二次函数最大利润问题(20200706085015)
二次函数最大利润公式
二次函数最大利润公式我们可以使用二次函数来模拟利润的变化情况,并通过找到该二次函数的最大值,计算出最大利润的数值。
假设一个企业的利润函数为P(x) = ax^2 + bx + c,其中x是销售量或服务数量,a、b和c是常数。
通常情况下,a的值是正数,因为销售量增加时,利润应该增加。
而b和c的值可以是正数、负数或零,具体取决于企业的经营状况和市场环境。
要找到利润函数的最大值,我们可以采用以下步骤:步骤1:计算二次函数的顶点坐标。
二次函数的顶点坐标由公式(-b/2a,P(-b/2a))给出。
这个坐标表示了二次函数的最高点所在的位置和对应的利润值。
步骤2:判断顶点是一个最大值还是最小值。
要判断一个二次函数的顶点是最大值还是最小值,我们需要查看二次函数的二次项系数a的正负性。
如果a是正数,顶点将是一个最小值;如果a是负数,顶点将是一个最大值。
步骤3:计算最大利润。
通过将顶点坐标的x值代入利润函数,我们可以计算出对应的最大利润。
例如:假设一个企业的利润函数为P(x)=-2x^2+100x-1000,我们来计算最大利润。
步骤1:计算顶点坐标。
x=-b/2a=-100/(2*(-2))=25P(25)=-2(25)^2+100(25)-1000=1250-2500+1000=-1250所以,顶点坐标为(25,-1250)。
步骤2:判断顶点是一个最大值还是最小值。
由于a的值是-2,这意味着顶点是一个最大值。
步骤3:计算最大利润。
最大利润为P(25)=-1250。
因此,该企业在销售量为25时可以获得的最大利润为-1250。
在实际应用中,二次函数最大利润公式可以用于优化生产制造、定价和销售策略等方面的决策。
通过分析和计算二次函数的最大值,决策者可以制定出最优的商业策略,以使企业获得最大利润。
需要注意的是,二次函数最大利润公式只是帮助决策者做出更加理性和优化的决策的一种工具,实际结果仍然需要结合具体的市场环境、竞争对手、成本和其他因素进行综合分析和判断。
二次函数与商品利润最大问题
初中数学课件
课堂寄语
二次函数是一类最优化问题 的数学模型,能指导我们解决生活中 的实际问题,同学们,认真学习数学 吧,因为数学来源于生活,更能优化 我们的生活。
初中数学课件
作业超市
必做题:大演草 说明指导60页例题1 选做题:中考备战二次函数的应用题
.
2.二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
轴是
x b 2a
,顶点坐标是
( b , 4ac b2 ) 2a 4a
.
当a>0时,抛物线开口向 上 ,有最 低 点,函数有
4ac b2
最 小 值,是 4a
;
当 a<0时,抛物线开口向 下
数有最 大
4ac b2
值,是 4a
,有最 高 。
即:y=-20x2+100x+6000,
当
x 100 5 2 (20) 2
时,
y 20 (5)2 100大利润是6125元.
由(1)(2)的讨论及现在的销 售情综况合,可你知知,道应应定该价如6何5元定时价,
才能能使使利利润润最最大大了。吗?
点,函
基础扫描
初中数学课件
二次函数特定范围内的最值
初中数学课件
二 如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:每涨价1元,每星期少卖出10件;已知商品的 进价为每件40元,如何定价才能使利润最大?
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
初中数学课件
二次函数的应用
---商品利润最大问题
初中数学课件
复习目标
1.能应用二次函数的性质解决商品销售过程中 的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变 量的取值范围. (难点)
二次函数最大利润公式
二次函数最大利润公式二次函数最大利润公式是在市场营销领域中应用较多的一种工具。
当企业生产一种产品时,它的成本和销售量可以表示为二次函数。
其中,成本是随生产量增加而增加的,而销售量则随着产品价格的变化而改变。
企业追求的是利润最大化,因此需要找到销售最大量对应的价格,也就是二次函数的顶点。
利用二次函数最大利润公式,企业可以计算出最大利润所对应的生产量和价格,从而进行生产决策。
二次函数最大利润公式的基本形式为y=a某²+b某+c,其中a、b、c是常数,某是变量,y表示利润。
在这个公式中,a是二次项系数,它代表着产品的成本变化率;b是一次项系数,它代表着产品的售价变化率;c是常数项,它代表着固定成本。
如果我们知道a、b、c的具体值,就可以通过求导数的方法,找到二次函数顶点的位置,从而确定价格和销售量。
求解二次函数最大利润公式的方法有两种:一种是代数法,另一种是几何法。
代数法是通过求解一次函数的导数来寻找最大利润所对应的销售量和价格。
对于二次函数y=a某²+b某+c来说,它的导数为dy/d某=2a某+b。
当dy/d某=0时,就可以得到二次函数的顶点位置某0=-b/2a。
然后可以通过将某0代入二次函数y=a某²+b某+c中,求出最大利润所对应的成本、销售量和价格等信息。
几何法是通过绘制二次函数的图像来确定最大利润。
二次函数的图像是一个开口向上或向下的抛物线,在顶点处具有最大值或最小值。
当我们知道二次函数的顶点坐标时,可以通过测量图像来确定最大利润所对应的销售量和价格。
如果商家需要考虑不同产品的生产成本和销售情况,还可以通过绘制多条二次函数的图像,同时比较它们的顶点位置,从而找到最佳的生产组合方式,使得利润最大化。
总之,二次函数最大利润公式是市场营销领域中一个十分有用的工具。
它可以帮助企业决策者找到最大利润所对应的销售量和价格,从而进行生产策略的调整。
不过,在实际应用中,还需要注意二次函数所对应的条件和假设是否成立,以及市场环境和竞争对手的因素等。
二次函数最大利润应用题(含答案)
二次函数最大利润应用题参考答案与试题解析1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.2.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,=513(元);①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,=741(元);∴当x=9时,w最大③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w=768(元);最大综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w=(6+a﹣p)(30x+120)=510(a+1.5),13∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.3.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?【解答】解:(1)y=60+5x(2)w=(40﹣x﹣20)y=﹣5(x﹣4)2+1280∴下调4元时当天利润最大是1280元(3)设一次进货m千克,由售价32元/千克得x=40﹣32=8,此时y=60+5x=100,∴m≤100×(30﹣7)=2300,答:一次进货最多2300千克(4)下调4元时当天利润最大,由x=4,y=60+5x=80,m=80×(30﹣7)=1840千克∴每次进货1840千克,售价36元/千克时,销售部利润最大.4.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w 万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA +wB﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,wA=6x﹣x=5x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA +wB﹣3×20=(5x)+(108﹣6x)﹣60 =﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA +wB﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64 ∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,wA=6x﹣x=5x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA +wB﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得 x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.7.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.8.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商x(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?【解答】解:(1)当1≤x≤20时,令30+x=35,得x=10,当21≤x≤40时,令20+=35,得x=35,经检验得x=35是原方程的解且符合题意即第10天或者第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,y=(30+x﹣20)(50﹣x)=﹣x2+15x+500,当21≤x≤40时,y=(20+﹣20)(50﹣x)=﹣525,即y=,(3)当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5,∵﹣<0,∴当x=15时,y有最大值y1,且y1=612.5,当21≤x≤40时,∵26250>0,∴随x的增大而减小,当x=21时,最大,于是,x=21时,y=﹣525有最大值y2,且y2=﹣525=725,∵y1<y2,∴这40天中第21天时该网店获得利润最大,最大利润为725元.9.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t= 6﹣x ;当0<x≤4时,y2与x的函数关系为:y2= 5x+80 ;当 4 ≤x< 6 时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?【解答】解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0<6﹣x≤2,即0<t≤2,此时y2=100.故答案为:6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x≤6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;当4<x≤6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∵a=﹣5,∴当x>3时,w随x的增大而减小,∴没有w最大.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为640千元.10.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,10),(70,8),∴,解得,所以,y=﹣0.1x+15;(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),=﹣0.2x2+16x+100,=﹣0.2(x2﹣80x+1600)+320+100,=﹣0.2(x﹣40)2+420,∵﹣0.2<0,∴x>40时,W随x的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),=﹣0.1x2+8x+250,=﹣0.1(x2﹣80x+1600)+160+250,=﹣0.1(x﹣40)2+410,∵﹣0.1<0,∴x>40时,W随x的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数与x轴的交点可知50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.11.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y (万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800(x>18);(2)由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43所以,销售单价定为25元或43元,将z=﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512(x>18),答;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,∵x最大取32,∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),答:每月最低制造成本为648万元.12.某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【解答】解:(1)设件数为x,依题意,得3000﹣10(x﹣10)=2600,解得x=50,答:商家一次购买这种产品50件时,销售单价恰好为2600元;(2)当0≤x≤10时,y=(3000﹣2400)x=600x,当10<x≤50时,y=[3000﹣10(x﹣10)﹣2400]x,即y=﹣10x2+700x当x>50时,y=(2600﹣2400)x=200x∴y=(3)由y=﹣10x2+700x可知抛物线开口向下,当x=﹣=35时,利润y有最大值,此时,销售单价为3000﹣10(x﹣10)=2750元,答:公司应将最低销售单价调整为2750元.13.某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?【解答】解:(1)设w=kx+b,将(70,100),(75,90)代入上式得:,解得:,则w=﹣2x+240;(2)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣9000,因此y与x的关系式为:y=﹣2x2+340x﹣9000,=﹣2(x﹣85)2+2450,故当x=85时,y的值最大为2450.(3)故第1个月还有3000﹣2450=550元的投资成本没有收回,则要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,可得方程﹣2(x﹣85)2+2450=2250,解这个方程,得x1=75,x2=95;根据题意,x2=95不合题意应舍去.答:当销售单价为每千克75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.14.某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同.(1)求该款汽车的进价和标价分别是多少万元?(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?【解答】解:(1)设进价为x万元,则标价是1.2x万元,由题意得:1.2x×0.9×9﹣9x=(1.2x﹣0.2)×4﹣4x,解得:x=10,1.2×10=12(万元),答:进价为10万元,标价为12万元;(2)设该款汽车降价a万元,利润为w万元,由题意得:w=(20+×2)(12﹣10﹣a),=﹣20(a﹣)2+45,∵﹣20<0,∴当a=时,w最大=45,答:该款汽车降价0.5万元出售每月获利最大,最大利润是45万元.15.荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.(1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y 关于x的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公顷大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.【解答】解:(1)y=7.5x﹣(2.7x+0.9x2+0.3x)=7.5x﹣2.7x﹣0.9x2﹣0.3x=﹣0.9x2+4.5x.(2)当﹣0.9x2+4.5x=5时,整理得:9x2﹣45x+50=0,解得:x1=,x2=,从投入、占地与当年收益三方面权衡,应建议修建公顷大棚.(3)设3年内每年的平均收益为Z(万元)Z=7.5x﹣(0.9x+0.3x2+0.3x)=7.5x﹣0.9x﹣0.3x2﹣0.3x=﹣0.3x2+6.3x=﹣0.3(x﹣10.5)2+33.075(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.(11分)建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益.②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当﹣0.3x2+6.3x=0时,x1=0,x2=21.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)(12分)16.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)【解答】解:(1)4月份y与x满足的函数关系式为y=0.2x+1.8把x=1,y=2.8和x=2,y=2.4,分别代入y=﹣+bx+c得解得:,∴5月份y与x满足的函数关系式为y=﹣0.05x2﹣0.25x+3.1;(2)设4月份第x周销售此种蔬菜一千克的利润为W1元,5月份第x周销售此种蔬菜一千克的利润为W2元.则:W1=(0.2x+1.8)﹣(x+1.2)=﹣0.05x+0.6∵﹣0.05<0,∴W1随x的增大而减少∴当x=1时,W1最大=﹣0.05+0.6=0.55W2=(﹣0.05x2﹣0.25x+3.1)﹣(﹣x+2)=﹣0.05x2﹣0.05x+1.1∵对称轴为x=﹣=﹣0.5,且﹣0.05<0,∴当x=1时,W2最大=1∴4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元,5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.(3)由题意知:[100000(1﹣a%)+2000]×2.4(1+0.8a%)=2.4×100000,整理,得a2+23a﹣250=0,解得a=∵392=1521,402=1600,而1529更接近1521,∴取≈39∴a≈﹣31(舍去)或a≈8.17.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y= 140 元/件,w内= 57500 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是().【解答】解:(1)x=1000,y=×1000+150=140,w内=(140﹣20)×1000﹣62500=57500.(2)w内=x(y﹣20)﹣62500=x2+130x﹣62500,w外=x2+(150﹣a)x.(3)当x==6500时,w内最大;由题意在国外销售月利润的最大值与在国内销售月利润的最大值相同,得:=,解得a1=30,a2=270(不合题意,舍去).∴a=30.(4)当x=5000时,w 内=337500,w 外=﹣5000a+500000.若w 内<w 外,则a <32.5;若w 内=w 外,则a=32.5;若w 内>w 外,则a >32.5.∴当10≤a<32.5时,选择在国外销售;当a=32.5时,在国外和国内销售都一样;当32.5<a≤40时,选择在国内销售.18.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内时间t (天) 1 3 6 10 36 …日销售量m (件) 94 90 84 76 24 …未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为y 1=t+25(1≤t≤20且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为y 2=﹣t+40(21≤t≤40且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.【解答】解:(1)设一次函数为m=kt+b ,将和代入一次函数m=kt+b 中,有,∴. ∴m=﹣2t+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96;(2)设前20天日销售利润为p 1元,后20天日销售利润为p 2元.由p 1=(﹣2t+96)(t+25﹣20)=(﹣2t+96)(t+5)=﹣t 2+14t+480=﹣(t ﹣14)2+578,∵1≤t≤20,∴当t=14时,p 1有最大值578(元).由p 2=(﹣2t+96)(﹣t+40﹣20) =(﹣2t+96)(﹣t+20)=t 2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴函数p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∴当t=21时,p2∵578>513,故第14天时,销售利润最大,为578元;(3)p=(﹣2t+96)(t+25﹣20﹣a)=﹣t2+(14+2a)t+480﹣96a 1对称轴为t=14+2a.∵1≤t≤20,∴当t≤2a+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴20≤2a+14,又∵a<4,∴3≤a<4.。
二次函数应运题专题一(最大利润问题)
二次函数应运题专题一(最大利润问题)最大利润问题这类问题只需围绕一点来求解,那就是总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y , 而自变量可能有两种情况:1)自变量x是所涨价多少,或降价多少2)自变量x是最终的销售价格而这种题型之所以是二次函数,就是因为总利润=单件商品利润*销售数量这个等式中的单件利润里必然有个自变量x,销售数量里也必然有个自变量x,至于为什么它们各自都有一个x,后面会给出解释,那么两个含有x的式子一相乘,再打开后就是必然是一个二次的多项式,所以如果在列表达式时发现单利润里没有x,或销售数量里没有x, 那恭喜你,此题0分!下面借助例题加以理解:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。
(1)求按原价出售一天可得多少利润?解析:总利润=单利润*数量所以按原价出售的话,则y=140*(100-80)=2800 元答案:(1)y=140*(100-80)=2800 (元)(2)求销售利润y与降价x的的关系式解析:总利润=数量*单利润这么想:因为降价,所以单利润会有变动,又因为进价不可能变,那降多少元,利润减少多少元,降价x元,利润就减少x元,所以单利润就减少x元,即单利润变为:(100-80-x)又想:因为降价卖的就多,那么数量怎么变?原来一天140件,降1元多卖10件,降x元就应该多卖10x件,所以数量就变为:(140+10x)(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润解析:因为要是利润最大,所以需要求因变量y的最大值,重点难点:(5)现题目条件不变,若将降价后的销售价格设为自变量x,求因变量y与自变量x的关系式解析:原来的自变量是什么?是降低的价格,而现在是降后的售价自变量一变化,那么关系式就全变了,所以之前的一切关系都要作废但总利润=单利润*数量,这个关系是永远不变的!所以要找到y与x的关系,还是从此处出发这么想:单利润=售价-进价,进价是不变的,而售价现在变为x了,则单利润就是(x-80),而这时数量就变复杂了,这么想:数量变化依然是因为降价而造成的,始终有降价1元多卖10件这一关系,所以如果知道了降多少元,就必然知道多卖多少件,那么降了多少呢?最初的售价是100元,降价后的售价是x元,那么之间的差值就是所降的价格,即降价为(100-x),我们知道降1元多卖10件,现在降了(100-x),那么就应该多卖10*(100-x)件,注意这只是多买的,总共买的应该是原来卖的加上多卖的,即140+10*(100-x),所以数量就是[140+10*(100-x)]单利润知道了是(x-80),销售数量也知道了是[140+10*(100-x)]则总利润y=(x-80)* [140+10*(100-x)](一)涨价或降价为未知数例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。
二次函数与实际问题-最大利润问题
2 实际问题的挑战与机
遇
实际问题的解决需要面对 各种挑战,但也提供了发 展和创新的机遇。
3 未来的发展趋势
随着技术的进步和需求的 变化,二次函数在解决实 际问题中的应用将继续发 展和演变。
可以引入其他约束、考虑风险和不确定性,提高决策的全面性和鲁棒性。
VI. 二次函数实践与练习
1 实际问题的解决方法和演示
通过实际案例和示例演示,帮助学习者理解 和应用二次函数解决实际问题。
2 练习题
提供一些练习题,加深对二次函数和实际问 题的理解。
VII. 二次函数与实际问题-总结与展望
1 二次函数的重要性
二次函数与实际问题-最 大利润问题
I. 二次函数概述
1 什么是二次函数?
二次函数是一个在方程中有二次项的函数,一般形式为y=ax^2+bx+c。
2 二次函数的一般式和标准式
一般式为y=ax^2+bx+c,标准式为y=a(x-h)^2+k。
3 二次函数图像
二次函数的图像可以是抛物线,开口向上或向下,取决于a的正负。
通过分析实际情况建立利润函数,将利润与决策因素相联系。
2
寻找最大值
通过求导或观察图像,找到利润函数的最大值,例,演示如何使用二次函数解决最大利润问题。
IV. 二次函数在其他问题中的应用
二次函数解决投影高度 问题
通过建立二次函数模型,可 以计算出物体的最大或最小 高度。
II. 最大利润问题简介
1 什么是最大利润问题?
最大利润问题是在实际情况中,通过优化决策来实现最大化利益的问题。
2 实际应用场景
二次函数与最大利润问题解题技巧
二次函数与最大利润问题解题技巧
1. 先了解二次函数的一般式和标准式。
2. 确定题目中涉及的自变量和因变量,并建立解题模型。
3. 求出二次函数的极值点,即最大或最小值点,这可以通过求导或配方法等方式得到。
4. 判断极值点是否为最大值点,如果是,则说明达到最大利润;如果不是,则需根据实际情况进行分析。
5. 最后通过代入数值验证答案是否正确。
举例:
某企业生产一种产品,售价为x元,该企业总成本为:
C(x)=10000+200x+0.02x²元,求该企业的最大利润及最大利润
的售价。
1. 一般式:y=ax²+bx+c;标准式:y=a(x-h)²+k。
2. 总利润P(x)=R(x)-C(x),其中,R(x)为总收入,C(x)为总成本。
因此,P(x)=x(100-0.02x)-10000-200x-0.02x²=-(0.02x²-
80x+10000)。
3. 求P(x)的极值点:P'(x)=-0.04x+80=0,得到x=2000,表示产量在2000时利润最大。
4. 检查2000是否为最大值点,此处可以通过求P''(x)判断。
P''(x)=-0.04<0,说明x=2000时是P(x)的最大值点。
5. 最大利润为P(2000)=-(0.02×2000²-80×2000+10000)=96000元,最大利润的售价为200元。
二次函数的实际的应用之利润最大值面积最值问题
实用标准文案二次函数的实际应用——最大利润问题、面积最大(小)值问题一:最大利润问题知识要点:2bac?b422?x?a(y)?cbx??ax?y0?a,如果自变量的化成顶点式二次函数的一般式()a42a取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).2b?4acby?0a??x?;时,函数有最小值,并且当,即当最小值4a2a2b?4acby?0a??x?.时,函数有最大值,并且当,当最大值4a2ax?x?xx?x?x 内,则当,如果顶点在自变量的取值范围如果自变量的取值范围是21212b?4acby??x?,,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减最值4a2a2y?ax?bx?c x?x?xxx y时,时,性;如果在此范围内的增大而增大,则当随,当1222最大2?bx?y?axc;11最小2y?ax?bx?c xx??xxx y时,随,当如果在此范围内的增大而减小,则当时,(万y 试销过程中发现,每月销售量:某电子厂商投产一种新型电子厂品,每件制造成本为18 元,[例1]= 售价﹣制造成本)﹣2x+100 .(利润件)与销售单价x(元)之间的关系可以近似地看作一次函数y=(元)之间的函数关系式;)写出每月的利润1 z (万元)与销售单价x (万元的利润?当销售单价为多少元时,厂商每月能)当销售单价为多少元时,厂商每月能获得3502 (2获得最大利润?最大利润是多少?万如果厂商要获得每月不低于350 这种电子产品的销售单价不能高于32 元,)(3 根据相关部门规定,元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?2,+136x-1800= -2x-2x+100 )(x -18 )()解:(1 )z= (x -18 y=2 +136x-1800 ;z= -2x之间的函数解析式为z 与x ∴2 =43 x=25 ,x,+136x -1800 解这个方程得350= -2x得由z=350 ,)(2 21元或43 元,所以,销售单价定为2522,(z=-2 x-34 )+512 +136x-1800 配方,得z =-2x将万元;元时,每月能获得最大利润,最大利润是512 因此,当销售单价为342+136x ﹣1800 的图象(如图所示)可知,z=-2x2 3 ()结合()及函数,时当25≤x ≤43z ≥350精彩文档.又由限价32 元,得25 ≤x ≤32 ,根据一次函数的性质,得y=-2x+100 中y 随x 的增大而减小,∴当x=32 时,每月制造成本最低最低成本是18 ×(-2 ×32+100 )=648 (万元),因此,所求每月最低制造成本为648 万元.[练习]:1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?xy元,元,利润为解:设涨价(或降价)为每件yy为降价时的利润为涨价时的利润,21y?(60?40?x)(300?10x)则:12)?600?10x??10(x 26250??5)??10(x6250y?5?x,即:定价为65元时,(元)当max y?(60?40?x)(300?20x)2??20(x?20)(x?15) 2??20(x?2.5)?6125y?61255.x?2(元)当,即:定价为57.5元时,max综合两种情况,应定价为65元时,利润最大.[例2]:市“健益”超市购进一批20元/千克的绿色食品,如果以30?元/千克销售,那么每天可售出400千y x(元与销售单价) (千克)克.由销售经验知,每天销售量?x?30)存在如下图所示的一次函数关系式.(y x的函数关系式;与⑴试求出⑵设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,?现该超市经理要求每天利润不得低于x的范围(?直接写出答案).4180元,请你帮助该超市确定绿色食品销售单价解:⑴设y=kx+b由图象可知,20???400k30k?b??:,解之得,??1000?40k?b?200b??)50?x?20x?1000(30y??.即一次函数表达式为y)?20?P(x)1000x??20)(?20?(x⑵2x0x?14?0?20000?200???20a有最大值.∵∴P1400?x?354500?P当(元)时,max)2?(?2024500??35)?P?20(x,也可求得最大值)(或通过配方,元.元35/千克时,每天可获得最大利润4500答:当销售单价为244804500???20(x?35)?4180⑶∵216?35?)(1?x.或∴31≤x?≤3436≤x≤39已乙两种产品的生产技术和设备后,进行这两种产品加工.万元购甲、某公司投资700.2练习元.经市场调研发2030知生产甲种产品每件还需成本费元,生产乙种产品每件还需成本费2实用标准文案之间的x时,y与,当35≤x<50现:甲种产品的销售单价为x(元),年销售量为y(万件)的函数关系式如图所示,乙种产品的销售x时,y与50≤x≤70函数关系式为y=20﹣0.2x;当万件.物价部门规定这两种10元(含)到45元(含)之间,且年销售量稳定在单价,在25 元.产品的销售单价之和为90 (元)之间的函数关系式.(万元)与xx≤70时,求出甲种产品的年销售量y)当(150≤,(万元)年销售收入﹣生产成本)为W(2)若公司第一年的年销售量利润(年销售利润= 那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?x)的条件下,并要求甲种产品的销售单价)第二年公司可重新对产品进行定价,在(2(3两年的年销售=70范围内,该公司希望到第二年年底,两年的总盈利(总盈利(元)在50≤x≤(元)的范m85万元.请直接写出第二年乙种产品的销售单价利润之和﹣投资成本)不低于围.y与x的函数关系式为y=kx+b(k≠0 解:(1),)设∵函数图象经过点(50,10),(70,8),∴,解得,所以,y=﹣0.1x+15;)∵乙种产品的销售单价2元(含)4元(含)之间∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),=﹣0.2x2+16x+100,=﹣0.2(x2﹣80x+1600)+320+100,=﹣0.2(x﹣40)2+420,∵﹣0.2<0,∴x>40时,W随x的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),=﹣0.1x2+8x+250,=﹣0.1(x2﹣80x+1600)+160+250,=﹣0.1(x﹣40)2+410,∵﹣0.1<0,∴x>40时,W随x的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数性质分析,50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.二、面积最大(最小)值问题实际问题中图形面积的最值问题分析思路为:精彩文档.(1)分析图形的成因(2)识别图形的形状(3)找出图形面积的计算方法(4)把计算中要用到的所有线段用未知数表示(5)把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围(6)根据函数的性质以及自变量的取值范围求出面积的最值。
二次函数的实际应用之利润最大值、面积最值问题
二次函数的实际应用——最大利润问题、面积最大(小)值问题一:最大利润问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 442(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=2.[例1]:某电子厂商投产一种新型电子厂品,每件制造成本为18 元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数y= ﹣2x+100 .(利润= 售价﹣制造成本) (1 )写出每月的利润z (万元)与销售单价x (元)之间的函数关系式;(2 )当销售单价为多少元时,厂商每月能获得3502 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3 )根据相关部门规定,这种电子产品的销售单价不能高于32 元,如果厂商要获得每月不低于350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?解:(1 )z= (x -18 )y= (x -18 )(-2x+100 )= -2x 2+136x-1800 , ∴z 与x 之间的函数解析式为z= -2x 2+136x-1800 ; (2 )由z=350 ,得350= -2x 2+136x -1800 , 解这个方程得x 1=25 ,x 2=43 所以,销售单价定为25 元或43 元,将z =-2x 2+136x-1800 配方,得z=-2 (x-34 )2+512 ,因此,当销售单价为34 元时,每月能获得最大利润,最大利润是512 万元; (3 )结合(2 )及函数z=-2x 2+136x ﹣1800 的图象(如图所示)可知, 当25≤x ≤43时z ≥350 ,又由限价32 元,得25 ≤x ≤32 ,根据一次函数的性质,得y=-2x+100 中y 随x 的增大而减小, ∴当x=32 时,每月制造成本最低最低成本是18 ×(-2 ×32+100 )=648 (万元), 因此,所求每月最低制造成本为648 万元.[练习]:1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.[例2]: 市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x200001400202-+-=xx ∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39. 练习 2.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x (元),年销售量为y (万件),当35≤x <50时,y 与x 之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x (元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范),二、面积最大(最小)值问题实际问题中图形面积的最值问题分析思路为:(1)分析图形的成因(2)识别图形的形状(3)找出图形面积的计算方法(4)把计算中要用到的所有线段用未知数表示(5)把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围 (6)根据函数的性质以及自变量的取值范围求出面积的最值。
二次函数中最大利润问题
----何时获得最大利润
民乐三中
白天福
想一想
回味无穷
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它的对
称轴是 直线x=h ,顶点坐标是 (h,k) .
2 . 二次函数y=ax2+bx+c的图象是一条 抛物2a,顶点坐标是
b 2a
,
4ac 4a
4. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 ,顶点 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值,是 -1 。
5.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小 值,是 1 。
利润=售价-进价
总利润=每件利润×销售量. 总利润=总营业额-总成本
y x800 10x 30
10x2 1100x
10x 552 30250.
我来参加中考
2.(2013中考)某超市经销一种销售成本为每件40元
的商品.据市场调查分析,如果按每件50元销售, 一周能售出500件;若销售单价每涨1元,每周销 量就减少10件.设销售单价为x元(x≥50),一周的 销售量为y件. (1)写出y与x的函数关系式(标明x的取值范围) (2)设一周的销售利润为W,写出W与x的函数关系式, 并确定当单价在什么范围内变化时,利润随着单价的 增大而增大? (3)在超市对该种商品投入不超过10000元的情况下, 使得一周销售利润达到8000元,销售单价应定为多 少?
单价(元) 销售量(件) 单件利润(元) 总利润(元)
调整前
60 300
60 40
20 500
调整后
x
二次函数与利润最大问题
二次函数与最大利润问题学习目标:体会二次函数是一类最优化问题的数学模型.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.学习重点:本节重点是应用二次函数解决实际问题中的最值.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型.学习难点:本节难点在于能正确理解题意,找准数量关系.这就需要同学们在平时解答此类问题时,在平时生活中注意观察和积累,使自己具备丰富的生活和数学知识才会正确分析,正确解题.学习方法:在教师的引导下自主学习。
学习过程:一、有关利润问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?二、做一做:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.⑵利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.?⑶增种多少棵橙子,可以使橙子的总产量在60400个以上?①当c=0时,函数的图象经过原点;②当c>0且函数图象开口向下时,方程ax2+bx+c=0必有两个不等实根;③当a<0,函数的图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数有()A.1个 B.2个C.3个 D.4个2.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?五、课后练习1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?2.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?3.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现,若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数表达式(注明范围);(2)求出商场平均每天销售这种年奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数表达式;(每箱利润=售价-进价)(3)求出(2)中二次函数图象的顶点坐标,并求出当x=40,70时W的值,在直角坐标系中画出函数图象的草图;(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润是多少?4.某医药研究所进行某一治疗病毒新药的开发,经过大量的服用试验后知,成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间x小时的变化规律与某一个二次函数y=ax2+bx+c(a≠0)相吻合.并测得。
运用二次函数解商品销售利润最大问题
运用二次函数解商品销售利润最大问题福建 周奕生商品怎么样销售才能使利润最大,这是商家老板最为关心的问题,也是近几年来中考命题的热点之一,解答这类问题最常用的方法之一是建立二次函数模式,利用二次函数的最大值或最小值解之.例1 某商店经营一种成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价定为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?解:(1)月销售量为:500-(55-50)×10=450(千克), 利润为(55-40)×450=6750(元); (2)仿(1)可得y=(x-40)〔500-(x-50)×10〕,整理,得:400001400102-+-=x x y ;(3)要使销售利润达到8000元,即y=8000, 故8000400001400102=-+-x x ,解之,得x=60或80.当x=60时,月销售量为400千克,所需成本16000元,与题意不符; 当x=80时,月销售量为200千克,所需成本为8000元. 故销售单价应定为每千克80元.请大家想一想:当每千克定价为多少元时,所获月利润最大?最大利润是多少?,此时所需成本是多少?例2 某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代品,并投入资金1500万元进行批量生产.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额-生产成本-投资)为z(万元).(1)试写出y与x之间的函数关系式(不必写出x的取值范围); (2)试写出z与x之间的函数关系式(不必写出x的取值范围);(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别是多少?(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元.请你借助函数的大致图象说明,第二年的销售单价(元)应确定在什么范围内?解:(1)当销售单价定为x元时,年销售量减少101(x-100)万件, 故y=20-101(x-100)=-101x+30;(2)z=(30-101x)(x-40)-500-1500 =-2101x +34x-3200; (3)当x=160时, z=-101×2160+34×160-3200=-320, 反过来,当z=-320时, -2101x +34x-3200=-320, 整理,得2x -340x+28800=0, 解得1x =160,2x =180,故同样的年利润,销售单价还可以定为180元,当销售单价定为160元,即x=160时,年销售量y=-101x+30=14(万件);当销售单价定为180元,即x=180时,年销售量y=12(万件).(4)由z=-2101x +34x-3200=-()3101701012--x ,得 当x=170时,z最大值为-310,也就是说,当销售单价定为170元时,年获利最大,并且到第一年年底公司还差 310万元就可收回全部投资.第二年的销售单价定为x元时,年获利为:z=(30-101x)(x-40)-310=-2101x +34x-1510, 当z=1130时, -2101x +34x-1510=1130, 解得1x =120,2x =220. 又函数z=-2101x +34x-1510的图象如图所示,故由图象可知当120≤x≤220时,z≥1130.所以第二年的销售单价应定在不低于120元,且不高于220元之间.想一想:第二年的定价定为多少时,年利润最大?(2)在所给的坐标系中,根据(1)中的数据描出实数对(x,y)的对应点,并且写出y与x的一个函数关系式;(3)根据(2)中的关系写出P与x的函数关系式,并指出当销售单价x为多少元时,才能获得最大日销售利润?解:(1)由题意,得t和P的计算公式分别是:t=xy,P=t-ay,把x=35,y=57,P=285代入,得a=30,从而t=xy,P=xy-30y,显然,填写表格的关键是日销售量y.由x=40,t=1680,得1640=40y,y=42, 故日销售量的第一空填42;由x=50,P=240,得240=50y-30y,y=12, 故日销售量的第二空填12; 余者如表中的带下划线的数; (2)(x,y)的四个实数对是(35,57),(40,42),(45,27),(50,12),其对应点如图所示;观察这些点的位置可知它们在同一直线上,因此,y是x的一次函数,设y=kx+b, 把点(40,42)和(50,12)分别代入,得40425012k b k b +=⎧⎨+=⎩,解之,得k=-3,b=162, 所以,y=-3x+162;(3)因为P=xy-30y,y=-3x+162,所以,P=x(-3x+162)-30(-30x+162), 整理,得P=-32x +252x-4860, 当x=-()25223⨯-=42时,P最大值=432,故当销售单价x为42元,可获得最大日销售利润432元.例4 某蔬菜基地种植西红柿,由历年市场行情知,从2月1日起的200天内,西红柿市场售价P与上市时间t的关系用图甲的一条线段表示;西红柿的种植成本Q与上市时间t的关系用图乙中的抛物线表示.(其中,市场售价和种植成本的单位为:元/100千克,时间单位为:天)(1)写出图甲表示的市场售价P与时间t的函数关系式; (2)写出图乙表示的种植成本Q与时间t的函数关系式;(3)如果市场售价减去种植成本为纯收益,那么何时上市的西红柿纯收益最大(可借助配方或草图观察)?解:(1)从图甲中可见:当t=0时,P=300;当t=200时,P=100. 设P=kt+b,则图甲300200100b k b =⎧⎨+=⎩,解得k=-1,b=300, 故P=-t+300(0≤t≤200);(2)从图乙中可见:抛物线的顶点为(150,100),且经过点(50,150),故可设抛物线的解析式为Q=a()2150100t -+,把t=50,Q=150代入,得 150=10000a+100,a=1200, 故Q=1200()2150100t -+(0≤t≤200); (3)设t时刻的纯收益为S元,则 S=P-Q=(-t+300)-{1200()2150100t -+}, 整;理,得S=-120021252t t ++(0≤t≤200),即S=-1200()23251002t -+(元), 又0≤t≤200,故当t=100时,S最大值为3252(元).图乙。
二次函数求最大利润问题的教学设计
二次函数求最大利润问题的教学设计范亚书一、学生知识状况分析学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y =ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。
学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。
二、教学任务分析“怎样获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴。
二次函数化为顶点式后,很容易求出最大或最小值。
而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题。
因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践。
即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。
具体地,本节课的教学目标是:(一)知识与技能1、能根据实际问题建立二次函数关系式,并探求出何时刻,实际问题可取得理想值,增强学生解决实际问题的能力。
2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。
(二)过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值。
增进对数学的理解和学好数学的信心。
2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程分析本节课设计了六个教学环节:复习回顾、创设问题情境讲授新课、巩固练习、实践应用、课堂小结、课后作业。
二次函数最大利润应用题
二次函数最大利润应用题参考答案与试题解析1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为时,获得的利润最大,最大值为2250.2.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)xx第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若xxx天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.3.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果xx,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从40元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果xx的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),xx最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?【解答】解:(1)y=60+5x(2)w=(40﹣x﹣20)y=﹣5(x﹣4)2+1280∴下调4元时当天利润最大是1280元(3)设一次进货m千克,由售价32元/千克得x=40﹣32=8,此时y=60+5x=100,∴m≤100×(30﹣7)=2300,答:一次进货最多2300千克(4)下调4元时当天利润最大,由x=4,y=60+5x=80,m=80×(30﹣7)=1840千克∴每次进货1840千克,售价36元/千克时,销售部利润最大.4.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“xx梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.5.某公司经营xx业务,以3万元/吨的价格向农户收购xx后,分拣成A、B两类,A类xx包装后直接销售;B类xx深加工后再销售.A 类xx的包装成本为1万元/吨,根据市场调查,它的平均销售价格y (单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类xx深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类xx平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨xx,其中A类xx有x吨,经营这批xx所获得的xx为w万元(xx=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元xx,问:用于直销的A类xx有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大xx,并求出最大xx.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类xx平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类xxx吨,则销售B类xx(20﹣x)吨.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,wA=6x﹣x=5x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当xx达到30万元时,直接销售的A类xx有18吨.(3)设该公司用132万元共购买了m吨xx,其中A类xx为x 吨,B类xx为(m﹣x)吨,则购买费用为万元,A类xx加工成本为x万元,B类xx加工成本为[12+3(m﹣x)]万元,∴+x+[12+3(m﹣x)]=132,化简得:x=﹣60.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(m﹣x)﹣[12+3(m﹣x)]=﹣6x﹣12∴w=wA+wB﹣3×m=(﹣x2+13x)+(﹣6x﹣12)﹣=﹣x2+7x+﹣12.将=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大xx64万元,此时m=,m﹣x=;②当x≥8时,wA=6x﹣x=5x;wB=9(m﹣x)﹣[12+3(m﹣x)]=﹣6x﹣12∴w=wA+wB﹣3×m=(5x)+(﹣6x﹣12)﹣=﹣x+﹣12.将=x+60代入得:w=48∴当x>8时,有最大xx48万元.综上所述,购买xx共吨,其中A类xx4吨,B类吨,公司能够获得最大xx,最大xx为64万元.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得 x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.7.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.8.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在x天销售的相关信息如表所示.(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?【解答】解:(1)当1≤x≤20时,令30+x=35,得x=10,当21≤x≤40时,令20+=35,得x=35,经检验得x=35是原方程的解且符合题意即第10天或者第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,y=(30+x﹣20)(50﹣x)=﹣x2+15x+500,当21≤x≤40时,y=(20+﹣20)(50﹣x)=﹣525,即y=,(3)当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5,∵﹣<0,∴当x=15时,y有最大值y1,且y1=612.5,当21≤x≤40时,∵26250>0,∴随x的增大而减小,当x=21时,最大,于是,x=21时,y=﹣525有最大值y2,且y2=﹣525=725,∵y1<y2,∴这40天中第21天时该网店获得利润最大,最大利润为725元.9.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t= 6﹣x ;当0<x≤4时,y2与x的函数关系为:y2= 5x+80 ;当 4 ≤x< 6 时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?【解答】解:(1)由题意,得x+t=6,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2与x的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6时,0<6﹣x≤2,即0<t≤2,此时y2=100.故答案为:6﹣x;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;③当4<x≤6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w=;(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;当4<x≤6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;∵a=﹣5,∴当x>3时,w随x的增大而减小,∴没有w最大.故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为640千元.10.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x 之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x (元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m (元)的范围.【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,10),(70,8),∴,解得,所以,y=﹣0.1x+15;(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),=﹣0.2x2+16x+100,=﹣0.2(x2﹣80x+1600)+320+100,=﹣0.2(x﹣40)2+420,∵﹣0.2<0,∴x>40时,W随x的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),=﹣0.1x2+8x+250,=﹣0.1(x2﹣80x+1600)+160+250,=﹣0.1(x﹣40)2+410,∵﹣0.1<0,∴x>40时,W随x的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数与x轴的交点可知50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.11.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800(x>18);(2)由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43所以,销售单价定为25元或43元,将z=﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512(x>18),答;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100xxy随x的增大而减小,∵x最大取32,∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),答:每月最低制造成本为648万元.12.某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【解答】解:(1)设件数为x,依题意,得3000﹣10(x﹣10)=2600,解得x=50,答:商家一次购买这种产品50件时,销售单价恰好为2600元;(2)当0≤x≤10时,y=(3000﹣2400)x=600x,当10<x≤50时,y=[3000﹣10(x﹣10)﹣2400]x,即y=﹣10x2+700x当x>50时,y=(2600﹣2400)x=200x∴y=(3)由y=﹣10x2+700x可知抛物线开口向下,当x=﹣=35时,利润y有最大值,此时,销售单价为3000﹣10(x﹣10)=2750元,答:公司应将最低销售单价调整为2750元.13.某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示设该绿茶的月销售利润为y(元)(销售利润=单价×销售量﹣成本﹣投资).(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?【解答】解:(1)设w=kx+b,将(70,100),(75,90)代入上式得:,解得:,则w=﹣2x+240;(2)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣9000,因此y与x的关系式为:y=﹣2x2+340x﹣9000,=﹣2(x﹣85)2+2450,故当x=85时,y的值最大为2450.(3)故第1个月还有3000﹣2450=550元的投资成本没有收回,则要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,可得方程﹣2(x﹣85)2+2450=2250,解这个方程,得x1=75,x2=95;根据题意,x2=95不合题意应舍去.答:当销售单价为每千克75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.14.某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同.(1)求该款汽车的进价和标价分别是多少万元?(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?【解答】解:(1)设进价为x万元,则标价是1.2x万元,由题意得:1.2x×0.9×9﹣9x=(1.2x﹣0.2)×4﹣4x,解得:x=10,1.2×10=12(万元),答:进价为10万元,标价为12万元;(2)设该款汽车降价a万元,利润为w万元,由题意得:w=(20+×2)(12﹣10﹣a),=﹣20(a﹣)2+45,∵﹣20<0,∴当a=时,w最大=45,答:该款汽车降价0.5万元出售每月获利最大,最大利润是45万元.15.xx“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方xx,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.(1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y关于x的函数关系式.(2)xx菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公顷大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.【解答】解:(1)y=7.5x﹣(2.7x+0.9x2+0.3x)=7.5x﹣2.7x﹣0.9x2﹣0.3x=﹣0.9x2+4.5x.(2)当﹣0.9x2+4.5x=5时,整理得:9x2﹣45x+50=0,解得:x1=,x2=,从投入、占地与当年收益三方面xx,应建议修建公顷大棚.(3)设3年内每年的平均收益为Z(万元)Z=7.5x﹣(0.9x+0.3x2+0.3x)=7.5x﹣0.9x﹣0.3x2﹣0.3x=﹣0.3x2+6.3x=﹣0.3(x﹣10.5)2+33.075(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.(11分)建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益.②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当﹣0.3x2+6.3x=0时,x1=0,x2=21.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)(12分)16.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:进入5月,由于本地蔬菜的xx,此种蔬菜的平均销售价格y(元/千克)从5月第1xx的2.8元/千克下降至第2xx的2.4元/千克,且y与xx数x的变化情况满足二次函数y=﹣x2+bx+c.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x 所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月份的第2xx共销售100吨此种蔬菜.从5月份的第3xx起,由于受暴雨的影响,此种蔬菜的可供销量将在第2xx销量的基础上每xx减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2xx仅上涨%.若在这一举措下,此种蔬菜在第3xx的总销售额与第2xx刚好持平,请你参考以下数据,通过计算估算出a的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)【解答】解:(1)4月份y与x满足的函数关系式为y=0.2x+1.8把x=1,y=2.8和x=2,y=2.4,分别代入y=﹣+bx+c得解得:,∴5月份y与x满足的函数关系式为y=﹣0.05x2﹣0.25x+3.1;(2)设4月份第xxx销售此种蔬菜一千克的利润为W1元,5月份第xxx销售此种蔬菜一千克的利润为W2元.则:W1=(0.2x+1.8)﹣(x+1.2)=﹣0.05x+0.6∵﹣0.05<0,∴W1随x的增大而减少∴当x=1时,W1最大=﹣0.05+0.6=0.55W2=(﹣0.05x2﹣0.25x+3.1)﹣(﹣x+2)=﹣0.05x2﹣0.05x+1.1∵对称轴为x=﹣=﹣0.5,且﹣0.05<0,∴当x=1时,W2最大=1∴4月份销售此种蔬菜一千克的利润在第1xx最大,最大利润为0.55元,5月份销售此种蔬菜一千克的利润在第1xx最大,最大利润为1元.(3)由题意知:[100000(1﹣a%)+2000]×2.4(1+%)=2.4×100000,整理,得a2+﹣250=0,解得a=∵392=1521,402=1600,而1529更接近1521,∴取≈39∴a≈﹣31(舍去)或a≈8.17.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y= 140 元/件,w内= 57500 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是().【解答】解:(1)x=1000,y=×1000+150=140,w内=(140﹣20)×1000﹣62500=57500.(2)w内=x(y﹣20)﹣62500=x2+130x﹣62500,w外=x2+(150﹣a)x.(3)当x==6500时,w内最大;由题意在国外销售月利润的最大值与在国内销售月利润的最大值相同,得:=,解得a1=30,a2=270(不合题意,舍去).∴a=30.(4)当x=5000时,w内=337500,w外=﹣+500000.若w内<w外,则a<32.5;若w内=w外,则a=32.5;若w内>w外,则a>32.5.∴当10≤a<32.5时,选择在国外销售;当a=32.5时,在国外和国内销售都一样;当32.5<a≤40时,选择在国内销售.18.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.【解答】解:(1)设一次函数为m=kt+b,将和代入一次函数m=kt+bxx,有,∴.∴m=﹣2t+96.经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96;(2)设前20天日销售利润为p1元,后20天日销售利润为p2元.由p1=(﹣2t+96)(t+25﹣20)=(﹣2t+96)(t+5)=﹣t2+14t+480=﹣(t﹣14)2+578,∵1≤t≤20,∴当t=14时,p1有最大值578(元).由p2=(﹣2t+96)(﹣t+40﹣20)=(﹣2t+96)(﹣t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数p2在21≤t≤40xx,在对称轴左侧,随t的增大而减小.∴当t=21时,p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)p1=(﹣2t+96)( t+25﹣20﹣a)=﹣t2+(14+)t+480﹣对称轴为t=14+.∵1≤t≤20,∴当t≤+14时,P随t的增大而增大,又∵每天扣除捐赠后的日利润随时间t的增大而增大,∴20≤+14,又∵a<4,∴3≤a<4.。
二次函数在销售利润中最值的几种求...
二次函数在销售利润中最值的几种求...
二次函数在销售利润中最值的几种求法
很多同学明明会做题,该做的都做了,为什么最后错了?就因为欠缺最后临门一脚的功夫。
学的知识记住了,抛物线的顶点纵坐标就是函数的最大值或最小值,但是,应用上出了大问题,要考虑顶点是不是在题意中自变量的取值范围内,在,当然顶点纵坐标就是最值,不在,就要根据函数图象增减性讨论出最值。
这还不算完,遇到分段式的函数呢?那就分别计算出每一段函数最值来,然后比较大小取最值。
说了这么多,这才是牛鼻子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
( 2) y=-5x +800x-27500
2
=-5( x-80 ) +4500
∵ a=-5< 0, ∴ 抛物线开口向下. ∵ 50≤x≤10,0 对称轴是直线 x=80, ∴ 当 x=80 时, y 最大值 =4500;
2
( 3)当 y=4000 时, -5( x-80) +4500=4000 ,
20 元的护眼台
灯.销售过程中发现,每月销售量 y(件) 与销售单价 x(元) 之间的关系可近似的看作一次函数:
.
( 1)设李明每月获得利润为 w(元),当销售单价定为多少元时,每月可获得最大利润?
( 2)如果李明想要每月获得 2000 元的利润,那么销售单价应定为多少元?
( 3)根据物价部门规定,这种护眼台灯的销售单价不得高于
32 元,如果李明想要每月获得的利润
(成本=进价 ×销售量)
47.某商场将每件进价为 160 元的某种商品原来按每件 200 元出售,一天可售出 100 件,后来经过 市场调查,发现这种商品单价每降低 2 元,其销量可增加 10 件. ( 1)求商场经营该商品原来一天可获利润多少元?
( 2)设后来该商品每件降价 x 元,商场一天可获利润 y 元. ① 若商场经营该商品一天要获利润 4320 元,则每件商品应降价多少元? ② 求出 y 与 x 之间的函数关系式,当 x 取何值时,商场获利润最大?并求最大利润值.
二次函数最大利润问题
44.某企业设计了一款工艺品,每件的成本是
50 元,为了合理定价,投放市场进行试销.据市场调
查,销售单价是 100 元时,每天的销售量是 50 件,而销售单价每降低 1 元,每天就可多售出 5 件,
但要求销售单价不得低于成本.
( 1)求出每天的销售利润 y(元)与销售单价 x(元)之间的函数关系式;
20 元 /件。试营销阶段发现:当销售单价是
每天的销售量为 250 件;销售单价每上涨 1 元,每天的销售数量就减少 10 件。
25 元时,
( 1)写出商场销售这种文具,每天所得的销售利润 式;
w(元)与销售单价 (元)之间的函数关系
( 2)求销售单价为多少元时,该文具每天的销售利润最大
.
50.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件
20 元的各种费用.根据规定,每个房间每天的房价不得高于 ( x 为 10 的正整数倍).
340 元.设每个房间的房价增加 x 元
( 1)设一天订住的房间数为 y,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围;
( 2)设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式;
( 3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
32 元,如果李明想要每月获得的利润
不低于 2000 元,那么他每月的成本最少需要多少元?(成本=进价
×销售量)
51.某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天
180 元时,房间会全部住满.当每个
房间 每天的房价每增加 10 元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出
答案:( 1)y=-5x +800x-27500 ;( 2) x=80 时, y 最大值 =4500 ;( 3) 销售单价应该控制在 82 元至
90 元之间.
45.考点: 2.4 二次函数的应用
试题解析: 试题分析:( 1)设每千克涨价 x 元,利润为 y 元,根据总利润 =每千克利润 ×数量建立式子,求出 y 与 x 之间的关系,化成顶点式即可求出结论, ( 2)把 y=6000 代入( 1)的解析式,根据题意使顾客得到实惠就可以得出结论.
( 1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围;
( 2)每件商品的售价定为多少元时,每个月可获得最大利润
?最大的月利润是多少元 ?
( 3)每件商品的售价定为多少元时,每个月的利润恰为
2200 元 ?根据以上结论,请你直接写出售
价在什么范围时,每个月的利润不低于 2200 元 ?
的数量的增多,公司所获的利润反而减少这一情况
.为使商家一次购买的数量越多,公司所获的利
润越大,公司应将最低销售单价调整为多少元 ?(其它销售条件不变)
57.国家推行 “节能减排 低碳经济 ”政策后,低排量的汽车比较畅销,某汽车经销商购进
A , B 两种
型号的低排量汽车,其中 A 型汽车的进货单价比 B 型汽车的进货单价多 2 万元 ,花 50 万元购进 A
答案:( 1)
,不能;( 2) 5.
46.考点: 2.4 二次函数的应用
型汽车的数量与花 40 万元购进 B 型汽车的数量相等,销售中发现 A 型汽车的每周销量
(台)
与售价 (万元 / 台)满足函数关系式
, B 型汽车的每周销量
(台)与售价 万元
/台)满足函数关系式
.
( 1)求 A 、B 两种型号的汽车的进货单价;
( 2)已知 A 型汽车的售价比 B 型汽车的人售价高 2 万元 /台,设 B 型汽车售价为 万元 /台.每周
48.某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件
元.经市场调研发现:该
款工艺品每天的销售量 件与售价 元之间存பைடு நூலகம்着如下表所示的一次函数关
系.
( 1)求销售量 件与售价 元之间的函数关系式;
( 2)设每天获得的利润为
元,当售价 为多少时,每天获得的利润最大?并求出最大值
.
49.某商场要经营一种新上市的文具,进价为
于 x 的不等式 50( -5x+550 )≤7000,通过解不等式来求 x 的取值范围.
试题解析:( 1) y= ( x-50 )[50+5 ( 100-x)]
=( x-50 )( -5x+550 )
2
=-5x +800x-27500
2
∴ y=-5x +800x-27500 ( 50≤ x≤ 1)00;
( 1)商家一次购买这种产品多少件时,销售单价恰好为
2600 元 ?
( 2)设商家一次购买这种产品 x 件,开发公司所获的利润为 函数关系式,并写出自变量 x 的取值范围.
y 元,求 y(元)与 x(件)之间的
( 3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买
2
( 2)若二次函数 y= kx +(3k+1 ) x+3 的图象与 x 轴两个交点的横坐标均为整数,且
k 为整数,求
k 的值。
60.某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件;如果每件商品的售价每 上涨 1 元.则每个月少卖 10 件(每件售价不能高于 65 元).设每件商品的售价上涨 x 元( x 为正 整数),每个月的销售利润为 y 元.
52.某文具店销售一种进价为每本 10 元的笔记本,为获得高利润,以不低于进价进行销售,结果发 现,每月销售量 y 与销售单价 x 之间的关系可以近似地看作一次函数: y=-5x+150 ,物价部门规定 这种笔记本每本的销售单价不得高于 18 元 . ( 1)当每月销售量为 70 本时,获得的利润为多少元?
( 2)该文具店这种笔记本每月获得利润为 关系式,并写出自变量的取值范围 .
w 元,求每月获得的利润 w 元与销售单价 x 之间的函数
( 3)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?
53.某种商品的进价为每件 50 元,售价为每件 60 元,每个月可卖出 200 件;如果每件商品的售价 上涨 1 元,则每个月少卖 10 件(每件售价不能高于 72 元),设每件商品的售价上涨 x 元( x 为整 数),每个月的销售利润为 y 元。
(
, 为整数).
( 1)经商家与厂家协商,采购空调的数量不少于冰箱数量的
,且空调采购单价不低于 1200 元,
问该商家共有几种进货方案?
( 2)该商家分别以 1760 元/台和 1700 元/台的销售单价售出空调和冰箱,且全部售完.在(
1)
的条件下,问采购空调多少台时总利润最大?并求最大利润.
55.张经理到老王的果园里一次性采购一种水果 ,他俩商定:张经理的采购价
2400 元,销售单价定为 3000 元.在
该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品
不超过 10 件时,每件按 3000 元销售;若一次购买该种产品超过 10 件时,每多购买一件,所购买
的全部产品的销售单价均降低 10 元,但销售单价均不低于 2600 元.
销售这两种车的总利润为
万元,求 与 的函数关系式, A 、 B 两种型号的汽车售价各为多少
时,每周销售这两种车的总利润最大?最大总利润是多少万元?
2
2
58.( 1)已知方程 x + px+ q= 0( p - 4q≥0)的两根为 x1、x 2,求证: x 1+ x 2=- p,x 1·x2= q.
2
试题解析:( 1)设每千克涨价 x 元,利润为 y 元,由题意,得:
∴ a=﹣ 20< 0, ∴抛物线开口向下,当 x=7.5 时, y 最大值 =6125 , ∴每天盈利不能达到 8000 元.
( 2)当 y=6000 时,
,解得:
,
,
∵ 要使顾客得到实惠, ∴x=5 . 答:每千克应涨价为 5 元.
( 1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围;
( 2)每件商品的售价定为多少时每个月可获得最大利润
?最大利润是多少。
54.某商家计划从厂家采购空调和冰箱两种产品共
20 台,空调的采购单价 (元 /台)与采购数量