药代动力学

合集下载

药物动力学和药代动力学

药物动力学和药代动力学

药物动力学和药代动力学药物动力学和药代动力学是关于药物在体内的行为特征的两个重要方面。

药物动力学研究药物在体内的吸收、分布、代谢和排泄等过程,从而了解药物的作用和副作用。

药代动力学研究药物在体内的代谢过程,包括药物的生物转化、药物代谢酶的活性和酶的基因型等。

本文将对药物动力学和药代动力学进行更详细的介绍。

药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程,从而了解药物作用的过程和药物的作用效果、副作用,剂量等方面的科学。

药物动力学的研究的结果可以为药品的合理使用提供参考,尤其是在临床上提供特定药物的剂量和使用方式。

药物动力学主要涉及以下几个方面:吸收:药物在被人体摄入后,不同的口服给药形式、不同的肠胃环境和不同的药物性质会对药物在肠道内的溶解和吸收产生不同的影响。

药物在肠道内的吸收也与生物利用度有关,即药物在人体内真正发挥治疗作用的程度;分布:药物在血液系统中被输送到全身,血液流动不同部位的血流量会影响药物在全身其他部位的传输和分布。

一些处于生物膜内部的组织,例如脑组织等处于哪个情况的组织,因而导致药物达到那里的浓度不同,从而影响药物的生理效应和治疗效果;代谢:药物在体内的代谢是指在体内发生化学反应后形成新的物质。

药物在体内的代谢过程对药物活性影响很大。

药物代谢通常由肝脏的代谢酶完成,药物也可通过肾脏、肠道、肺脏等排泄器官排出人体外部;排泄:药物在体内的代谢产物及其它废物通过各种排泄路线从体内刷出。

药物在体内的代谢与排泄还会受到疾病状态、年龄、性别、饮食以及药物的剂量、给药路径等多种因素的影响。

药物生物利用度:药物在体内真正发挥治疗作用的程度就是生物利用度。

当人体摄入某种药品后,药物需经过口服吸收后才能转化为活性药物。

药物的生物利用度取决于药物的吸收和消化道的药效。

药物的生物利用度常常指代药物在体内有效浓度和药物总剂量之比,可以用来评价药物在体内发挥医疗或治疗效果的程度。

药物代谢动力学参数:药物代谢动力学参数是指反映药物代谢特点的参数。

药代动力学

药代动力学

药代动力学
药物代动力学是药物体内活动和作用过程的研究,是药物学研究的一部分。


表现为药物从给药途径进入机体,通过组织及血液循环,穿过血脑屏障,最终达到特定细胞或组织,在该部位发挥作用,再经过有效代谢或排泄而离开机体的全过程。

药物代动力学是药物研发和分析过程中不可或缺的环节,它通过对药物的实验
模型,对药物的口服消化、吸收和分布规律,在体内活动和作用力学行为等方面,分析药物的传递路线,在人体生物体系中探究药物作用机制,从而获得更多药物药效学的相关知识。

药物代动力学的研究内容包括物理、化学和生物学,在药物的吸收和排泄及代
谢等过程中的各种反应机制及反应的衍生关系。

其目的是更好地了解药物在机体内的流动路径和活动规律,提高药物的疗效,并且能够更好地应用有效的药物剂量,减少药物的毒副反应。

此外,还可以利用药物代动力学解决小剂量药物在治疗过程中效果不佳、毒副
反应大、药物反应性不稳定甚至目标细胞机制不明等问题,以便设计更巧妙、更优化的用药方案。

总之,药物代动力学是药物药效学研究的重要内容,它为药物分析、计量和调
整药物剂量等提供了有力的技术支持。

药代动力学kp-概述说明以及解释

药代动力学kp-概述说明以及解释

药代动力学kp-概述说明以及解释1.引言1.1 概述概述部分的内容:药代动力学(Pharmacokinetics,简称PK)是研究药物在机体内的吸收、分布、代谢和排泄过程的科学。

药代动力学研究对于评价药物的有效性和安全性至关重要,它可以帮助人们理解药物在体内的行为规律,为临床应用提供科学依据。

药代动力学研究的主要内容包括药物的吸收过程、分布过程、代谢过程和排泄过程。

药物的吸收过程研究药物从给药部位进入血液循环的过程,包括口服、注射、经皮等途径。

分布过程研究药物在体内的分布情况,包括药物在血液中的浓度分布以及药物与组织器官之间的互作。

代谢过程研究身体如何将药物分解和转化成代谢产物,通常由肝脏的酶系统参与。

排泄过程研究通过尿液、粪便、呼吸以及乳汁等途径,将药物及其代谢产物从机体内排出来。

药代动力学参数对于评价药物在体内的行为很重要,常用的参数有药物的生物利用度、血药浓度峰值、半衰期等。

这些参数可以帮助我们判断药物的疗效、剂量以及用药频率,从而更好地指导临床用药。

本文将就药代动力学的基本概念、研究方法以及应用领域进行详细阐述,旨在帮助读者更全面地了解药代动力学的重要性和价值,进而在临床实践中更科学地应用药代动力学知识。

1.2 文章结构本文将按照以下结构进行论述和分析:1. 引言:在文章引言部分,我们首先会概述药代动力学(Pharmacokinetics,简称PK)的基本概念和研究对象,介绍其在药物研发和合理用药中的重要性和应用价值。

同时,我们会明确写作的目的和意义,以及本文的主要内容安排。

2. 正文:正文部分是文章的核心部分,包括以下几个方面的内容:2.1 药代动力学的基础知识:在这一部分,我们将介绍药代动力学的基本原理和基础概念,如吸收、分布、代谢和排泄等过程。

同时,我们会阐述这些过程在药物治疗中的意义,以及药代动力学参数的测定方法和评价标准。

2.2 药代动力学的应用:在这一部分,我们将详细介绍药代动力学在临床药物治疗中的应用。

药物的药代动力学与药效动力学

药物的药代动力学与药效动力学

药物的药代动力学与药效动力学药物的药代动力学与药效动力学是药物研发和应用的重要概念和原理。

药代动力学研究药物在体内的吸收、分布、代谢和排泄过程,而药效动力学研究药物对生物体产生的药理效应。

一、药代动力学1. 药物吸收药物吸收是指药物从给药部位进入血液循环的过程。

吸收速度和程度直接影响药物的药效。

吸收途径包括口服、注射、吸入等。

药物在吸收过程中受到许多因素的影响,如溶解度、pH值、渗透性等。

2. 药物分布药物分布是指药物在体内分布到各组织器官的过程。

药物与血浆蛋白结合率、脂溶性、离子化程度等因素都会影响药物的分布。

此外,血液供应充足的组织器官吸收药物更多,而脂溶性较高的药物则更容易穿过细胞膜。

3. 药物代谢药物代谢是指药物在体内被酶系统代谢为代谢产物的过程。

主要发生在肝脏中的肝酶系统。

药物代谢会影响药物的活性和持续时间,也是药物相互作用的重要因素。

代谢产物可能具有药理活性,也可能是毒性产物。

4. 药物排泄药物排泄是指将代谢产物从体内排出的过程。

主要通过肾脏排泄尿液,也可以通过粪便、呼吸、汗液等途径。

药物的排泄速度与药物的解离速度、肾小管分泌速率等因素有关。

二、药效动力学药效动力学是研究药物对生物体产生的药理效应的学科。

它可以描述药物的剂量-效应关系、治疗窗口、作用机制等。

药物的药效动力学特性是影响临床应用的重要因素。

1. 剂量-效应关系剂量-效应关系研究药物剂量与产生的效应之间的关系。

通常可以分为线性和非线性关系。

线性关系表示药物剂量增加或减少,效应也相应等比例增加或减少。

非线性关系则表示剂量增加或减少,效应并不等比例变化。

2. 治疗窗口治疗窗口是指药物在体内能够产生治疗效果的浓度范围。

在治疗窗口内,药物能够发挥治疗作用;而超出治疗窗口,剂量过高或过低都可能导致药物的不良反应或治疗失败。

3. 作用机制药效动力学也研究药物的作用机制,即药物与靶点结合后产生的药理效应的分子机制。

药物的作用机制研究对于合理用药、药物研发和药物治疗具有重要意义。

药代动力学

药代动力学

药物-机体相互作用一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。

另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。

主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。

药代动力学性质的重要性随着药物化学的发展及人类健康水平的不断提高,对药物的药代动力学性质的要求越来越高:判断一个药物的应用前景特别是市场前景,不单纯是疗效强,毒副作用小;更要具备良好的药代动力学性质。

肽类药物就是最典型的例子。

一般来说,体内的许多生物活性肽如内啡肽等均具有高效低毒的特点,但是,体内不稳定,口服无效。

对药代动力学性质的要求给药方便:口服有效,一次或两次/日(消炎镇痛药、抗高血压药物、抗菌药常用药)靶向分布或靶向活化:抗肿瘤药物起效快:抗过敏药物、镇痛药物药物相互作用少:有利于联合用药,如降脂药与抗高血压药物的合用长期使用不产生耐药性:如抗菌药、抗癌药、抗病毒药。

无蓄积:如果药物或其代谢物不能通过有效途径排出体外,会在体内蓄积,产生毒性.为了表述的方便,常把体内过程分为三个时相:药剂相:片剂或胶囊崩解、溶出,成为可被吸收的形式。

药剂学研究内容。

药代动力相:药物吸收、分布、代谢与排泄。

药代动力学研究内容。

药效相:药物与作用靶点相互作用,通过刺激和放大,引发一系列的生物化学和生物物理变化,导致宏观上可以观察到的活性或毒性。

药理学或毒理学研究内容。

三个时相依次发生,但是可能同时存在:如缓释药物,一部分药物已完成分布、发挥药理作用,但是另一部分还在释放和吸收的过程中。

特别是药代动力相和药效相一般同时存在。

药物的体内过程吸收:药物口服后,进入消化道,在不同部位口腔、胃、肠吸收,进入血液。

分布:进入血液的药物进入作用部位,产生治疗作用或毒副作用。

代谢转化:药物在肝脏或胃肠道通过酶催化的一系列氧化还原反应发生生物转化。

药代动力学及其参数基本概念

药代动力学及其参数基本概念

正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
二、试验设计
一般应选用高、中、低3个剂量组,根据人体 耐受性试验的结果 高剂量组的剂量一般应高于临床试验的治疗 剂量,但不应超过人体的最大耐受剂量 受试人数:每组8~12例
正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
三、 试验操作步骤
三种单剂量的药代动力学试验结果反映不同药物 剂量(小、中、大剂量)的吸收和消除动力学的 规律是线性或非线性动力学
正常受试者药代动力学研究
——单剂量给药的临床药代动力学研究
五、药代动力学参数的估算
线性或非线性动力学的判断标准举例:依立雄胺 (epristeride)的9名健康男性受试者单剂量口服 5 mg、10 mg、20 mg爱普列特片剂进行药代动 力学研究结果如下(表8-2、表8-3)
或因与血浆蛋白结合力高,不易进入组织,其Vd 值常较小,约为0.15~0.3L/kg;与此相反,碱性 有机药物如苯丙胺、山莨菪碱等易被组织所摄取, 血中浓度较低,Vd值常超过体液总量(60kg的正 常人,体液约36L,即0.6L/kg)。例如,地高辛 的Vd达600L(10 L/kg),说明该药在深部组织大 量储存。
物效的 浓最 度临低 。床中最毒佳浓效度果,是(维C持SS)药min物大的于(药CS物S)m的ax最小低于有药
(六)负荷剂量(Loading dose,DL)
概念:临床上为了使药物尽快到达稳态 从而尽早发挥疗效,常常先给予一个较维持 剂量大的剂量使药物迅速达到稳态水平,然 后在预定的给药间隔时间给予维持剂量维持 稳态水平,这个在第一次使用的剂量称为负 荷剂量。
应用
3. 根据表观分布容积调整剂量 通常药物的表观分布容积与体表面积成正

药代动力学参数及其意义

药代动力学参数及其意义

药代动力学参数及其意义1. 引言药代动力学(Pharmacokinetics,简称PK)是研究药物在体内吸收、分布、代谢和排泄过程的科学。

药代动力学参数是描述药物在体内动力学过程的定量指标,对于药物的疗效和安全性评价具有重要意义。

2. 药代动力学参数的分类药代动力学参数主要分为吸收动力学参数、分布动力学参数、代谢动力学参数和排泄动力学参数。

2.1 吸收动力学参数吸收动力学参数描述药物从给药部位到达循环系统的过程。

常用的吸收动力学参数有峰浓度(Cmax)、时间峰浓度(Tmax)、面积下曲线(AUC)等。

•Cmax是药物在体内达到的最高血药浓度,反映了药物在给药后的吸收速度和程度。

•Tmax是药物达到最高血药浓度的时间点,可以用来评估药物的快慢吸收。

•AUC是药物在一定时间内血药浓度与时间曲线下的面积,反映了药物在体内的总体吸收程度。

2.2 分布动力学参数分布动力学参数描述药物在体内分布到各组织和器官的过程。

常用的分布动力学参数有分布容积(Vd)和蛋白结合率。

•Vd是药物在体内分布的虚拟容积,反映了药物在体内的分布广度。

•蛋白结合率是药物与血浆蛋白结合的比例,影响药物的分布和药效。

2.3 代谢动力学参数代谢动力学参数描述药物在体内经肝脏等器官代谢的过程。

常用的代谢动力学参数有清除率(CL)和半衰期(t1/2)。

•CL是药物在单位时间内从体内清除的量,反映了药物的代谢速度。

•t1/2是药物在体内消失一半的时间,反映了药物的代谢速度和持续时间。

2.4 排泄动力学参数排泄动力学参数描述药物从体内排除的过程。

常用的排泄动力学参数有排泄率和清除率。

•排泄率是药物从体内排泄的速率,反映了药物的排泄速度。

•清除率是药物从体内清除的速率,反映了药物的总体排泄能力。

3. 药代动力学参数的意义药代动力学参数对于药物的疗效和安全性评价具有重要意义。

3.1 疗效评价药代动力学参数可以反映药物的吸收速度、峰浓度和总体吸收程度,对药物的疗效产生影响。

药代动力学数据

药代动力学数据
通过建立数学模型,分析药代动力学数据与其他因素之间的关系。
对药代动力学数据随时间变化的情况进行分析,如预测未来值。
数据分析方法
数据变换
对数据进行适当的数学变换,如对数转换、标准化等,以改善数据的分布特性和可比性。
数据清洗
对原始数据进行预处理,如缺失值填充、异常值处理等,以确保数据质量。
数据分组
根据研究目的和实验设计,将数据分成不同的组别或类别。
确保实验操作符合相关规范和标准,减少误差和偏差。
定期对分析仪器进行校准和维护,确保仪器性能稳定可靠。
数据质量控制
03
CHAPTER
药代动力学数据分析
对数据进行描述性统计,如求平均值、中位数、标准差等,以了解数据的分布情况。
描述性统计分析
假设检验
回归分析
时间序列分析
通过设定假设并进行检验,判断数据是否符合预期,如比较两组数据的差异是否具有统计学显著性。
组织分布法
通过测量组织中药物的分布情况来评估药物在体内的分布和靶向性。
微生物法
通过微生物转化或代谢药物来研究药物的理
准确记录每个时间点的药物浓度或代谢产物数据,并进行整理和分析。
测定
采用适当的分析方法对处理后的样品进行药物浓度或代谢产物的测定。
样品处理
对采集的样本进行预处理,如分离血浆、尿液或组织提取物等。
解读数据间的关系
分析药代动力学数据与其他数据之间的关系,如药物浓度与疗效之间的关系。
数据分析结果解读
04
CHAPTER
药代动力学数据应用
药物研发与优化
药代动力学数据可以揭示药物在体内的代谢过程,包括代谢产物的生成和排泄,有助于优化药物的代谢特性。
药物代谢

药药代动力学研究方法

药药代动力学研究方法

药药代动力学研究方法目录一、内容概览 (2)1. 研究背景与意义 (3)1.1 药物研发的重要性 (4)1.2 药物代谢动力学研究的目的与意义 (5)2. 研究方法与论文结构 (6)2.1 研究方法介绍 (7)2.2 论文组织结构 (9)二、药代动力学基础概念与理论 (10)1. 药代动力学定义及研究内容 (11)1.1 药代动力学的概念 (13)1.2 药代动力学研究的主要内容 (13)2. 药物在体内的过程 (15)2.1 药物的吸收 (16)2.2 药物的分布 (18)2.3 药物的代谢 (20)2.4 药物的排泄 (21)三、药代动力学研究方法与技术 (22)1. 实验设计 (23)1.1 实验动物的选择与分组 (24)1.2 给药方案的设计 (26)1.3 采样点的设置与样本处理 (26)2. 药学实验技术与方法应用 (28)一、内容概览药药代动力学(Pharmacokinetics,简称PK)研究方法主要关注药物在体内的动态变化过程,包括药物的吸收、分布、代谢和排泄等过程。

这些研究方法的应用对于理解药物的安全性、有效性和合理性具有重要意义。

在本研究中,我们采用多种先进的药药代动力学研究方法,以确保结果的准确性和可靠性。

具体包括:血药浓度法:通过测定不同时间点血液中的药物浓度,计算出药物的消除速率常数、生物利用度等参数。

这种方法适用于大多数口服和静脉注射给药的药物。

生理药物代动力学模型:基于解剖学和生理结构建立的药物体内动态模型,能够模拟药物在体内的分布、代谢和排泄过程,提供更为精确的药代动力学参数。

统计矩方法:通过对血药浓度时间曲线进行拟合,计算出药物的吸收速率常数、达峰时间、半衰期等参数。

这种方法适用于非线性药动学特征明显的药物。

生物效应法:通过观察药物对生物体的药理效应,间接反映药物在体内的动态变化过程。

这种方法适用于那些药理作用与血药浓度无直接关系的药物。

模型模拟与实验验证:将建立的数学模型与实验数据进行对比和分析,不断优化模型的结构和参数,以提高研究的准确性和可靠性。

药物的药代动力学

药物的药代动力学

药物的药代动力学药物的药代动力学是指药物在体内的吸收、分布、代谢和排泄过程,这些过程直接影响药物在体内的浓度和作用方式。

药代动力学的研究对于合理用药非常重要,可以帮助医生确定药物的适当剂量和给药频率,避免药物在体内积累过多或者浓度过低的情况发生。

1. 药物的吸收药物在体内的吸收通常是通过口服、注射、吸入等途径进行。

吸收速度和程度会受到很多因素的影响,比如药物的溶解性、分子大小、给药途径等。

吸收速度快的药物可以快速达到最高血药浓度,但持续时间相对较短;而吸收速度慢的药物会有一个延迟的效应,但作用时间较长。

2. 药物的分布药物在体内的分布受到血液循环、脏器血流和药物与蛋白结合等因素的影响。

一些药物会选择性地在某些组织或器官富集,比如抗生素对于感染部位的选择性吸收。

而有些药物则会广泛分布到全身各个组织中,比如弱酸性药物更容易被脂溶性的细胞吸收。

3. 药物的代谢药物在体内主要由肝脏的代谢酶参与代谢,转化为更容易排泄的水溶性代谢物,随后通过尿液、胆汁等途径排出体外。

药物的代谢速度和途径受到遗传因素、年龄、性别、疾病状态等影响。

有些药物会通过代谢生成活性代谢物,如毒性代谢物,也会对机体产生负面影响。

4. 药物的排泄大部分药物在体内被肾脏排泄,少部分则通过肝脏或其他途径排出体外。

药物在体内的清除速率对于药物的有效浓度以及副作用有重要影响。

肾功能衰竭、药物相互作用等因素会对药物的排泄产生影响,需要在临床用药时加以考虑。

总之,药物的药代动力学是一个复杂而关键的研究领域,对于理解药物在体内的行为和对治疗效果的预测至关重要。

只有充分了解药代动力学的特点,医生才能更好地为患者进行个体化用药,提高治疗效果,减少不良反应的发生。

希望未来能有更多的研究和临床实践,为药物的合理应用提供更多有力的支持。

药理学 第2章 药物代谢动力学

药理学 第2章 药物代谢动力学
是少数药物消除形式
等量等间隔多次给药血中积累药物总药量
t1/2数
给药后的
经过半衰期药量
1
100% A0
50% A0
2
150% A0
75% A0
3
175% A0
87.5% A0
4
187.5% A0
93.8% A0
5
193.8% A0
96.9% A0
6
196.9% A0
98.4% A0
7
198.4% A0
99.2% A0
常用药动学参数
1.. 血浆半衰期:
Half-life (in Conc.-Time Curve)
是临床用药间隔的依据
Half-Life The amount of time required to rid the body of half of the initial concentration of the drug.
三、药物的分布:
影响药物分布的因素: 1.药物与血浆蛋白结合; 2.局部器官的血流量; 3.体液pH; 4.组织亲和力; 5.体内屏障,包括血脑屏障和胎盘屏障。
血浆蛋白结合(Plasma protein binding)
D+P
DPc
可逆性(Reversible equilibrium) 可饱和性(Saturable)
血脑屏障
(Blood-brain barrier, BBB)
由毛细血管 壁和N胶质细 胞构成
Blood Brain Barrier
四、生物转化 (transformation / metabolism)
又称为药物代谢,是药物在体内发生的 化学变化,药物经转化后成为极性高的 水溶性代谢物而利于排出体外。

药代动力学

药代动力学

前言药物代谢动力学是定量研究药物在生物体内吸收、分布、排泄和代谢规律的一门学科。

随着细胞生物学和分子生物学的发展,在药物体内代谢物及代谢机理研究已经有了长足的发展。

通过药物在体内代谢产物和代谢机理研究,可以发现生物活性更高、更安全的新药。

近年来,国内外在创新研制过程中,药物代谢动力学研究在评价新药中与药效学、毒理学研究处于同等重要的地位。

药物进入体内后,经过吸收入血液,并随血流透过生物膜进入靶组织与受体结合,从而产生药理作用,作用结束后,还须从体内消除。

通过在实验的基础上,建立数学模型,求算相应的药物代谢动力学参数后,对可以药物在体内过程进行预测。

因此新药和新制剂均需要进行动物和人体试验,了解其药物代谢动力学过程。

药物代谢动力学已成为临床医学的重要组成部分。

中国药科大学药物代谢动力学研究中心为本科生、研究生开设《药物代谢动力学》课程教学已有二十多年历史,本书是在原《药物动力学教学讲义》基础,经多年修正、拓展而成的。

全书十三章,三十余万字,重点阐述围绕药物代谢动力学理论及其在新药研究中的作用,与其它教材相比,创新之处在于重点阐述现代药物代谢动力学理论及其经典药物代谢动力学在新药及其新制剂研究中的应用以及目前迅速发展的药物代谢动力学体外研究模型等新内容。

本书编著者均是长期在药物代谢动力学教学和研究第一线的教师。

因此,本书的实践性与理论性较强,可作为高年级本科生、硕士生教材使用,也可作为从事药物代谢动力学研究及相关科研人员的参考书。

编者药物代谢动力学主编:王广基副主编:刘晓东,柳晓泉编者(姓氏笔画为序)王广基、刘晓东、陈西敬、杨劲、柳晓泉内容提要:药物代谢动力学是定量研究药物在机体内吸收、分布、排泄和代谢规律的一门学科。

在创新研制过程中,药物代谢动力学研究与药效学、毒理学研究处于同等重要的地位,已成为药物临床前研究和临床研究重要组成部分。

本书重点阐述围绕药物代谢动力学理论及其在新药研究中的作用,与其它教材相比,创新之处在于重点阐述现代药物代谢动力学理论及其经典药物代谢动力学在新药及其新制剂研究中的应用以及目前迅速发展的药物代谢动力学体外研究模型等新内容。

药代动力学-PPT

药代动力学-PPT

斜率为
:体形变异指数 常数
药物间的主要差别在于
多数组织重量的约等于1
与机体功能有关的在0.65-0.8之间(GFR,耗氧量等)
帕尼培南(碳青霉烯类抗生素)
氨替比林
内 在 清 除 率
苯妥英
氨替比林和苯妥英肝内在清除率和体重的关系
注意点:
1,异速增大方程对多数药物适用,但也有预测值 与实测值相差大的药物,此时用校正法校正。
周边室 Xp。Vp
dXc dt =-(k12+k10)Xc+k21Xp dXp dt =k12Xc- k21Xp 经拉普拉斯转换
Ct=A e- t + B e- t
计算药代动力学参数的程序
PCNONLIN, 3P87, 3P97, PK-BP-NI等
k10k21 k21 k12 k10
4)效应为间接的, 存在时间差。
3.药物效应超前于血药浓度变化
如果按时间顺序进行浓度-效应一对一作图,得到曲线呈顺时 针滞后环(clockwise-hysteresis)
造成这种现象的原因
1)快速耐受性(受体的下向调节或非活性产物增多) 2)形成抑制代谢物 3)立体选择性代谢仍然用消旋体表示。
② 生化参数如酶活性参数(Vmax,Km)
③药物热力学性质如脂溶性, 电离性等
④药物与机体相互作用性质, 如膜通透 性、药物与血浆蛋白结合率以及药物与 组织亲和力等。
组织/血浆中药物浓度比Kp测定
1)稳态给药方法 非消除性组织
Kp
CT ,ss CA,ss
消除性组织 2)面积法
非消除性组织
Kp
CT ,ss C A,ss (1 E)
4,消除过程为物理性 5,有足够的数据回归

以药代动力学

以药代动力学

以药代动力学1. 简介以药代动力学(Pharmacokinetics,简称PK)是研究药物在体内吸收、分布、代谢和排泄过程的科学。

它通过定量描述和分析药物在体内的浓度变化规律,为临床用药提供理论依据。

本文将从吸收、分布、代谢和排泄四个方面对以药代动力学进行详细介绍。

2. 吸收吸收是指药物从给药途径进入体内的过程。

常见的给药途径包括口服、皮肤贴剂、注射等。

吸收速度和程度直接影响到药物的疗效和毒性。

2.1 口服给药口服给药是最常见的给药途径之一,也是最方便的一种方式。

口服给药后,药物需要通过胃肠道吸收进入血液循环系统。

2.1.1 药物溶解大部分口服制剂需要在胃酸中溶解才能被吸收。

溶解速度会影响到口服制剂的吸收速度。

2.1.2 肠道吸收药物在肠道吸收时,会受到肠道通透性、血流灌注和肠道酶的影响。

一些药物需要通过转运蛋白才能被吸收。

2.2 皮肤贴剂皮肤贴剂是一种局部给药方式,药物通过贴在皮肤上释放到体内。

这种给药方式适用于一些局部治疗的药物,如止痛贴剂、避孕贴等。

2.3 注射给药注射给药是将药物直接注射到血液循环系统中,绕过胃肠道吸收过程。

这种给药方式可以快速达到高血浆浓度,适用于紧急情况或需要快速起效的药物。

3. 分布分布是指药物在体内的分布情况。

它受到血液循环、组织灌注和蛋白结合等因素的影响。

3.1 血液循环血液循环将药物输送到全身各个组织和器官。

血液中的蛋白结合也会影响到药物在体内的分布。

3.2 组织灌注组织灌注是指药物在不同组织和器官之间的分布情况。

不同组织的灌注率不同,也会影响到药物在体内的分布。

3.3 蛋白结合药物在血液中可以与蛋白结合,形成药物-蛋白复合物。

这种结合会影响到药物的活性和分布。

4. 代谢代谢是指药物在体内被生化酶系统转化为代谢产物的过程。

主要发生在肝脏中,也可以发生在其他组织和器官。

4.1 肝脏代谢肝脏是最重要的药物代谢器官,其中细胞色素P450酶系统起着关键作用。

这些酶可以将药物转化为更容易排泄的代谢产物。

药代动力学及其参数基本概念

药代动力学及其参数基本概念

应用
3. 根据表观分布容积调整剂量 通常药物的表观分布容积与体表面积成正
比,故用体表面积估算剂量比较合理,尤其是小 儿用药或使用某些药物(如抗癌药物)时。
(三)半衰期(half-life time,t1/2)
生物半衰期(biological half-time)是指药物效应下降 一般的时间,血浆半衰期(plasma half-time)是指药物 的血浆浓度下降一般所需的时间。药代动力学的计算,一 般是指血浆半衰期。
药代动力学及其参数基本概念
中山大学临床药理研究所 赵香兰
一、药代动力学的概念
药代动力学(Pharmacokinetics)简称药动 学,是研究机体对药物的作用规律的科学,它应 用动力学(kinetics)原理与数学模式,定量地描 述与概括药物通过各种途径进入机体内的吸收 (Absorption)分布(Distribution),代谢(Metabolism) 和排泄(Elimination),即ADME过程的“量时” 变化或“血药浓度经时”变化的动态规律。

药代动力学主要参数(一)
浓度
峰浓度Cmax
6
达峰时间tmax
4
浓度曲线下的面积AUC 2
0
0
2
图2-1
4
6
8
时间
10 12
服用单剂药物后的药时曲线
(三)表观分布容积
(Apparent volume of distribution,Vd)
概念:药物进入机体后,实际上各组织中 的药物浓度是不同的。在进行药代动力学计算时, 可设想药物是均匀地分布于各种组织与体液,且 其浓度与血液中相同,在这种假设条件下药物分 布所需的容积称为表观分布容积(Vd)。因此, 表观分布容积是一个数学概念,并不代表具体的 生理空间,用来估算在给一定的剂量的药物后, 人体接触药物的程度与强度。

(整理)药代动力学完整版

(整理)药代动力学完整版

1.代谢分数fm:药物给药后代谢物的AUC和等mol的该代谢物投用后代谢物的AUC的比值。

第二章药物体内转运1. 药物肠跨膜转运机制:药物通过不搅动水层;药物通过肠上皮;药物透过细胞间隙;药物通过淋巴吸收。

2. 血浆蛋白:白蛋白、α1-糖蛋白、脂蛋白3. 被动转运的药物的膜扩散速度取决于:油/水分配系数4. 血脑屏障的特点:脂溶性药物易于透过、低导水性、高反射系数、高电阻性。

5. 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。

6. 肝肠循环:某些药物,尤其是胆汁排泄分数高的药物,经胆汁排泄至十二指肠后,被重吸收。

一、药物跨膜转运的方式及特点1. 被动扩散特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量2. 孔道转运特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关3. 特殊转运包括:主动转运、载体转运、受体介导的转运特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性4. 其他转运方式包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物二、影响药物吸收的因素有哪些①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用三、研究药物吸收的方法有哪些,各有何特点?1. 整体动物实验法能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。

缺点:①不能从细胞或分子水平上研究药物的吸收机制;②生物样本中的药物分析方法干扰较多,较难建立;③由于试验个体间的差异,导致试验结果差异较大;④整体动物或人体研究所需药量较大,周期较长。

2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。

3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。

4. Caco-2细胞模型法Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。

药物代谢动力学药动学

药物代谢动力学药动学

第三章药物代谢动力学药物代谢动力学(pharmacokinetics,PK)简称药代动力学或药动学,是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化规律的科学。

体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。

吸收、分布、排泄通称药物转运(tranportation of drug)。

代谢也称生物转化(biotransformation)。

代谢和排泄合称为消除(elimination)。

图3-1 药物体内过程示意图第一节药物的跨膜转运生物膜:生物膜是细胞膜和细胞内各种细胞器膜(如核膜、线粒体膜、内质网膜和溶酶体膜等)的总称。

一、转运方式(一)被动转运(passive transport)1.脂溶扩散(lipid diffusion;简单扩散,simple diffusion)2.水溶扩散(aqueous diffusion;滤过,filtration through pores)3.易化扩散(facilitated diffusion)(需转运体,有饱和、竞争抑制)特点:顺差(浓度、电位),不耗能;无饱和、竞争抑制。

(二)主动转运(active transport)1.膜泵转运(pump transport)特点:逆差(浓度、电位),耗能;需转运体,有饱和、竞争抑制。

2.膜动转运(cytopsis transport)(1)胞饮(pinocytosis)(2)胞吐(exocytosis)图3-2 药物转运方式示意图二、药物转运体易化扩散和膜泵转运均需要依赖生物膜上的载体介导,这些载体即药物转运体(drug transporter;药物转运蛋白)。

药物转运体分布广泛,影响药物体内过程的各个环节,进而影响药理活性。

药物转运是药物在体内跨越生物膜的过程。

药代动力学名词解释

药代动力学名词解释

药代动力学名词解释药代动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的科学,是了解药物在体内的药物浓度和效应之间关系的重要工具。

以下是对药代动力学相关名词的解释:1. 药物动力学:药物动力学研究药物在体内的吸收、分布、代谢和排泄等过程以及与药物浓度和治疗效果之间的关系。

它是药代动力学的一个重要组成部分。

2. 药物吸收:药物吸收是指药物从给药途径(如口服、静脉注射等)进入体内的过程。

吸收速度和程度是影响药物整体药效的重要因素。

3. 药物分布:药物分布是指药物在体内不同组织和器官之间的传输、分布和积累过程。

体内各个组织和器官的分布差异会影响药物的效果和副作用。

4. 药物代谢:药物代谢是指药物在体内发生化学转化的过程。

药物代谢通常发生在肝脏中,包括氧化、还原、水解等反应,使药物易于被排泄和转化为活性或无活性代谢产物。

5. 药物排泄:药物排泄是指将代谢或未代谢的药物及其代谢产物从体内排出的过程。

主要通过尿液、粪便、呼吸和乳汁等途径进行排泄。

6. 药物半衰期:药物半衰期是指药物浓度下降到初始浓度的一半所需的时间。

半衰期是评价药物在体内停留时间和给药频率的重要指标。

7. 药效学:药效学研究药物的化学和生物学特性以及其在体内的药理作用和治疗效果。

它是药代动力学的另一个重要组成部分。

8. 生物利用度:生物利用度是指药物经口给药后进入循环系统的程度。

它能够反映药物吸收的效率和速度。

9. 最高浓度(Cmax):最高浓度是指药物在给药后在体内达到的最高浓度。

最高浓度通常与药物的吸收速度和给药途径有关。

10. 靶向药物浓度:靶向药物浓度是指药物在体内达到特定靶点的浓度。

靶向药物浓度与药物的给药剂量、吸收、分布和代谢等因素密切相关。

11. 药物作用持续时间:药物作用持续时间是指药物在体内产生治疗效果的持续时间。

药物的代谢和排泄速度决定了其作用持续时间的长短。

12. 药物相互作用:药物相互作用是指多种药物在体内相互影响,改变其药代动力学和药效学特性的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二) 胆汁排泄 肝肠循环:指自胆汁排进十二指肠的结合型药物 在肠中经水解后被再吸收的过程。
肠肝循环(enterohepatic circulation)
Liver
氨苄西林、头孢哌酮、 利福平、红霉素等主要 经过胆汁排泄、故可用 于敏感菌的肝胆道感染。
Drug
强心苷类中毒的解救:同时服 用消胆胺
3. 其它排泄途经:
第一节 药物的体内过程



吸收(absorption)、分布(disribution)、 代谢(metablism)和排泄(excretion):ADME 药物处置(disposition): A+D+M 消除(elimination):D+M 药物的体内过程直接影响到药物在其作用部位的 浓度和有效浓度维持的时间,从而决定药物作用 的发生、发展和消除; 药物的体内过程是药物发挥药理作用、产生治疗 效果的基础,是临床制定给药方案的依据。
简单扩散:绝大多数药物按此方式通过生物膜。
又称脂溶扩散(lipid diffusion),主要与药物的 脂溶性与解离度有关。非极性、解离度小或脂溶性 强的药物容易通过。
大部分药物属于有机弱酸或有机弱碱,解离度影响 他们的脂溶性。 解离度取决于药物的解离常数Ka及所处溶液的pH。
药物本身的特性 所处环境
主动转运 (active transport)
特点: 可逆浓度差转运 消耗能量 需载体,有饱和性 有竞争性抑制现象(例:丙磺舒与青霉素)
易化扩散 (facilited diffusion)
特点: 不需要能量,有饱和性 (例:葡萄糖进入 红细胞、维生素B12通过胃粘膜)。
主要影响药物通过细胞膜的因素
unbound
90mg
unbound
90mg + 5mg
10mg bound
negligible
10mg -5mg bound 5mg + 5mg unbound
significant
5mg unbound
95mg bound
95mg – 5mg bound
与血浆蛋白结合率比较高的药物
> 95% bound
Thyroxine 甲状腺素 Warfarin 华法林 Diazepam 地西泮 Frusemide 呋塞米 Heparin 肝素 Imipramine 丙咪嗪
> 90% but < 95% bound
Glibenclamide 格列本脲 Phenytoin 苯妥英 Propranolol 普萘洛尔 Sodium Valproate 丙戊酸钠
3、小肠及直肠吸收 per rectum
儿童、呕吐、昏迷时采用; 50%不经过肝脏;不规则、不完全、对黏膜有刺激 作用。
消化道外给药途径

皮内 肌内 皮下 静脉内 皮肤 吸入
intradermal (ID) intramuscular (IM) subcutaneous (SC or SQ) intravenous (IV) transdermal Inhalation


肠道:主动转运和简单扩散, 母乳:偏酸性,pH约6.6
偏酸性 ,碱性药物在母乳中浓度高 (如:吗啡、 阿托品、红霉素、乙醇)。
药物的脂溶性
膜面积与厚度 药物的浓度差 局部血流量
药物的体内过程(ADME) 吸收 分布 代谢 排泄

absorption distribution metabolism excretion
吸收(absorption )
吸收:药物从用药部位向血液循环中转运的 过程
血管内给药途径无吸收过程,血管外给药途径有吸收过程。
药物的体内过程
体循环
A
D
分布
组织器官
吸收
游离型药
Free
Bound
结合型药
代谢物
排泄
E
生物转化
M 消除
一、 药物分子的跨膜转运
(trans-membrane transport)
跨膜转运可分为被动转运(passive transport)和 载体转运(carrier-mediated transport)

被动转运 (passive transport)

特点:
顺膜两侧浓度差转运 高
不消耗能量 不需载体,无饱和性 各药间无竞争性抑制现象

被动转运包括: 滤过(filtration) 简单扩散(simple diffusion) 滤过(filtration):亲水性的膜孔,
4埃-40埃,水溶性药物借流体静压或渗透压通过亲 水孔道;

体液pH对药物被动转运的影响
弱酸类药物:
pKa:弱酸弱碱类药物在50%解离时的溶液的pH 值。

体液pH对弱碱类药物被动转运的影响
弱碱类药物:

膜两侧不同pH状态,弱酸弱碱类药物被动运转达平 衡时,膜两侧浓度比较:
例:某弱酸性药物 pKa=5.4
分子型 离子型
药物总量
血浆 pH=7.4 胃液 pH=1.4
影响分布的主要因素:
3. 药物与血浆蛋白结合(Protein binding)
•可逆 •影响转运、无药理活性
•不同药物与血浆蛋白结合率不同
•药物之间有竞争性
华法林:抗凝血药,99% 保泰松:抗炎、抗风湿,98%
血药浓度测定时应注意; 血浆蛋白浓度低时应注意。
磺胺异恶唑:抗菌药, 胆红素: 苯妥英:抗癫痫,89% 环孢素:免疫抑制,93%
常见的肝药酶抑制剂

Chloramphenicol
Sodium valproate
Sulphonamides Phenylbutazone


Amiodarone
Omeprazole
氯霉素 丙戊酸盐 磺胺类药 保泰松 胺碘酮 奥美拉唑
保泰松对肝药酶活性的改变依合用药物种类不同而异,对可的松、地高辛等药是酶诱导

药物在体内转化的两个步骤: I相反应 II相反应 药物——————代谢物————结合物 (氧化、水解、还原等) (结合)

药物经生物转化后,其结局如下: ①灭活 ②形成活性代谢物 ③产生毒性代谢物。
(二)药物代谢酶

专一性酶
如ChE, MAO等
非专一性酶(细胞色素 P450药物代谢酶系,CYP450) 生物转化主要在肝脏进行,因促进体内药物生物转化的酶 主要是肝脏微粒体氧化酶系统(又称肝药酶)也称为细胞 色素P-450氧化酶。其特点是:
给药途径对药物吸收的影响
静脉内给药无吸收过程
其它给药途径按吸收速度排序:
吸入→舌下→直肠→肌注→皮下→口服→皮肤
Route
Onset
• IV (intravenous) …..………….…. immediate • SL(sublingual) ……….…………………1-3 min • Transdermal ……….….…………….. 40-60 min
1、肾小球滤过:以膜孔扩散方式 ① 绝大部分药物经肾脏排出体外 ②只有非与血浆蛋白结合的药物可被肾小球 滤过 肾小球滤过率降低可使滤过药量减少。 2、肾小管分泌:近曲肾小管 主动转运:酸性药物载体、碱性药物载体; 同类药物之间有竞争性,如丙磺舒,影响青 霉素和头孢菌素的作用强度及时间。 3、肾小管的重吸收: 主动重吸收:近曲肾小管;被动重吸收:远 曲肾小管。脂溶性药物在排泄过程中可被肾 小管再吸收(与药物本身的pKa、血和尿的 pH有关)
药物在机体内发生化学结构的改变过程,是药物 在体内消除的重要途径
药物代谢的部位:
肝: 肝外部位:intestines, kidneys, brain 等
药物代谢后的变化:
大多数药物经代谢后药理活性减弱或消失 某些药物必须经代谢后才能发挥作用(可的松转 化为氢化可的松才有生物活性)
(一)生物转化方式
Fe3+ D H
(药物氧化)
P-450
(1) (4)
P-450

(结合)
2H+ Fe2+-O2-
H2O Fe2+
D
H
D
H
P-450
(2)
(3)
Fe2+-O2 D H
P-450
(活化)
功能: 例如可的松的活化; 维生素D的活化;

O2
P-450
(加氧)
P-450 代谢药物示意图 要点:通过 p450 加入O2和2e- - D-OH 和 H2O 2e-的 供给靠NADPH2
[HA] (分子型+离子型) 1 [HA] 1
[A-] 100 [A-] 0.0001
101
1.0001

在膜两侧处于不同pH状态时,弱酸性药物被 动运转达平衡时,膜两侧浓度比的计算方法
例如某药pKa=3.4,血中pH=7.4,胃中pH=1.4,当该药物 在体内转运达平衡时,血与胃中的浓度比是多少? 弱酸性药物在碱性侧解离型多,非解离型少,不易透过生物 膜。因此,弱酸性药物中毒时,碱化尿液有助药物的排出。
剂,对甲苯磺丁脲、苯妥英钠则是酶抑制剂。可能是由于保泰松对不同类型的CYP分别起 诱导和抑制作用,而不同类型的CYP代谢不同的药物所致。
五、排泄 excretion
药物以原形或代谢产物形式通过排泄或分泌器官排出 体外的过程,是体内药物消除的重要组成部分。 排泄途径
尿液
胆汁
肠道
肺脏
汗腺
乳汁
(一)、肾排泄



尿液pH值对药物排泄的影响:弱酸性药物在碱性 尿液中解离多,重吸收少,排泄快(巴比妥类中毒 时用碳酸氢钠解救) ,而在酸性尿液中解离少, 重吸收多,排泄慢。弱碱性药物(氨茶碱、哌替啶、 阿托品)则相反。 意义:改变尿液pH值可以改变药物的排泄速度, 用于药物中毒的解毒或增强疗效。 弱酸性药物: 巴比妥类、水杨酸类 弱碱性药物:氨茶碱、哌替啶、阿托品
相关文档
最新文档