第四章 晶体中的缺陷

合集下载

第4章 晶体缺陷

第4章 晶体缺陷

刃位错的滑移
螺位错的滑移
刃、螺型位错的滑移特点
特征差异:
切应力方向不同 刃型:F⊥l;螺型:F∥l
位错运动方向与晶体滑移方向关系 刃型:运动方向与滑移 方向一致;螺型:运动方向与滑移方向垂直。 统一之处: 两者的滑移情况均与各自的b一致。
b) 位错环(混合型位错)的滑移
A、B处为刃型位错,C、D处为螺型位错,其余各处为 混合型位错。 位错环可以沿法线方向向外扩张而离开晶体;也可以反 向缩小而消失。
透射电镜下观察到的位错线
第三节 位错的能量及交互作用
位错线周围的原子偏离平衡位置,处于较高的能量状 态,高出的这部分能量称为位错的应变能(位错能)
一、位错的应变能
位错的应变能可分为:位错中心畸变能Ec和位错应 力场引起的弹性应变能Ee。 Ec:位错中心点阵畸变较大,需借助点阵模型直接考虑晶体
结构和原子间的相互作用,其能量约为总应变能的1/10~ 1/15,常予以忽略。
和间隙原子的“间隙-空位”对。
Frenkel defect
化合物离子晶体中的两种点缺陷 金属晶体:弗兰克尔缺陷比肖脱基缺陷少得多 离子晶体:结构配位数低-弗兰克尔缺陷较常见
结构配位数高-肖脱基缺陷较重要
间隙原子
定义:晶体中的原子进入晶格的间隙位置而形成 的缺陷。
Interstitial defect

b 2 r
Gb 2 r
b 2 r dr L L Gb
位错线
半原子面
刃型位错的特点
滑移面
a、属于线型位错,但在晶体中为狭长的管道畸变区;
b、是晶体中滑移区与未滑移区的分界线,不一定是 直线,也可以是折线或曲线; c、不能中断于晶体内部

《材料科学基础》课件之第四章----04晶体缺陷

《材料科学基础》课件之第四章----04晶体缺陷

41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l


b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型

第四章晶体中的点缺陷与线缺陷作业题答案

第四章晶体中的点缺陷与线缺陷作业题答案
2 3 解: 3MgO 2Mg Al Mg i 3OO (1)
Al O
'

Al2 O3 2MgO 2Mg 'Al VO 2OO CaF2 '' 2YF3 2YCa VCa 6FF
(2) (4)
CaF2 YF3 YCa Fi' 2FF
CaF

'

2 B、 2YF3 2YCa VCa 6FF
CaF

"

A 可能性较大。因萤石晶体中存较多的八面体空隙,F-离子半径较小,形成填隙型固溶体比较稳定。 6、CeO2 为萤石结构,其中加入 15mol%CaO 形成固溶体,测得固溶体密度 D=7.01g/cm3,晶胞参数 a0= 0.5417nm,试通过计算判断生成的是哪一种类型固溶体。(已知原子量 Ce 140.12,Ca 40.08,O 16.00) 解:对于 CaO-CeO2 固溶体来说,从满足电中性来看,可以形成氧离子空位的固溶体也可形成 Ca2+嵌入阴 离子间隙中的固溶体,其固溶方程为:
当 CaCl2 中 Ca2+置换 KCl 中 K+而出现点缺陷,其缺陷反应式如下:
KCl ' CaCl2 Ca K 2ClCl +VK
CaCl2 中 Ca2+进入到 KCl 间隙中而形成点缺陷的反应式为:
KCl ' CaCl2 Ca i 2ClCl +2VK
5. 试写出以下缺陷方程(每组写出二种),并判断是否可以成立,同时简单说明理由。
CeO 2 CaO Ca " Ce VO O O CeO 2 2CaO Ca " Ce Ca i 2O O

晶体的缺陷

晶体的缺陷
第四章 晶体的缺陷
原子绝对严格按晶格的周期性排列的晶体是不存 在的,实际晶体中或多或少都存在缺陷,至少晶 体不可能是无穷大的。晶体缺陷按几何形态划分 为点缺陷、线缺陷和面缺陷。
点缺陷是原子热运动造成的,在平衡时,这些热 缺陷的数目是一定的。缺陷的扩散不仅受到晶格 周期性的约束,还会发生复合现象。杂质原子的 扩散系数比晶体原子自扩散系数大。离子沿外电 场方向的扩散便构成了离子导电。
-e
Na+ Cl- Na+
用X射线或 射线辐照、用中子或电子轰击晶体。
色心是指晶体中存在的能对特定波长的光产生吸 收的点缺陷。在特定的条件下,很多材料中都可 观察到色心。容易产生色心的材料有碱金属卤化 物、碱土金属氟化物和部分金属氧化物。色心可 以在电离辐射的照射下产生,也可以在一定的氧 化或还原性气氛中加热晶体得到,还可以用电化 学方法产生出一些特定的色心。最常见并研究的 最充分的是碱金属或碱土金属卤化物中的F色心, F色心是俘获了电子的负离子空位。正离子空位 缺陷俘获空穴形成的色心称做V色心。另外,还 有其他类型的色心,如H色心、M色心和R色心 等。BaFBr:Eu中的F色心有F(F)和F(Br) 两种,分别对应于材料中俘获了电子的两种阴离 子空位。
替位式杂质在晶体中的溶解度也决定于原子的 几何尺寸和化学因素。如果杂质和基质具有相近的 原子尺寸和电负性,可以有较大的溶解度。但也只有 在二者化学性质相近的情况下,才能得到高的固溶 度。 元素半导体、氧化物及化合物半导体晶体中的 替位式杂质,通常引起并存的电子缺陷,从而明显 的改变材料的导电性。例如:Si晶体中含有As5+时, 由于金刚石四面体键仅需4个电子,所以每个As多 了一个电子;如果Si晶体中含有三价原子时,由于 共价键中缺少一个电子而形成电子空位即空穴,这 种掺杂的Si晶体都因杂质原子的存在而是电导率有 很大提高。

《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷

《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷

第四章 晶格结构中的缺陷4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为sB k T s n Ne μ−=其中s μ是形成一个空位所需要的能量。

证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为!()!s !s s N P N n n =− 由于s μ个空位的出现,熵的改变[]!ln lnln ()ln()ln ()!!B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===−−−−− 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=−Δ=−−−−−s要使晶体的自由能最小B ()ln 0s s s sT n F u k T n N ⎡⎤⎛⎞∂Δ=+=⎜⎟⎢⎥∂−⎣⎦⎝⎠n 整理得s B k T s s n e N n μ−=− 在实际晶体中,由于,s n N <<s s s n n N N n ≈−,得到 sB k T s n Ne μ−=4.2 铜中形成一个肖托基缺陷的能量为1.2eV ,若形成一个间隙原子的能量为4eV ,试分别计算1300K 时肖托基缺陷和间隙原子数目,并对二者进行比较。

已知,铜的熔点是1360K 。

解:(王矜奉4.2.4)根据《固体物理学》4-8式和4-10式,肖托基缺陷和间隙原子数目分别为 s B k T s n Neμ−= 11B k T n Ne μ−= 得19231.21.61051.38101300 2.2510sB k T s n Ne NeN μ−−××−−−××===× 191231.2410161.381013001 3.2110B k T n Ne Ne N μ−−××−−−××===×4.3 设一个钠晶体中空位附近的一个钠原子迁移时,必须越过0.5eV 的势垒,原子振动频率为1012Hz 。

第四章 晶体中的点缺陷和面缺陷

第四章 晶体中的点缺陷和面缺陷
热平衡态点缺陷:纯净和严格化学配比的晶体中,由于体系能量涨落而形
成的,浓度大小取决于温度和缺陷形成能。
非平衡态点缺陷:通过各种手段在晶体中引入额外的点缺陷,形态和数量
完全取决于产生点缺陷的方法,不受体系温度控制。
晶体中引入非平衡态点缺陷的方法:
快速冷却 低温,形成过饱和点缺陷 (1)淬火 :高温---------
23
P22
(a)M离子空位VM″ ;
· X离子空位VX·
· (b)M离子填隙Mi· ; ( c)M离子错位MX; X离子错位X X离子填隙Xi″ M 24
6.带电缺陷:
对于离子晶体 MX ,如果取走一个 M2+和取走一个 M原子相比,少取了二个电子。 因此,M空位必然和二个附加电子 2e′相联系,如果这二个附加电子被束缚在 M空位上,则M2+空位可写成VM″(=VM2+); 同样,如果取走一个X2-,即相当于取走一个X原子加二个电子,则在X空位上留
16
表4-1为某些化合物的缺陷形成自由能。 目前,对缺陷形成自由能尚不能精确计算,但其大小与晶 体结构、离子极化等因素有关。
17
表2-7为由理论公式计算的缺陷浓度。由表中数据可见,随⊿Gf升高,温度降 低,缺陷浓度急剧下降。
当⊿Gf不太大,温度较高时,晶体中热缺陷的浓度可达百分之几。
18
§4-2 非热力学平衡态点缺陷
1
第四章 晶体中的点缺陷与线缺陷
理想晶体:热力学上最稳定的状态,内能最低,存在于0K。 真实晶体: 在高于 0K 的任何温度下,都或多或少地存在着对理想
晶体结构的偏离。 实际晶体结构中和理想点阵结构发生偏离的区域,就是晶体结 构缺陷。或:造成晶体点阵结构的周期势场畸变的一切因素,都称 之为晶体缺陷。 晶体结构缺陷与固体的电学性质、机械强度、扩散、烧结、化 学反应性、非化学计量化合物组成以及对材料的物理化学性能都密 切相关。只有在理解了晶体结构缺陷的基础上,才能阐明涉及到质 点迁移的速度过程。掌握晶体结构缺陷的知识是掌握材料科学的基 础。

第四章晶体中的点缺陷与线缺陷第三讲

第四章晶体中的点缺陷与线缺陷第三讲

2y
y
y
则化学式为:Ca2yZr1-yO2 x、y为待定参数,可根据实际掺入量确定。
写出固溶体的化学式后,即可确定质点占据正常格点的百分 含量。
如置换型固溶体CaxZrl~xO2-x中:
x Ca 实际所占分数= 1 1 x 4 Zr 实际所占分数= 1 2 x 2 O 实际所占分数= 2
2

(三)固溶体类型的实验判别
对于金属氧化物系统,最可靠而简便的方法
是写出生成不同类型固溶体的缺陷反应方程,根
据缺陷方程计算出杂质浓度与固溶体密度的关系,
并画出曲线,然后把这些数据与实验值相比较,
哪种类型与实验相符合即是什么类型。
1、理论密度计算
( 含 有 杂 质 的 ) 固 溶的 体晶 胞 质 量 W 理论密度 d理 晶胞体积 V
3、 举例 若固溶体的摩尔组成为 0.15molCaO 和 0.85molZrO2 ,写 成原子比形式为Ca0.15Zr0.85O1.85 。
置换式固溶体:化学式 CaxZrl~xO2-x
即X=0.15 1-X=0.85 2-X=1.85 可得X=0.15,所以置换固溶体的化学式为Ca0.15Zr0.85O1.85 ZrO2 属立方晶系,萤石结构, Z=4 ,晶胞中有 Ca2+ 、 Zr4+ 、 O2-三种质点。


2、活化晶格
3、固溶强化

4、形成固溶体后对材料物理性质的影响
1、稳定晶格,阻止某些晶型转变的发生
(1) PbTiO3是一种铁电体,纯PbTiO3烧结性能极差,居里
点为490℃,发生相变时,晶格常数剧烈变化,在常温下
发生开裂。PbZrO3是一种反铁电体,居里点为230℃。两 者结构相同,Zr4+、Ti4+离子尺寸相差不多,能在常温生

第四章 晶体结构缺陷习题与解答

第四章 晶体结构缺陷习题与解答

第四章晶体结构缺陷习题与解答4.1 名词解释(a)弗伦克尔缺陷与肖特基缺陷;(b)刃型位错和螺型位错解:(a)当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。

如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。

(b)滑移方向与位错线垂直的位错称为刃型位错。

位错线与滑移方向相互平行的位错称为螺型位错。

4.2试述晶体结构中点缺陷的类型。

以通用的表示法写出晶体中各种点缺陷的表示符号。

试举例写出CaCl2中Ca2+置换KCl中K+或进入到KCl间隙中去的两种点缺陷反应表示式。

解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。

在MX 晶体中,间隙原子的表示符号为MI或XI;空位缺陷的表示符号为:VM或VX。

如果进入MX晶体的杂质原子是A,则其表示符号可写成:AM或AX(取代式)以及Ai(间隙式)。

当CaCl2中Ca2+置换KCl中K+而出现点缺陷,其缺陷反应式如下:CaCl2++2Cl ClCaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为:CaCl2+2+2Cl Cl4.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么?解:位置平衡是指在化合物MaXb中,M格点数与X格点数保持正确的比例关系,即M:X=a:b。

电中性是指在方程式两边应具有相同的有效电荷。

质量平衡是指方程式两边应保持物质质量的守恒。

4.4(a)在MgO晶体中,肖特基缺陷的生成能为6ev,计算在25℃和1600℃时热缺陷的浓度。

(b)如果MgO晶体中,含有百万分之一mol的Al2O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。

解:(a)根据热缺陷浓度公式:exp(-)由题意△G=6ev=6×1.602×10-19=9.612×10-19JK=1.38×10-23 J/KT1=25+273=298K T2=1600+273=1873K298K:exp=1.92×10-511873K:exp=8×10-9(b)在MgO中加入百万分之一的Al2O3杂质,缺陷反应方程为:此时产生的缺陷为[ ]杂质。

4. 晶体缺陷

4. 晶体缺陷

螺型位错的滑移:在图示的晶体上施加一切应力,当应力足够大 时,有使晶体的左右部分发生上下移动的趋势。假如晶体中有一 螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边 晶体向下移动一柏氏矢量。因此,①螺位错也是在外加切应力的 作用下发生运动;②位错移动的方向总是和位错线垂直;③运动 位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动 (滑移);④位错移过部分在表面留下部分台阶,全部移出晶体 的表面上产生柏氏矢量大小的完整台阶。这四点同刃型位错。
第二节 位错的基本概念
一.位错概念的引入
★1926年 Frank计算了理论剪切强度,与实际剪切 强度相比,相差3~4个数量级,当时无法解释, 此矛盾持续了很长时间 。
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★ 1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
例题
Cu晶体的空位形成能uv=0.9ev/atom或 1.44*10-19J/atom材料常数A取作1,k=1.38*10-23. 计算:
1)在500℃下,每立方米中的空位数目; 2)500 ℃下的平衡空位浓度 。
解:首先确定1m3体积内原子Cu原子总数 (已知Cu的摩尔质量MCu=63.54g/mol,500 ℃
螺型位错
τb
晶体的局部滑移
螺型位错的原子组态
混合型位错: 晶体的局部滑移
τ∧ b
混合型位错的原子组态
线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),
另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。其 具体形式就是晶体中的位错Dislocation
一、位错的原子模型

《固体物理学》习题第四章晶体结构中的缺陷

《固体物理学》习题第四章晶体结构中的缺陷

第四章 晶格结构中的缺陷4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为sB k Ts n Neμ-=其中s μ是形成一个空位所需要的能量。

证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为 !()!!s s s N P N n n =-由于s μ个空位的出现,熵的改变[]!ln lnln ()ln()ln ()!!B s B B s s s s s s N S k P k k N N N n N n n n N n n ∆===-----晶体的自由能变化为[]ln ()ln()ln s s s s B s s s s F n T S n k T N N N n N n n n μμ=-∆=-----要使晶体的自由能最小B()ln 0ss s sT n F u k T n N n ⎡⎤⎛⎫∂∆=+= ⎪⎢⎥∂-⎣⎦⎝⎭整理得s B k T ssn e N n μ-=-在实际晶体中,由于,s n N <<s ssn n N N n ≈-,得到 sB k Ts n Neμ-=4.2 铜中形成一个肖托基缺陷的能量为1.2eV ,若形成一个间隙原子的能量为4eV ,试分别计算1300K 时肖托基缺陷和间隙原子数目,并对二者进行比较。

已知,铜的熔点是1360K 。

解:(王矜奉4.2.4)根据《固体物理学》4-8式和4-10式,肖托基缺陷和间隙原子数目分别为sB k Ts n Ne μ-= 11B k T n Neμ-=得19231.21.61051.381013002.2510s B k Ts n NeNeN μ--⨯⨯---⨯⨯===⨯191231.2410161.381013001 3.2110B k Tn NeNeN μ--⨯⨯---⨯⨯===⨯4.3 设一个钠晶体中空位附近的一个钠原子迁移时,必须越过0.5eV 的势垒,原子振动频率为1012Hz 。

试估算室温下放射性钠在正常钠中的扩散系数,以及373K 时的扩散系数。

晶体中的点缺陷与线缺陷 )刃型位错和螺型位错

晶体中的点缺陷与线缺陷 )刃型位错和螺型位错

只有几个原子间距的线 缺陷
只有几个原子间距的线 缺陷
材料物理化学
刃型位错
螺型位错
与柏格斯矢量 的位置关系 柏格斯矢量 与刃性位错 柏格斯矢量 与螺型位错
线垂直
线平行
位错分类
刃性位错有正负之分
螺形位错分为左旋和右 旋
位错是否引起晶体畸变和形 引起晶体畸变和形成应 引起晶体畸变和形成应
成应力场
力场,且离位错线越远, 力场,且离位错线越远,
晶格畸变越小
晶格畸变越小
位错类型
4、(a)在 MgO 晶体中,肖特基缺陷的生成能为 6ev,计算在 25℃和 1600℃时 热缺陷的浓度。 (b)如果 MgO 晶体中,含有百万分之一 mol 的 Al2O3 杂质, 则在 1600℃时,MgO 晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。
材ห้องสมุดไป่ตู้物理化学
湖南工学院
解:(a)根据热缺陷浓度公式:
解:非化学计量氧化物 TiO2-x,其晶格缺陷属于负离子缺位而使金属离子 过剩的类型。 (a)缺陷反应式为:2Ti Ti?/FONT> O2↑→2 + +3OO
OO→ +2e′+ O2↑
材料物理化学
湖南工学院
(b)缺陷浓度表达式:[ V ]
10、试比较刃型位错和螺型位错的异同点。 解:刃型位错和螺型位错的异同点见下表所示。 刃型位错和螺型位错的异同点
2Fe Fe+ O2(g)→2Fe + V +OO
O2(g)→OO + V +2h 按质量作用定律,平衡常数
K=
由此可得[V ]﹠ PO 1/6 即:铁空位的浓度和氧分压的 1/6 次方成正比,故当周围分压增大时,铁空位浓 度增加,晶体质量减小,则 Fe1-xO 的密度也将减小。 (b)非化学计量化合物 Zn1+xO,由于正离子填隙,使金属离子过剩:

晶体缺陷

晶体缺陷
杂质原子可形成间隙原子和替位原子
固溶体是以某一组元为溶剂,在其晶体点阵中溶 入其他组元原子(溶质原子)所形成的均匀混合 的固态溶体,它保持着溶剂的晶体结构类型。
固溶度:硅中能容纳杂质的最大数目 影响固溶度的因素有很多,主要有以下几个因素: ①杂质的种类。硅与杂质原子的晶体结构相同时, 杂质原子就可以连续不断地置换硅原子。如果两 种原子的晶体结构类型不同,固溶度是有限的。
一般把多出的半原子面在滑移面上边的称为正刃 型位错,记为“┻”;而把多出在下边的称为负 刃型位错,记为“┳”。正、负之分只具相对意 义而无本质的区别。
刃位错的几何特征:
位错线与原子滑移方向相垂直;
滑移面上部分位错线周围原子受压应力作用,原 子间距小于正常晶格间距; 滑移面下部分位错线周围原子受张应力作用,原 子间距大于正常晶格间距。
根据晶体缺陷的几何特征,可以分为四类:
点缺陷:其特征是在三维空间的各个方面上尺寸都很小, 尺寸范围约为一个或几个原子尺度, 故称零维缺陷,包 括空位、间隙原子、杂质或溶质原子等; 线缺陷:其特征是在两个方向上尺寸很小,另外一个方向 上延伸较长,也称一维缺陷,如各类位错;
面缺陷:其特征是在一个方向上尺寸很小,另外两个方向 上扩展很大,也称二维缺陷.晶界、相界、孪晶界和堆垛 层错等都属于面缺陷。
位错的爬升
位错爬升是靠原子或空位的转移来实现的。当原 子从多余半原子面下端转移到别处,或空位从别 处转移到半原子面下端时,位错线便向上爬升, 即正爬升;反之,当原子从别处转移到多余半原 子面下端时,或空位从这里转移到别处去时,位 错线就向下爬升,即负爬升。
刃位错爬升的实质就是构成刃位错的多余半原子 面的扩大或缩小。
位错运动不引起晶体体积的变化,这类运动称为位错的守 恒运动(滑移) 位错运动引起晶体体积的变化,这类运动称为位错的非守 恒运动(爬升)

第四章 晶体缺陷与缺陷运动

第四章 晶体缺陷与缺陷运动

第四章晶体缺陷与缺陷运动§4.1 晶体缺陷的基本类型§4.2 位错缺陷的性质、晶体滑移的本质§4.3 热缺陷数目的统计平衡理论§4.4 热缺陷的运动、产生和复合§4.5 晶体中的扩散过程§4.6 离子晶体中的点缺陷与导电性前言理想晶体的主要特征是原子(或分子)的严格规则排列、周期性实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,存在着偏离了理想晶体结构的区域,于是就形成了晶体的缺陷。

晶体中虽然存在各种各样的缺陷,但实际在晶体中偏离平衡位置的原子数目很少(相对于晶体原子总数),在最严重的情况下,一般不会超过原子总数的万分之一,因而实际晶体结构从整体上看还是比较完整的。

缺陷——偏离了晶体周期性排列的局部区域。

前言(续)晶体中缺陷的种类很多,它们分别影响着晶体的力学、热学、电学、光学等各方面的性质。

然而,尽管在晶体中缺陷的数目很少,它们的产生和发展、运动和相互作用、以及合并和消失,对晶体的性能有重要的影响。

因此,晶体缺陷是固体物理中一个重要的研究领域,它对于研究和理解一些不能用完整晶体理论解释和理解的现象具有重要的意义。

例如:塑性与强度、扩散、相变、再结晶、离子电导以及半导体的缺陷导电等现象。

§4.1 晶体缺陷的基本类型一、点缺陷点缺陷——发生在一个或几个晶格常数范围内的缺陷。

如:空位、填隙原子、杂质原子等。

这些空位、填隙原子是由热起伏原因而产生的,所以又称为热缺陷。

晶体中存在的缺陷种类很多,但由于晶体中的晶体结构具有规律性,因此晶体中实际出现缺陷的类型也不是无限制的。

根据晶体缺陷在空间延伸的线度,晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。

几种重要的点缺陷:1)弗仑克尔缺陷和肖脱基缺陷原子(或离子)在格点平衡位置附近振动,由于存在这样的热振动的能量涨落,使得当某一原子能量大到某一程度时,原子就会克服平衡位置势阱的束缚,脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去或跳到晶体边界上去。

第4章晶体缺陷-位错3.15

第4章晶体缺陷-位错3.15

根据原子的滑移方向和位错线取向的几何 特征,位错可分为:
刃位错 螺位错 混合位错
返回 15:07
GARREY
机电工程学院
4.0 概述
4.1 点缺陷
4.2 位错的 基本概念
4.3 位错的 能量及交互 作用
4.4晶体中 的界面
Foundation of Materials Science
二.位错类型
4.2 位错基本概念
的b矢量之和为零。
GARREY
机电工程学院
Foundation of Materials Science
柏氏矢量与位错线
1. 刃位错柏氏矢量⊥位错线,可以为任何形状;
2. 螺位错柏氏矢量∥位错线,只能为直线;
3. b∥t则为螺位错,同向为右螺,反向为左螺;b⊥t为刃位错; 任意角度φ为混合位错,刃位错分量:bsin φ,螺位错分量: bcosφ
4. 同一根位错线上各处柏氏矢量一定相同;
5. 位错线只能终止在晶界或表面,不能终止在晶体内部,在内 部只能形成封闭环或空间网络。(位错是滑移区的边界)
15:07
GARREY
机电工程学院
4.0 概述 4.1 点缺陷 4.2 位错的 基本概念 4.3 位错的 能量及交互 作用 4.4晶体中 的界面
返回 15:07
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
★1947年 Cottrell发表了溶质原子与位错间交互作用 的研究报告 。
返回 15:07
GARREY
机电工程学院
返回 15:07

材料物理化学-第四章 晶体的点缺陷与线缺陷

材料物理化学-第四章 晶体的点缺陷与线缺陷

第四章晶体结构缺陷晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。

事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。

既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。

但缺陷的存在只是晶体中局部的破坏。

作为一种统计,一种近似,一种几何模型,缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况),从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。

因此,整体上看,可以认为一般晶体是近乎完整的。

因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。

它是我们今后讨论缺陷形态的基本出发点。

事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实(X射线及电子衍射实验提供了足够的实验证据)都支持这种近乎理想的对称性。

当然不能否认,当缺陷比例过高以致于这种“完整性”无论从实验或从理论上都不复存在时,此时的固体便不能用空间点阵来描述,也不能被称之为晶体。

这便是材料中的另一大类别:非晶态固体。

对非晶固体和晶体,无论在原子结构理论上或是材料学家对它们完美性追求的哲学思想上都存在着很大差异,有兴趣的同学可以对此作进一步的理解。

缺陷是晶体理论中最重要的内容之一。

晶体的生长、性能以及加工等无一不与缺陷紧密相关。

因为正是这千分之一、万分之一的缺陷,对晶体的性能产生了不容小视的作用。

这种影响无论在微观或宏观上都具有相当的重要性。

4.1热力学平衡态点缺陷4.1.1 热缺陷的基本类型点缺陷形成的热力学平衡当晶体的温度高于绝对零度时,晶格内原子吸收能量,在其平衡位置附近温度越高,热振动幅度加大,原子的平均动能随之增加。

热振动的原子在某一瞬间可以获得较大的能量,挣脱周围质点的作用,离开平衡位置,进入到晶格内的其它位置,而在原来的平衡格点位置上留下空位。

这种由于晶体内部质点热运动而形成的缺陷称为热缺陷。

第四章 晶体缺陷

第四章 晶体缺陷

第四章晶体缺陷按照点阵结构理论,晶体的主要特征是其结构基元作周期性的排列,但实际晶体中的原子或离子总是或多或少地偏离了严格的晶体周期性,因而出现了各种各样的结构缺陷,并对晶体的各种物理性质产生的重要影响。

根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。

本章主要讲述晶体缺陷的典型形式以及对晶体性质的主要影响。

§4.1 点缺陷点缺陷,是指那些对晶体结构的干扰仅在几个原子间距范围内的晶体缺陷,空位和间隙原子就是点缺陷的典型例子,它们是晶体中最小的、也是最基本的缺陷形式。

空位就是在晶格中原本应该有原子的位置上缺少了原子,间隙原子则是在原本不应该有原子的点阵间隙位置上出现的原子,也被称为填隙原子。

后面我们会看到,在热作用下完整晶体中会自发地出现空位和间隙原子,这是一种本体性的结构缺陷,称为本征结构缺陷。

与此相对的,晶体中还有另一类点缺陷,称为杂质原子,按照其出现的位置可以分为替位杂质和填隙杂质,由于它们改变了晶体的化学成分,因而也被称为化学点缺陷。

点缺陷影响着晶体的许多物理性质,特别与晶体中物质输运过程有关的一些性质受点缺陷的影响最大。

此外,点缺陷还通过对导电电子的散射影响了金属的电导率,通过对声子的散射影响了晶体的导热性;在半导体晶体中杂质原子作为施主或受主显著地影响着半导体的电学性质;在离子晶体中,由于在带隙中造成缺陷能级而影响其光学性质,而离子晶体的离子导电现象则更是直接来源于点缺陷的运动。

4.1.1热缺陷的形成与平衡浓度晶体中原子或离子由于热振动的能量起伏可能离开理想的晶格位置,从而产生空位或间隙原子,这样形成的点缺陷称为热缺陷。

显然,热缺陷是本征结构缺陷。

晶格中的空位和间隙原子可以籍由不同的机制产生。

在晶格内部的原子可以因为热涨落由格点跳进间隙位置,从而同时产生一个空位和一个间隙原子。

由这种方式产生的空位和间隙原子对被称为弗伦克尔缺陷,如图4.1(a)所示。

邻近表面的原子也可以由于热涨落跳到晶体的表面,从而在晶体内留下一个空位。

第4章 结构缺陷及固溶体

第4章 结构缺陷及固溶体

′ 子空位成对产生,晶体体积增大。 NaCl ⇔VNa +VCl 空位成对产生,晶体体积增大。

B 杂质缺陷 概念——杂质原子进入晶体而产生的缺陷。 杂质原子进入晶体而产生的缺陷。 概念 杂质原子进入晶体而产生的缺陷 种类——间隙杂质 种类 间隙杂质 置换杂质 特点——杂质缺陷的浓度与温度无关,只决定 杂质缺陷的浓度与温度无关, 特点 杂质缺陷的浓度与温度无关 于溶解度。杂质原子(离子)其量 于溶解度。杂质原子(离子)其量— 般小于0.1%。 般小于 %。 存在的原因——本身存在 存在的原因 本身存在 有目的加入(改善晶体的性能 有目的加入 改善晶体的性能) 改善晶体的性能
“×”表示有效零电荷。 表示有效零电荷。 表示有效零电荷
+ - 离子晶体为例 用MX离子晶体为例( M2+ ;X2- ): 离子晶体为例(
z A b
用一个主要符号表明缺陷的种类 用一个下标表示缺陷位置 用一个上标表示缺陷的有效 有效电荷 用一个上标表示缺陷的有效电荷
空位V: ①空位 : VM 表示:M原子占有的位置,在M原子移走后出现的空位; 表示 原子占有的位置, 原子移走后出现的空位; 原子占有的位置 原子移走后出现的空位 VX 表示 原子占有的位置,在X原子移走后出现的空位。 表示:X原子占有的位置, 原子移走后出现的空位。 原子占有的位置 原子移走后出现的空位
V + h =V Cl

• Cl
填隙原子:用下标“ 表示 ②填隙原子:用下标“i”表示 Mi 表示 原子进入间隙位置; Mi ”表示 2+离子进入间隙位置。 表示M原子进入间隙位置; 表示M 离子进入间隙位置。 原子进入间隙位置 表示X原子进入间隙位置; Xi 表示 原子进入间隙位置; Xi ‥表示 2-离子进入间隙位置。 表示X 离子进入间隙位置。 原子进入间隙位置 错放位置(错位原子): ③错放位置(错位原子): MX 表示 原子占据了应是X原子正常所处的平衡位置。 表示M原子占据了应是 原子正常所处的平衡位置 原子占据了应是 原子正常所处的平衡位置。 XM 类似。 类似。 溶质原子(杂质原子): ④溶质原子(杂质原子): LM 表示 溶质占据了 的位置。如:KNa 表示L溶质占据了 的位置。 溶质占据了M的位置 SX 表示 溶质占据了X位置。 表示S溶质占据了 位置 溶质占据了 位置。 自由电子及电子空穴: ⑤自由电子及电子空穴:

晶体中的缺陷

晶体中的缺陷

空位的移动
原子作热振动,一定温度下原子热振动能量一定,呈统计 分布,在瞬间一些能量大的原子克服周围原子对它的束缚,迁 移至别处,形成空位。
点缺陷的平衡浓度
热力学分析表明:在高于 0K 的任何温度下,晶体最稳定 的状态是含有一定浓度点缺陷的状态。在某一温度下,晶体 自由焓最低时对应的点缺陷浓度为点缺陷的平衡浓度,用 CV 表示。 在一定温度下,晶体中有一定平衡数量的空位和间隙原 子,其数量可近似算出。 设自由能 F=U-TS U为内能,S为系统熵(包括振动熵Sf和排列熵SC) 空位的引入,一方面由于弹性畸变使晶体内能增加;另 一方面又使晶体中混乱度增加,使熵增加。而熵的变化包括 两部分: ① 空位改变它周围原子的振动引起振动熵Sf; ② 空位在晶体点阵中的排列可有许多不同的几何组态,使 排列熵SC增加。
X原子位于晶格间隙位置。 3. 错位原子 错位原子用MX、XM等表示,MX的含义是M原子占据X原子的位
置。XM表示X原子占据M原子的位置。
4. 自由电子(electron)与电子空穴 (hole) 分别用e,和h · 来表示。其中右上标中的一撇“,”代表一个单位负电荷,
一个圆点“ ·”代表一个单位正电荷。
点缺陷基本理论小结
1、点缺陷是热力学稳定的缺陷。 2、不同金属点缺陷形成能不同。 3、点缺陷浓度与点缺陷形成能、温度密切相关
n C exp( SV / k ) exp( EV / kT ) A exp( EV / kT ) N
4、点缺陷对金属的物理及力学性能有明显影响 5、点缺陷对材料的高温蠕变、沉淀、回复、表面氧化、 烧结有重要影响
T CV
100K 300K 500K 10-57 10-19 10-11
700K 900K 1000K 10-8.1 10-6.3 10-5.7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
••
空位+表面原子
肖特基缺陷的特点是晶体表面增加了新的原子层,晶 体内部只有空位缺陷,且晶体体积膨胀,密度下降。
3)杂质缺陷 由外加杂质的引入所产生的缺陷,亦称为组成缺陷。 杂质缺陷的浓度与温度无关。 为了有目的地改善器件性能,人为地引入杂质原子。
例如: 硅半导体中:
105 个硅原子 掺入 一个硼原子 电导率增加 103倍
2) 加快原子的扩散迁移 空位可作为原子运动的周转站。
3) 形成其他晶体缺陷 过饱和的空位可集中形成内部的空洞,集中 一片的塌陷形成位错。
4) 由于形成点缺陷需向晶体提供附加的能量,因而引起附加比热 容。
5) 点缺陷还影响其它物理性质:如扩散系数、内耗、介电常数等。
§4.2 空位、填隙原子的运动和统计计算
杂质原子
3)杂质原子不同种类的原子替换原 有的原子占据其应有的位置,或进 入间隙位置。
填隙原子
在实际晶体内部,点缺陷附 近,原子排列会出现畸变, 其他地方则仍然规则排列
杂质原子
2、点缺陷的形成: 空位和同类填隙原子的产生和移动主要是依靠原子的 热涨落——热缺陷(本征缺陷) 1)夫伦克耳缺陷: 由于热涨落,一个原子从正常格点跳到间隙位置,同 时产生一个空位和一个填隙原子。
依靠点缺陷的运动,晶体的扩散得以实现
二、线缺陷 位错 线缺陷: 晶体内沿某一条线上附近的原子的排列
与完整晶格不相同产生的缺陷 1.刃型位错:
有刃型位错的晶体 将晶体的上半部分向左平移一个 原子间距,使晶体内有一个原子 平面在晶体内部中断,其中断处 的边沿即刃型位错
2.螺型位错:
将晶体的右半部分向下移动一个原子间距,而在分界线的区域 形成一螺旋面,分界线即螺型位错
包含许多的小晶体, 每个小晶体的内部, 晶格位向是均匀一致 的,而各个小晶体之 间,彼此的位向却不 相同。
晶界附近的原子排列较混乱, 是一种面缺陷
就是指正常堆垛顺序中引入不正常顺序堆
3、堆积层错 垛的原子面而产生的一类面缺陷。
抽出型层错
插入型层错
作业: 1、缺陷按照尺寸分哪几种。 2、点缺陷中弗伦克尔和肖特基两种缺陷的异同点? 3、两种位错的异同点?
第四章 晶体中的缺陷
缺陷:把实际晶体中原子排列与理想晶体的差别称为晶体缺陷。
理想晶体:质点严格 按照空间点阵排列。
实际晶体:存在着各 种各样的结构的不完 整性。
§4.1 晶体缺陷的主要类型
晶体缺陷按范围和尺寸分类:
1、点缺陷:在三维空间各方向上尺寸都很小,原子尺寸 大小的晶体缺陷。
2、线缺陷:在三维空间的一个方向上的尺寸很大另外两 个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。其 具体形式就是晶体中的位错。
位错线附近原子结构已有明显畸变,使原子处于不稳定
状态,施加较小的切变力 τ,畸变后的原子将在滑移面
上平行于切变力方向移动;当位错线移出,在晶体表面 形成一个原子台阶。
类比1: 地毯鼓包的移动
A BA BA BA BA B
使地毯一边隆起一个鼓包,鼓包从一边移动到另一 边比地毯整块移动所花的力气要小得多 位错就类似一个“原子地毯”的鼓包,帮助原子滑移 类比2:蠕动模型
一、空位、填隙原子的运动 空位和填隙原子的跳跃依靠热涨落,与温度紧密相关。 以填隙原子为例说明。






A O B •




势能ε约为几个eV
原子热振动能量:102 eV
填隙原子的跳跃靠偶然性的 热涨落实现
能量超过ε的几率: e kBT 跳跃率: 0e kBT V0:振动频率
弗伦克尔缺陷的特点是空位和 填隙原子同时出现,晶体体积 不发生变化,晶体不会因为出 现空位而产生密度变化。
空位+填隙原子
2)肖脱基缺陷:
晶格内部的原子集聚了足够的动能,迁移到表面位置, 而在原来格点处留下空位。
••••• •••••
• •• • •
•••••
•••••
•••••
••••• ••••• • ••• ••••• ••• • •••••
如果晶体的滑移是整体的发生的,那么使滑移 发生的临界应力大约为 1010 N, 这m一2 数值比实
验值高出 个2数~量4级
即 实际 理论
原因:存在于晶体内部的位错极大地降低了产生滑 移所需的临界应力.
一部分原子先运动 位错滑移 其它原子相继运动 (形成位错)
晶体沿滑移面的整体滑移
二、刃位错(棱位错)的滑移
三、螺位错的滑移
类比 撕纸 四、刃位错与螺位错的异同 相同点: 位错线周围晶格结构均发生局域畸变; 不同点: 刃位错中,位错线与滑移方向垂直;
螺位错中,位错线与滑移方向平行.
三、面缺陷
1、表面
在晶体表面,垂直于表面方向上平移对称性被破坏, 是一种面缺陷。
2、晶界
单晶体
内部晶体位 向完全一致多来自体3.位错的特征: 离位错线较远处,原子排列接近于完整晶体; 离位错线较近处,原子排列有较大错乱
线缺陷的产生及运动与材料的韧性、脆性密切相关。
§4.3 位错及其滑移
一、滑移
滑 移 面
滑 移 线
滑移面:由某一平面分割的材料两边有相对移动,出现的面 一般为原子密度较大的晶面。如面心立方的(111)面
滑移向:滑移的方向。 一般为滑移面上原子线密度最高的方向.如面心立方的<110>向
红宝石激光器中:
刚玉晶体 Al2O3 铬离掺子入微Cr量 形成发光中心
3、点缺陷对材料性能的一般影响
原因:无论哪种点缺陷的存在,都会使其附近的原子稍微 偏离原结点位置才能平衡,即造成小区域的晶格畸变。
效果:
1) 改变材料的电阻 电阻来源于离子对传导电子的散射。在完整晶 体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中, 在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产 生强烈散射,导致晶体的电阻率增大。
3、面缺陷:在三维空间的两个方向上的尺寸很大,另外 一个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。
一、点缺陷:
1、点缺陷的名称:
空位
填隙原子
1)空位:在晶格结点位置应 有原子的地方空缺,这种 缺陷称为“空位”。
2)填隙原子在晶格非结点 位置,往往是晶格的间隙, 出现了多余的原子。
相关文档
最新文档