电力电缆故障及处理方法

合集下载

铁路10KV电力电缆线路常见故障处理措施

铁路10KV电力电缆线路常见故障处理措施

铁路10KV电力电缆线路常见的故障及处理措施中图分类号:tm247 文献标识码:a 文章编号:1009-914x(2013)16-0010-01电力是铁路运输生产的重要能源。

它与提高运输效率,保证行车安全有着密切关系。

铁路自动闭塞电线路、电力贯通线路及铁路变、配电所、电源线路等设备构成的供电网络是铁路重要的行车设备。

随着城市建设的加快,10kv电缆在铁路的供电网络得到越来越普遍地应用。

因此,10kv电力电缆的质量、施工、安全运行则在铁路电力的正常输送和分配过程中占有举足轻重的地位。

一、电力电缆常见故障以及原因1、电力电缆常见故障在电力系统正常运行过程中,电力电缆常见的故障主要有低电阻接地或短路故障、高电阻接地或短路故障、断线故障、闪络故障、复合型故障等。

2、电力电缆故障发生的原因电力电缆从生产到铺设,从施工到运行,任何环节的疏忽都有可能造成电力电缆故障。

发生电力电缆故障的原因主要有以下几种。

(1)外力破坏造成电缆故障这类故障原因可占所有原因的一半以上,故障发生后,大多会造成大面积的停电事故。

当电缆直接受到外力损坏,比如进行地下管线施工,施工机械牵引过大而拉断电缆,电缆弯曲过度而造成电缆绝缘层和屏蔽层损坏,电缆切剥过程中切割过度,刀痕过深等都会对电缆造成不同程度的损坏。

(2)电缆绝缘受潮和绝缘老化在电缆生产过程中,由于制造工艺不良造成电缆保护层破裂,电缆终端头密封不良,以及在电缆使用过程中电缆的保护套被腐蚀或被异物刺穿,都会造成电缆绝缘受潮,绝缘电阻降低,电流增大,造成电力故障。

此外,电缆绝缘在长期的电流作用下运行,会产生大量的热量,加上电缆绝缘工作环境的不良,比如在长期过电压或不良的化学环境中,导致其物理性能变化,造成电缆绝缘老化或者失效,造成电力故障。

(3)过电压和过热环境电力电缆可能会因为雷击或其他冲击过电压,当电力电缆线路绝缘层内含有杂质,屏蔽层和绝缘层老化等情况发生时,情况尤为严重。

加上,电缆长期在高电流环境中,会过负荷工作,产生大量热量,这样很容易造成电力电缆故障。

国家电网电缆常见故障及原因分析

国家电网电缆常见故障及原因分析

国家电网电缆常见故障及原因分析摘要:近几年,国家对电网运行安全越来越重视。

电力工程中电力电缆是其重要的组成部分,用于输配电。

具有施工方便、绝缘性能好、供电可靠、操作维护简单以及提供电容提高功率等优点,但在使用中也存在电缆接头过热,保护层机械损伤,绝缘老化变质,引起过电压和谐波故障电缆故障,终端头和中间接头设计、电缆工艺和材料选择等问题,一旦发生电缆事故,不仅会给国家造成一定的财产损失,而且会危及人民的生命安全。

基于此,本文从电网常见故障入手,分析了故障产生的原因及相应的对策,以期为电力行业提供帮助。

关键词:电网;电缆;故障;原因一、电力电缆故障分析(1)电力电缆过负荷击穿。

电缆在长期使用中经常处于持续不断的运行状态,这样的超负荷运行会造成电缆绝缘老化和半导体膨胀裂缝等缺陷,在没有及时发现的情况下,缺陷逐渐扩大,当电力负荷较大时,容易使得电缆线芯的温度上升,长期高温作用下,绝缘老化日益加剧,使用寿命缩短,逐步发展成电缆故障。

(2)电缆头或中间接头材料问题。

电缆接头使用材料的质量也对电缆故障有一定影响。

很多企业为了追求利润,选用一些间隔较低的热收缩材料来进行施工。

在操作过程中电缆本身会发热,由于电缆绝缘材料和电缆头材质不同,也会产生不同程度的热胀冷缩,长时间运行在电缆和电缆头材料之间会产生裂缝,造成电流外漏,电缆接头处通过漏电释放于半导体,造成电缆绝缘被击穿,引发电缆故障。

(3)电力电缆因谐振过电压击穿。

当一些回路多次作用于相同幅度的电压,每次都会造成一定程度的绝缘损坏,在正常操作期间导致绝缘降低,造成绝缘体薄弱,在谐波过电压超过电缆损伤部分的极限值,会造成电缆击穿。

(4)电缆终端制作工艺。

电缆终端电晕放电主要是因为电缆三芯分叉处距离较小,芯与芯之间的空隙形成一个电容,可导致相间或对地放电,长期放电会使电缆终端损坏。

二、电力电缆故障产生的原因分析(1)机械损伤。

电缆出现故障的很大部分是由于最初安装时人为造成的机械损坏,或者是由于安装后附近电缆维修时造成的损坏。

电力电缆故障排除及方法

电力电缆故障排除及方法

电力电缆故障排除及方法1. 引言电力电缆的故障排除是电力行业中的重要工作,它有助于确保电缆系统的可靠性和稳定性。

本文将介绍一些常见的电力电缆故障,并提供一些排除故障的方法。

2. 常见故障及排除方法以下是一些常见的电力电缆故障以及排除故障的方法:2.1 断路故障断路故障是指电力电缆中断裂或脱落导致电流无法流通的情况。

排除断路故障的方法包括:- 检查电缆的绝缘层,修复被损坏的绝缘层;- 采用电缆接头或电缆修复套管对断裂部分进行修复;- 替换损坏的电缆段。

2.2 短路故障短路故障是指电力电缆中两个或多个导体之间发生非预期的短接,导致电流异常增大。

排除短路故障的方法包括:- 使用短路定位装置确定短路点的位置;- 切断电缆与电源的连接,并修复或更换导线;- 安装短路保护装置以进行短路过电流的控制。

2.3 绝缘故障绝缘故障是指电缆绝缘层失效或损坏,导致电流从电缆泄漏或绝缘击穿的情况。

排除绝缘故障的方法包括:- 使用绝缘测试仪器检测绝缘电阻,以确定绝缘是否存在问题;- 清洁和修复绝缘层;- 替换损坏的电缆段。

2.4 过载故障过载故障是指电力电缆被超过其额定负荷或额定电流的电流所负荷的情况。

排除过载故障的方法包括:- 降低电缆系统的负荷;- 检查并增加电缆的截面积或容量;- 安装过载保护装置以控制过电流。

3. 结论本文介绍了几种常见的电力电缆故障,以及针对每种故障的排除方法。

在排除电力电缆故障时,应该根据具体情况选择适合的方法,并采取必要的安全措施。

通过有效的故障排除,可以维护电力系统的稳定运行,并降低故障造成的损失。

10kV电力电缆常见故障、故障点查找方法及防治措施

10kV电力电缆常见故障、故障点查找方法及防治措施

10kV 电力电缆常见故障、故障点查找方法及防治措施摘要:在电缆为现代社会提供技术便利的同时也应该注意到电缆在使用过程中一些不可忽视的问题。

本文针对电缆在工作过程中所遇到的故障点进行研究,并对成因进行溯源找出问题的解决方法,为了使电缆更稳定的服务与社会针对目前电缆使用的情况提出若干预防措施。

关键词:10KV电力电缆;电缆故障;解决措施社会技术科技发展得越快人类对电力的需求就越大,在日常生活中电力的输送已经惠及到日常生活中的每一处,电缆的稳定运行是关系到城市建设的关键,因其在城市建设中的地位至关紧要,一旦发生故障就会导致人民群众人身安全受到损害给经济财产带来损失,如何保障电缆的安全运行、发现故障并及时解决进行有效的预防措施一直是电力部门工作的重点。

1.电力电缆常见故障类型总结在排查电缆故障时,要进行故障类型的判定,常见的为以下几种:(1)接地故障:其原因是电缆芯主绝缘部分对地击穿。

(2)短路故障:电缆两个或三个线芯短路。

(3)断线故障:由于电缆的一个或几个线芯被故障电流烧断,并由于外部机械力的作用而导致导线损坏。

(4)闪络故障:电缆耐压试验中经常发生闪络故障,多发生在电缆中间头或终端头内。

其原因是试验中绝缘部分破裂,形成间隙放电通道,当电压达到一定值时发生击穿点,属于开放闪络故障。

相反的是封闭闪络故障,即在特殊条件下,绝缘部分被击穿后再恢复正常,即使测试电压被提高,也不再击穿。

(5)混合故障:当上述情况同时以两种形式发生时,称为混合故障。

2. 10kV电力电缆常见故障类型原因总结2.1外力损害近年来,国家关于电力电缆保护的法律法规得到了加强。

虽然盗贼恶意损坏电缆的案件很少,但由于施工问题引起的电缆损坏而没有主观意识的情况时有发生,大多数施工队伍由于施工需要在电缆线路上的盲目开挖,打桩等工作上的破坏是根本原因。

2.2绝缘部分受潮若是电缆在制造时本身工艺不够精良,投入生产时就会有以下几种情况产生:(1)电缆保护层有破裂。

浅谈电力电缆常见故障的处理方法

浅谈电力电缆常见故障的处理方法

浅谈电力电缆常见故障的处理方法摘要:由于电力与人们生活息息相关,因此,保证电力电缆安全稳定势在必行。

本文结合工作经验,分析了电力电缆常见的原因,并提出了相应的处理方法。

关键词:电力电缆;常见故障;处理方法前言:随着经济的发展,电力电缆应用越来越广泛。

而电力电缆是电力系统的重要设备,与人们生产生活相关,一旦发生故障,就会影响人们的生命财产安全,因此,针对故障原因提出处理方法是非常重要的。

1电力电缆故障常见的原因1.1机械损伤自然现象能够造成电力电缆的损伤,因为热胀冷缩,当电缆温度升高时,电缆的内绝缘胶就会发生膨胀,从而电缆的外套就会被胀破,还有就是电缆在移动时受到较大的摩擦力和拉力,就会使导体和中间接头处被拉断。

其次,还有电力电缆因为受到冲击负荷而造成损失,当供电负荷不平衡时,非常容易发生短路和接地等故障,这些故障能够引起冲击性负荷,从而破坏了电力电缆的绝缘介质。

1.2绝缘介质老化变质长期的过热能够引起电力电缆的故障,这是因为过热能够使绝缘层老化变质,而引起电力电缆长期过热的一个重要原因就是电缆的负荷太高,很难承受。

所以,通风不良的地方,像是电缆密集区、电缆隧道等,还有与热力管道挨的比较接近的电力电缆都可能会发生由于过热造成的绝缘层的快速损坏。

除此之外,过电压也是加速电力电缆绝缘层老化的另一个重要原因,而且,过电压有时还会击穿电力电缆的绝缘皮,造成故障。

1.3电缆设计和制作工艺差电缆的设计对其质量有着重要影响,复合设计标准的电缆应该终端接头和中间接头采用防水材料,电场的分布也需要设计周密。

当设计好电缆后,电缆的制作过程也尤为重要,要严格按照设计来制作,选择适当的材料,优化工艺过程,这样才能制作出符合要求标准的电力电缆。

2电力电缆故障的查找方法电力电缆故障的查找是由三个阶段组成的,即诊断阶段、测距阶段和定点阶段。

由于电力电缆的故障类型不尽相同,所以,需要采用不用的方法对电力电缆进行故障检测。

2.1低压脉冲法测试低压脉冲测试是应用在有低阻故障的情况,例如:短路、开路等。

电力电缆常见故障及处理方法

电力电缆常见故障及处理方法

电力电缆常见故障及处理方法—、10kV电力电缆常见故障及原因1.故障类型电缆故障可概括为接地、短路、断线三大类,其故障类型主要有以下几方面:(1)闪络故障。

电缆在低压电时处于良好的绝缘状态,不会存在故障。

可只要电压值升高到一定范闱,或者一段吋间后某一电压持续升高,那么就会瞬间击穿绝缘体,造成闪络故障。

(2)一相芯线断线或多相断线。

在电缆导体连续试验中,电缆的各个导体的绝缘电阻与相关规定相符,但是在检查中发现有一相或者多相不能连续,那么就说明一相芯线断线或者多相断线。

(3)三芯电缆一芯或两芯接地。

三芯电缆的•芯或者两芯导体用绝缘摇表测试出不连续,然后又进行-芯或者两芯对地绝缘电阻遥测。

如果芯和芯Z间存在着比正常值低许多的绝缘电阻,这种绝缘电阻值高于1000欧姆就被称Z为高电阻接地故障;反Z,就是低电阻接地故障。

这两张故障都称为断线并接地故障。

(4)三相芯线短路。

短路时接地电阻大小是电缆的三相芯线短路故障判断的依据。

短路故障有两种:低阻短路故障、高阻短路故障。

当三相芯线短路吋,低于1000欧姆的接地电阻是低阻短路故障,相反则是高阻短路故障。

2、原因电缆故障的最直接原因就是绝缘降低而被击穿,归纳起来主要有以下几种情况: (1)外力损坏。

电缆故障中外力损坏是最为常见的故障原因。

电缆遭外力损坏以后会出现大面积的停电/故。

例如地下管线施工过程中,电缆因为施工机械牵引力太大而被拉断;电缆绝缘层、屏蔽层因电缆过度弯曲而损坏:电缆切剥时过度切割和刀痕太深。

这些直接的外力因素都会对电缆造成一定的损坏。

(2)绝缘受潮。

电缆制造生产工艺不精会导致电缆的保护层破裂;电缆终端接头密封性不够;电缆保护套在电缆使用中被物体刺穿或者遭受腐蚀。

这些是电缆绝缘受潮的主要原因。

此时,绝缘电阻降低,电流增大,引发电力故障问题。

(3)化学腐蚀。

长期的电流作用会让电缆绝缘产生大量的热量。

如果电缆绝缘工作长期处于不良化学环境中就会改变它的物理性能,使电缆绝缘老化甚至失去效果,电力故障会由此产生。

电力电缆故障原因分析及防范对策

电力电缆故障原因分析及防范对策

电力电缆故障原因分析及防范对策摘要:电缆线路运行环境复杂,运行过程中承受电气应力的同时还要承担温度、腐蚀及外力破坏带来的影响,因此有很多因素会导致电缆及附件故障,威胁着电力系统安全运行。

本文对电缆线路常见故障进行分析,提出全寿命周期内电缆线路的注意事项以及相应的防范措施,对电缆事故有一定的预防作用。

关键词:电力电缆;故障原因;防范对策1电力电缆故障原因分析1.1电缆老化,绝缘性能降低电缆在长时间使用过程中,由于自身外部胶体老化,使部分胶体出现破损或开裂,这就使电缆的绝缘性能被大幅度降低,由于电缆的绝缘胶体失去绝缘作用,使内部的金属电缆容易受到外部因素的侵袭,从而导致电缆的故障率攀升。

电缆外部的绝缘胶体一般为化学制造物,在长期的使用过程中,由于受到阳光照射、高温侵蚀、风化和雨水的侵蚀以及土壤微生物的作用,稳定性会大幅度降低,这种情况是无法避免的,这些情况也属于电缆的正常老化。

还有一部分原因属于电缆的非正常老化,例如电缆的型号与电流电压不匹配,长时间工作之后,加快了电缆的老化程度;电缆敷设周围的环境不佳,恶劣的敷设环境容易对电缆的外部绝缘体造成侵害,比如敷设附近有大量的化学工程,容易使土壤产生强酸性,时间久了会对电缆绝缘体产生一定的腐蚀效果,使电缆的老化速度加快;电缆周围温度过高,使电缆绝缘体长时间受到高温侵袭,这种情况也会加剧电缆的老化。

1.2机械损伤在所有电力电缆常见故障汇总中,机械类损伤十分常见,具体表现为电缆外部保护层受到破损,如果电力维修人员不小心触碰到,会对其身体造成巨大的伤害,甚至可能会导致死亡。

一旦发现机械损伤类故障,故障检修人员应该立即排查其原因,并且给予解决,避免损伤情况越来越严重。

在电力电缆运行过程中,导致电力电缆出现机械损伤类故障的主要原因有:①其他外力的直接作用破坏了电缆,外力的来源一般有两个:人为破坏和不正确的操作;②安装电缆的时候,因为不恰当的操作导致电缆外部绝缘层出现断裂;③敷设和应用电缆的过程中,恶劣的环境因素给电缆造成了机械性损伤。

高压电力电缆故障的起因诊断和处理-

高压电力电缆故障的起因诊断和处理-

高压电力电缆故障的起因诊断和处理在高压电缆的运行中,经常会出现各方面的故障, 电缆运行的可靠程度, 对各大电力系统都有重要的影响, 这一点也越来越受到电力运行部门和使用部门的重视。

分析电缆发生故障的主要原因,掌握相关的电力电缆故障防范措施, 能及时发现电力运行中隐患, 预防意外事故的发生,防止停电事故或者人员伤亡。

一、高压电力电缆故障的起因1、机械损伤类故障比较常见,所占的故障率最大,具不完全统计约占总故障原因的一半以上。

其故障点比较容易识别,危害性比较严重,一般都能造成停电事故,同时还常伴随着设备损坏及人身伤害事故的发生。

但也有些机械损伤造成的电缆损伤相对较小,当时并没有造成故障,但损伤部位经过运行一段时间后才发展成故障。

造成机械损伤的原因有几种:(1)电缆直接受外力破坏,如一些建设项目盲目施工、电缆敷设不规范、电缆遭到人为破坏损伤;(2)电缆在安装时受到损伤,如机械牵引力过大而损坏电缆,电缆弯曲半径超过允许弯曲半径而损伤绝缘层、电缆剥切尺寸过深引起电缆损伤,或其它不规范作业方法均可导致的绝缘层和保护层损伤;(3)一些自然现象也可造成电缆的损伤,如由于热胀冷缩现象造成中间头或终端头的绝缘胶膨胀而胀裂外壳或附近电缆护套,因自由行程而使电缆管口、支架处的电缆外皮擦破,因地表塌陷沉降、山体滑坡等引起的过大拉力而拉断中间接头或电缆本体,因温度太低而冻裂电缆或附件,由于大型设备或车辆的频繁振动而造成电缆损坏等。

2、绝缘受潮。

绝缘受潮一般会在直流耐压和绝缘电阻实验中被发现,其主要表现为泄流电流增大、绝缘电阻降低。

造成绝缘受潮的原因包括:电缆生产质量不佳、电缆密封工艺不佳以及电缆护套受到腐蚀等。

3、绝缘老化变质电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。

当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。

过热会引起绝缘老化变质。

电缆内部气隙产生电游离造成局部过热,使绝缘炭化。

常见电缆故障及电缆故障处理方法

常见电缆故障及电缆故障处理方法

常见电缆故障及电缆故障处理方法电缆线路常见的故障有机械损伤、绝缘损伤、绝缘受潮、绝缘老化变质、过电压、电缆过热故障等。

当线路发生上述故障时,应切断故障电缆的电源,寻找故障点,对故障进行检查及分析,然后进行修理和试验,该割除的割除,待故障消除后,方可恢复供电。

电缆故障最直接的原因是绝缘降低而被击穿。

一、常见的电缆故障原因主要有:1、超负荷运行.长期超负荷运行,将使电缆温度升高,绝缘老化,以致击穿绝缘,降低施工质量.2、电气方面有:电缆头施工工艺达不到要求,电缆头密封性差,潮气侵入电缆内部,电缆绝缘性能下降;敷设电缆时未能采取保护措施,保护层遭破坏,绝缘降低.3、土建方面有:工井管沟排水不畅,电缆长期被水浸泡,损害绝缘强度;工井太小,电缆弯曲半径不够,长期受挤压外力破坏.主要是市政施工中机械野蛮施工,挖伤挖断电缆。

4、腐蚀.保护层长期遭受化学腐蚀或电缆腐蚀,致使保护层失效,绝缘降低。

5、电缆本身或是电缆头附件质量差,电缆头密封性差,绝缘胶溶解,开裂,导致站出现的谐振现象为线路断线故障使线路相间电容及对地电容与配电变压器励磁电感构成谐振回路,从而激发铁磁谐振。

二、断线故障引起谐振的危害断线谐振在严重情况下,高频与基频谐振叠加,能使过压幅值达到相电压[P]的2.5倍,可能导致系统中性点位移,绕组及导线出现过压,严重时可使绝缘闪络,避雷器爆炸,电气设备损坏.在某些情况下,负载变压器相序可能反转,还可能将过电压传递到变压器的低压侧,造成危害。

三、防止断线谐振过压的措施防止断线谐振过压的主要措施有:1、不采用熔断器,避免非全相运行;2、加强线路的巡视和检修,预防断线的发生;3、不将空载变压器长期挂在线路上;4、采用环网或双电源供电;5、在配变侧附加相间电容,其原理是:采用电容作为吸能元件来吸收暂态过程中的能量,从而降低冲击扰动强度以抑制谐振的发生.s一(o+ 3C,,) 1C.,在配变侧附加相间电容△C,使8一[Co+ 3(C U+ A0)/Ca增大,从而增大等值电容C和等值电动势Eo所需电容值可根据文献[6]中方法求出.(6)采用励磁特性较好的变压器有助于减少断线过压的发生几率。

10kV电力电缆常见故障、故障点查找方法及防治措施

10kV电力电缆常见故障、故障点查找方法及防治措施

10kV电力电缆常见故障、故障点查找方法及防治措施摘要:随着近年来我国电力行业的迅速发展,10k V电力电缆应用范围也在不断扩大,其在满足人们日常用电需求的基础上,也产生了很多常见故障,进而使得整体供电质量和供电速率大大下降。

因此,对10kV电力电缆经常出现的故障问题进行深入的分析,很有必要,本文也会从故障问题分析入手,详细介绍10kV电力电缆故障查找方法,并结合实际所需,提出一些有效的防治措施,以便为相关单位作为参考借鉴。

关键词:10kV电力电缆;常见故障;查找方法;防治措施目前,大多数地区都会采用10KV电力电缆来进行电能输送和分配,因为该电力电缆不仅可以提升城市形象,而且还能保证城市供电安全可靠性,所以,这就要求相关单位必须重视10KV电力电缆的合理敷设和安装,尽量使其施工质量与国家规定标准要求相一致。

但是在实际运行时,10kV电力电缆却经常会发生运行故障,进而使得各地用电事故频频发生。

因此,当务之急,就是要寻找一条行之有效的途径来解决10kV电力电缆故障问题。

1.电力电缆常见故障及成因分析1.1常见故障1.1.1接地故障一般情况下,10kV电力电缆所发生的接地故障可分为两种形式,即单相接地故障和多相接地故障,无论是哪种故障,其接地电阻都是以1兆欧为基准,若是超过这个电阻参数,则视为高阻接地故障,若是低于这个电阻参数,则视为低阻接地故障。

1.1.2短路故障该电力电缆故障形式极为繁杂,常见的有:低阻短路故障、高阻短路故障、电缆芯线两相短路故障或三相短路故障等。

在判断故障类型时,相关工作人员可结合国家相应的电业安全操作标准要求来进行,这样才能保证故障判断的准确性和科学性。

1.1.3断线故障据相关试验证明,在10kV电力电缆长期运行过程中,其经常会存在一相或多相不连续现象,因此,为了保证故障判断的准确性,看其是否存在断线故障,则相关工作人员可以对电缆导体绝缘电阻值进行详细的检测,进而结合检测结果,就可确定该故障为单向断线或多相断线。

10kV电力电缆常见故障处理

10kV电力电缆常见故障处理
种。
低阻故障 又称为短路故障 , 是指 电缆芯线发生两相 或三相短
1 . 4断 路 故 障 发生断路故障时有两种 测试方法 , 一种是测得 电缆的绝缘电 故 障 点 不 明 , 用 电缆 故 探 仪 检 查 , 测得故障 点为距4 6 #杆 3 l 米
表 摇 测 电缆 绝 缘 : AB: 5 0 0 M Q ;B C :5 0 0 M Q; AC :5 0 0 M Q; A0 :0 M Q; B 0 :5 0 0 M Q ;A0 :5 0 0 M Q ;确 认 电 缆 A 相 接 地 ,
政工 ・ 管理
建材发展导 向 2 0 1 3 年 1 月
1 0 k V电力电缆常见故障处理
周 培德
成 都 铁 路 局 西 昌供 电段 6 1 5 0 3 1
摘 要: 在铁 路1 0 k v电力贯通线路 中, 电缆得到 了广泛应用 , 如 何避 免电缆在运行 中发 生故障 , 确保 系统安全可靠运行 , 是 需要认 真探 究的 问题 。 本文对1 0 k V电缆常见 的故 障、 查找 方法及相应 防范措施 进行 了探讨 。
将高频率的低压脉冲发送到 电缆 中使其传播 , 直到遇到 不匹 电磁波就会发生 反射 , 反射脉 冲被送回并接收到 路 故障 , 发生低 阻故 障时 , 故障点的绝缘 电阻小于 电缆 的特性阻 配点及故障点 , 这种方法 叫低压脉 冲反射法。 抗, 直流 电阻有可能为零 。 此时 , 低压脉冲测试时 故障 有反射 , 测量仪器中 , 且反射波与发射波反相。 在现实工作 中的运用 。 某车 间 1 0 k V贯通线高压 电缆单相接 地 故障 。3 月 8日上午 , 调度监视到燕 刘臂单相 接地 , 调度远动 1 . 3高 阻 故 障 故障区段在九沙 间。 经线路巡视完毕 , 未 发 现 明显 故障 发生此故障时, 故障 点处测得的 电阻将大于该电缆的特性 阻 操 作 后 , 4 # 开 关 ,故 障 隔 离在 九 沙 4 4 #一 5 7 # 间 。用摇 抗 。高 阻故 障 又 可 以 分 为 高 阻泄 漏 性 故 障 和 高 阻 闪络 性 故 障 两 点 ;后 经 断 开 4

10kV电力电缆常见故障快速查找及防范措施

10kV电力电缆常见故障快速查找及防范措施

10kV电力电缆常见故障快速查找及防范措施摘要:与架空线路相比,电缆故障具有对电力系统安全稳定运行影响更大、故障点查找难度更大、抢修恢复时间更长等特点。

其故障的快速检测和预防一直困扰着供电企业一线运维人员。

文章现结合实践中的一些经验和分析,总结出10kV电力电缆常见故障的快速查找方法和预防措施,希望能为配电网运维提供有益的参考。

关键词:10kV;电力电缆;常见故障;快速查找;防范措施1一般电缆故障的主要原因1.1外力损坏电缆故障大多发生在电缆安装、敷设过程中的机械损坏,或在运行中电缆路径附近受到的机械损坏直接在操作过程中。

1.2绝缘受潮和老化通常发生在直埋电缆或管道中的中间接头处。

在潮湿的气候条件下,电缆中间接头制作或电缆中间接头长期浸入水中,会使接头渗入水或水汽,在作用下形成水枝长时间的电场作用,会逐渐破坏电缆的绝缘强度,并引起失效和漏电现象。

同时,电缆在过热的环境下容易老化,电缆绝缘变差。

导致电缆过热的因素分为内部和外部两种。

电缆绝缘层中的内部气隙会导致局部过热,从而使绝缘层老化和劣化。

此外,由于电缆长期超负荷运行,高温会使绝缘迅速老化,甚至引起绝缘薄弱和击穿。

1.3施工工艺不规范电缆中间接线头、电缆终端头施工工艺不佳(如线头压接不严密、压接接头未打磨、刀痕太深)、选材不匹配,都会造成电场分布不均,引起电缆故障。

要想快速修复故障电缆,必须快速确定故障点的位置。

通常先断开线路电源,然后逐级进行试送电,初步缩小故障范围,然后在估计范围内确定故障点的准确位置。

2电缆故障点的初步估计与定位电缆故障点的初步估计与定位一般采用脉冲反射法。

正确的脉冲波施加在电缆的首端,当脉冲波传播到故障点时,会产生反射波。

设故障点距电缆头端的距离为Lx,脉冲波在电缆中的传播速度为v,则在tx=2Lx/v时刻,电缆头端将接收到反射波。

因此,由波速v和接收到反射波的时间tx可以得到故障点到电缆首端的距离Lx=vtx/2。

反射波的信号强度对于确定tx非常重要。

电缆常见故障分析ppt课件

电缆常见故障分析ppt课件
材料缺陷
16
电缆故障产生的原因
绝缘老化变质
绝缘受潮
电缆过热
工艺问题
工艺问题
机械损伤
材料缺陷
护层的腐蚀
过电压
17
电缆故障产生的原因
中间接头和终端 头的设计不周密,选 用材料不当,电场分 布考虑不合理,机械 强度和裕度不够等是 设计的主要弊病。另 外中间接头和终端头 工艺问题 的制作工艺要求不严, 不按工艺规程的要求 进行,使电缆头的故 障增多,例如封铅不 严、导线连接不牢、 芯线弯曲过度、使用 的绝缘材料有潮气、 绝缘剂未灌满千万盒 内有空气隙等。
绝缘受潮
电缆过热
工艺问题
过电压
机械损伤
材料缺陷
护层的腐蚀
过电压
13
电缆故障产生的原因
大气过电压和内部过电压使电缆绝缘所承受的 电应力超过允许值而造成击穿。
对实际故障进行分析表明,许多户外终端头的 故障是由于大气过电压引起的,电缆本身的缺陷也 会导致在大气过电压时发生故障。
过电压
14
电缆故障产生的原因
障 分
带为基体的半导电屏蔽层, 析
在毛刺突出处产生水树并 测
伸延而导致绝缘击穿。

25
电气方面
游 离
这是在绝缘层与屏蔽层的 空隙产生游离放电,而使绝缘

受到侵蚀所造成的绝缘老化现

象。不过在正常相电压下,游

离放电一般不会发生,仅在电

缆内部有缺陷时才会成为问题。
26
电气方面
所谓树,主要有电树和水树
聚缆响乙,,三、电烯但在电由绝缆于缘取敷层二、化代设中原环会有境产一 、 电的的生电影水
第 二 节
树,缆使其绝缘学性能下气降, 常

电力电缆常见的故障有哪些

电力电缆常见的故障有哪些

引用| 回复| 2011-01-23 21:32:41 1楼林森一、电力电缆常见故障( 1) 接地故障。

电缆一芯或多芯接地。

( 2) 短路故障。

电缆两芯或多芯短路。

( 3) 断线故障。

电缆一芯或多芯被故障电流烧断或外力破坏, 形成完全或不完全断线。

( 4) 闪络性故障。

这种故障大多数在预防性试验中发生, 并多数出现在电缆中间接头或终端。

当所加电压达到某一数值时击穿,电压低至某一值时绝缘又恢复。

( 5) 综合性故障。

同时具有2 种和2 种以上性质的故障。

二、电力电缆产生故障的原因引起电缆故障的原因是多方面的"其原因大致有以下几种1、电缆材料本身和电缆制造$敷设$终端制作等过程中不可避免存在的缺陷&受运行中的电热、化学、环境等因素影响"电缆的绝缘会发生不同程度的老化"而这种老化最终会导致电缆故障的发生2、油纸电缆高落差敷设"上部绝缘油往低处流"使高处绝缘强度降低3、受地下污水、化学物质腐蚀引起电缆护套、铅包、铠装的锈蚀"导致故障的发生4、机械损伤%由于在电缆线路上进行挖掘堆放重物"损伤电缆外皮或金属铠装"使绝缘损伤导致外力破坏故障5、电缆长期过负荷运行电缆温升过高使绝缘加速老化三、防止电缆故障的措施1、加强电缆巡视,防止电缆线路的外力破坏1.1 电缆线路本身的事故很大一部分是由于外力机械损伤而造成的%为了防止电缆线路的外力破坏"必须重视电缆线路的巡视工作,制定相应的巡视制度"确定巡视周期1.2 巡视人员在巡视中应认真填写巡视记录应了解各地区挖掘情况"应特别注意电缆线路周围有无建筑及挖土情况"电缆线路上有无重物堆围有无建筑及挖土情况"电缆线路上有无重物堆放。

巡视中如发现有对电缆线路有损害的行为"应及时进行劝阻,制止"必要时应向有关部门汇报"依据《电力设施保护条例》的有关条文采取必要的强制措施。

电力电缆常见故障及处理方法

电力电缆常见故障及处理方法

电力电缆常见故障及处理方法以电力电缆常见故障及处理方法为题,我们来探讨一下在电力系统中常见的电缆故障及相应的处理方法。

电力电缆作为电力传输和分配的重要组成部分,在使用过程中可能会出现各种故障,了解这些故障的原因及处理方法对于确保电力系统的安全运行至关重要。

一、绝缘损坏绝缘损坏是电力电缆常见的故障之一,主要是由于绝缘材料的老化、机械损伤或电力负荷过大等原因引起的。

一旦绝缘损坏,会导致电流泄漏、短路等问题。

处理方法:1.及时巡视和维护电缆线路,定期检查绝缘材料的老化情况,发现问题及时更换;2.加强电缆的保护措施,避免机械损伤;3.合理配置电力负荷,避免超负荷运行。

二、接头故障电缆接头是电缆线路中的薄弱环节,容易出现故障。

接头故障主要是由于接头连接不良、绝缘材料老化或温升过高等原因引起的。

处理方法:1.接头的连接应该牢固可靠,避免接触不良,接头部位应定期检查,发现问题及时处理;2.绝缘材料的老化情况要及时观察和更换;3.注意接头的温升情况,避免过高温升导致故障。

三、水进入电缆电缆线路在敷设或使用过程中,可能会遇到水进入电缆的问题。

水进入电缆会导致绝缘性能下降,引发电流泄漏、短路等故障。

处理方法:1.电缆的敷设要注意防水措施,尽量避免水进入电缆中;2.定期检查电缆线路,发现漏水情况及时处理;3.遇到水进入电缆的情况,应立即切断电源,进行维修或更换。

四、电缆击穿电缆击穿是指电缆绝缘层被破坏,导致电流直接在绝缘层中流动,引发电弧故障。

电缆击穿可能是由于绝缘层质量不良、电压过高或外界因素引起的。

处理方法:1.选用质量可靠的电缆产品,确保绝缘层的质量;2.合理配置电力负荷,避免电压过高;3.加强电缆的保护措施,避免外界因素对电缆的损害。

五、导体断裂导体断裂是指电缆导体因为外力作用或质量问题出现断裂,导致电流无法正常传输。

导体断裂会引发电流过大、短路等问题。

处理方法:1.加强电缆线路的保护,避免外力对导体的损害;2.选用质量可靠的电缆产品,确保导体的质量;3.定期巡视电缆线路,发现导体问题及时处理或更换。

35千伏电力电缆故障原因与解决对策分析

35千伏电力电缆故障原因与解决对策分析

35千伏电力电缆故障原因与解决对策分析摘要:随着现代化建设的不断深入,电力行业的发展也越来越快速。

电力电缆作为电力输送的主要手段之一,具有安全可靠,输电损耗小等优点,广泛应用于各个领域。

但是,在使用过程中,电力电缆也会出现各种故障,影响电力输送的正常运行。

因此,对电力电缆故障的原因进行深入分析,制定有效的解决对策,对保障电力输送的安全可靠具有重要意义。

关键词:电力电缆;故障原因;解决办法;故障维修一、电力电缆故障原因分析(一)损坏电力电缆在安装过程中,由于施工人员不当操作或者外界原因,如机械损坏、挖掘破坏等,都会导致电力电缆的损坏。

此外,在日常使用过程中,电力电缆也可能会受到人为损坏,如暴力损坏、电缆接头松动等,都会导致电力电缆的故障。

电力电缆的损坏是导致电缆故障的主要原因之一。

电缆在使用过程中,受到的外界环境因素和使用条件的影响,可能会出现多种类型的损坏。

首先,电缆的外鞘层可能会受到物理损坏,如机械刮伤、挤压、钻孔等。

这些物理损坏会导致电缆外鞘层的保护能力下降,从而使电缆内部的绝缘层和导体暴露在外界环境中,容易受到湿气、灰尘、腐蚀等影响,加速电缆老化,最终引起故障。

其次,电缆的绝缘层可能会发生破损、开裂、变硬等老化问题,这些老化问题可能是由于电缆长时间曝露在高温、高湿、阳光直射等恶劣环境中,或者是由于电缆本身材料质量不佳、生产工艺不合理等问题导致的。

绝缘层老化会导致电缆的绝缘能力下降,从而使得电缆容易发生绝缘击穿故障。

另外,电缆的金属导体也可能会受到损坏,如断裂、氧化、腐蚀等。

这些导体损坏问题可能是由于电缆在安装、维护过程中受到错误的操作或施工方式的影响,或者是由于电缆材料质量不佳等原因导致的。

如果导体损坏,电缆的传导能力会降低,从而可能导致电缆过载、短路等问题,最终引起故障。

(二)绝缘老化绝缘击穿指的是绝缘层中的电场强度超过其绝缘能力限制,导致绝缘层中的电荷发生放电现象,最终引起电缆故障。

绝缘击穿的原因主要包括以下几个方面:1. 电压过高:电缆在运行过程中,如果受到电压过高的影响,容易导致绝缘层击穿。

电力电缆常见故障分析及处理

电力电缆常见故障分析及处理

1 . 1断线 性故障 ( 1 ) 机械 损伤 。 机 械 损 伤 造 成 电 缆 故 障 有 长 期 演 变 最 终 形 成 故障 的 情 况 , 也 有 突 发 事 件 直 接 造 成 电 缆 故 障 的情 况 。 长 期演 变 造 成 电缆 故 障 的 原 因有 : 安 装 时 因操 作

缘 电阻低 于 1 0 k Q称 低 阻 接地 , 高于 1 O k o 称 为 高 阻 接地 。 主 要 由于 电缆 腐 蚀 、 铅 皮 裂
纹、 接 头 工艺 和 材 料 等 造 成 ; 断线 性 故 障 指 电缆 某 一 芯 或 数 芯 全 断 或 不 完 全 断 。 电缆 受机械 损伤、 地 形 变 化 的 影 响 或 发 生 过 短 路, 都 能造 成 断 线 情 况 ; 混 合性 故 障 指 包 含 上述两种以上 的故障 。
1 常见故 障类 型及成 因
般 电 力 电 缆 故 障 可 分 为 短 路 性 故 障、 接 地性故 障 、 断 线 性 故 障 和 混 合 性 故 障。 短 路 性 故障 包 括 两相 短 路 和 三 相 短 路 , 多 为 制 造 过 程 中 留 下 的 隐患 造 成 ; 接 地 性 故障 指 电缆 某 一 芯 或 数 芯 对 地 击 穿 , 当绝
不 当 对 电缆 绝 缘 造 成 损 伤 、 电 缆 敷 设 弯 曲 过 度造成损伤 、 过 路 套 管 处 理 不 当 硌 伤 电 缆、 低 温 天 气敷 设 电缆 造 成 防 护 层 损 伤等 。 这 些 损 伤 很轻 微 , 当时 不 会 造 成 故 障 , 但 长 期 使 用 会 使 电 缆 绝 缘 恶 化 最终 导 致 短 路 而 断裂 。 突 发 事 件 造 成 电缆 短 路 的原 因 很 简 单, 主 要 是 在 电 缆 路 径 上 进 地 面 开 挖 施 工 或 巨大外力碾压 , 使 电 缆 直 接 受 到 外 力 造 成断 裂。 ( 2 ) 地形变化影响 。 当 埋地 电 缆 处 地 形 发生 变化 , 如地 震导 致地面 开裂 、 洪 水 冲 刷, 这 种 非 人 力 可 抗 拒 的 灾 害 可 以 导 致 电 缆断裂 。 1 . 2短路 性故障 ( 1 ) 绝缘老 化变质 。 造 成 绝 缘 老 化 的 主 要原因 : 电缆 施 工 未 严 格 按 照 设 计 要 求 进 行或 者 是 电缆长 期 过 负 荷 , 且散热条件差 , 长 期 过 负 荷 运 行 时 电缆 温 度 升 高 , 绝 缘 能 力下降, 电缆 快 速 老化 , 最 终 的 正 常 使 用 寿 命 内 造 成 电缆 绝 缘 击 穿 。 有 的 电 缆 因年 代 久远 出现老化 , 使 得 绝 缘 介 质 内 部 存 在 气

常见电力电缆故障原因分析及处理方法

常见电力电缆故障原因分析及处理方法

常见电力电缆故障原因分析及处理方法本文结合实际,通过对工作中常见的电力电缆故障进行总结分析,得到故障产生的原因,并且有针对性地提出了故障处理的方法及防范措施,为今后的工作和学习提供了经验性保障,有利于提高工作中分析和处理电缆故障的能力。

标签:电力电缆故障原因分析处理方法1.电缆故障的分类和原因分析1.1常见电缆故障分类通过近年来我们对所遇到的电缆故障进行分类总结,发现高压电缆和低压电缆的故障各有许多不同之处,高压电缆故障多以运行故障为主,且大多数是高阻故障,而高阻故障又分泄露和闪络两大类型;而低压电缆故障只有开路、短路和断路三种情况(当然,高压电缆也包括这三种情况)。

1.2电缆故障产生的原因电缆故障产生的最直接原因是绝缘降低而被击穿。

导致绝缘降低的因素很多,归纳一下不外乎以下几种情况:1.2.1外力损伤根据近年来的运行分析来看,由于装置扩容迅速,地面施工较多,造成相当多的电缆故障是由于机械损伤引起的。

比如:加制氢进线电缆在敷设安装时由于不规范施工,造成了机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤。

有时如果损伤不严重,要几个月甚至几年才会导致损伤部位彻底击穿形成故障,有时破坏严重的可能发生短路故障,直接影响用电单位的安全生产,2.20大停电事故,正是由于这个原因造成的。

1.2.2绝缘受潮这种情况也很常见,一般发生在直埋或排管里的电缆接头处。

比如:电缆接头制作不合格和在潮湿的气候条件下做接头,都会使接头进水或混入水蒸气,时间久了在电场作用下形成水树枝,逐渐损害电缆的绝缘强度而造成故障。

1.2.3化学腐蚀电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。

特别是像我厂这样的化工单位电缆腐蚀情况就相当严重。

1.2.4长期过负荷运行。

超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产生附加热量,从而使电缆温度升高。

电力电缆在运行中的常见故障及预防措施分析

电力电缆在运行中的常见故障及预防措施分析

2 电力电缆常见故障的原因
2 . 1 机 械 损 伤
遗漏 ; 绝缘层 内有气泡 、 杂质等 ; 电缆绝缘老化严重。 2 . 4 绝缘 受 潮
电 缆 绝缘 受 潮 很容 易 对 电缆 产 生 极 大 的损 害 ,也 是 电缆故障的主要原因之一 。引起绝缘受潮的原 因一般有
以下几 种 :
第3 2 卷 第 3期
Vo 1 . 3 2 No . 3
企 业 技 术 开 发
T E CHN0L 0G I C AL DE VEL 0P ME NT OF E NT E RP RI S E
2 0 1 3 年 1 月
J a n . 2 0 1 3
电力电缆在运行中的常见故障及预防措施分析

过 电压一般会发生在已经有缺陷的绝缘处 。在较大 电压情况下 , 击穿绝缘层 , 损害电缆 。如雷击可产生极 大 的电压 ,在电缆 已有损伤 的情况下 ,雷击有可能击穿电 缆 。但是总的来说 , 电缆对电压有极强的承受能力 , 可承 受较大的电压 , 超过正常测试电压 的几十倍 以上 。而且 ,
谢 晓 杰 )
摘 要: 在现 代 化进 程越 来越 快 的今 天 , 城 市快速 发展 , 城 市 电网 电缆化 已成 为发展 的趋 势 , 电力 电网 的安 全运 行 直接
影响 着社 会 的稳 定 、 经 济的发 展 及人 民的 正 常生 活 。随 着 电力 电缆 的广 泛 应 用及 电缆 的 长 时 间使 用 , 电缆发 生故 障的 几 率也越 来 越 高。文 章分 析 了 电力 电缆在 日常运行 中的 常见故 障及 故 障原 因 , 并对 防止 电缆 故 障的预 防措 施进 行 分析
电缆本体发生机械外力破坏 ,这类故 障在 电力电缆 事故 中所 占比例较大 。 且对电网安全运行影响较大 , 可能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电缆故障及处理方法
摘要:本文针对不同的电缆故障情况进行分析,总结了一般电缆故障的处理步骤。

并详细介绍了电缆故障点粗测的电桥法和波反射法。

最后绍了电缆故障定点的常用方法。

关键词:故障测寻电桥法脉冲反射
电缆在正常运行和检修作业中易受绝缘老化、绝缘受潮、电缆过热、机械损伤、护层腐蚀、过电压、材料缺陷、中间接头和终端头的设计制造工艺问题等影响而引发故障[1]。

针对不同的故障类型,有不同的处理方式。

故障测寻则是根据检测到的故障状况确定故障性质及故障点。

目前常见的故障点粗测的方法是电桥法和波反射法。

通过故障定点,运维人员就可对故障进行修复,从而使电缆恢复正常运行。

1 电缆故障性质的确定
1.1 电缆故障按性质分类
1.1.1 低阻抗接地或短路故障
电缆一芯或数芯对地绝缘电阻或芯与芯之间的绝缘电阻值低于数千欧,而导体的连续性良好。

一般常见的有单相接地、两相或三相短路、两相或三相接地。

1.1.2 高阻抗接地或短路故障
电缆一芯或数芯对地绝缘电阻或芯与芯之间的绝缘电阻值低于正常值很多,但导体的连续性良好。

一般常见的有单相接地、两相或三相短路接地。

1.1.3 断线故障
电缆各芯绝缘良好,但有一芯或数芯导体不连续。

1.1.4 断线并接地故障
电缆有一芯或数芯导体不连续,而且经电阻接地。

1.1.5 闪络性故障
这类故障大多在预防性耐压试验时发生,并多出现于电缆中间接头或终端内。

发生这类故障时,故障现象不一定相同。

1.2 低阻故障与高阻故障的区别
上述五类故障中,低阻和高租之分并非绝对固定,它主要决定于故障的测寻方法、测寻设备的条件和被试电缆导体电阻的大小。

目前使用的电缆探伤仪试验电压可达600 V,当电缆导体回路电阻在1 Ω以下时,容许的故障电阻值可达100 kΩ。

很明显,试验电压愈低或电缆导体回路电阻愈小,则容许的故障电阻值愈低。

测量高电阻故障时,必须提高试验电压或增加检流计的灵敏度。

一般认为故障电阻在数千欧以下为低阻故障。

当使用低压脉冲法或闪络法测寻电缆故障时,通常认为
100 Ω低阻故障和高阻故障的分界线。

1.3 故障定性
所谓故障定性,就是指确定故障电阻是高阻还是低阻;是闪络还是封闭性闪络故障;是接地、短路、断线,还是他们的组合;是单相、两相,还是三相故障。

通常可根据故障发生时出现的现象,初步判定故障的性质。

当通过故障现象还不能完全将故障性质确定下来的,还必须测量电缆的绝缘电阻和进行线芯的导通试验。

2 电缆故障的测寻步骤
确定了故障性质以后,即可运用各种手段查找故障点。

以便于运维人员进行维护。

2.1 一般的故障测寻步骤
Step1:确定故障性质。

Step2:故障点的烧穿。

如果故障电阻很高,通过施加冲击电压或交流电压烧穿故障点,将高阻故障或闪络性故障变为低阻故障,以便进行粗侧。

Step3:粗侧。

就是测出故障点到电缆任意一端的长度。

Step4:探测故障电缆线路的敷设路径。

对于直埋、排管、充砂电缆沟敷设的电缆就是找出故障电缆的敷设路径和埋设深度,以便进行定点精测。

Step5:故障定点。

就是采用声测、感应、跨步电压等方法进行故障点的精确定位。

上述五个步骤是一般的寻测步骤,不是固定不变的,实际的工作中可根据具体情况省去其中的某些步骤。

2.2 电缆故障点的烧穿
随着交联聚乙烯电缆的大量应用和绝缘监督工作的加强,电缆在运行中发生的故障逐渐减少,而在试验中的故障相对增多。

另外外力破坏引起的故障虽然比以前大大减小,但占故障总数的比例还是很高的。

据有关运行单位的统计[4],试验击穿点的故障电阻一般都很高,90%以上是高阻故障,在电缆运行时绝缘老化和外力破坏所引发的故障中,高阻故障也占70%以上。

因此,在发生的电缆故障中,高阻故障站了绝大多数。

但很多粗测、定点方法和测量仪器必须在较低电阻下才能使用,这就需要将高阻故障进行烧穿处理,使高阻变低阻,以便于测量。

电缆故障点的烧穿方法有交流烧穿、直流电压烧穿和冲击电压烧穿三种。

交流电压烧穿时需要向故障电缆提供无功电流,所以烧穿设备的容量必须足够大。

而采用交流烧穿方法时,由于工频电流在一个周期内要两次过零,每次过零时绝缘有所恢复,故障电阻迅速增大,故障点容易被烧断。

因此,当没必要将故障点电阻烧到100 Ω以下时,一般不使用交流烧穿法。

冲击电压烧穿对设备的容量要求不大,容易实现,但烧穿时间相对较长。

3 故障定位
电缆故障定位,就是查找故障点。

分为故障点的粗测和故障点定点[4]。

3.1 故障点的粗测
故障点的粗测就是测出故障点到电缆任意一端的距离,这一步是故障定点的前提。

粗测方法有很多种,按基本原理归纳有两类:一类为电桥法,另一类为波反射法。

3.1.1 电桥法
电桥法又分为低压电桥法和高压电桥法。

利用故障点两侧的电缆线芯电阻与比例电阻构成Whitestone/Murray电桥是传统经典的探测方法。

图1是这类探测法的原理图。

设被测电缆两端距故障点的距离为L1和L2,电缆全长为L,它们对应的线芯的电阻为R1和R2,显然R1/R2 = L1/L2;接入电桥后构成的电路如图2所示。

图中r1+r2 =r0为比例电位器,其电阻值对应于刻度盘读数P。

平衡后有R1/R2 = L1/L2 = r1/r2;且L1/L = r1/r0 = P%,因此有L1 = L·P%。

3.1.2 波反射法
波反射法分为一次脉冲法(低压脉冲法)、二次脉冲法、弧反射法、三次脉冲法等[6~8]。

脉冲波在电缆中以一定速度传播,在电缆击穿点或电缆端部反射,波反射法根据脉冲的时间差定位,适用范围广,可以定位未知电缆长度及断线故障。

如图3是脉冲反射原理。

3.2 故障定点
电缆运行或检修技术人员根据电缆故障预定位的结果,在电缆故障点附近,通过仪器和设备对电缆故障点的位置进行精确定位的过程。

这一步骤的结论是在0.1米范围内指出故障点的位置。

常用的方法是声磁同步法、跨步电压法和音频感应法。

3.2.1 声磁同步法
声磁的原理接线与冲击电压烧穿故障点的接线图相同。

直流高压向电容器充电使球隙击穿,将电压加在故障点上,使故障点击穿产生火花放电,引起电磁波辐射和机械的音频振动。

声磁同步法的原理就是
利用放电的机械效应,在地面用声波接收器探头拾取振波,根据振波的强弱判定故障点。

3.2.2 跨步电压法
跨步电压法对电缆护套故障有很好的检测效果。

因而主要是针对电缆护套故障的有效定位手段。

原理如图4所示,在故障电缆金属护套上施加一负极性的直流电压,从G点流入土壤的电流形成“V”形的电位分布,跨步电压法正是通过探棒寻找土壤中电势最低点确定故障点位置的。

在故障点两侧。

地电势差是相反的,越接近故障点电势差越小。

3.2.3 音频感应法
音频感应法一般用于故障电阻小于10Ω的低阻故障的定点。

当用声磁同步法进行定点时,因振动声传播受到屏蔽,或外界振动干扰很大,以及接地电阻极低,特别是金属性接地故障的故障点根本无放电声而无法定点时,需用音频感应法进行定点。

音频感应法定点的基本原理与用音频感应法探测电缆路径的原理一样。

探测时,用1kHz的音频信号发生器向待测电缆通音频电流,发出电磁波。

然后在地面上用探头沿电缆路径接受电缆周围电磁场的变化信号,并送入放大器放大。

再将放大后的信号送入耳机或指示仪表,根据耳机中声响的强弱或指示仪表示值的大小定出故障点的位置。

在故障点,耳机中音频信号声响最强。

当探头从故障点前移1~2 m
时,音频信号声响即中断,则音频信号声响最强处即为故障点。

4 结语
综上所述,在故障粗测时采用故障点两侧电缆线芯电阻与比例电阻构成的Murray电桥,是传统经典的定位方法。

由此构成的设备,价格低廉、操作简单。

由于过去低压电桥法仪器测量电压低,通常被认为不适宜高阻。

高压电桥彻底解决了电桥法用于高阻定位的局限性。

电桥法的优势是无盲区、精确、使用方便。

波反射法中的低压脉冲法适用于0~1 kΩ的低阻接地故障,高阻接地故障时先用高压脉冲信号将高阻瞬间击穿,然后采用弧反射法或低压脉冲信号快速测量故障点反射信号进而探测故障点信息。

上述各种方法都有各自的适用环境,对于一些复杂故障,可组合使用上述方法以求获得最佳探测效果。

参考文献
[1] 史传卿.电力电缆安装运行技术问答[M].北京:中国电力出版社,2002.
[2] 卓金玉.电力电缆设计原理[M].北京:机械工业出版社,1999.
[3] 徐应麟.电线电缆手册[M].北京:机械工业出版社,2004.
[4] 电工进网作业许可考试参考教材[M].北京:中国电力出版社,2007.。

相关文档
最新文档