微积分基本定理》
《微积分的基本定理》课件

物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。
微积分学基本定理

一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v(t )是时
间间隔[T1 ,T2 ]上t 的一个连续函数,且v(t ) 0 ,
求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2 v(t )dt
T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
F (b)
F (a)
F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
; 快速阅读加盟 阅读加盟
2 x
解 当 x 0时,1 的一个原函数是ln | x |,
x
1
2
1dx x
ln |
x
|
1 2
ln1 ln 2 ln 2.
例 4 计算曲线 y sin x在[0, ]上与 x轴所围
计算: (1)
21 dx;
1x
3
1
(2) 1 (2x x2 )dx
(3)0 sin xdx;
2
(4) sin xdx;
2
(5)0 sin xdx;
例1
求
2 0
(
2
cos
x
sin
x
1)dx
.
解
原式
微积分基本定理

GMmh W R( R h )
其中 G 是地球引力常数, M 是地球的质量, R 是地球的半径.
例 2:一物体从 5000m 高空落下, .其下落速度为
g -1 2 kt v(t ) (1 e ) ,其中 g=9.8m/s ,k=0.2s k 问经过大约多少秒后该物体将接触到地面?
定积分在物理中的应用
例 3:证明:把质量为 m(单位:kg)的物体从地球 表面升高 h(单位:m)所作的功为
2
例 3:计算由曲线 y x 5 ,直线 y=x
2
-7 以及 x 轴所围图形的面积 S.
定积分在几何中的应用
例 3:直线 y=kx 分抛物线 y=x-x 与 x 轴 所围成图形为面积相等的两部分, 求 k 的值.
y
2
x
O
定积分在物理中的应用
例 1:有一个质量非均匀分布的细棒,已知其线密度 为 ( x ) (2 x 1)( x 1) (取细棒所在直线为 x 轴, 细棒的一端为原点),棒长为 l,求细棒的质量 m.
微积分基本定理
微积分基本定理
定理: 对于被积函数 f(x), 如果 F’(x)=f(x), 则 f ( x )dx F (b) F (a ) .
a b
这里 f(x)是 F(x)的导函数,我们把 F(x) 叫做 f(x)的原函数.
例1 计算定积分
(1)
3
1
2 dx(2)Biblioteka | x|3 2
x 1 (3) e 2 dx 1 x
2
(2 x 1)(2 x 3) dx 2x 1
cos 2 x (4) 2 dx 0 cos x sin x
4 微积分基本原理

微积分基本定理1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的积分.1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃba f (x )d x =F (b )-F (a ).2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,x 轴下方的面积为S 下,则(1)当曲边梯形的面积在x 轴上方时,如图(1),则ʃb a f (x )d x =S 上. (2)当曲边梯形的面积在x 轴下方时,如图(2),则ʃb a f (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图(3),则ʃb a f (x )d x =S 上-S 下,若S上=S 下,则ʃb a f (x )d x =0.[情境导学]从前面的学习中可以发现,虽然被积函数f (x )=x 3非常简单,但直接用定积分的定义计算ʃ10x 3d x 的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?探究点一微积分基本定理问题你能用定义计算ʃ211x d x吗?有没有更加简便、有效的方法求定积分呢?思考1如下图,一个做变速直线运动的物体的运动规律是y=y(t),并且y(t)有连续的导数,由导数的概念可知,它在任意时刻t的速度v(t)=y′(t).设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?答由物体的运动规律是y=y(t)知:s=y(b)-y(a),通过求定积分的几何意义,可得s=ʃb a v(t)d t=ʃb a y′(t)d t,所以ʃb a v(t)d t=ʃb a y′(t)d t=y(b)-y(a).其中v(t)=y′(t).小结(1)一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f(x)d x很方便,其关键是准确写出满足F′(x)=f(x)的F(x).思考2对一个连续函数f(x)来说,是否存在唯一的F(x),使F′(x)=f(x)?若不唯一,会影响微积分基本定理的唯一性吗?答不唯一,根据导数的性质,若F′(x)=f(x),则对任意实数c,[F(x)+c]′=F′(x)+c′=f(x).不影响,因为ʃb a f(x)d x=[F(b)+c]-[F(a)+c]=F(b)-F(a)例1计算下列定积分:(1)ʃ211x d x;(2)ʃ31(2x-1x2)d x;(3)ʃ-π(cos x-e x)d x.反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1探究点二 分段函数的定积分例2 已知函数f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2≤x ≤4.先画出函数图象,再求这个函数在[0,4]上的定积分.反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x .探究点三 定积分的应用 例3 计算下列定积分:ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).1.π2π2-⎰(1+cos x )d x 等于( )A .πB .2C .π-2D .π+22.若ʃa1(2x +1x )d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 3.ʃ20(x 2-23x )d x =________.4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x .[呈重点、现规律]1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础过关1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )|b a ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =lim n→∞∑='-ni i s n ab 1)(ξ; ④它在时间段[a ,b ]内的位移是s =ʃba s ′(t )d t .A .①B .①②C .①②④D .①②③④2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)3.ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +14.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 5.π20⎰sin 2x2d x 等于( )A.π4B.π2-1 C .2D.π-246.若ʃ10(2x +k )d x =2,则k =________.二、能力提升7.设函数f (x )=ax 2+c (a ≠0),若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0x +a 03t 2d t ,x ≤0,若f [f (1)]=1,则a =________. 9.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 10.计算下列定积分:(1)ʃ21(e x +1x )d x ; (2)ʃ91x (1+x )d x ;(3)ʃ200(-0.05e-0.05x +1)d x ; (4)ʃ211x (x +1)d x .11.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求ʃ30f (x )d x 的值.12.已知f (a )=ʃ10(2ax 2-a 2x )d x ,求f (a )的最大值.三、探究与拓展13.求定积分ʃ3-4|x +a |d x ..。
微积分基本定理

§3微积分基本定理()baf x dx ⎰=()ba f t dt ⎰. [,]x ab ∀∈.()()x aF x f t dt =⎰.在[,]a b 有定义.定理1 若[,]f R a b ∈,()()xaF x f t dt =⎰,则(1) ()F x 是[,]a b 上的连续函数.(2) 若()f x 在[,]a b 上连续,则()F x 是[,]a b 上可微,且()()F x f x '=. 证明:(1)0[,]x a b ∀∈,00()()()()()xx xaax F x F x f t dt f t dt f t dt -=-=⎰⎰⎰.[,]m M η∃∈.00()()()0F x F x x x η-=-→.(2)00()()()()F x F x f x x ξ-=-.00000()()limlim ()()x x x F x F x f f x x x ξξ→→-==-. 推论 ()()()()()(())()(())()x x F x f t dt f x x f x x ϕψϕϕψψ''''==-⎰.证明:设()()uaG u f t dt =⎰.()(())()x aG x f t dt ϕϕ=⎰.()(())()x aG x f t dt ψψ=⎰. ()()G u f u '=.((()))(())()G x G x x ϕϕϕ'''=. ()()()()()x x aaF x f t dt f t dt ϕψ=-⎰⎰.例1:232002sin 2limlim 33x x x x x x x ++→→==⎰. ()f x 的积分上限给出()f x 的一个原函数,即()()xaf x dx f t dt C =+⎰⎰()()xad f t dt f x dx =⎰ 若()()uaF u f t dt =⎰()u x ϕ=,则()(())()()[()]()x af t dt F u x f x x ϕϕϕϕ''''==⎰.同理,()()()[()]()[()]()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎰. 例:求极限2032000sin 22sin 2limlim lim 333x x x x x x x x x x +++→→→⋅===⎰. 二.微积分基本定理定理2 设()f x 在[,]a b 上连续,()F x 是()f x 在[,]a b 上的一个原函数,则成立()()()()bba af x dx F b F a F x =-⎰.证明:()()xaf t dt F x c =+⎰,()0F a c +=.()()()xaf t dt F x F a ∴=-⎰. ()()()baf t dt F b F a ∴=-⎰.例2:111lim 122n n n n →∞⎛⎫+++⎪++⎝⎭1111111lim lim 121111nn x i n i n n n n n n→∞→∞=⎛⎫⎡⎤ ⎪⎢⎥=+++=⋅ ⎪⎢⎥ ⎪⎢⎥++++ ⎪⎣⎦⎝⎭∑ 110011lim ()ln 1ln 21ni i x i f x dx x n ξ→∞==∆==+=+∑⎰. 例3:121limsin sin sinn n n n n n πππ→∞-⎛⎫+++ ⎪⎝⎭1lim ()ni i x i f x ξ→∞==∆∑1sin xdx =⎰11cos x ππ-==112πππ+=.三.定积分的计算1.第一类换元法:()()()(())()()u x bb aa f x x dx f u du ϕϕϕϕϕ='=⎰⎰(())()ba f x d x ϕϕ⎡⎤=⎣⎦⎰.例:cos cos cos 10sin cos ()xx x exdx e d x e e e πππ-=-=-=-⎰⎰.或cos 11111t xt te dt e e e =---=-=-=-⎰.2.第二类换元法:()()()()(())()x t baa bf x dx f t t dt ϕβαϕαϕβϕϕ==='=⎰⎰.例:2()11cos x xe x f x x-⎧≥⎪=⎨≤≤⎪+⎩ -1x 0 求:21()f x dx -⎰. 21()f x dx -⎰=2021011cos x dx xe dx x -++⎰⎰=20222101cos 1()1cos 2x x dx e d x x --+---⎰⎰ =2020111sin 2x ctgx e x --⎛⎫-+- ⎪⎝⎭=202101cos 1sin 2x x e x ----=041sin 111cos 22x e x ---++=41sin1(1)21cos1e --++. 3.分部积分法:()()()()()()bbba aau x v x dx u x v x v x u x dx ''=-⎰⎰.例:000sin (cos )cos sin x xdx x x xdx x ππππππ=-+=+=⎰⎰.4.利用函数的特殊性质计算积分: 定理3 ()[,]f x R a a ∈-, (1)若()f x 为偶函数,则有0()2()aaaf x dx f x dx -=⎰⎰;(2)若()f x 为奇函数,则有()0aaf x dx -=⎰.证明:()()()aa aaf x dx f x dx f x dx --=+⎰⎰⎰00()()[()()]a aaf t dt f x dx f x f x dx =--+=-+⎰⎰⎰.例:222202(sin )(cos )(sin )()(sin )x t f x dx f x dx f x dt f x dx πππππ=-==-=⎰⎰⎰⎰.例:222000sin cos sin cos 2sin cos sin cos sin cos 2x x x x dx dx A A dx x x x x x x ππππ+==⇒==+++⎰⎰⎰.例:2sin n n xdx I π=⎰,121sin [(1)sin cos ]n n n n xdx I n I x x n--==--⎰ 2201n n n n I II nπ--== 2n ≥. 210sin 1I xdx π==⎰, 02I π=.01131(1)!!22!!2132(1)!!23!!n n n I n n n n n n I n n n π---⎧=⋅⋅⋅=⋅⎪⎪-⎨---⎪=⋅⋅⋅=⎪-⎩ n=偶数 n=奇数例:设21()xt f x e dt -=⎰不能用初等函数表示,221111110000011()()()(1)(1)0(1)22x x f x dx xf x xf x dx f xe dx f e e --'=-=-=+=+-⎰⎰⎰.定理4 ()f x 是以T 为周期的可积函数,则a ∀有0()()a TTaf x dx f x dx +=⎰⎰.注:计算定积分应该注意的问题(1)换元时,上下限应改变.(2)第二类换元不必一一对应.(3)若积分函数积分区域不连续,应变形去掉不连续点.。
微积分基本定理

3 / 15
同步课程˙微积分基本定理
y
1
O
2 x
【答案】 | cos x | dx 2 cos xdx π2 ( cos x)dx 3π cos xdx
0 0 2 2
2π
π
3π
2π
【例5 】 图中阴影部分的面积总和可用定积分表示为( A. f ( x)dx
a b
【例1 】 根据定义计算积分 x dx .
1
1
1 1 【解析】所求定积分为两个全等的等腰直角三角形的面积,故 x dx 2 1 1 1 . 1 2
【答案】1
2
【例2 】 根据定义计算积分
0
4 x 2 dx .
2
【解析】所求定积分为圆 x2 y 2 4 在 x 轴上半部的半圆的面积,故 【答案】 2π
2 / 15
同步课程˙微积分基本定理 四、微积分基本定理 如果 F ( x) f ( x) , 且 f ( x) 在 [a , b] 上可积, 则 f ( x)dx F (b) F (a) , 其中 F ( x) 叫做 f ( x) 的
a b
一个原函数. 由于 [ F ( x) c] f ( x) , F ( x) c 也是 f ( x) 的原函数,其中 c 为常数. 一般地,原函数在 [a , b] 上的改变量 F (b) F (a) 简记作 F ( x) b , a 因此,微积分基本定理可以写成形式: f ( x)dx F ( x) b a F (b) F ( a) .
【答案】
4 3
【例11】 (2 x 1)dx ______ .
0
《微积分学基本定理》课件

解决微分方程
通过微积分学基本定理,我们可以将复杂的微分方 程转化为易于处理的积分方程,从而找到微分方程 的解。
分析函数的极值
利用微积分学基本定理,可以分析函数的极 值条件,这对于优化问题、经济模型等实际 问题具有重要意义。
在实数理论中的应用
实数完备性
微积分学基本定理在实数理论中发挥了关键作用,它证明了实数系 的完备性,为实数理论的发展奠定了基础。
PART 02
微积分学基本定理的表述
REPORTING
定理的数学表达
总结词
简洁明了地表达了微积分学基本定理的数学形式。
详细描述
微积分学基本定理通常用积分形式和微分形式两种方式表达。积分形式表述为 :∫(f(x))dx = F(b) - F(a),其中∫代表积分,f(x)是待积分的函数,F(x)是f(x)的 原函数;微分形式表述为:∫(dy/dx) dx = y。
详细描述
02 习题一主要考察学生对微积分学基本定理的基础概念
理解,包括定理的表述、公式记忆以及简单应用。
解答
03
通过解析和证明,帮助学生深入理解微积分学基本定
理,并掌握其应用方法。
习题二及解答
总结词:复杂应用
详细描述:习题二涉及微积分学基本定理的复杂应用,包括多步骤推导、 不同定理的综合运用等,旨在提高学生的解题能力和思维灵活性。
揭示函数性质
通过应用微积分学基本定理,我 们可以研究函数的积分与函数的 性质之间的关系,从而深入了解 函数的特性。
证明积分不等式
利用微积分学基本定理,可以证 明各种积分不等式,这些不等式 在数学分析和实际问题中都有广 泛的应用。
在微分学中的应用
导数的定义
微积分学基本定理实际上给出了导数的定义 ,它描述了函数值随自变量变化的规律,是 研究函数局部行为的关键。
微积分学基本定理

(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b
b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b
c
a
f ( x )dx f ( x )dx
x ln x x (7 ) log a xdx ln a (9) cos xdx sin x C
计算不定积分: (1) ( x 3)( x 2)dx; ( x 1)( x 2) ( 2) dx; x cos 2 x ( 3) dx cos x sin x
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
aபைடு நூலகம்
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T
T2
1
v ( t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )
《微积分基本定理》课件

证明方法三:使用不定积分和定积分的性质
总结词
利用不定积分和定积分的性质来证明微积分基本定理 。
详细描述
首先,我们知道不定积分的定义是$int f(x) dx = F(x) + C$,其中$F(x)$是$f(x)$的一个原函数,$C$是常 数。然后,根据定积分的性质,我们知道 $int_{a}^{b} f(x) dx = F(b) - F(a)$。因此,我们可以 将微积分基本定理的结论表示为$int_{a}^{b} f(x) dx = lim_{Delta x to 0} sum_{i=1}^{n} f(xi_i) Delta x$ ,其中$xi_i$是每个小区间的中点,$Delta x$是每个 小区间的宽度。最后,我们利用不定积分的定义和极 限的性质来证明这个结论。
我们可以将积分看作是计算曲线下方的面积。对于一个给 定的函数,我们可以在坐标系中画出其图像。然后,将积 分区间分成若干个小区间,每个小区间的宽度为$Delta x$ ,高度为$f(x)$。因此,每个小矩形的高度与宽度的乘积 即为该小区间的面积。所有小矩形的面积之和即为整个曲 线下方的面积,即函数的积分值。
广义微积分基本定理的应用
广义微积分基本定理在数学分析和实变函数等领域中有 着重要的应用,例如在证明某些积分的收敛性和求解某 些特殊类型的积分等。
THANKS
感谢观看
微积分基本定理是微积分学中的核心定理,它建立了函数积分与导数之间 的联系,为解决各种问题提供了重要的方法和思路。
微积分基本定理的背景
微积分基本定理的起源可以追溯到17世纪,当 时科学家们开始研究如何求解各种物理问题, 如速度、加速度、面积和体积等。
牛顿和莱布尼茨等科学家在研究这些问题时, 发现了微积分基本定理,从而为解决这些问题 提供了重要的方法和工具。
微积分基本定理

1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x
解
当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,
微积分学基本定理及基本积分公式

1.变限定积分
f (t) 在[a, b]上可积,则对 x [a, b], f (t) 在[a, x]上
可积,即 x f (t )dt . a
---变上限定积分
1) 变上限定积分是上限的函数
设 f 在[a, b]上可积,
x
( x) a f (t)dt, x [a, b]
(1 x2 ) x2 x2 (1 x2 ) dx
=
1 x2
dx
1 1 x2
dx
=
1 x
arctan
x
C
.
结果是否正确,检验方法
求导,看积分结果的导函数是否为被积函数
例 5 (3) tan2 x dx (sec2 x 1)dx tan x x C
EXE (4)
1 dx 1 x2
F(x) ex2 (x2 ) 2xex2 .
一般地,
u(x)
v( x)
f (t) dt f (u( x))u( x) f (v( x))v( x)
.
( x) x f (t)dt , ( x) f ( x) .
2) 变上限a 定积分求导
例 2
F(x)
x
( x t) f (t) dt,
结论:若 F ( x)为 f ( x) 的任一原函数, 则(1)F(原 x) 函 C数为的f存( x在) 的性原函数的全体,其中 C 为常数.
已有结论:若 f ( x) C[a, b] , 则 f ( x) 在[a, b]上一定存在原函数.
(2) 原函数不唯一
若 f ( x) 在[a, b]上有原函数,则有一个必有无穷多个.
即从一条曲线上下平移而得 3) 基本积分公式
微积分基本定理概述

微积分基本定理概述概念介绍微积分是数学中一个重要的分支,研究函数的变化率、积分和微分运算等。
微积分基本定理是微积分中的核心理论之一,它包括两个定理:牛顿-莱布尼茨的第一基本定理和第二基本定理。
这两个定理为微积分提供了重要的工具,使我们能够更好地理解和应用微积分的知识。
第一基本定理牛顿-莱布尼茨的第一基本定理,也被称为积分的基本定理,是微积分中的重要定理之一。
它建立了微积分中微分和积分的关系。
简单来说,第一基本定理告诉我们,如果一个函数在一个区间上连续,并且它的导函数存在,则通过积分可以得到该函数在该区间上的原函数(不同的常数项除外)。
具体来说,设函数f(x)在区间[a, b]上连续,并且在(a, b)内有一个原函数F(x),那么有以下公式成立:∫[a,b] f(x)dx = F(b) - F(a)这个公式可以理解为函数f(x)在[a, b]上的积分等于它在b和a处的原函数值的差。
这个定理的意义在于,它给出了计算定积分的一个便捷方法。
第二基本定理第二基本定理是微积分中的另一个重要定理,也被称为微积分基本定理的加法形式。
它表明,对于一个函数f(x)在一个区间上的原函数F(x),我们可以通过对其求导得到f(x)本身。
具体来说,设函数f(x)在区间[a, b]上连续,并且在(a, b)内存在一个原函数F(x),那么有以下公式成立:d/dx ∫[a,x] f(t)dt = f(x)这个公式的意义很重要。
它告诉我们,如果一个函数在一个区间上连续,并且有一个原函数,那么对这个原函数求导将得到它本身。
这个定理对于求解微分方程和函数的导数等问题非常有用。
基本定理的应用微积分的基本定理在科学和工程领域中具有广泛的应用。
它们为我们提供了一种建立函数和导函数之间关系的方法,使得我们能够更好地理解和分析各种变化的现象。
举个例子来说,基本定理可以用于计算曲线下的面积和体积,解决物理学中的运动和力学问题,以及在统计学中对概率密度函数进行积分等。
微积分的基本定理

dx a
由 F(x)
x
f (t)dt
及
F(x)
f (x) 你会想到什么?
a
F(x)是f(x)的一个原函数。
这说明,连续函数必有原函数。
定理
若 f (x) C([a,b]), 则 F(x)
x
f (t)dt, x [a,b]
a
为 f (x) 在[a,b] 上的一个原函数.
推论1 若 f (x) C( I ) , 则 f (x) 在 I 上原函数存在.
2x x2 sint 2dt 2x3 sin x4 . 0
例 6.3.2 设f ( x)为连续函数,证明:
x
xt
0 ( x t) f (t)dt 0 (0 f (u)du)dt.
证
设F( x)
x
( x t) f (t)dt, G( x)
xt
( f (u)du)dt.
0
0
2 0 | cos x | d x
去绝对 值符号(如果 是分段函数, 则利用积分 的性质将积 分分成几个 部分的和的 形式.)
2 2 cos x d x 0
2 (cos x)d x
2
2sin
x
2 0
2sin x
2
2.
2
例6.3.6 设
x2, 1 x 0
f
(
x)
e
x
,
0 x1
求 1 f ( x)dx. 1
解
1 f ( x)dx
0
f ( x)dx
1
第一章 1.6 微积分基本定理

b (4) cos xdx=sin x a .
a
人教A版数学 ·选修2-2
返回导航
上页
下页
1 b (5) xdx=ln x a (b>a>0).
b
a
x b x (6) e dx=e a .
b
a
x a b b x (a>0 且 a≠1). (7) a dx= a ln a a
人教A版数学 ·选修2-2
返回导航
上页
下页
1.计算下列定积分.
1 3 (1) (x -2x)dx;
0
(2) (x+cos x)dx; (3)
2 0
1
2 0
x sin2 dx; 2
1 (4) dx. xx+1
2
人教A版数学 ·选修2-2
1 4 解析:(1)∵( x -x2)′=x3-2x, 4 1 4 3 1 2 ∴ (x -2x)dx=( x -x )0 =- . 4 4
3 (2)求 (|2x+3|+|3-2x|)dx.
返回导航
上页
下页
在区间[0,3]上的定积分;
-3
[解析]
3 1 2 3 (1) f(x)dx= f(x)dx+ f(x)dx+ f(x)dx
0
0
1
2
1 3 2 3 x = x d x + x dx+ 2 dx
返回导航
上页
下页
求分段函数与绝对值函数定积分的方法: (1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常 常利用定积分的性质(3),转化为各区间上定积分的和计算. (2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分 再计算.
微积分七个基本定理

微积分七个基本定理
1、定义域定理(积分定义域定理):如果函数f(x)有连续的导数f'(x),那么f(x)在定义域内具有定义连续性。
2、基本定理(积分基本定理):设内一区间上有一函数f(x),若f(x)在这区间上存在连续的导数f'(x),那么f(x)的定积分就存在,且可以用反常积分形式表示。
3、基本定理(积分变换定理):如果函数f(x)和函数g(x)都在某一区间(a,b)上具有反常积分,则有f(x)g(x)在区间(a,b)上有定积分。
4、分部积分定理(部分积分定理):若f(x)是a到b范围内任意一点x上的可积函数,则有∫f(x)dx=∫f(x)dx+∫f(x)dx。
5、置换定理:积分置换定理正如名字说的,即把函数f(x)的变量由x换成g(x)的变量,在规定的变换空间内,得到的积分值相等。
6、定理(积分级数定理):积分级数定理表明,若函数f(x)在区间[a,b]上连续,那么函数的定积分值等同于其积分级数的和。
7、变量替换定理:变量替换定理定义为:如果函数f(x)与变量x 具有连续导数,且变量u=g(x)具有连续导数,那么:∫f(u)d u=∫f (x)g'(x)dx。
微积分基本定理

解 ∵f(-1)=2,∴a-b+c=2,
①
f′(x)=2ax+b,f′(0)=b=0,
②
ʃ 10f(x)dx=ʃ 10(ax2+c)dx=31ax3+cx10
=13a+c=-2,
③
由①②③可得a=6,b=0,c=-4.
1234
解答
4.已知 f(x)=c4oxs-x2,π,π2<0x≤≤xπ≤,π2,
+x |2+(12x2-x)|42
=1+(2-π2)+(4-2 0)=7-π2.
解答
(2)求定积分 ʃ 20|x2-1|dx.
解 ∵|x2-1|=1x2--x12, ,xx∈ ∈[[01, ,12], , 又(x-x33)′=1-x2,(x33-x)′=x2-1, ∴ʃ 20|x2-1|dx=ʃ 10|x2-1|dx+ʃ 21|x2-1|dx =ʃ 10(1-x2)dx+ʃ 21(x2-1)dx =(x-x33)|10+(x33-x)|21 =1-13+83-2-13+1=2.
有什么关系?
答案 由定积分的几何意义知,ʃ 10(2x+1)dx=12×(1+3)×1=2,
F(1)-F(0)=2,故 ʃ 10(2x+1)dx=F(1)-F(0).
答案
思考2
对一个连续函数f(x)来说,是否存在唯一的F(x),使得F′(x)= f(x)? 答案 不唯一.根据导数的性质,若F′(x)=f(x),则对任意实数 c,都有[F(x)+c]′=F′(x)+c′=f(x).
④ʃ bacos xdx=sin x|ba.
⑤ʃ ba1xdx=ln x|ba(b>a>0).
⑥ʃ baexdx=ex|ba. ⑦ʃ baaxdx=lnaxaba(a>0 且 a≠1).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中两个最基本和最重要的概念 导数和定积分,
这两个概念之间有没有内在的联系呢? 我们能否
利用这种联系求定积分呢 ?
我们先来探究一下导数和定积分的联系.
S B
hn ΔSn
s st
S
hi
hi ΔSi
A
h1
h1
ΔS1
探究
o
at0
t1
ti1
ti tn1
btn
t
图1.6 1
如图1.6 1,一个作变速直线运动的物体的
例2 计算下列定积分:
π
2π
2π
0 sinxdx,π sinxdx,0 sinxdx .
解
因为 cos x'
sin x,
π
sin xdx
0
cos x|0π
cosπ cos0 2;
2π π
sin
xdx
cos
x
|2ππ
cos2π cosπ 2;
2π
0
sin
xdx
cos
x
|02π
cos2π cos0 0.
分:
1
2
1
1dx x
;
2
3 2x 1
1 x2
dx.
解
1因为ln x' 1,
x
所以
2 1
1dx x
ln
x
|12
ln 2 ln1 ln 2.
2因为
x2
'
2x,
1
'
x
1 x2
,
3
1
2x
1 x2
dx
3
2xdx
1
3 1
1 x2
dx
x2
|13
1 x
3 1
9
1
1 3
1
22 3
.
y
1
y sinx
o
π
1
图1.6 3
y
1
2π
x
o
1
y sinx π
2π
x
图1.6 4
可以发现,定积分的值可能取正值也可能取负值 还可能是0 :
1当对应的曲边梯形位于x 轴上方时(图1.6 3),
定积分的值取正值,且等于曲边梯形的面积;
2当对应的曲边梯形位于x 轴下方时(图1.6 4),
定积分的值取负值,且等于曲边梯形的面积的相 反数.
b
a n
s' ti1 .
②
从几何意义上看图1.6 2, s
设曲线s st上与ti1对应的
s st
点为P,PD是P点处的切线,由 sti
D
导数的几何意义知,切线 PD
ΔSi
的斜率等于s' ti1 ,于是
st i1
P Δt
hi C
ΔSi hi tanDPC Δt
o
ti1
ti t
在联系,同时它也提供了计算定积分的一种方法.
微积分基本定理是微积分学中最重要的定理,它
使微积分学蓬勃发展起来,成为一门影响深远的
科 学, 可 以 毫 无 夸 张 地 说, 微 积 分 基 本 定 理 是 微 积
分中最重要、最辉煌的成果.
一 般 地,如 果f x是 区 间a,b上 的 连 续 函 数,并 且F' x
f
x,
那
么 b a
f
xdx
Fb
Fa.这
个
结
论
叫
做微
积
分基本定理(fundamental theoremof calculus),
又叫做牛顿 莱布尼兹公式( Newton Leibniz
Formula ).
为了方便,我们常常把Fb Fa记成Fx|ba,即
a,b等分成n个小区间:
t0,t1,t1,t2 , ti1,ti , tn1,tn ,
每个小区间的长度均为Δt
当Δt很小时, 在 ti1,ti 上,vt
的t变i 化ti1很小b,可n a以.
认为物
体近 似地以 速度v t i1 作匀 速运动, 物体 所作的 位移
ΔSi
hi
v ti1Δt
s' ti1Δt
b
a
微
fxdx Fx|ba Fb Fa.
积 分 基 本 定 理 表 明, 计 算 定
积
分 b a
f
x
dx的
关
键
是找到满足F' x fx的函数Fx.通常,我们可以
运 用 基 本 初 等 函 数 的 求导 公 式 和 导 数 的 四 则 运算
法 则 从 反 方 向 求 出Fx .
例1
计
算
下ቤተ መጻሕፍቲ ባይዱ
列定积
3当位于x 轴上方的曲边 y
梯形的面积等于位于x 轴 1
下方的曲边
梯
形面 积 时,
o
1
定积分的值为0(图1.6 5),
y sinx π
图1.6 5
2π
x
且等于位于x 轴上方的曲
边梯形的面积减去位于x轴下方的曲边梯形面积.
微 积 分 基 本 定 理 揭 示 了导 数 和 定 积 分 之 间 的 内
1.4.2 微积分基本定理
从前面的学习中可以发现,虽然被积函数 f x x3
非常简单,但直接用定积分的定义计算 1 x3dx的值 0
却比较麻烦.对于有些定积 请你尝试利用定积分
分, 例如
直接用
定12 1x义dx计,几算乎.那不么可,有能没定有义更计加算简12便x1d、x.有
效
的
方法求定积分呢?另外 ,我们已经学习了微积分学
s' ti1 Δt.
图1.6 2
结合图1.6 1,可得物体总位移
n
n
n
n
S ΔSi hi vti1Δt s' ti1Δt.
i1
i1
i1
i1
显然,n越大,即Δt越小,区间a,b的分划就越细,
n
n
Vti1Δt s' ti1Δt与S的近似程度就越好.
i1
i1
由定积分的定义有S
运动规律是s st.由导数的概念可知,它在任意
时刻t的速度vt s' t设这个物体在时间段a,b
内的位移为S,你能分别用st、vt表示S吗?
显然,物体的位移S是函数s st在t b处与t a
处的函数值之差,即S sb sa. ①
另一方面,我们还可以利用定积分,由vt来求位移S.
用分点a t0 t1 ti1 ti tn b将区间
lim
n
n i1
b
av n
ti1
lim n
n i1
b as' n
ti1
b
v t dt
b s' t dt.
a
a
结合①
有S
b
a
vtdt
b
a
s'
tdt
sb
sa.
上式表明,如果作变速直线运动的物体的运动规
律是s st,那么vt s' t在区间a,b上的定积
分就是物体的位移sb sa.