大前提错.3.把 "函数y=x2+x+1的图象是一条抛物线〞恢复成三段论, 那么大前提: ________; 小前提: ________; 结论: ________.答案二次函数的图象是一条抛物线函数y=x2+x+1是二次函数函数y=x2+x+1的图象是一条抛物线4. "如图, 在△ABC中, AC>BC, CD是AB边上的高, 求证: ∠ACD>BCD〞.证明在△ABC中,因为CD⊥AB, AC>BC,①所以AD>BD,②于是∠ACD>∠BCD.③那么在上面证明的过程中错误的选项是________.(只填序号)答案③解析由AD>BD, 得到∠ACD>∠BCD的推理的大前提应是 "在同一三角形中, 大边对大角〞, 小前提是"AD>BD〞, 而AD与BD不在同一三角形中, 故③错误.1.演绎推理是从一般性原理出发, 推出某个特殊情况的推理方法; 只要前提和推理形式正确, 通过演绎推理得到的结论一定正确.2.在数学中, 证明命题的正确性都要使用演绎推理, 推理的一般模式是三段论, 证题过程中常省略三段论的大前提.6.2直接证明与间接证明6.2.1直接证明: 分析法与综合法1.y>x>0, 且x+y=1, 那么()A.x<x+y2<y<2xy B.2xy<x<x+y2<yC.x<x+y2<2xy<y D.x<2xy<x+y2<y答案 D解析∵y>x>0, 且x+y=1, ∴设y=34, x=14,那么x+y2=12, 2xy=38, ∴x<2xy<x+y2<y, 应选D.2.欲证2-3<6-7成立, 只需证() A.(2-3)2<(6-7)2B.(2-6)2<(3-7)2C.(2+7)2<(3+6)2D.(2-3-6)2<(-7)2答案 C解析根据不等式性质, a>b>0时, 才有a2>b2,∴只需证: 2+7<6+3,只需证: (2+7)2<(3+6)2. 3.求证: 1log 519+2log 319+3log 219<2.证明 因为1log b a =log a b , 所以左边=log 195+2log 193+3log 192=log 195+log 1932+log 1923=log 19(5×32×23)=log 19360. 因为log 19360<log 19361=2, 所以1log 519+2log 319+3log 219<2.4.1-tan α2+tan α=1, 求证: cos α-sin α=3(cos α+sin α).证明 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3, 只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α), 只需证tan α=-12, ∵1-tan α2+tan α=1, ∴1-tan α=2+tan α, 即2tan α=-1.∴tan α=-12显然成立, ∴结论得证.1.综合法证题是从条件出发, 由因导果; 分析法是从结论出发, 执果索因. 2.分析法证题时, 一定要恰当地运用 "要证〞、 "只需证〞、 "即证〞等词语. 3.在实际证题过程中, 分析法与综合法是统一运用的, 把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合; 没有综合也没有分析.问题仅在于, 在构建命题的证明路径时, 有时分析法居主导地位, 综合法伴随着它; 有时却刚刚相反, 是综合法居主导地位, 而分析法伴随着它.6.2.2 间接证明: 反证法。
函数单调性与极值习题课.doc
![函数单调性与极值习题课.doc](https://img.taocdn.com/s3/m/109bd63158fafab069dc02e1.png)
y顼(x)的图象大致是(A. ( —, +8)B. (0, —)C. (0, +3) a aD. (0, a)A4. y = x2 - e~x(x > 0)的单调递增区间为B5.A6.1 0如果函数y = -x2+\nx-ax在定义域上为增函数,则a的取值范围是求函数y =上亍一m工的单调区间。
【学习目标】1、明确利用导函数研究原函数性质(如单调性、极值、最值)的方法;2、总结恒成立问题的求解思路:(1)转化为最值问题(2)分离参数。
[学法指导】运用导数研究函数的性质,题型丰富多样,在处理问题中应抓住以下几点:(1)抓住基本思路:即导函数的正负决定原函数的增减;要求函数在某段闭区间上的最值,先求极值和端点函数值再比较。
(2)对于复杂问题,要善于转化,将所给问题转化为研究某个函数的某个性质,再借助导函数模拟原函数的图像,数形结合分析、处理问题(3)以三次函数为载体,熟悉借助导数研究函数性质的方法。
考点一、导函数与单调性A1.已知函数y = VV)的图象如图[其中广⑴是函数f(x)的导函数1,下面四个图象中)函数f(x)=lnx-ax(a>0)的单调递增区间为( )2 gC7.已知函数f(x) = -x-(x2-3ax一一)(♦ c R),若函数f(x)在(1, 2)内是增函数,求3 2a的取值范围。
小结:(1)求函数/(X)的单调区间即解不等式,对于定义域不是R的函数在求单调区间时要先注意;(2)己知可导函数了0)在区间(",/?)单调递增,则Pxgb),都有r(i)Oo考点二、函数的极值和最值7A1.设函数/(x) = - + ln%,则( )xA. x=L为f(x)的极大值点B. x=L为f(x)的极小值点2 2C. x=2为f(x)的极大值点D. x=2为f(x)的极小值点A2.已知函数f(x)=2x3-6x2+a在[.2, 2]上有最小值.37,求a的值,并求f(x)在[.2, 2]上的最大值。
湘教版高中同步学案数学选择性必修第二册精品课件 第1章 导数及其应用 三次函数的性质 单调区间和极值
![湘教版高中同步学案数学选择性必修第二册精品课件 第1章 导数及其应用 三次函数的性质 单调区间和极值](https://img.taocdn.com/s3/m/69052024178884868762caaedd3383c4bb4cb428.png)
π π
π
f(x)在[- 2 ,-6 )上单调递减,在(-6 ,π]上单调递增,故
π
π
π
π
f(x)min=f(-6 )=-12 -cos(-6 )=-12
−
3
.故选
2
1 2 3 4 5 6 7 8 9 10 11 12 13
D.
5.(多选题)已知函数f(x)=x(x-3)2,若f(a)=f(b)=f(c),其中a<b<c,则( BCD )
1 2 3 4 5 6 7 8 9 10 11 12 13
13.若函数f(x)=x3-ax-1的单调递减区间为(-1,1),求实数a的值.
解 由f'(x)=3x2-a,
①当a≤0时,f'(x)≥0,f(x)在(-∞,+∞)上为增函数.不符合题意.
3
②当 a>0 时,令 3x -a=0,得 x=± 3 ,
9
-2<c<0.故选
A.
f(x)有 3 个不同的零点,则
1 2 3 4 5 6 7 8 9 10 11 12 13
< 0,
9
2
所以
+ > 0,
8.若函数f(x)=-x3-3x2+1在[a,+∞)上的最大值为1,则实数a的取值范围是
( D )
A.[-3,+∞)
B.(-3,+∞)
C.(-3,0)
f'(x)>0,函数f(x)单调递增,当-1<x<2时,f'(x)<0,函数f(x)单调递减,当x>2时,
f'(x)>0,函数f(x)单调递增,
1 2 3 4 5 6 7 8 9 10 11 12 13
函数的单调性与极值点例题和知识点总结
![函数的单调性与极值点例题和知识点总结](https://img.taocdn.com/s3/m/bb2e915fdf80d4d8d15abe23482fb4daa58d1d8a.png)
函数的单调性与极值点例题和知识点总结在数学的世界里,函数的单调性与极值点是非常重要的概念。
它们不仅在数学理论中有着关键地位,还在实际问题的解决中发挥着巨大作用。
接下来,让我们通过一些具体的例题来深入理解这两个概念,并对相关知识点进行总结。
一、函数单调性的定义函数的单调性指的是函数在其定义域内的增减性。
如果对于定义域内的某个区间内的任意两个自变量的值\(x_1\)、\(x_2\),当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么就称函数在这个区间上是增函数;反之,如果当\(x_1 < x_2\)时,都有\(f(x_1) >f(x_2)\),那么就称函数在这个区间上是减函数。
二、函数单调性的判定方法1、定义法设\(x_1\)、\(x_2\)是给定区间上的任意两个自变量,且\(x_1 < x_2\),函数\(f(x)\)在给定区间上具有单调性,作差\(f(x_2) f(x_1)\),然后判断差的正负。
2、导数法对函数\(f(x)\)求导,如果\(f'(x) > 0\),则函数在相应区间上为增函数;如果\(f'(x) < 0\),则函数在相应区间上为减函数。
三、函数极值点的定义设函数\(f(x)\)在点\(x_0\)附近有定义,如果对\(x_0\)附近的所有点,都有\(f(x) < f(x_0)\),则称\(f(x_0)\)是函数\(f(x)\)的一个极大值,记作\(y_{极大值}=f(x_0)\);如果对\(x_0\)附近的所有点,都有\(f(x) > f(x_0)\),则称\(f(x_0)\)是函数\(f(x)\)的一个极小值,记作\(y_{极小值}=f(x_0)\)。
极大值点和极小值点统称为极值点。
四、函数极值点的判定方法1、第一充分条件设函数\(f(x)\)在\(x_0\)处连续,且在\(x_0\)的某去心邻域内可导。
(1)若当\(x\)在\(x_0\)的左侧邻近时,\(f'(x) > 0\);当\(x\)在\(x_0\)的右侧邻近时,\(f'(x) < 0\),则\(f(x_0)\)为极大值。
三次函数性质总结-三次函数的性质
![三次函数性质总结-三次函数的性质](https://img.taocdn.com/s3/m/cf0c999b27284b73f3425009.png)
三次函数性质的探索我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置.其中运用的较多的一次函数不等式性质是:在上恒成立的充要条件接着,我们同样学习了二次函数,利用已学知识归纳得出:当时(如图1)对称轴;当时(图2)的左侧单调递增、右侧单调递减,对称轴在某一区间取得最大值与最小值.其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置.总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢?三次函数专题一、定义定义1 的函数,称为“三次函数”(从函数解析式的结构上命名)。
定义 2 ,把叫做三次函数导函数的判别式。
由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。
系列探究1:开始反思1的相关性质呢?反思2的相关性质呢?反思3的相关性质呢?例题 1.(2012天津理4)函数内的零点个数是( ) (A)0 (B)1 (C)2 (D)3探究一般三次函数先求导1、单调性:(1,此时函数()f x在R上是增函数;(2,令两根为12,x x且,则上单调递增,在上单调递减。
2、零点(1) 032≤-acb,则恰有一个实根;(2) ,且,则恰有一个实根;(3) ,且有两个不相等的实根;(4) ,且,则有三个不相等的实根.说明:(1)(2) 与轴只相交一次,即在上为单调函数或两极值同号.(3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与x 轴有两个公共点且其中之一为切点,所以032>-ac b ,且0)()(21=⋅x f x f ;(4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与x 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032>-ac b 且0)()(21<⋅x f x f .3、奇偶性:函数当且仅当时是奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-三次函数的性质:单调区间和极值测试
1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是
( )
A .f (2),f (3)
B .f (3),f (5)
C .f (2),f (5)
D .f (5),f (3) 答案 B
解析 ∵f ′(x )=-2x +4,
∴当x ∈[3,5]时,f ′(x )<0,
故f (x )在[3,5]上单调递减,
故f (x )的最大值和最小值分别是f (3),f (5).
2.函数f (x )=x 3-3x (|x |<1)
( )
A .有最大值,但无最小值
B .有最大值,也有最小值
C .无最大值,但有最小值
D .既无最大值,也无最小值
答案 D
解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x ) 在(-1,1)上是单调递减函数,无最大值和最小值,故选D. 3.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是 ( )
A .π-1 B.π2
-1 C .π D .π+1 答案 C
解析 因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π,时,y ′>0,则函数在区间⎣⎢⎡⎦
⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C.
4.(2012·安徽改编)函数f (x )=e x sin x 在区间⎣
⎢⎡⎦⎥⎤0,π2上的值域为 ( )
A.
B. C. D.
答案 A 解析 f ′(x )=e x
(sin x +cos x ).
∵x ∈⎣
⎢⎡⎦⎥⎤0,π2,f ′(x )>0. ∴f (x )在⎣
⎢⎡⎦⎥⎤0,π2上是单调增函数, ∴f (x )min =f (0)=0,f (x )max =f ⎝ ⎛⎭
⎪⎫π2=. 5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________.
答案 -71
解析 f ′(x )=3x 2
-6x -9=3(x -3)(x +1).
由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20.
由f (x )max =k +5=10,得k =5,
∴f (x )min =k -76=-71.
1.求函数y =f (x )在[a ,b ]上的最值
(1)极值是部分区间内的函数的最值,而最值是相对整个区间内的最大或最小值.
(2)求最值的步骤:
①求出函数y =f (x )在(a ,b )内的极值;
②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.
2.极值与最值的区别和联系
(1)函数的极值表示函数在某一点附近的局部性质,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.
(2)函数的极值不一定是最值,需要将极值和区间端点的函数值进行比较,或者考查函数在区间内的单调性.
(3)如果连续函数在区间(a ,b )内只有一个极值,那么极大值就是最大值,极小值就是最小值.
(4)可导函数在极值点的导数为零,但是导数为零的点不一定是极值点.例如,函数y =x 3
在x =0处导数为零,但x =0不是极值点.。