20180324上海高考数列汇编
年上海高考数学真题及答案资料
精品文档年上海市高考数学试卷2018参考答案与试题解析题每7~12题每题4分,第12题,满分54分,第1~6一、填空题(本大题共有.分)考生应在答题纸的相应位置直接填写结果题5.(2018?18上海)行列式的值为1.(4分):二阶行列式的定义.OM【考点】:矩阵和变换.5R 49 :综合法;【专题】11 :计算题;直接利用行列式的定义,计算求解即可.【分析】.1=1825﹣×【解答】=4解:行列式×.18故答案为:本题考查行列式的定义,运算法则的应用,是基本知识的考查.【点评】2±.2(4分)(2018?上海)双曲线﹣y.=1的渐近线方程为:双曲线的性质.KC【考点】【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.解:∵双曲线的a=2,b=1,焦点在x轴上【解答】±y=而双曲线的渐近线方程为±y=∴双曲线的渐近线方程为±故答案为:y=【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想72项的系数为21)+上海)在((4.3(分)2018?1x的二项展开式中,x(结精品文档.精品文档果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.2的系数.利用二项式展开式的通项公式求得展开式中x【分析】7展开式的通项公式为x)【解答】解:二项式(1+r,=T?x1r+2的系数为x令r=2,得展开式中=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og(x+a).若f(x)的反2函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og(x+a)的图象经过点(1,3),由2此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og(x+a).2f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og(x+a)的图象经过点(1,3),2∴log(1+a)=3,2解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.精品文档.精品文档【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,.|z|=则.5故答案为:是基础题.本题考查了复数代数形式的乘除运算,考查了复数模的求法,【点评】,=14+,若a=0,aa上海)记等差数列.(4分)(2018?{a}的前n项和为S67n63n.则S=147项和.n【考点】85:等差数列的前【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a=﹣4,d=2,由此能求出S.71【解答】解:∵等差数列{a}的前n项和为S,a=0,a+a=14,76n3n∴,,d=2﹣4,a解得=1.28+42=14∴S=7a=+﹣17故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.,﹣,1,2,3{∈﹣2,﹣1},若幂函数f2018?(7.5分)(上海)已知αα为奇函数,且在(0,+∞)上递减,则α=﹣1.(x)=x【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.α为奇函数,且在(0,+=xxf【分析】由幂函数()∞)上递减,得到a是奇数,精品文档.精品文档且a<0,由此能求出a的值.,,1,2,3∈{﹣2,﹣1},【解答】解:∵αα为奇函数,且在(0,=x+∞)上递减,幂函数f(x)∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),,则的最小值为=2﹣3是E、Fy轴上的两个动点,且.||【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或带入上式即可求出的最小值,a=b+2b=a+2,将,并可求得的最小值.+2带入,也可求出同理将b=a【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;;∴;时,2当a=b+2;b∵﹣+2b2的最小值为时,+23的最小值为﹣∴.的最小值为﹣3,同理求出b=a故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及精品文档.精品文档向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,=克的概率是:所以:这三个砝码的总质量为9,.故答案为:本题考查古典概型的概率的求法,是基本知识的考查.【点评】*n1﹣n)的通项公式为上海)设等比数列{a}a=qN,前n(∈分)10.(5(2018?nn.3S项和为.若=,则q=n【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.n1﹣(n∈N*)=qa}a解:等比数列【解答】{的通项公式为,可得a=1,1n精品文档.精品文档,1=,所以数列的公比不是因为n.,a=q1n+,====可得.q=3可得.3故答案为:等比数列求和以及等比数列的本题考查数列的极限的运算法则的应用,【点评】简单性质的应用,是基本知识的考查.,p的图象经过点=P(>0,函数f(x)分)11.(5(2018?上海)已知常数aqp+.),Q(q.若,)2,则a=6=36pq:函数的图象与图象的变换.3A【考点】:函数的性质及应用.51 35 :转化思想;【专题】值.a【分析】直接利用函数的关系式,利用恒等变换求出相应的.,(q)的图象经过点P(p,),)解:函数【解答】f(xQ=,则:,=1整理得:2pq+,pq解得:2=aqp+,由于:2=36pq2,所以:=36a,>0a由于.故:a=6精品文档.精品文档6故答案为:本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.【点评】2222,,x=1、y满足:x++yy=1、12.(5分)(2018?上海)已知实数x、xy21222111的最大值为 +yy+=,则.+xx2211【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.),=(x,y),=(x,A(x,y,),B(xyy),由圆的方程【分析】设21212112和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d之和,由两平行线的距离可得所求最大值.2【解答】解:设A(x,y),B(x,y),2112=(x,y),=(x,y),21122222=1,xx+,xy+yy=由x+y,=12211221122=1上,+y,可得AB两点在圆x且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d与d之和,21显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,精品文档.精品文档t=,=1可得,解得2=,即有两平行线的距离为的最大值为+即,+.+故答案为:【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.是椭圆=1上的动点,则P分)(2018?上海)设P到该椭圆的两个13.(5)焦点的距离之和为(4.A..2 B22 C.D【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.a=轴,,x解:椭圆=1的焦点坐标在【解答】是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的P2a=2距离之和为.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.精品文档.精品文档“<1”的(R,则“a>1”是)14.(5分)(2018?上海)已知a∈A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.“”?“a>1或a<【分析】“a>1”?0”“”,,由此能求出结果.“?>1”∈R,则“a解:”,【解答】a“”?“a>1或a<0”,“”的充分非必要条件.“a>1”是∴.故选:A【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的1顶点为顶点、以AA为底面矩形的一边,则这样的阳马的个数是()1A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D﹣AABB,D﹣AAFF满足题意,而111111C,E,C,D,E,和D一样,有2×6=12,111当AACC为底面矩形,有2个满足题意,11精品文档.精品文档当AAEE为底面矩形,有2个满足题意,11故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的)的图象绕原点逆时针旋转x后与原图象重合,则在以下各项中,函数,若f()(1)的可能取值只能是(f0..B .CAD.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.=(1)我们可以通过代入和赋值的方法当,,0时,此时得到的圆心角为f,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数x=只能对应一个xy,因此只有当,此时旋转,此时的定义就是要求一个满足一个x 只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.精品文档.精品文档三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,=∴圆锥的体积V=.=(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),精品文档.精品文档M(1,1,0),O(0,0,0),,=(0,2,0),,﹣=(1,14)设异面直线PM与OB所成的角为θ,=.则=cosθ=.∴θ=arccosarccos所成的角的为与.OB∴异面直线PM【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2x2cos.)=asin2x+a∈R,函数f(x上海)设常数18.(14分)(2018?(1)若f(x)为偶函数,求a的值;﹣在区间[﹣π,π]x=+1,求方程f()=1上的解.)若(2f)(【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.2x,=asin2x+2cosx1【解答】解:()∵f()2x,2cosasin2x=xf∴(﹣)﹣+精品文档.精品文档∵f(x)为偶函数,∴f(﹣x)=f(x),22x2cos2cos,x=asin2x+∴﹣asin2x+∴2asin2x=0,∴a=0;=+1()(2)∵f,2(+1∴,asin)=a+2cos1=+,∴a=2+)+1+1=2sin(2xx)+=sin2x2cos,sin2xx=+cos2x∴f(﹣=1x)∵f(,+,(﹣2x∴2sin+)1=1+(∴sin)=,﹣2x=π+2kπ,,或2xk+∈∴2x=+Z﹣,+2kπx=π+kπ,kπ∴x=,或﹣k∈Z,π+∵x∈[﹣π,π],﹣或或x=x=∴﹣x=或x=【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为=(单位:分钟)),xf(而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤精品文档.精品文档时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,+﹣90>40,f(x)=2x2﹣65x+900>0即x,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,﹣;)=4040(1﹣x%)g(x=30?x%+时,<100当30<x;58﹣x40(1﹣x%)+==g(x)(2x?x%+﹣90)+=);g(x∴当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,2=8x(0≤x≤t,y≥0yΓx=tl)0,直线:,曲线:).l与x轴交于点A、与Γ交于精品文档.精品文档点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k?k=﹣1,求得直线QF的方程,求得Q点FQPF2(+6),即可求得=坐标,根据,求得E点坐标,则()P+=8点坐标.,))方法一:由题意可知:设【解答】解:(1B(t,t2,|+=2=t|则BF;|∴|BF=t+2,t(Bt,)2方法二:由题意可知:设+=t+2,∴|BF|=t+2;由抛物线的性质可知:|BF|=t(2)F(2,0),|FQ|=2,t=3,则|FA|=1,,),设OQ的中点,∴=Q(3D,|∴|AQ,,D()﹣(x﹣2PF﹣,则直线方程:y=),=k=QF2﹣20x+12=0,整理得:联立3x,精品文档.精品文档x=,x=6解得:(舍去),=××∴△AQP的面积;S=(Ey),k,=k,m),则,=,(3)存在,设P=(FQPF,)8,=,Qy),∴(=(8﹣2)直线QF方程为y=(x﹣2Q,)6E,根据(++=,则22=,6)∴(),解得:=8y(+,上,且P(,使得点FQ为邻边的矩形FPEQE在Γ∴存在以).FP、【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a},若无穷数列{b}满足:对任意n nn*,都有|b﹣a|≤1,则称{b}与{∈Na}“接近”.nnnn*,判断数列{bNn1+,=a的等比数列,是首项为}{1()设a1,公比为b∈}nnnn1+精品文档.精品文档是否与{a}接近,并说明理由;n(2)设数列{a}的前四项为:a=1,a=2,a=4,a=8,{b}是一个与{a}接近n31n42n的数列,记集合M={x|x=b,i=1,2,3,4},求M中元素的个数m;i(3)已知{a}是公差为d的等差数列,若存在数列{b}满足:{b}与{a}接近,nnnn且在b﹣b,b﹣b,…,b﹣b中至少有100个为正数,求d的取值范围.2001220132【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a﹣1≤b≤a+1,求得b,i=1,2,3,4的范围,即可得到innn 所求个数;(3)运用等差数列的通项公式可得a,讨论公差d>0,d=0,﹣2<d<0,d≤n ﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b}与{a}接近.nn,公比为1的等比数列,{a}是首项为理由:n1=+1=a+,可得a,=b1nnn+*,N,n∈|+1=1﹣b则|﹣a|=|1﹣<nn可得数列{b}与{a}接近;nn(2){b}是一个与{a}接近的数列,nn可得a﹣1≤b≤a+1,nnn数列{a}的前四项为:a=1,a=2,a=4,a=8,413n2可得b∈[0,2],b∈[1,3],b∈[3,5],b∈[7,9],4132可能b与b相等,b与b相等,但b与b不相等,b与b不相等,31241323集合M={x|x=b,i=1,2,3,4},iM中元素的个数m=3或4;(3){a}是公差为d的等差数列,若存在数列{b}满足:{b}与{a}接近,nnnn精品文档.精品文档可得a=a+(n﹣1)d,1n①若d>0,取b=a,可得b﹣b=a﹣a=d>0,nn1nnn1n++则b﹣b,b﹣b,…,b﹣b 中有200个正数,符合题意;2001201223*,∈nN=<|a1﹣﹣a|,d=0②若,取b=a=﹣,则|b﹣a|11nnn1﹣>0=,可得b﹣b n1n+则b﹣b,b﹣b,…,b﹣b中有200个正数,符合题意;2001220123③若﹣2<d<0,可令b=a﹣1,b=a+1,2n2n12n12n﹣﹣则b﹣b=a+1﹣(a﹣1)=2+d>0,112n2n2n2n﹣﹣则b﹣b,b﹣b,…,b﹣b中恰有100个正数,符合题意;2002123201④若d≤﹣2,若存在数列{b}满足:{b}与{a}接近,nnn即为a﹣1≤b≤a+1,a﹣1≤b≤a+1,1nnn1nnn1+++可得b﹣b≤a+1﹣(a﹣1)=2+d≤0,nnnn11++b﹣b,b﹣b,…,b﹣b中无正数,不符合题意.2002322011综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.精品文档.。
【真题】2018年上海市高考数学试题含答案解析
【考查类型】中考真题
【试题级别】高三
【试题地区】上海
【试题来源】2018 年高考数学真题试卷(上海卷)
3.(2018•上海)在(1+x)7 的二项展开式中,x²项的系数为
。(结果用数值表示)
【答案】21
【解析】【解答】(1+x)7
中有
Tr+1=
C7r
xr
,故当
r=2
时,
C72
=
7
2
6
=21
【分析】注意二项式系数,与各项系数之间差别。考点公式 a b n 第 r+1 项为 Tr+1= Cnranrbr 。
3
当|q|<1
时,
lim
n
1
qn 1
qn
q
(舍)
【分析】 Sn
a1 a1qn 1 q
(等比数列前
n
项和公式)
【题型】填空题
【考查类型】中考真题
【试题级别】高三
【试题地区】上海
【试题来源】2018 年高考数学真题试卷(上海卷)
11.(2018•上海)已知常数
a
>0,函数
f
(x)
【试题地区】上海
【试题来源】2018 年高考数学真题试卷(上海卷)
8.(2018•上海)在平面直角坐标系中,已知点 A(-1,0),B(2,0),E,F 是 y 轴上的两个动点,且
| EF |=2,则 AE · BF 的最小值为______
【答案】-3
【解析】【解答】设 E(0,y1),F(0,y2),又 A(-1,0),B(2,0),
y1
2018年上海高三二模真题汇编——数列专题(教师版)
2018年一模汇编——数列专题一、知识梳理【知识点1】等差、等比数列的相关公式的应用通项n a前n 项和n S等差()11n a a n d =+- 1n a dn a d =+-()12n n n a a S +=;2122n d d S n a n ⎛⎫=+- ⎪⎝⎭ 等比()110n n a a q q -=≠⎪⎩⎪⎨⎧≠--==1,1)1(111q q q a q na S n n【例1】设正项数列{}n a 的前n 项和是n S ,若{}n a 和{n S }都是等差数列,且公差相等,则=+d a 1 . 【答案】43. 【解析】由于等差数列的前n 项和是n S 是关于n 一元二次表达式,且等差数列都是关于n 的一元一次表达式,那么n S 也是关于n 的一元一次表达式,所以n S 必然是个完全平方式。
根据以上分析,我们可以得到等式()111100241022d a a a d d d d ⎧⎧-==⎪⎪=⎧⎪⎪⇒⎨⎨⎨=⎩⎪⎪==⎪⎪⎩⎩或舍,所以134a d +=. 【点评】对于等差、等比数列来说,只需要求出首项1a 与公差d 或者公比q 就可以直接根据公式求出通项n a 和前n 项和n S .【例2】公差为d ,各项均为正整数的等差数列{}n a 中,若11,65n a a ==,则n d +的最小值等于 . 【答案】17.【解析】()()111165n a a n d n d =+-=+-=,所以()164n d -=,由基本不等式22x y xy +⎛⎫≤ ⎪⎝⎭可知,()2112n d n d -+⎛⎫-≤ ⎪⎝⎭,即182n d -+≥,所以17n d +≥. 【点评】等差数列、等比数列的“基本元”是首项、公差或公比,当觉得不知如何用性质求解时,可以把问题转化成“基本元”解决..【知识点2】等差、等比数列的证明定义法等差、等比中项通项与求和的性质等差1n n a a --为定值 112n n n a a a +-+=n a 为一元一次 n S 为没有常数的一元二次 等比 1nn a a -为定值 211n n na a a +-⋅= n a 为指数函数类似形式【例1】数列}{n a 满足:)(22,111N n a a a a n nn ∈+==+. (1)求证:数列}1{na 是等差数列; (2)求}{n a 的通项公式.【答案】(1)证明见解析;(2)12+=n a n . 【解析】注意是到证明数列}1{n a 是等差数列,则要证明n n a a 111-+是常数.而nn n a a a 2211+=+,所以21111=-+n n a a .即数列}1{n a 是等差数列.又111=a ,则21)1(2111+=-+=n n a n ,所以12+=n a n . 【点评】对于数列的证明题,尤其是证明一个新的数列为等差或者等比,一般采用定义法,偶尔采用等差中项或者等比中项.【知识点3】等差、等比数列的基本性质以及两者间的类比推理等差数列等比数列性质一:),,,(N q p n m q p n m ∈+=+ q p n m a a a a +=+ q p n m a a a a ⋅=⋅ 性质二:每n 项捆绑(等差为前n 项和,等比为前n 项积)n S 、2n n S S -、32n n S S -成等差n T 、2n n T T 、32nnT T 成等比 性质三:等差(比)前n 项和n S (积n T )的最值1100()00n n n n a a a a ++≥≤⎧⎧⎨⎨≥≤⎩⎩ )11(1111⎩⎨⎧>≤⎩⎨⎧<≥++n n n n a a a a【例1】设等差数列{}n a 满足:22223535317cos cos sin sin cos2sin()a a a a a a a --=+,42k a π≠,k Z ∈且公差(1,0)d ∈-,若当且仅当8n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A. 错误!未找到引用源。
2018年各地高考真题分类汇编数列学生版完整版.doc
(2018年全国一·文科)17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.(2018年全国二·文科)17.(12分) 记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值.(2018年全国三·文科)17.(12分)等比数列中,. (1)求的通项公式;(2)记为的前项和.若,求.(2018年北京·文科)(15)(本小题13分)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求12e e e n a a a +++L .(2018年天津·文科)(18)(本小题满分13分)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.n S {}n a n 17a =-315S =-{}n a n S n S {}n a 15314a a a ==,{}n a n S {}n a n 63m S =m(2018年江苏)14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .(2018年浙江)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>(2018年上海)20.(本题满分15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.高考一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
(完整word版)2013-2018年上海高考试题汇编-数列.docx
(2)若无穷数列{bn}是等差数列,无穷数列
{cn}是公比为正数的等比数列,
b1c51,
b5
c181,anbn
cn判断{an}是否具有性质
P,并说明理由;
(3)设{bn}是无穷数列,已知an
1bn
sinan(n
N*).求证:“对任意a1,{an}都具有性
质P”的充要条件为“
{bn}是常数列”.
,L均是等比数列
,L均是等比数列,且公比相同
知识点6:等差数列与等比数列综合
(2016文22) 对 于 无 穷 数 列{an}与{bn}, 记A { x| xan,nN*},
B{ x| xbn,nN*},若同时满足条件:①{an},{bn}均单调递增;②A I B且
A U BN*,则称{an}与{bn}是无穷互补数列.
答案:(1)a316;(2)由于a1
a5,但a2a6,故an不具有性质P;
(3)证明:必要性: 若对于任意
a1,an
都具有性质P,则a2b1
sin a1,设函数
f x
x b1, g x
sin x,由f
x , g
x
图像可得, 对于 任意的b1,二者图像必有一个
交点,所以一定能 找到
a1,使得a1
b1
sin a1,所以a2b1sin a1a1,所以anan 1,
3
3
n
1, 2, L ,99
.
①当d
0
时,a99
a98
L
a2
a1
,所以0
d
2 a1,即
0
d
2
.
②当d
0
时,a99
a98
2018年上海高考数学真题和答案
2018 年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12 题,满分54 分,第 1~6 题每题 4 分,第 7~12 题每题5 分)考生应在答题纸的相应位置直接填写结果.1.(4 分)(2018? 上海)行列式的值为18 .【考点】OM :二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18 .故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4 分)(2018? 上海)双曲线﹣y2=1 的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2 ,b=1 ,焦点在 x 轴上而双曲线的渐近线方程为y= ±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4 分)(2018? 上海)在(1+x)7 的二项展开式中,x2 项的系数为21 (结果用数值表示).【考点】 DA:二项式定理.【专题】 38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2 的系数.【解答】解:二项式(1+x)7 展开式的通项公式为T r+1= ?x r,令 r=2,得展开式中x 2 的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4 分)(2018? 上海)设常数 a∈R,函数f(x)=1og 2(x+a ).若f(x)的a= 7 .反函数的图象经过点(3,1),则【考点】 4R:反函数.【专题】 11 :计算题;33 :函数思想;4O :定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og 2(x+a )的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og 2(x+a ).f(x)的反函数的图象经过点(3,1),.. ..∴log 2(1+a )=3,解得a=7 .故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4 分)(2018? 上海)已知复数z 满足(1+i)z=1﹣7i(i 是虚数单位),则|z|= 5 .【考点】A8:复数的模.【专题】38 :对应思想; 4A :数学模型法; 5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|= .故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4 分)(2018? 上海)记等差数列 {a n}的前n 项和为 S n ,若a 3=0,a6+a 7=14,则S7= 14 .【考点】85:等差数列的前n 项和.【专题】11 :计算题; 34 :方程思想; 4O :定义法; 54 :等差数列与等比数列.4,d=2 ,由此能求出【分析】利用等差数列通项公式列出方程组,求出a1=﹣S7.【解答】解:∵等差数列{a n}的前n 项和为S n,a3=0,a6+a 7=14 ,∴,解得a1=﹣4,d=2 ,∴S7=7a 1+ =﹣28+42=14 .故答案为:14.,【点评】本题考查等差数列的前7 项和的求法,考查等差数列的性质等基础知识考查运算求解能力,考查函数与方程思想,是基础题.2,﹣1,﹣,1,2,3},若幂函数 f7.(5 分)(2018? 上海)已知α∈{﹣1.(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣【考点】 4U:幂函数的概念、解析式、定义域、值域.【专题】 11 :计算题;34 :方程思想;4O :定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且 a<0,由此能求出 a 的值.1,,1, 2,3},【解答】解:∵α∈{﹣2,﹣幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a 是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5 分)(2018? 上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F 是y 轴上的两个动点,且| |=2 ,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设 E(0,a),F(0,b),从而得出 |a ﹣b|=2 ,即a=b+2 ,或b=a+2 ,并可求得,将 a=b+2 带入上式即可求出的最小值,同理将b=a+2 带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2 ,或b=a+2 ;且;∴;当a=b+2 时,;∵b2+2b ﹣2 的最小值为;∴的最小值为﹣ 3,同理求出b=a+2 时,的最小值为﹣ 3.故答案为:﹣ 3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5 分)(2018? 上海)有编号互不相同的五个砝码,其中 5 克、3 克、1 克砝码各一个, 2 克砝码两个,从中随机选取三个,则这三个砝码的总质为9 克的量).概率是(结果用最简分数表示【考点】 CB:古典概型及其概率计算公式.【专题】 11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质为9 克的事件总数,然后量求解概率即可.【解答】解:编号互不相同的五个砝码,其中 5 克、 3 克、 1 克砝码各一个, 2 克砝码两个,从中随机选取三个, 3 个数中含有 1 个 2;2 个 2,没有2,3 种情况,所有的事件总数为:=10,这三个砝码的总质量为9 克的事件只有:5,3,1 或 5,2,2 两个,所以:这三个砝码的总质量为9 克的概率是:= ,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5 分)(2018? 上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前为S n.若= ,则q= 3 .n 项和【考点】 8J:数列的极限.【专题】 11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为 a =q n﹣1(n∈N*),可得 a 1=1,因为= ,所以数列的公比不是1,,a n+1 =q n.可得= = = = ,可得q=3 .故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.过点P11.(5 分)(2018? 上海)已知常数 a >0,函数f(x)= 的图象经(p,),Q(q,).若2p+q =36pq ,则a= 6 .【考点】 3A:函数的图象与图象的变换.51 :函数的性质及应用.【专题】 35 :转化思想;【分析】直接利用函数的关系式,利用恒等变换求出相应的 a 值.【解答】解:函数f(x)= 的图象经点P(p ,),Q(q,).过则:,整理得:=1,解得: 2p+q =a 2pq ,由于:2p+q =36pq ,所以:a2=36,由于a>0,故:a=6 .故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5 分)(2018? 上海)已知实数x1、x2、y1、y2 满足:x12+y2+y2=1,x 2+y1 22=1,2x1x2+y 1y2= ,则+ 的最大值为+ .【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想; 48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB 为等边三角形, AB=1 ,+ 的几何意义为点A,B 两点到直线x+y ﹣1=0 的距离d1 与d2 之和,由两平行线的距离可得所求最大值.【解答】解:设 A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y2+y2=1,x 2+y1 22=1,x1x2+y1y2= ,2可得A,B 两点在圆 x2+y 2=1 上,且? =1× 1× cos ∠AOB= ,.. ..即三角形 OAB 为等边三角形,AB=1 ,+ 的几何意义为点A,B 两点到直线 x+y﹣1=0 的距离 d 1 与d2 之和,显然A,B 在第三象限,AB 所在直线与直线x+y=1 平行,可设AB:x+y+t=0 ,(t>0),由圆心 O 到直线 AB 的距离 d= ,可得2 =1,解得 t= ,即有两平行线的距离为= ,即+ 的最大值为+ ,故答案为:+ .【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5 分)(2018? 上海)设P 是椭圆=1 上的动点,则P 到该椭圆的两个焦点的距离之和为()A.2 B.2 C .2 D.4【考点】K4:椭圆的性质.【专题】 11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.的轴,求出 a ,接利用椭圆的定义,转【分析】判断椭圆长轴(焦点坐标)所在化求解即可.x轴, a= ,【解答】解:椭圆=1 的焦点坐标在P 是椭圆=1 上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为2a=2 .故选: C.的应用,椭圆的定义的应用,是基本知识的考性质【点评】本题考查椭圆的简单查.14.(5 分)(2018? 上海)已知 a∈R,则“a> 1”是“< 1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】 29:充分条件、必要条件、充要条件..【专题】 11 :计算题;34 :方程思想;4O :定义法;5L :简易逻辑【分析】“ a> 1”? “”,“”? “ a>1 或 a < 0”,由此能求出结果.【解答】解:a∈R,则“a> 1”? “”,“”? “ a>1 或a< 0”,∴“a> 1”是“”的充分非必要条件.故选: A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5 分)(2018? 上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1 为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想; 4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1 满足题意,而C1,E1,C ,D,E,和 D1 一样,有2× 6=12 ,当A1ACC 1 为底面矩形,有 2 个满足题意,当A1AEE1 为底面矩形,有 2 个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5 分)(2018? 上海)设D 是含数 1 的有限实数集, f(x)是定义在 D 上的函数,若 f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想; 51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12 个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)= ,,0 时,此时得到的圆心角为,,0,然而此时x=0 或者 x=1 时,都有 2 个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y,因此只有当x= ,此时旋转,此时满足一个x 只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有 5 题,满分 76 分)解答下列各题必须在答题纸的相应位置写出必要的步骤 .17.(14 分)(2018? 上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4 ,OA 、OB 是底面半径,且∠AOB=90°M,为线段 AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合; 41 :向量法; 5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为 2,圆锥的母线长为 4 能求出圆锥的体积.(2)以 O 为原点,OA 为x 轴,OB 为 y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线PM 与OB 所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为 2,圆锥的母线长为4,∴圆锥的体积V= == .(2)∵ PO=4 ,OA ,OB 是底面半径,且∠AOB=90°,A B 的中点,M 为线段∴以O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为z 轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM 与 OB 所成的角为θ,则c os θ= = = .∴θ=arccos .∴异面直线PM 与 OB 所成的角的为arccos .,考法【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求力,考查解能查空间中线线、线面、面面间的位置关系等基础知识,考查运算求函数与方程思想,是基础题.18.(14 分)(2018? 上海)设常数 a ∈R,函数f(x)=asin2x+2cos 2x.(1)若f(x)为偶函数,求 a 的值;(2)若f()= +1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】 GP:两角和与差的三角函数;GS:二倍角的三角函数.;4R:转化法; 58 :解三角形.;38 :对应思想】 11 :计算题【专题【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出 a 的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos 2x,∴f(﹣ x)=﹣asin2x+2cos 2x,∵f(x)为偶函数,∴f(﹣ x)=f(x),∴﹣ asin2x+2cos 2x=asin2x+2cos 2x,∴2asin2x=0 ,∴a=0 ;(2)∵ f()= +1,∴asin +2cos2()=a+1= +1,∴a= ,∴f(x)= sin2x+2cos2x= sin2x+cos2x+1=2sin (2x+ )+1,∵f(x)=1﹣,∴2sin(2x+ )+1=1﹣,∴sin(2x+ )=﹣,∴2x+ =﹣+2k π,或2x+ = π+2k π,k∈Z,∴x=﹣π+kπ,或x= π+kπ,k∈Z,∵x∈[﹣π,π],∴x= 或 x= 或 x=﹣或 x=﹣求值,以及三角函数的性质,属于基础题.【点评】本题考查了三角函数的化简和19.(14 分)(2018? 上海)某群体的人均通勤时间,是指单日内该群体中成员式通从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方勤.分析显示:当S 中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)= (单位:分钟),回40 分钟,试根据上述分析结果而公交群体的人均通勤时间不受x 影响,恒为答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?论g(x)的单调性,(2)求该地上班族S的人均通勤时间g(x)的表达式;讨并说明其实际意义.【考点】 5B:分段函数的应用.【专题】 12 :应用题; 33 :函数思想;4C :分类法; 51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40 时x 的取值范围即可;意义.(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际【解答】解;(1)由题意知,当30<x<100 时,f(x)=2x+ ﹣90>40,65x+900 >0,即 x2﹣解得x<20 或 x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30 时,x%)=40﹣;g(x) =30?x%+40(1﹣当 30<x<100 时,x%)=﹣x+58;g(x)=(2x+﹣90) ?x%+40(1﹣∴g(x)= ;;当 0<x<32.5 时,g(x)单调递减;当 32.5<x<100 时, g(x)单调递增说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;增的;有大于32.5%的人自驾时,人均通勤时间是递少.当自驾人数为32.5%时,人均通勤时间最【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16 分)(2018? 上海)设常数 t>2.在平面直角坐标系x Oy 中,已知点 F(2,0),直线l:x=t ,曲线Γ:y2=8x(0≤x≤t,y≥0).l 与x 轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点 B 到点 F 的距离;(2)设t=3 ,|FQ|=2 ,线段OQ 的中点在直线FP上,求△ AQP 的面积;(3)设t=8 ,是否存在以FP、FQ 为邻边的矩形FPEQ,使得点 E在Γ上?若存在,求点 P 的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想; 4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设 B 点坐标,根据两点之间的距离公式,即可求得|BF| ;方法二:根据抛物线的定义,即可求得|BF| ;(2)根据抛物线的性质,求得Q 点坐标,即可求得OD 的中点坐标,即可求得直线 PF 的方程,代入抛物线方程,即可求得P 点坐标,即可求得△AQP 的面积;(3)设 P 及E 点坐标,根据直线k PF?k FQ =﹣1,求得直线QF 的方程,求得Q点坐标,根据+ = ,求得 E 点坐标,则()2=8(+6),即可求得P 点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2 t),则|BF|= =t+2 ,∴|BF|=t+2 ;方法二:由题意可知:设B(t,2 t),由抛物线的性质可知:|BF|=t+ =t+2 ,∴|BF|=t+2 ;(2)F(2,0),|FQ|=2 ,t=3 ,则|FA|=1 ,∴|AQ|= ,∴Q(3,),设 OQ 的中点 D,D(,),k QF= =﹣,则直线 PF方程:y= ﹣(x﹣2),联立,整理得:3x2﹣20x+12=0 ,解得:x= ,x=6(舍去),∴△AQP 的面积 S= ××= ;(3)存在,设P(,y),E(,m ),则 k PF= = ,k FQ = ,直线 QF 方程为y= (x﹣2),∴y Q= (8﹣2)= ,Q(8,),根据+ = ,则 E(+6,),∴()2=8(+6),解得: y2= ,∴存在以 FP、FQ 为邻边的矩形FPEQ,使得点 E在Γ上,且P(,).化思想,计【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转算能力,属于中档题.意n21.(18 分)(2018? 上海)给定无穷数列{a n},若无穷数列{b n}满足:对任a n | ≤1,则称{b n}与{a n}“接近”.*,都有 |b∈N n﹣(1)设{a n}是首项为1,公比为的等比数列, b n=a n+1 +1,n∈Nn}*,判断数列 {b*,判断数列 {b是否与 {a n}接近,并说明理由;(2)设数列 {a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与 {a n}接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m ;(3)已知 {a n}是公差为 d 的等差数列,若存在数列{b n}满足: {b n }与{a n}接近,b200 中至少有100 个为正数,求 d 的取值范围.且在b2﹣b1,b3﹣b2,⋯,b 201﹣【考点】 8M:等差数列与等比数列的综合.【专题】 34 :方程思想;48 :分析法; 54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤ a n+1,求得b i,i=1,2,3,4 的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0 ,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列 {b n}与{a n }接近.理由: {a n}是首项为1,公比为的等比数列,可得a n = ,b n=a n+1 +1= +1,则|b n﹣a n|=| +1﹣|=1﹣<1,n∈N*,可得数列 {b n}与{a n }接近;(2){b n}是一个与 {a n }接近的数列,可得a n ﹣1≤b n≤ a n+1,a1=1,a2=2,a3=4,a4=8,数列 {a n}的前四项为:可得b1∈[0,2] ,b2∈[1,3],b 3∈[3,5],b4∈[7,9],可能b1 与 b2 相等, b2 与 b3 相等,但 b 1 与 b3 不相等, b 4 与b3 不相等,集合M={x|x=b i,i=1,2,3,4},M 中元素的个数m=3 或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n }接近,可得a n =a 1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1 ﹣b n=a n+1 ﹣a n=d >0,则b2﹣b1,b3﹣b2,⋯, b 201﹣b200 中有200 个正数,符合题意;②若d=0 ,取b n=a 1﹣,则|b n﹣a n|=|a 1﹣﹣a1|= <1,n∈N*,可得b n+1 ﹣b n= ﹣>0,则b2﹣b1,b3﹣b2,⋯, b 201﹣b200 中有200 个正数,符合题意;③若﹣ 2<d <0,可令 b 2n ﹣1=a 2n﹣1﹣1,b2n =a 2n +1,则b2n ﹣b 2n ﹣1=a 2n +1﹣( a2n﹣1﹣1)=2+d >0,则b2﹣b1,b3﹣b2,⋯, b 201﹣b200 中恰有100 个正数,符合题意;④若d≤﹣ 2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n ﹣1≤b n≤ a n+1,a n+1 ﹣1≤b n+1 ≤a n+1 +1,可得b n+1 ﹣b n≤a n+1 +1﹣( a n﹣1)=2+d ≤0,b2﹣b1,b3﹣b2,⋯, b201 ﹣b 200 中无正数,不符合题意.综上可得,d 的范围是(﹣ 2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2018--2020年高考数学试题分类汇编数列附答案详解
2018--2020年⾼考数学试题分类汇编数列附答案详解2018---2020年⾼考数学试题分类汇编数列⼀、选择题.1、(2018年⾼考全国卷1理科4)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=()A .﹣12B .﹣10C .10D .12答案:B解析:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2,∴=a 1+a 1+d +4a 1+d ,把a 1=2,代⼊得d=﹣3 ∴a 5=2+4×(﹣3)=﹣10.故选:B .2、(2019年⾼考全国I 卷理科9)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =-C .228n S n n =-D .2122n S n n =- 答案:A解析:有等差数列的性质可知54,0641514=+==+=d a a d a S ,解得2,31=-=d a所以52,42-=-=n a n n S n n ,故选A 。
3、(2019年⾼考全国III 卷理科5⽂科6)已知各项均为正数的等⽐数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=A . 16B . 8C .4D . 2答案:C解析:由题意有154=S ,即151)1(414=--=qq a S 由题意有a 5=3a 3+4a 1,即1214143a q a q a +=,故 (q 2-4)(q 2+1)=0因为各项均为正数,所以q>0,所以q=2将q=2代⼊151)1(414=--=qq a S .得a 1=1、所以43=a 故选C 4、(2019年⾼考全国III 卷⽂理科9)执⾏下边的程序框图,如果输⼊的ε为0.01,则输出s 的值等于 A.4122-B.5122-C.6122-D.7122-答案:C解析:等⽐数列前n 项和,0,1==s x 不满⾜01.0s x 不满⾜01.011,41+==s x 不满⾜01.01....41211,1281++++==s x 满⾜01.05、(2019年⾼考北京卷理科2⽂科4)执⾏如图所⽰的程序框图,输出的s 值为(A )1(B )2(C )3(D )4 答案:B解析:k=1,s=1, s=2212312?=?-,k<3,故执⾏循环体k=1+1=2,2222322s ?==?-;此时k=2<3,故继续执⾏循环体k=3,2222322s ?==?-,此时k=3,结束循环,输出s=2.故答案为:B.6、(2019年⾼考浙江卷10)设,a b R ∈,数列{}n a 中1a a =,21n n a a b +=+,21n n a a b +=+,则()A.当12b =时,1010a > B.当14b =时,1010a >C.当2b =-时,1010a >D.当2b =-时,1010a > 答案:A解答:选项B :不动点满⾜2211()042x x x -+=-=,如图,若11(0,)2a a =∈,12n a <,排除;如图若a 为不动点12,则12n a =;选项C :不动点满⾜22192()024x x x --=--=,不动点为2x =,令2a =,则210n a =<,排除;选项D :不动点满⾜221174()024x x x --=--=,不动点为1712x =,令1712a =,则171102n a =<,排除;选项A :证明:当12b =时,2211122a a =+≥,2321324a a =+≥,2431171216a a =+≥≥,处理⼀:可依次迭代到n a ;处理⼆:当4n ≥时,221112n n n a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>?>,则1217()(4)16n n a n +≥≥,则641022617164(64631 1114710161616210()6a ?≥=+=++?+>++>,故选A.7、(2020?北京卷)在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T (). A. 有最⼤项,有最⼩项 B. 有最⼤项,⽆最⼩项 C. ⽆最⼤项,有最⼩项 D. ⽆最⼤项,⽆最⼩项答案:B解:由题意可知,等差数列的公差511925151a a d --+===--,则其通项公式为:()()11912211n a a n d n n =+-=-+-?=-,注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最⼩项,由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =?=.故数列{}n T 中存在最⼤项,且最⼤项为4T .故选:B.8、(2020?全国2卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块,下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块,已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A. 3699块B. 3474块C. 3402块D. 3339块答案:C解:设第n 环天⽯⼼块数为n a ,第⼀层共有n 环,则{}n a 是以9为⾸项,9为公差的等差数列,9(1)99n a n n =+-?=,设n S 为{}n a 的前n 项和,则第⼀层、第⼆层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层⽐中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+即29729n =,解得9n =,所以32727(9927)34022n S S +?===. 故选:C9、(2020?全国2卷)数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =()A. 2B. 3C. 4D. 5答案:C解:在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=,所以,数列{}n a 是以2为⾸项,以2为公⽐的等⽐数列,则1222n nn a -=?=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++?-?-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C.10、(2020?全国2卷)0-1周期序列在通信技术中有着重要应⽤.若序列12na a a 满⾜{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成⽴,则称其为0-1周期序列,并称满⾜(1,2,)i m i a a i +==的最⼩正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满⾜1()(1,2,3,4)5C k k ≤=的序列是()A. 11010B. 11011C. 10001D. 11001答案:C解:由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑,对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满⾜;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满⾜;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满⾜;故选:C⼆、填空题.1、(2018年⾼考全国卷1理科14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= ﹣63 .答案:63-解析:S n 为数列{a n }的前n 项和,S n =2a n +1,①当n=1时,a 1=2a 1+1,解得a 1=﹣1,当n ≥2时,S n ﹣1=2a n ﹣1+1,②,由①﹣②可得a n =2a n ﹣2a n ﹣1,∴a n =2a n ﹣1,∴{a n }是以﹣1为⾸项,以2为公⽐的等⽐数列,∴S 6==﹣63,故答案为:﹣632、(2018年⾼考北京卷理科9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 a n =6n ﹣3 .解:∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴,解得a 1=3,d=6,∴a n =a 1+(n ﹣1)d=3+(n ﹣1)×6=6n ﹣3.∴{a n }的通项公式为a n =6n ﹣3.故答案为:a n =6n ﹣3.3、(2018年⾼考浙江卷10)已知a 1,a 2,a 3,a 4成等⽐数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4【解答】解:a 1,a 2,a 3,a 4成等⽐数列,由等⽐数列的性质可知,奇数项符号相同,偶数项符号相同, a 1>1,设公⽐为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),不成⽴,即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成⽴,排除A 、D .当q=﹣1时,a 1+a 2+a 3+a 4=0,ln (a 1+a 2+a 3)>0,等式不成⽴,所以q ≠﹣1;当q <﹣1时,a 1+a 2+a 3+a 4<0,ln (a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3)不成⽴,当q ∈(﹣1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),能够成⽴,故选:B .4、(2019年⾼考全国I 卷⽂科14)记S n 为等⽐数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.答案:85 解析:设数列的公⽐为q ,则有43123213=++=++=q q a a a S 解得21-=q ,所以854=S 5、(2019年⾼考全国I 卷理科14)记S n 为等⽐数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.答案:3121解析:由624a a =得51621q a q a =,解得3=q ,所以31211)1(515=--=q q a S6、(2019年⾼考全国III 卷理科14)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 答案:4解析:因为,312a a =所以1a +,13a d =即d a =12,则()()4215211051101510=?+?+=a a a a S S 7、(2019年⾼考全国III 卷⽂科14)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.答案:100解析:由题意得136,521713=+==+=d a a d a a ,解得2,11==d a 所以100291010110=?+=d a S8、(2019年⾼考北京卷理科10)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 3= ________ . S n 的最⼩值为_______。
2018年上海高考数学真题及答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018?上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.>1”是“<1”的()14.(5分)(2018?上海)已知a∈R,则“aA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2018年上海高考数学真题及答案
2018年上海高考数学真题及答案2018年上海市高考数学试卷参考答案与试题解析一、填空题1.(4分)(2018•上海)行列式的值为18.考点】二阶行列式的定义。
分析】直接利用行列式的定义,计算求解即可。
解答】解:行列式为:故答案为:18.点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查。
2.(4分)(2018•上海)双曲线的方程为x^2/4-y^2/1=1,渐近线方程为y=±2x。
考点】双曲线的性质。
分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程。
解答】解:由双曲线方程得:又由双曲线的性质可知,a=2,b=1,焦点在x轴上。
因此,渐近线方程为y=±2x。
点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想。
3.(4分)(2018•上海)在(1+x)^7的二项展开式中,x^2项的系数为21.考点】二项式定理。
分析】利用二项式展开式的通项公式求得展开式中x^2的系数。
解答】解:二项式(1+x)^7展开式的通项公式为:T(r+1)=C(7,r)x^r因此,x^2的系数为C(7,2)=21.故答案为:21.点评】本题考查了二项展开式的通项公式的应用问题,是基础题。
4.(4分)(2018•上海)设常数a∈R,函数f(x)=log2(x+a)。
若f(x)的反函数的图象经过点(3,1),则a=7.考点】反函数。
分析】由反函数的性质得函数f(x)=log2(x+a)的图象经过点(1,3),由此能求出a。
解答】解:由题意可得,f(x)的反函数的图象经过点(3,1)。
因此,函数f(x)=log2(x+a)的图象经过点(1,3)。
由此可得:log2(1+a)=3解得a=7.故答案为:7.点评】本题考查了反函数的性质,需要注意对数函数的定义域和值域,以及反函数和原函数的图象关系。
5.(4分)(2018•上海)已知向量a=(2,1,-1),b=(1,-1,2),则a×b的模长为√14.考点】向量的叉乘。
2018--2020年高考数学试题分类汇编数列附答案详解
∴ ,解得a1=3,d=6,
∴an=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.
∴{an}的通项公式为an=6n﹣3.
故答案为:an=6n﹣3.
3、(2018年高考浙江卷10)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则( )
当q=2时,an=2n﹣1,
当q=﹣2时,an=(﹣2)n﹣1,
∴{an}的通项公式为,an=2n﹣1,或an=(﹣2)n﹣1.
(2)记Sn为{an}的前n项和.
当a1=1,q=﹣2时,Sn= = = ,
由Sm=63,得Sm= =63,m∈N,无解;
当a1=1,q=2时,Sn= =
A. B. C. D.
答案:C
解:由 知,序列 的周期为m,由已知, ,
,对于选项A,
,不满足;
对于选项B,
,不满足;
对于选项D,
,不满足;
故选:C
二、填空题.
1、(2018年高考全国卷1理科14)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=﹣63.
答案:
解析:Sn为数列{an}的前n项和,Sn=2an+1,①
把a1=2,代入得d=﹣3
∴a5=2+4×(﹣3)=﹣10.
故选:B.
2、(2019年高考全国I卷理科9)记 为等差数列 的前n项和.已知 ,则
A. B. C. D.
答案:A
解析:有等差数列的性质可知 ,解得
所以 ,故选A。
3、(2019年高考全国III卷理科5文科6)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=
2018年普通高等学校招生全国统一考试(上海卷) 数学试题及详解
2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。
2.双曲线2214x y -=的渐近线方程为 。
3.在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示)4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。
5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF u u v |=2,则AE u u u v·BF u u u v 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N *),前n 项和为S n 。
若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2√2 (B )2√3 (C )2√5 (D )4√214.已知a R,则“1a﹥”是“1a1﹤”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()(A)4 (B)8(C)12 (D)1616.设D是含数1的有限实数集,f x()是定义在D上的函数,若f x()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f()的可能取值只能是()(A)3(B)3(C)3(D)0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积; (2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。
2018年高考试题分类汇编(数列)
2018年高考试题分类汇编(数列)考法1 等差数列1.(2018·全国卷Ⅰ理科)记n S 为等差数列数列{}n a 的前n 项的和.若323S S =4S +,12a =,则5a =A.12-B.10-C.10D. 12 2.(2018·北京卷理科)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通 项公式为_____.3.(2018·上海卷)记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S = .4.(2018·全国卷Ⅱ文理)记n S 为等差数列{}n a 的前n 项的和,已知17a =-,315S =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求n S ,并求n S 的最小值. 考法2 等比数列1.(2018·全国卷Ⅰ理科)记n S 为数列{}n a 的前n 项的和,若21n n S a =+,则6S = .2.(2018·北京卷文理) “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为C.D.3.(2018·上海卷)设等比数列{}n a 的通项公式为1n n a q +=(n N *∈),前n 项和为n S .若11lim2n n n S a →∞+=,则q =_______.4.(2018·浙江卷)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++, 若11a >,则 A.1324,a a a a <<B.1324,a a a a ><C.1324,a a a a <>D.1324,a a a a >>5.(2018·全国卷Ⅰ文科)已知数列{}n a 满足11a =, 12(1)n n na n a +=+,设nn a b n=. (Ⅰ)求1b ,2b ,3b .(Ⅱ)判断数列{}n b 是否为等比数列,并说明理由; (Ⅲ)求数列{}n a 的通项公式.6.(2018·全国卷Ⅲ文理)等比数列{}n a 中,11a =,534a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为{}n a 的前n 项的和.若63m S =,求m . 考法3 等差数列与等比数列综合1.(2018·北京卷文科)设{}n a 是等差数列,且1ln 2a =,235ln 2a a +=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求12n a a a e e e +++.2.(2018·浙江卷)已知等比数列{}n a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列{}1()n n n b b a +-的前n 项和为22n n +. (Ⅰ)求q 的值;(Ⅱ)求数列{}n b 的通项公式.3.(2018·天津卷理科)设{}n a 是等比数列,公比大于0,其前n 项和为n S (n N *∈),{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n S 的前n 项和为n T (n N *∈), (1)求n T ;(2)证明221()22(1)(2)2n nk k k k T b b k k n ++=+=-+++∑(n N *∈).4.(2018·天津卷文科)设{}n a 是等差数列,其前n 项和为n S (n N *∈);{}n b 是 等比数列,公比大于0,其前的前n 项和为n T (n N *∈).已知11b =,322b b =+,435b a a =+,5462b a a =+. (Ⅰ)求n S 和n T ; (Ⅱ)若12()4n n n n S T T T a b ++++=+,求正整数n 的值.。
2018年上海高考数学真题和答案
2018 年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12 题,满分54分,第1~6 题每题4分,第7~12 题每题 5 分)考生应在答题纸的相应位置直接填写结果.1.(4 分)(2018? 上海)行列式的值为18 .【考点】OM :二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18 .故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018? 上海)双曲线﹣y2=1的渐近线方程为± 【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1 ,焦点在x轴上而双曲线的渐近线方程为y= ±∴双曲线的渐近线方程为y= ±故答案为:y= ±点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018? 上海)在(1+x )7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA :二项式定理.【专题】38 :对应思想;4O :定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1= ?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4 分)(2018? 上海)设常数a ∈R,函数f(x)=1og 2(x+a ).若f(x)的反函数的图象经过点(3,1),则a= 7 .【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O :定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数 f (x)=1og 2(x+a )的图象经过点(1,3),由此能求出 a .【解答】解:∵常数 a ∈ R,函数f(x)=1og 2(x+a ).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og 2 (x+a )的图象经过点(1,3),∴log 2(1+a )=3 ,解得a=7 .故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4 分)(2018? 上海)已知复数z满足(1+i)z=1﹣7i(i 是虚数单位),则|z|=考点】A8 :复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.解答】解:由(1+i)z=1﹣7i,则|z|= .故答案为:5.点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018? 上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7= 14考点】85:等差数列的前n 项和.专题】11 :计算题;34 :方程思想;4O :定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2 ,由此能求出S7.【解答】解:∵等差数列{a n}的前n 项和为S n,a3=0,a6+a 7=14,∴,解得a1=﹣4,d=2 ,∴S7=7a1+ =﹣28+42=14 .故答案为:14.【点评】本题考查等差数列的前7 项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5 分)(2018? 上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数 f(x)=xα为奇函数,且在(0,+∞)上递减,则α= ﹣ 1 .【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O :定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a 是奇数,且 a <0,由此能求出 a 的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=x α为奇函数,且在(0,+∞)上递减,∴a 是奇数,且 a <0,∴ a= ﹣ 1 .故答案为:﹣1.点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5 分)(2018? 上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且| |=2 ,则的最小值为﹣3 .【考点】9O :平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a ﹣b|=2 ,即a=b+2 ,或b=a+2 ,并可求得,将a=b+2 带入上式即可求出的最小值,同理将b=a+2 带入,也可求出的最小值.【解答】解:根据题意,设E(0,a ),F(0,b);∴;∴ a=b+2 ,或b=a+2 ;且;∴;当a=b+2 时,;∵b2+2b﹣2 的最小值为;∴ 的最小值为﹣ 3 ,同理求出b=a+2 时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5 分)(2018? 上海)有编号互不相同的五个砝码,其中 5 克、3 克、1 克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9 克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中 5 克、 3 克、1 克砝码各一个, 2 克砝码两个,从中随机选取三个, 3 个数中含有 1 个2;2 个2,没有2,3种情况,所有的事件总数为:=10 ,这三个砝码的总质量为9 克的事件只有:5,3,1 或5,2, 2 两个,所以:这三个砝码的总质量为9 克的概率是:= ,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5 分)(2018? 上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n .若= ,则q= 3 .【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.,a n+1=q n. 可得 =可得 q=3 .故答案为: 3. 【点评】本题考查数列的极限的运算法则的应用, 等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5 分)( 2018? 上海)已知常数 a >0,函数 f (x )= 的图象经过点 P(p , ),Q (q , ).若 2 =36pq ,则 a= 6 .【考点】 3A :函数的图象与图象的变换.【专题】 35 :转化思想; 51 :函数的性质及应用.【分析】 直接利用函数的关系式,利用恒等变换求出相应的 a 值.【解答】 解:函数 f (x )= 的图象经过点 P (p , ),Q (q , ).因为,所以数列的公比不是 1,=, =,则:整理=1,得:解得:2p+q =a 2pq ,由于: 2p+q=36pq ,所以: a 2=36,由于 a >0,故:a=6 .故答案为: 6【点评】 本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用. 12.(5 分)( 2018? 上海)已知实数 x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2= ,则 + 的最大值为 + .考点】 7F :基本不等式及其应用; IT :点到直线的距离公式. 专题】 35 :转化思想; 48 :分析法; 59 :不等式的解法及应用.分析】 设 A (x 1,y 1),B (x 2,y 2), =(x 1,y 1), =(x 2,y 2),由圆的方程和向量数量积的定义、坐标表示,可得三角形 OAB 为等边三角形, AB=1 ,d 1与 d 2之和,由两平行线的距离可得所求最大值. 【解答】 解:设 A (x 1,y 1),B ( x 2,y 2),=(x 1,y 1), =(x 2,y 2),2 2 2 2由 x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2= ,可得 A ,B 两点在圆 x 2+y 2=1 上, A ,B 两点到直线 x+y ﹣1=0 的距离的几何意义且? =1×1×cos ∠AOB= ,即有∠ AOB=60即三角形OAB 为等边三角形,AB=1,+ 的几何意义为点A,B 两点到直线x+y ﹣1=0 的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1 平行,可设AB :x+y+t=0 ,(t >0),由圆心O 到直线AB 的距离d= ,可得 2 =1 ,解得t= ,即有两平行线的距离为= ,+ 的最大值为+ ,故答案为:+ .点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有 4 题,满分20 分,每题 5 分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.(5分)(2018? 上海)设P是椭圆=1 上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C .2 D.4考点】K4:椭圆的性质.专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出 a ,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1 的焦点坐标在x 轴,a= ,P 是椭圆=1 上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为2a=2 .故选: C .【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5 分)(2018? 上海)已知a∈R,则“ a> 1”是“< 1”的()A .充分非必要条件B.必要非充分条件C .充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O :定义法;5L :简易逻辑.【分析】“a>1”? “”,“ ”? “a>1 或a < 0”,由此能求出结果.【解答】解: a ∈R,则“ a> 1”? “”,“”? “ a>1 或a< 0”,∴“ a> 1”是“”的充分非必要条件.故选: A .点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5 分)(2018? 上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1为底面矩形的一边,则这样的阳马的个数是()A. 4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1 满足题意,而C1,E1,C ,D,E,和D1一样,有2×6=12,当A1ACC 1为底面矩形,有 2 个满足题意,当A1AEE1为底面矩形,有 2 个满足题意,故有12+2+2=16故选: D .【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018? 上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A .B. C .D.0【考点】3A :函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12 个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当 f (1)= ,,0 时,此时得到的圆心角为,,0,然而此时x=0 或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y,因此只有当x= ,此时旋转,此时满足一个x 只会对应一个y,因此答案就选:B.故选:B.点评】本题考查的知识要点:定义性函数的应用.、解答题(本大题共有 5题,满分 76 分)解答下列各题必须在答题纸的相应 位置写出必要的步骤17.(14 分)( 2018? 上海)已知圆锥的顶点为 P ,底面圆心为 O ,半径为 2.( 1)设圆锥的母线长为 4,求圆锥的体积;2)设PO=4 ,OA 、OB 是底面半径,且∠ AOB=90°M ,为线段 AB 的中点,考点】 LM :异面直线及其所成的角; L5:旋转体(圆柱、圆锥、圆台)棱柱、棱锥、棱台的体积.【专题】 11 :计算题; 31 :数形结合; 41 :向量法; 5F :空间位置关系与 距离; 5G :空间角.【分析】(1)由圆锥的顶点为 P ,底面圆心为 O ,半径为 2,圆锥的母线长为 4 能求出圆锥的体积.(2)以 O 为原点, OA 为 x 轴,OB 为 y 轴,OP 为 z 轴,建立空间直角坐标 系,利用向量法能求出异面直线 PM 与 OB 所成的角.【解答】 解:(1)∵圆锥的顶点为 P ,底面圆心为 O ,半径为 2,圆锥的母线长 为 4 ,∴圆锥的体积V= =LF :=.(2)∵PO=4,OA,OB 是底面半径,且∠AOB=90M 为线段AB 的中点,∴以O 为原点,OA 为x轴,OB 为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O (0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM 与OB 所成的角为θ,则cos θ= = = .∴θ =arccos .∴异面直线PM 与OB 所成的角的为arccos .【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018? 上海)设常数a ∈R,函数f(x)=asin2x+2cos 2x.(1)若 f (x)为偶函数,求 a 的值;(2)若f()= +1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出 a 的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵ f (x)=asin2x+2cos 2x,∴f(﹣x)=﹣asin2x+2cos 2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos 2x=asin2x+2cos 2x,∴ 2asin2x=0 ,∴ a=0 ;(2)∵ f()= +1,∴asin +2cos 2()=a+1= +1 ,∴ a= ,∴f(x)= sin2x+2cos 2x= sin2x+cos2x+1=2sin (2x+ )+1 ,∵f(x)=1 ﹣,∴2sin(2x+ )+1=1 ﹣,∴ sin(2x+ )=﹣,∴2x+ =﹣ +2k π,或2x+ = π+2k π,k∈Z,∴ x=﹣π+k π,或x= π+k π,k∈Z,x∈ [﹣π,π] ,∴x= 或x= 或x=﹣或x= ﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14 分)(2018? 上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x%(0< x<100 )的成员自驾时,自驾群体的人均通勤时间为f(x)= (单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40 分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x)的表达式;讨论g (x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出 f (x)> 40 时x 的取值范围即可;(2)分段求出g(x)的解析式,判断g (x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x< 100 时,f(x)=2x+ ﹣90>40 ,即x2﹣65x+900 > 0,解得x<20 或x> 45,∴ x∈(45 ,100 )时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;2)当0<x≤30 时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x< 100 时,g (x)=(2x+ ﹣90)?x%+40(1﹣x%)= ﹣x+58;∴g (x)=;当0<x<32.5 时,g (x)单调递减;当32.5<x<100 时,g(x)单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5% 时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018? 上海)设常数t>2.在平面直角坐标系xOy中,已知点 F (2,0),直线l:x=t ,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点 B 到点F的距离;2)设t=3 ,|FQ|=2 ,线段OQ 的中点在直线FP上,求△ AQP 的面积;(3)设t=8 ,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设 B 点坐标,根据两点之间的距离公式,即可求得|BF| ;方法二:根据抛物线的定义,即可求得|BF| ;(2)根据抛物线的性质,求得Q 点坐标,即可求得OD 的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P 点坐标,即可求得△ AQP 的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF 的方程,求得Q 点坐标,根据+ = ,求得 E 点坐标,则()2=8(+6 ),即可求得P 点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2 t),则|BF|= =t+2 ,∴ |BF|=t+2 ;方法二:由题意可知:设B(t,2 t ),由抛物线的性质可知:|BF|=t+ =t+2 ,∴ |BF|=t+2 ;(2)F(2,0),|FQ|=2 ,t=3 ,则|FA|=1 ,∴|AQ|= ,∴ Q (3,),设OQ 的中点D,k QF = =﹣ ,则直线 PF 方程: y=﹣ (x ﹣2),解得: x= ,x=6 (舍去),∴△ AQP 的面积 S= × × = ;))2=8( +6),解得:y 2= ,∴存在以 FP 、FQ 为邻边的矩形 FPEQ ,使得点 E 在 Γ上,且 P ( , ).联,整理得: 3x 2﹣20x+12=0 , m )3)存在,设 P ( ,y ), E ( , 则 k = ,k = , , FQ , 直线 QF 方程为 y=(x ﹣2),8﹣2)= ,Q (8, ∴y Q = 根据 + = , 则 E(+6, )点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018? 上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n| ≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列, b n=a n+1 +1 ,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M 中元素的个数m ;(3)已知{a n}是公差为 d 的等差数列,若存在数列{b n}满足:{b n }与{a n}接近,且在b 2 ﹣b 1,b 3﹣b 2,⋯,b 201 ﹣b 200中至少有100个为正数,求d 的取值范围.【考点】8M :等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1 ,求得b i,i=1,2,3,4 的范围,即可得到所求个数;(3)运用等差数列的通项公式可得 a n,讨论公差d>0,d=0 ,﹣2<d<0,d ≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n= ,b n=a n+1+1= +1,n n n+1则|b n﹣a n|=| +1﹣|=1 ﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n }接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为: a 1=1,a 2=2,a 3=4,a4=8,可得b1∈[0,2] ,b2∈[1,3],b 3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与 b 3不相等,集合M={x|x=b i,i=1 ,2,3,4},M 中元素的个数m=3 或 4 ;(3){a n}是公差为d 的等差数列,若存在数列{b n}满足:{b n}与{a n }接近,可得a n=a 1+(n﹣1)d,①若d>0,取b n=a n,可得 b n+1﹣b n=a n+1 ﹣a n=d >0,则b2﹣b1,b3﹣b2,⋯,b201﹣b200中有200个正数,符合题意;②若d=0 ,取 b n=a 1﹣,则|b n﹣a n|=|a 1﹣﹣a1|= <1,n∈N ,可得b n+1 ﹣b n= ﹣>0,则b2﹣b1,b3﹣b2,⋯,b201﹣b200中有200个正数,符合题意;③若﹣2<d <0,可令 b 2n﹣1=a 2n﹣1﹣1,b2n=a 2n +1,则b2n﹣b 2n﹣1=a 2n +1﹣( a 2n﹣1﹣1)=2+d >0,则b2﹣b1,b3﹣b2,⋯,b201﹣b200中恰有100 个正数,符合题意;④若 d ≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得 b n+1 ﹣ b n≤ a n+1 +1 ﹣( a n﹣1)=2+d ≤0,b2﹣b1,b3﹣b2,⋯,b201﹣b200 中无正数,不符合题意.综上可得,d 的范围是(﹣2,+ ∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2018上海高考数学真题与答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. (4分)(2018?上海)行列式° 1的值为18 .2 5【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式°】=4X 5-2X1=18.2 5故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2. (4分)(2018?上海)双曲线匚-y2=1的渐近线方程为.【考点】KC双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.2 °【解答】解:•双曲线]「—1的a=2, b=1,焦点在x轴上2 2 ,而双曲线-^7;- -1的渐近线方程为y=±—芷a2 b3 a2双曲线/二1的渐近线方程为y=±y X■ £故答案为:y=± —【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;40:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x) 4 5 6展开式的通项公式为T r+1='〔?乂,令r=2,得展开式中x2的系数为c2=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4. (4 分)(2018?上海)设常数a€ R,函数f (x)=1og2 (x+a).若f (x)的反函数的图象经过点(3, 1),则a= 7 .【考点】4R反函数.【专题】11 :计算题;33 :函数思想;40:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f (x)=1og2 (x+a)的图象经过点(1, 3),由此能求出a.【解答】解:•常数a€ R,函数f (x)=1og2 (x+a).f (x)的反函数的图象经过点(3, 1),•••函数f (x)=1og2 (x+a)的图象经过点(1, 3),••• Iog2 (1+a)=3,解得a=7.故答案为:7.4(4分)(2018?上海)已知复数z满足(1+i)z=1 - 7i (i是虚数单位),则|z| =5 .【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1 - 7i,则|Z|= • 4 ■-故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6. (4分)(2018?上海)记等差数列{a n}的前n项和为S,若a3=0, a e+a7=14, 贝U S7= 14 .【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;40:定义法;54 :等差数列与等比数列. 【分析】利用等差数列通项公式列出方程组,求出a1=- 4, d=2,由此能求出S7. 【解答】解:•••等差数列{a n}的前n项和为S n, a3=0, a e+a7=14,If ai+2d=0a 严d二14L 1 1解得a1= - 4, d=2,3=7屛i=- 28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 7且a v0,由此能求出a的值.【解答】解::a { - 2,- 1, 1, 1, 2, 3},7(5 分)(2018?上海)已知a€ {- 2,- 1,-二,y , 1, 2 , 3},若幕函数f (x)=X a为奇函数,且在(0, +X)上递减,则a= - 1 .【考点】4U:幕函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幕函数f (x)=x a为奇函数,且在(0, +7 上递减,得到a是奇数,幕函数f (x) =x"为奇函数,且在(0, +x)上递减,二a是奇数,且a v0,--a=— 1.故答案为:-1.【点评】本题考查实数值的求法,考查幕函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8. (5分)(2018?上海)在平面直角坐标系中,已知点A (- 1, 0)、B( 2, 0),i ■】耳 * ■E、F是y轴上的两个动点,且|卩|=2,贝U 的最小值为-3 .【考点】90:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E (0, a), F (0, b),从而得出| a-b| =2, 即卩a=b+2,或并可求得- • •,将a=b+2带入上式即可求出2'- - 1F的最小值,b=a+2,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E (0, a), F (0, b);I-:;••• a=b+2,或b=a+2;且厂门・..「—,:;-.-..;当a=b+2时,…丨,—I | :;v b2+2b - 2的最小值为二:;;•••垃•甬的最小值为-3,同理求出b=a+2时,瓦•祈的最小值为-3.故答案为:-3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9. (5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是丄(结果用最简分数表示).【考点】CB古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;51 :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2 克砝码两个,从中随机选取三个,3个数中含有1个2; 2个2,没有2, 3种情况,所有的事件总数为:C ;=10,这三个砝码的总质量为9克的事件只有:5, 3,1或5, 2,2两个,所以:这三个砝码的总质量为9克的概率是:吕士,10 5故答案为:丄.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10. (5分)(2018?上海)设等比数列{a n}的通项公式为a n=q nr (n € N*),前n 项和为S n .若'II —,则q= 3 .nr w a n-+l 2【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 : 点列、递归数列与数学归纳法.【分析】禾I」用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a =q n一1(n€ N*),可得a1=1,H因为: ------ -- ,所以数列的公比不是1,n-^^a n+l 戈;-,a n+i =q n . 口1-Q1 n1-q2网+2卩典+2口亦a 2pq解得:2^q =a i 2pq , 由于:2p+q =36pq ,所以:a 2=36, 由于a >0, 故:a=6.可得1 ■ l-q inn ----- L g (1_Q)Q=H IT严8 L-<1 =1 a a-1 2 可得q=3. 故答案为:3.【点评】本题考查数列的极限的运算法则的应用, 等比数列求和以及等比数列的 简单性质的应用,是基本知识的考查.11. (5分)(2018?上海)已知常数a >0,函数f (x )= ”2s fax£), Q (q ,卡)•若 2p+q =36pq ,则 a= 6 .【考点】3A :函数的图象与图象的变换.的图象经过点P (p ,【专题】 35 :转化思想;51 :函数的性质及应用. 直接利用函数的关系式,利用恒等变换求出相应的 a 值.的图象经过点P (p ,—),Q (q ,丄).【分析】2p +ap 2 Q +aq故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12. (5 分)(2018?上海)已知实数 x i 、X 2、y i 、y 2满足:x i 2+y i 2=1, X 22+y 22=1, x i X 2+y i y 2丄,贝U : |一'的最大值为.】+.「;.【考点】7F :基本不等式及其应用;IT :点到直线的距离公式. 【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设 A (x i , y i ), B (X 2, y 2), 0A = (x i , y i ), 0& = (X 2, y 2),由圆的方程即有/ AOB=60,即三角形OAB 为等边三角形,到直线x+y - i=0的距离d i 与d 2之和,显然A , B 在第三象限,AB 所在直线与直线x+y=i 平行, 可设 AB : x+y+t=0, (t > 0),和向量数量积的定义、坐标表示,可得三角形 OAB 为等边三角形,AB=i , I 蛊]+ ¥厂11 + II 七+ y厂11的几何意义为点A , B 两点到直线x+y -仁0的距离d i与d 2之和,由两平行线的距离可得所求最大值. 【解答】解:设 A (X i , y i ), B (X 2, y 2),'-■= (X i , y i ), L..j = (X 2, y 2),由 x i 2+y i 2=i ,2 2X 22+y 22=i , x i x 2+y i y 2〒,可得A , B 两点在圆x 2+y 2=i 上,1七4坯11近B 两点由圆心O 到直线AB 的距离且-?>=i x i x cos /AB=1,的几何意义为点A ,故答案为:一 7+ :;.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点 与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确 选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. (5分)(2018?上海)设P 是椭圆 44 =1上的动点,贝u P 到该椭圆的两个 焦点的距离之和为()A. 2 :?B. 2 二C. 2 仃D. 4. ■: 【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程. 【分析】判断椭圆长轴(焦点坐标)所在的轴,求出 a,接利用椭圆的定义,转 化求解即可.2 2|【解答】解:椭圆%+^厂=1的焦点坐标在x 轴,a 卫,5 J2 2P 是椭圆1 I - =1上的动点,由椭圆的定义可知:贝U P 到该椭圆的两个焦点的5 3 距离之和为2a=2.・. 故选:C.【点评】本题考查椭圆的简单性质的应用, 椭圆的定义的应用,是基本知识的考 查.即有两平行线的距离为1:=::>V2 2I| +1 Jtg+yg-l |~?2雹的最大值为:■:+ ■;,14. (5 分)(2018?上海)已知a€ R,贝1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;40:定义法;5L :简易逻辑.土”?“a1 或a v 0”a故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识, 考查运算求解能力,考查函数与方程思想,是基础题.15. (5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A. 4B. 8C. 12D. 16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;50 :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1 - A1ABB,D1- A1AFF满足题意,而C1,E1,C,D,E,和D1 一样,有2X6=12,当A1ACC为底面矩形,有2个满足题意,当A i AEE为底面矩形,有2个满足题意,【分析】aT? “a1 或a v0”,由此能求出结果.解:a€ R,贝U “a 1”?“厂Ia“a 1 "是a故有12+2+2=16故选:D.Di Ci【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16. (5分)(2018?上海)设D是含数1的有限实数集,f (x)是定义在D上的函数,若f (x)的图象绕原点逆时针旋转一后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A. . ;B.二C. —D. 0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转丄个单位后与下一个点会重合.6我们可以通过代入和赋值的方法当f (1) = ^ —,0时,此时得到的圆心角为—,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数5 6的定义就是要求一个x只能对应一个y,因此只有当x=L,此时旋转一,此时2 &满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且/ AOB=90 ,M为线段AB的中点,如图•求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF: 棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4 能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)v圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4, I 圆锥的体积V二〕一…■- L •- ■'1I3~.(2)v PO=4, OA, OB 是底面半径,且/ AOB=90 ,M为线段AB的中点,•••以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P (0, 0, 4), A (2, 0, 0), B (0, 2, 0),M (1,1, 0), O (0, 0, 0),PH= (1,1,—4), 0B= (0, 2, 0),设异面直线PM与OB所成的角为9,os .6•••异面直线PM与0B所成的角的为【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18. (14分)(2018?上海)设常数a€ R,函数f (x) =asin2>+2coSx.(1)若f (x)为偶函数,求a的值;(2)若f (弓T =胚+1,求方程f (x) =1-厲在区间[-n, n上的解.【考点】GP两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1): f (x) =asin2x+2cos2x,• f ( —x) =—asin2x+2cos2x,= pJ*o5 |2|n p| OB1届・26则cos9二9 =arccarccos6••• f (x )为偶函数, ••• f (- x ) =f (x ),•••- asin2x+2coEx=asin2x^2cos 2x , • 2as in 2x=0, • a=0; (2)T f () = :-+1 ,4• asi 』^+2cos 2 (工)=a+仁岛+1 ,2 4 • a=:,• f (x ) =_ _;sin2X +2CO E X = ;sin2x+cos2x+ 仁2sin (2x^—) +1,&T f (x ) =1 -^2,19. (14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从 居住地到工作地的平均用时•某地上班族 S 中的成员仅以自驾或公交方式通 勤.分析显示:当S 中x% (0v x v 100)的成员自驾时,自驾群体的人均通勤时 间为而公交群体的人均通勤时间不受 x 影响,恒为40分钟,试根据上述分析结果回 答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤• sin (2x+丄)=-厶―” 2+2k n 或 2x+一=■6 -• 2x+—=65兀 …x=- 24n +k n 或x= 或x= 244 n+2kn k€ Z,n +k n, k € Z ,或x=-或x=- 112E24【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题. f (x )? 0<x<30. .(单位:分钟),+1=1-血, • 2sin (时间?(2) 求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性, 并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用. 【分析】(1)由题意知求出f (x )> 40时x 的取值范围即可;(2)分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义. 【解答】解;(1)由题意知,当30V X V 100时,即 x 2- 65x+900>0, 解得x v 20或x >45,•I x €( 45, 100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2) 当 0v x < 30 时,g (x ) =30?x%+40 (1 - x%) =40 - 当 30V x v 100 时,40——也10当0v x v 32.5时,g (x )单调递减; 当32.5V x v 100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决 问题的能力.20. (16分)(2018?上海)设常数t > 2 .在平面直角坐标系xOy 中,已知点F (2, 0),直线I : x=t ,曲线r y 2=8x (0< x < t , y >0). l 与x 轴交于点A 、与r 交于f (x ) =2x+ 1800 -90>40,g (x ) = (2x+二-2-90)碎心 1-x%0)=-r 13 10x+58 ;点B. P、Q 分别是曲线r与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3, |FQ=2,线段0Q的中点在直线FP上,求△ AQP的面积;(3)设t=8 ,是否存在以FP、FQ为邻边的矩形FPEQ使得点E在r上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得| BF ;方法二:根据抛物线的定义,即可求得|BF| ;(2)根据抛物线的性质,求得Q点坐标,即可求得0D的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得厶AQP的面积;(3)设P及E点坐标,根据直线k PF?k Fc=- 1,求得直线QF的方程,求得Q点坐标,根据习+冠=75,求得E点坐标,贝则(彎尸)2=8 (「+6),即可求得P 4y 8点坐标.【解答】解:(1)方法一:由题意可知:设B (t,2 :■:t),则|BF制(1 边严+3t=t+2,••• | BF| =t+2;方法二:由题意可知:设 B (t, 2 :■:t),由抛物线的性质可知:| BF =t甘=t+2,「. |BF=t+2;(2) F (2, 0), |FQ=2, t=3,则|FA=1,,二Q (3,血),设OQ 的中点D,D (),k QF=~VI,则直线PF方程:y=-體(x-2),联立,整理得:3x2- 20x+12=0,• △ AQP 的面积 x^:;x根据「+円;',则E (k+6,•存在以FP 、FQ 为邻边的矩形FPEQ 使得点E 在r 上,且P (2,毁5).5 5【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计 算能力,属于中档题.21. (18分)(2018?上海)给定无穷数列{a n },若无穷数列{b n }满足:对任意n€ N *,都有|b n — a n | < 1,则称{b n }与®}接近”(1)设{a n }是首项为1,公比为寺的等比数列,b n =&+1+1, n € N *,判断数列{b n }解得:,x=6 (舍去),(3)存在,设P (罟,y ),2E (凹—,m ),贝U k pF =yT-2,k FQ 」——8y直线QF 方程为y= 1才/ ~sT(x — 2), ••• y o=■ - ■ ~~8y~,Q( 8, ),)2=8 ( ——+6),解得:y 2丄■是否与{&}接近,并说明理由;(2)设数列{a n}的前四项为:a i=1, a2=2, a3=4, a4=8, {b n}是一个与{a n}接近的数列,记集合M={x| x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2 - b i,b3 - b2,…,b20i - b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义接近”即可判断;(2)由新定义可得a n - K b n< a n+1,求得b i,i=1,2,3, 4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d >0, d=0,- 2v d v 0, d< -2,结合新定义接近”推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{刘接近.理由:計匕数列,可得a n=则| b n - a n| =| v 1, n € N ,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n - 1 w b n w a n+1,数列{a n}的前四项为:a1=1, a2=2, a3=4, a4=8,可得b1€ [0, 2] , b2€[ 1 , 3] , b3€ [3, 5] , b4€ [7, 9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i, i=1, 2, 3, 4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近, 可得a n=a1+ (n - 1) d,①若 d >0,取b n=a n,可得b n+1 - b n=a n+1 - a n=d>0,则b2 - b1, b3 - b2,…,b201 - b200中有200个正数,符合题意;②若d=0,取b n=a i -—,则|b n- a n|=|a i-丄-a i| —v 1, n€ N*,n n n可得b n+1 - bn^ —> 0 ,n n+1则b2 —b i, b3 —b2,…,b20i —b2oo中有200个正数,符合题意;③若—2v d v 0,可令b2n-1=a2n- 1 —1,b2n=a2n+1 ,则b2n —b2n- 1 =a2n+1 —( a2n- 1 —1) =2+d > 0,则b2 —b1,b3 —b2,…,b201 —b200中恰有100个正数,符合题意;④若d< —2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n — 1 w b n w a n+1,a n+1 — 1 W b n+1 w a n+1+1,可得b n+1 —b n w a n+1+1—(a n —1) =2+d w 0,b2 —b1,b3 —b2,…,b201 —b200中无正数,不符合题意.综上可得,d的范围是(-2,+x).【点评】本题考查新定义接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。
【数学】2018年上海高考数学真题及答案
【关键字】数学2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018•上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018•上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018•上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为Tr+1=•xr,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是根底题.4.(4分)(2018•上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等根底知识,考查运算求解能力,考查函数与方程思想,是根底题.5.(4分)(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是根底题.6.(4分)(2018•上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018•上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018•上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018•上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018•上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n=q n.+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018•上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018•上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018•上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018•上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018•上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018•上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P 点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018•上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,﹣b n=﹣>0,可得b n+1则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;=a2n﹣1﹣1,b2n=a2n+1,③若﹣2<d<0,可令b2n﹣1则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,+1b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
2018上海高考数学真题及答案解析
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018•上海)行列式的值为18 .【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018•上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018•上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为=•x r,Tr+1令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.(x+a).若f(x)的4.(4分)(2018•上海)设常数a∈R,函数f(x)=1og2反函数的图象经过点(3,1),则a= 7 .【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.(x+a)的图象经过点(1,3),由【分析】由反函数的性质得函数f(x)=1og2此能求出a.(x+a).【解答】解:∵常数a∈R,函数f(x)=1og2f(x)的反函数的图象经过点(3,1),(x+a)的图象经过点(1,3),∴函数f(x)=1og2(1+a)=3,∴log2解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018•上海)记等差数列{an }的前n项和为Sn,若a3=0,a6+a7=14,则S7= 14 .【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{an }的前n项和为Sn,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018•上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018•上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018•上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018•上海)设等比数列{an }的通项公式为an=q n﹣1(n∈N*),前n项和为Sn.若=,则q= 3 .【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{an }的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,=q n.,an+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018•上海)已知常数a>0,函数f(x)=的图象经过点P (p,),Q(q,).若2p+q=36pq,则a= 6 .【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018•上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x 1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018•上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E 1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018•上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B. C. D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018•上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018•上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线kPF •kFQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),kQF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则kPF ==,kFQ=,直线QF方程为y=(x﹣2),∴yQ=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018•上海)给定无穷数列{an },若无穷数列{bn}满足:对任意n∈N*,都有|bn ﹣an|≤1,则称{bn}与{an}“接近”.(1)设{an }是首项为1,公比为的等比数列,bn=an+1+1,n∈N*,判断数列{bn}是否与{an}接近,并说明理由;(2)设数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;(3)已知{an }是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得an ﹣1≤bn≤an+1,求得bi,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得an,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{bn }与{an}接近.理由:{an}是首项为1,公比为的等比数列,可得an =,bn=an+1+1=+1,则|bn ﹣an|=|+1﹣|=1﹣<1,n∈N*,可得数列{bn }与{an}接近;(2){bn }是一个与{an}接近的数列,可得an ﹣1≤bn≤an+1,数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=bi,i=1,2,3,4},M中元素的个数m=3或4;(3){an }是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,可得an =a1+(n﹣1)d,①若d>0,取bn =an,可得bn+1﹣bn=an+1﹣an=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取bn =a1﹣,则|bn﹣an|=|a1﹣﹣a1|=<1,n∈N*,可得bn+1﹣bn=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n ﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{bn }满足:{bn}与{an}接近,即为an ﹣1≤bn≤an+1,an+1﹣1≤bn+1≤an+1+1,可得bn+1﹣bn≤an+1+1﹣(an﹣1)=2+d≤0,b 2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。
(完整word)2013-2018年上海高考试题汇编-数列,推荐文档
数列(2018秋6)记等差数列{%}的前n 项和为S n ,若a 3 0 , a 6 a ? 14,则S y ________________________ 答案:14(2018春5)已知{編}是等差数列,若 还 比10,则爲 爲 ❺ .答案:12 *(2017秋15)已知数列 人 an bn c,n N ,使得x 100 k ,x 200 k ,x 300 k 成等差数列的必 要条件是 ()A. a 0B. b 0C. c 0D. a 2b c 0 答案:A(2013年文22)已知函数f (X ) 2 X ,无穷数列 a n 满足4 1f (4), n N * .(1 )若a i 0,求 a 2, a 3,a4; (2)若a i 0,且a i ,a 2,a 3成等比数列,求的值;(3)是否存在a,,使得a 1,a 2,L ,a n 丄 成等差数列?若存在, 求出所有这样的 印;若不存 在,说明理由.解:(1)a 22 , a3 0 , a4 2 .①当0 a 12 时,a 3 2 2 a 12 2a1,所以42 a1,得 a 1 1 .②当a 12 时,a 32a 2 4 a 1,所以 a 1 4 a 12 a 1 ?,得2 2 (舍去)或a 1 2 2.综合①②得a 1 1或a 12 、2 .由 2a 2 a 1 a 3得 2 a 1 2 a 1 2 a 1 ().(2) a 2 2 a 12, a 3 2 a 2 2 2a 1(3)假设这样的等差数列存在,那么 a22 a1 ,a32 2 |a 』.以下分情况讨论:①当a 1 2时,由()得a 1 0,与a 1 2矛盾;足 4 1f (an), n N(i )若a\c 2,求 a 2及 a 3 ;(2)求证:对任意 n N * , %1a c •(3)是否存在ai,使得a1 , a2 , L , an,L 成等差数列?若存在, 求出所有这样的a 1 ;若不存在,说明理由.解:(1) a 2 2, a 3c 10 .Xc 8,Xc,(2) fX3x 3c+8, c 4 X c,X c 8, Xc 4.当a n c 时,a n 1 a n c 8 c;②当 当0 a 1 2时,由()得a 1 1,从而 a n1 n 1,2,L ,所以 a n 曰是 -个等差数列;③当 当a 10 时,则公差d a 2 a 1 a 2a i2 0,因此存在m 2使得ama 1 2 m 12 .此时 d a m1 a m2ama m 0,矛盾.综合①②③ 可知,当且仅当1时,a i , a 2, a 3 L 构成等差数列.(2013理23)2 X C 4 X C •数列 a i ,a 2,a 3,L 满当 c 4 a n c时,a n 1 Hi 2a n3c 8 2 c 43c 8 c ;当a n C 4 时,a n 1 a n 2a n c 8 2 c 4 c 8 c.方法二:要证:2xc4 xcxc2xc4 xcxc当x c 0时,等式右边为0 ,不等式显然成立当x c 0时,等式化为2 x c 4 2 x c显然(3)由(2),结合c 0得a n i a n,即昂为无穷递增数列.又Oi为等差数列,所以存在正数M,当n M时,a n c ,从而,f(4)a n c 8.由于a n为等差数列,因此其公差d c 8.①若a i c 4,贝V a2 f (a i)a i c 8,又a2 a i d a i c 8,故a i c 8 a i c 8,即a i c 8,从而 a 2 0 •当n 2时,由于O H为递增数列,故a n a2 0 c ,所以,a ni f(4)a n c 8,而a2 a i c 8 ,故当a i c 8时,a n为无穷等差数列,符合要求;②若 c 4 a i c,则a? f(a) 3a i 3c 8,又a2 a i d a i c 8 ,所以,3a i 3c 8 a i c 8,得a i c,舍去;③若a i c,则由 a n a i 得到°n i f (an)°nc 8,从而a n为无穷等差数列,符合要求. 综上,a i的取值集合为c, U c 8知识点4:等比数列的性质(2015理17)记方程①:x2盼1 0,方程②:x2 a2x 2 0,方程③:x2 a3x 4 0,其中a i, a2, a3是正实数.当a i, a2, a3成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B.方程①有实根,且②无实根知识点5:等比数列的判定一(2011理18)设{a.}是各项为正数的无穷数列,A是边长为a i,a i i的矩形面积(i 1,2,L ),则{A.}为等比数列的充要条件为()A {a n}是等比数列B a1 , a3 丄,a2n1丄或a2, a4丄,a2n,L是等比数列C a1, a3,L,a2n1,L和a2,a4丄,a2n,L均是等比数列D a1 , a3 ,L,a2n1丄和a2, a4丄,a2n 丄均是等比数列,且公比相同答案:D知识点6:等差数列与等比数列综合(2016 文22)对于无穷数列{a n}与{b h},记A {x|x a n,n N*}, B {x|x b n,n N*},若同时满足条件:① 佝}, {0}均单调递增;② AI B 且A U B N *,则称{01}与{b n}是无穷互补数列.(1 )若K 2n 1, b n4n 2,判断{环}与{0}是否为无穷互补数列,并说明理由;(2)若s n 2n且{a n}与{b n}是无穷互补数列,求数列{t n}的前16项的和;(3)若{&}与{$}是无穷互补数列,{&}为等差数列,且 氐 36,求{珀}与佝}的通项 公式.【解】 (1)因为 4 A , 4 B , 所以4 AU B ,从而 {an}与不是 无穷互补数列.(2) 因为 a4'16,所以b6 4 20.数列的前 16项的和为41 20(1 2 ! L20)(2 222324) 2 20 (252) 180 -(3) 设{a n }的公差为d,dN ,则 ai6a 115d 36.由 a 3615d 1,得或2.若d1, 则a 121, a. n 20,与“ {a n } 与{b}是无穷互补数 列”矛盾;若d 2,则a 6, an :2n n,4, b nn 52n 5, n 5综上,a n2n4,b nn , n 525, n 5求q 的取值范围;(3)若a 1,a 2,L ,a k 成等差数列,且 a 1 a 2 L a k1000,求正整数k 的最大值,以及k 取最大值时相应数列 a i , a 2 , L ,a k 的公差. 2 解:(1 )由条件得-X 3 (2)由1 T a n 3a n ,且 an 3x6且一 3n 1aq9 3x ,解得30,得 a n 0, 所以x 6 .所以X 勺取值范围是x[3,6].1 1所以 3Sn S n 1 •又 3 a n1 3an,时,Snn, Sn 11,由n1 3n 得 S n 1 3S n 成立. 时, S n 1 3S n •即nqq(2014 年理 23)已知数列 an 13an,N , a 11(1)若 a 2 2局 x,a 49,求X 的取值范围;(2)设{a }是a n•若 ^S n S n 1 3S n ,n3①若1 q 3,则q (3 q)n•由qN,得q (3 q)所以i1②若q 1,则q3 (3 q)•由q N ,得q(3 q)1所以-3综上,q的取值范围为3,2•(3)设a1,a2丄a k的公差为由3aan 13a n,且a i 1,1)d] 1 nd 3[1 (n 1)d],1,2,L ,k (2n(2n1)d3)d2,2,1,2,L ,k n 1时,n 2,L ,k时,由2n 1 2n 3,得d—,所以d2n 2k 1所以1000 kq —,即k22 2k 1 2000 k 10001999•所以k的最大值为1999, k 1999时,a1,a2,L ak的公差为1 1999(2014 文23)已知数列{a n}满足!a n a n 1 3a n,n N ,a1 1 •3(1)若a2咼x,a4 9,求x的取值范围;(2)设{a n}是等比数列,且a m1而,求正整数m的最小值,以及m取最小值时相应的公比;(3)若耳卫2,L ,^00成等差数列,求数列弘还丄,a(00的公差的取值范围.2 解:(1 )由条件得2 x3 (2)设{&}的公比为q ・x6且9 3x,解得3 x 6 .所以x的取值范围是31 a3n 1qq,得an•[3,6] •因为如am 3an,所以3•从而1000m 1 / 1、m 1 c mq (3,31000 ,解m 8时, [制•所以,m的最小值为8, 8时,{a n}的公比为7104 101(3 ) 设数列a 1, a 2, L51OO的公差为d .由1 a na n d3anand 2 an,3 n3n 1,2,L ,99 .①当d 0时, a99a98L a 2 a t ,所以 0 d 2a 1,即0 d 2 .②当d 0时, a99 a98La 2 a !,符合条件.③ d 0时,a99 a 98 L a 2a 〕 ,所 以2 a99d 2 a99 ,3l (1 98d) d 2(1 ' 98d)又d 0, 所以2d 0 .199综上,51,52,L aoo 的公差的取值范围为[ — 2]. 199 知识点7:数列的递推关系式与函数 (2012 文 14)已知 f (x) 各项均为正数的数列 a n 满足 a 1 1, a n 2 f (a n ),右 52010 52012,则 520 511 的值是 __________ 答案: 3 135 2612358解:由a 1 1 , a n 2 f ,得a 3a s,a7,a 9 一 ,an235 813111 ,由a n 2 f (a n ), 得a n1 ,a 201 a 201a201011an 2a201a2010a 2010 a 2010,依次类推,得全体偶数项相等,a2010a 2 a2010所以a 20 a 1185 1 13 23 13一5 26(2017春21)已知函数 (1)解方程f X 1; (2)设 x 1,1 ,a 1, ,证明:1,1,且 fax 1得X 3 X n 对任意nN 成立答案:(1)x1;(3) 1,1;33解= log 空t * 2 = 1,1 — X八兰=2 ,计負得岀上=;;1 - -T3A 『%— 1— J7)+(W — 11— 1国于j (时 ----- 「则孑N - -_,a ——--; ------------- 住ci —■ dr_ «r f'-w. {1- 4 K:) > 0 .◎上}在 1,1)上是堆B|数.(3)在数列x n 中,X 11,1,人 1n 13X p 1 3 X n 'n N ,求X 1的取值范围,使又貞一i) = \ / = -1 . tf(i> = -_T = 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市高考二模数列汇编1.(上海市杨浦区2011年4月高三模拟理科)已知有穷数列A :n a a a ,,,21⋅⋅⋅(N n n ∈≥,2).定义如下操作过程T :从A 中任取两项j i a a ,,将ji j i a a a a ++1的值添在A 的最后,然后删除j i a a ,,这样得到一系列1-n 项的新数列A 1 (约定:一个数也视作数列);对A 1的所有可能结果重复操作过程T 又得到一系列2-n 项的新数列A 2,如此经过k 次操作后得到的新数列记作A k . 设A :31,21,43,75-,则A 3的可能结果是( ) (A )0; (B )34; (C )13; (D )12.3.(上海市卢湾区2011年4月高考模拟理科)已知数列{}n a 是无穷等比数列,其前n 项和是n S ,若232a a +=,341a a +=,则lim n n S →∞的值为 ( )A .23 B .43 C .83D .163 4.(上海市黄浦区2011年4月高考二模试题理科)已知数列{}n a 是首项为1,公差为2的等差数列,*()n S n N ∈是数列的前n 项和,则 2lim1nn S n →∞-= .6.(上海市十校2010-2011学年第二学期高三第二次联考理科)已知{}n a 是公差不为零的等差数列,如果n S 是{}n a 的前n 项和,那么limnn nna S →+∞= .7、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)数列{}n a 的前n 项和32-+=n n S n ,则通项公式=n a .8、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)各项都为正数的等比数列{}n a 中,11=a ,)11(273232a a a a +=+,则通项公式=n a . 9、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)公差为d ,各项均为正整数的等差数列中,若11=a ,51=n a ,则d n +的最小值等于 . 10. (上海市五校2011年联合教学调研理科已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = .11.已知数列()1212:,,,0,3n n A a a a a a a n ≤<<<≥具有性质P :对任意(),1i j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项. 现给出以下四个命题:①数列0,1,3,5,7具有性质P ;②数列0,2,4,6,8具有性质P ; ③若数列A 具有性质P ,则10a =;④若数列54321,,,,a a a a a )0(54321a a a a a <<<<≤具有性质P ,则1322a a a +=。
其中真命题有 .12.(2011年第二次联考)设n S 为数列}{n a 的前n 项和,若不等式21222ma nS a n n≥+对任意等差数列}{n a 及任意正整数n 都成立,则实数m 的最大值为13.(上海市闵行区2011届高三下学期质量调研文科)已知数列{}n a 是以15-为首项,2为公差的等差数列,n S 是其前n 项和,则数列{}n S 的最小项为第 项。
14.(上海市闵行区2011届高三下学期调研)已知等差数列{}n a ,对于函数53()f x x x =+满足:2(2)6f a -=,2010(4)6f a -=-,n S 是其前n 项和,则2011S = . 15.(上海市奉贤区2011年4月高三调研测试)在等比数列{}n a 中,0>n a ,且168721=⋅⋅⋅⋅a a a a ,则54a a +的最小值为 .16. (上海市杨浦区2011年4月高三模拟理科)若数列}{n a 为等差数列,且12031581=++a a a ,则1092a a -的值等于 .17、(上海市徐汇区2011年4月高三学习诊断文科)设不等式组*0()4x y n N y nx n >⎧⎪>∈⎨⎪≤-+⎩所表示的平面区域n D 的整点(即横坐标和纵坐标均为整数的点)个数为,n a 则2420101()2010a a a +++= .三、解答题18.(上海市黄浦区2011年4月高考二模试题理科)已知函数42()(1)1x f x x x R x -=≠-∈+,,数列{}n a 满足 1(1)a a a a R =≠-∈,,*1()()n n a f a n N +=∈.(1)若数列{}n a 是常数列,求a 的值; (2)当14a =时,记*2()1n n n a b n N a -=∈-,证明数列{}n b 是等比数列,并求出通项公式n a .20、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)(本题满分16分)数列{}n a 中,0>na ,1≠n a ,且1231+=+n n n a a a (*∈N n ).(1)证明:1+≠n n a a ; (2)若431=a ,计算2a ,3a ,4a 的值,并求出数列{}n a 的通项公式; (3)若a a =1,求实数p (0≠p ),使得数列⎭⎬⎫⎩⎨⎧+n n a a p 成等比数列。
21.(上海市五校2011年联合教学调研理科)已知数列{a n }和{b n }满足:a 1=λ,a n+1=24,(1)(321),3n n n n a n b a n +-=--+其中λ为实数,n 为正整数。
(1)对任意实数λ,证明:数列{a n }不是等比数列; (2)证明:当18{}n b λ≠-时,数列是等比数列;(3)设0<a <b (a,b 为实常数),S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由。
22.(上海市十三校2011年高三第二次联考理科)将数列}{n a 中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表: 记表中的第一列数 ,,,841a a a 构成的数列为}{n b ,已知:①在数列}{n b 中,11=b ,对于任何*N n ∈,都有0)1(1=-++n n nb b n ; ②表中每一行的数按从左到右的顺序均构成公比为)0(>q q 的等比数列; ③5266=a 。
请解答以下问题: (1)求数列}{n b 的通项公式;(2)求上表中第)(*N k k ∈行所有项的和)(k S ;(3)若关于x 的不等式x x k k S 211)(->+在]1001,10001[∈x 上有解,求正整数k 的取值范围。
121110987654321a a a a a a a a a a a a22. 定义:对于任意*n ∈N ,满足条件212n n n a a a +++≤且n a M ≤(M 是与n 无关的常数)的无穷数列{}n a 称为T 数列.(1)若2n a n =-(*n ∈N ),证明:数列{}n a 是T 数列;(2)设数列{}n b 的通项为243nn b n =-,且数列{}n b 是T 数列,求M 的取值范围;(3)设数列1n c q n p=--(*n ∈N ),问数列{}n c 是否是T 数列?请说明理由.24. (上海市普陀区2011年4月高三质量调研)(本题满分14分)为了缓解城市道路拥堵的局面,某市拟提高中心城区内占道停车场的收费标准,并实行累进加价收费。
已公布的征求意见稿是这么叙述此收费标准的:“(中心城区占道停车场)收费标准为每小时10元,并实行累进加价制度,占道停放1小时后,每小时按加价50%收费。
”方案公布后,这则“累进加价”的算法却在媒体上引发了争议(可查询2010年12月14日的相关国内新闻).请你用所学的数学知识说明争议的原因,并请按照一辆普通小汽车一天内连续停车14小时测算:根据不同的解释,收费各应为多少元?25、(上海市奉贤区2011年4月高三调研测试)已知数列{}n a 满足12,a =前n 项和为n S ,11()2()n n npa n n a a n n ++-⎧=⎨--⎩为奇数为偶数.(1)若数列{}n b 满足221(1)n n n b a a n +=+≥,试求数列{}n b 前3项的和3T ;(4分)(2)若数列{}n c 满足2n n c a =,试判断{}n c 是否为等比数列,并说明理由;(6分) (3)当12p =时,问是否存在*n N ∈,使得212(10)1n n S c +-=,若存在,求出所有的n 的值; 若不存在,请说明理由.(8分)26.(上海市杨浦区2011年4月高三模拟理科)设二次函数)()4()(2R k kx x k x f ∈+-=,对任意实数x ,有26)(+≤x x f 恒成立;数列}{n a 满足)(1n n a f a =+. (1)求函数)(x f 的解析式和值域;(2)试写出一个区间),(b a ,使得当),(1b a a ∈时,数列}{n a 在这个区间上是递增数列,并说明理由; (3)已知311=a ,是否存在非零整数λ,使得对任意n N *∈,都有 ()12333312111log log log 12log 1111222n n n a a a λ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪++⋅⋅⋅+>-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2log 2)1(131n n +-+--λ 恒成立,若存在,求之;若不存在,说明理由。