新北师大 第三章 概率的进一步认识 试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章概率的进一步认识测验
九年级·数学(上)
(时间:90分钟满分:120分)
班级:姓名:____________
一、选择题:(每小题3分,共30分)
1.下列事件中,是必然事件的是()
A.打开电视机,正在播放新闻
B.父亲年龄比儿子年龄大
C.通过长期努力学习,你会成为数学家
D.下雨天,每个人都打着雨伞
2.下列事件中:确定事件是()
A.掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上
B.从一副扑克牌中任意抽出一张牌,花色是红桃
C.任意选择电视的某一频道,正在播放动画片
D.在同一年出生的367名学生中,至少有两人的生日是同一天.
3.10名学生的身高如下(单位:cm):159 169 163 170 166 165 156 172 165 162从中任选一名学生,其身高超过165cm的概率是()
A.1
2
B.
2
5
C.
1
5
D.
1
10
4.下列说法正确的是()
①试验条件不会影响某事件出现的频率;
②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;
③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;
④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③
5.如图1所示为一水平放置的转盘,使劲转动其指针,并让它自由停下,下面叙述正确的是()A.停在B区比停在A区的机会大B.停在三个区的机会一样大
C.停在哪个区与转盘半径大小有关D.停在哪个区是可以随心所欲的
6.从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是()
A.
33
100
B.
34
100
C.
3
10
D.不确定
7.两个射手彼此独立射击一目标,甲射中目标的概率为0.9,乙射中目标的概率为0.8,在一次射击中,甲、乙
同时射中目标的概率是()
A.0.72 B.0.85 C.0.1 D.不确定
8.如图2所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是()
A.5
25
B.
6
25
C.
10
25
D.
19
25
9.有阜阳到合肥的某一次列车,运行途中停靠的车站依次是:阜阳—淮南—水家湖—合肥,那么要为这次列车制作的火车票有( )
A.3种
B.4种
C.6种
D.12种
10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竟猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三翻牌获奖的概率是 ( )
A.14 B.15 C.16 D.320
二、填空题(每小题3分,共18分)
11.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是 .
12.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 .
13.小红、小芳、小明在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定.请问在一个回合中三个人都出“布”的概率是 .
14.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是 .
15.在对某次实验数据整理过程中,某个事件出现的频率随实
验次数变化折线图如图3所示,这个图形中折线的变化特点
是 ,试举一个大致符合这个特点的实物实验的
例子(指出关注的结果) .
16.某校九年级(2)班在某次数学考试中,全班所有学生得分的情况如下表所示: 分数段 30分以下 30~60分 60~72分 72~90分 90~120分
人数 18 20 30 30
10 那么该班共有 人,随机地抽取1人,恰好在72~90分的学生的概率是 ,从上表中,你还能获取的信息是 .(写出一条即可)
三、解答题(共72分)
17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.
图3
18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌记下数字然后放回,再随机摸取一张纸牌.
(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.
19.(10分)将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上.
(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少?
20.(10分)有一个转盘游戏,被平均分成10份(如图5),分别标有1,2,……,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的数字即为转出的数字.两人进行游戏,一人转动转盘,另一人猜数,如果猜的数与转出的数情况相符,则猜数的人获胜,否则转盘的人获胜.猜数的方法为下列三种中的一种:
(1)猜奇数或偶数;(2)猜是3的倍数或不是3的倍数;(3)猜大于4的数或不大于4的数.
如果你是猜数的游戏者,为了尽可能取胜,你选哪种猜法?怎样猜?
图5 1 2 3 4 5 6 7 8 9 10