铝合金体系强度计算

合集下载

7085铝合金三维中心斜裂纹应力强度因子的数值计算

7085铝合金三维中心斜裂纹应力强度因子的数值计算

7085铝合金三维中心斜裂纹应力强度因子的数值计算宋彦琦;刘小珍;王卓;王石磊【摘要】To explore stress intensity factor of fatigue crack propagation on 7085-T7485 aluminum alloy,the fi-nite element model of aluminum alloy with three-dimensional center oblique crack was established by ANSYS.The stress intensity factor of the crack is calculated by the displacement extrapolation method and the interaction integral method.The results were compared with the theoretical results, and analysis the influence of length and angle of center crack on stress intensity factor.The results show that the two methods are both close to theoretical results in a certain range,but with the length and angle's increase of crack,the interaction integral is more precision.There-fore,the stress intensity factor of crack propagation is calculated by the interaction integral method.The results are significance to study the three-dimensional fatigue crack propagation mechanism of aluminum alloy.%为研究7085-T7485铝合金疲劳裂纹扩展的应力强度因子,用ANSYS软件建立了含三维中心斜裂纹铝合金的有限元模型.利用位移外推法和相互作用积分法计算了裂纹的应力强度因子;并将两种方法计算得到的结果与解析解对比,分析了中心斜裂纹的长度和倾斜角度对应力强度因子的影响.结果表明,在一定的范围内,两种方法与解析解都比较接近;但随着裂纹长度和角度的增加,相互作用积分凸显出更高的精度.因此,采用相互作用积分法对裂纹扩展的应力强度因子进行了计算,研究结果对铝合金三维复合型疲劳裂纹扩展机制研究有一定的指导意义.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)028【总页数】5页(P251-255)【关键词】7085-T7452铝合金;应力强度因子;ANSYS模拟;位移外推法;相互作用积分法【作者】宋彦琦;刘小珍;王卓;王石磊【作者单位】中国矿业大学(北京)力学与建筑工程学院,北京100083;中国矿业大学(北京)力学与建筑工程学院,北京100083;中国矿业大学(北京)力学与建筑工程学院,北京100083;中国矿业大学(北京)力学与建筑工程学院,北京100083【正文语种】中文【中图分类】TU512.4航空航天需要采用高性能大型整体高强铝合金锻件实现轻量化和高可靠性[1,2],新型7085-T7452高强铝合金锻件具有高强度、高淬透性、高损伤容限及耐腐蚀性;并已成功应用于波音787飞机和空客A380飞机的翼梁、翼肋等重要承力构件。

铝合金抗拉强度和硬度换算表

铝合金抗拉强度和硬度换算表

铝合金抗拉强度和硬度换算表
铝合金是一种常见的金属材料,具有良好的力学性能。

其中,抗拉强度和硬度是两个重要的指标,用于评估铝合金的性能。

下面是铝合金抗拉强度和硬度的换算表。

抗拉强度和硬度是两个不同的概念,但它们之间存在一定的关系。

抗拉强度是指材料在受到拉力作用下抵抗断裂的能力,通常用MPa (兆帕)表示;而硬度是指材料在受到外力作用下抵抗变形的能力,常用硬度计来测量。

铝合金的抗拉强度和硬度之间的关系是复杂的,取决于铝合金的成分、热处理状态以及其他因素。

一般来说,随着铝合金中其他金属元素的含量增加,抗拉强度和硬度都会提高。

例如,添加一定量的镁、硅和锌等元素可以显著提高铝合金的强度和硬度。

下表列出了一些常见铝合金的抗拉强度和硬度数据:
铝合金型号抗拉强度(MPa)硬度(HB)
6061 276 95
6063 241 80
7075 572 150
2024 483 120
需要注意的是,这些数值仅供参考,实际的抗拉强度和硬度可能会因不同的生产工艺和材料状态而有所差异。

铝合金的抗拉强度和硬度对于不同的应用有着不同的要求。

例如,在航空航天领域,要求铝合金具有较高的抗拉强度和硬度,以确保飞机的结构安全可靠;而在汽车制造领域,要求铝合金具有一定的抗拉强度和硬度,同时又要保持较轻的重量,以提高汽车的燃油经济性。

铝合金的抗拉强度和硬度是评估其性能的重要指标。

通过合理的合金设计和热处理工艺,可以调整铝合金的抗拉强度和硬度,以满足不同领域的需求。

.梁、楼板处铝合金模板抗弯强度以及挠度校核

.梁、楼板处铝合金模板抗弯强度以及挠度校核

铝合金模板安全专项施工方案- 1 -.梁、楼板处铝合金模板抗弯强度以及挠度校核(1)结合本项目结构施工图,以及广亚铝模板特点,选出梁尺寸200mm*1000 m m ,跨度为1200mm 最不利情况进行梁底处铝合金模板抗弯强度以及挠度校核 梁截面(b*h )为200*1000mm ,跨度为1200mm 。

模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k )+0.9*1.4∑NQK P=1.2*(24*0. 2 +1.1*1)+0.9*1.4*(1+2) =10.86KN/m2梁底板处铝合金模板最大支撑间距为跨度1200,跨中弯矩M 为: M=1*ql2/8=2.17*0.82/8=0.173K.m其中,q 为恒荷载均布线荷载标准值;对于200mm 标准板均布线荷载q=10.86*0.2=2.17KN/m. 最大弯曲应力:f= M/W=0.173*106/12571=13.81 N/mm2 <[f]=200N/mm2, 模板及支架的强度满足设计要求。

铝合金模板挠度应满足: v=5qgL4/384EIx<= [v]其中,为恒荷载均布线荷载标准值;[v]为允许挠度。

由规范可知[v]=L/250=1200/250=4.8mm计算得v=5qgL4/384EIx=5*2.17*8004/(384*70000*609925) =0.27m m<4.8mm ,满足要求。

抗剪强度计算T=3Q/2bh<[T]由于是简支梁均布加载,故面板抗剪强度必定满足设计要求! (2)楼板处铝合金模板抗弯强度以及挠度校核针对广亚铝模板的特点,以及本项目的需要,这里主要校核:规格为P400,长度为1100 mm这种最不利的情况,楼板厚度取120m m。

楼板模板规格为P400,长度为1100mm。

模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k)+0.9*1.4∑NQKP=1.2*(24*0. 12 +1.1*0.12)+0.9*1.4*(1+2)=7.39KN/m2楼板处铝合金模板最大支撑间距为跨度1100,跨中弯矩M为:M=1*ql2/8=2.96*1.1^2/8=0.447 KN.m其中,q为恒荷载均布线荷载标准值;对于400mm标准板均布线荷载q=7.39*0.4=2.96 KN/m最大弯曲应力:f= M/W= 0.447*10^6/24786 =18.03 N/mm2 <[f]=200N/mm2,模板及支架的强度满足设计要求。

铝合金抗弯曲强度计算公式

铝合金抗弯曲强度计算公式

铝合金抗弯曲强度计算公式引言。

铝合金是一种常见的金属材料,具有较高的强度和轻量化的特点,因此在工程领域得到广泛应用。

在使用铝合金进行结构设计和制造时,了解其抗弯曲强度是非常重要的。

本文将介绍铝合金抗弯曲强度的计算公式及其相关知识。

铝合金抗弯曲强度计算公式。

铝合金的抗弯曲强度是指在外力作用下,材料发生弯曲变形时所能承受的最大应力。

通常情况下,可以使用以下公式来计算铝合金的抗弯曲强度:σ = Mc/I。

其中,σ为材料的应力,单位为Pa;M为施加在材料上的弯矩,单位为N·m;c为截面的最大距离,单位为m;I为截面的惯性矩,单位为m^4。

在实际工程中,可以通过上述公式来计算铝合金的抗弯曲强度,并根据计算结果来进行结构设计和材料选择。

影响铝合金抗弯曲强度的因素。

铝合金的抗弯曲强度受多种因素影响,主要包括材料的性能和外部环境的影响。

1. 材料的性能。

铝合金的抗弯曲强度与其材料的性能密切相关,主要包括材料的强度、韧性、塑性等。

通常情况下,强度越高、韧性越好的铝合金具有较高的抗弯曲强度。

2. 外部环境。

外部环境的影响也会对铝合金的抗弯曲强度产生影响,例如温度、湿度等因素都会对材料的性能产生影响。

在设计和使用铝合金结构时,需要考虑外部环境的影响因素,以确保结构的安全性。

铝合金抗弯曲强度的应用。

铝合金的抗弯曲强度在工程领域具有广泛的应用,主要包括以下几个方面:1. 结构设计。

在进行结构设计时,需要对材料的抗弯曲强度进行计算和评估,以确保结构在外部载荷作用下能够正常工作,并具有足够的安全性。

2. 材料选择。

在选择材料时,抗弯曲强度是一个重要的考量因素。

通常情况下,需要选择抗弯曲强度较高的铝合金材料,以确保结构的安全性和稳定性。

3. 工程施工。

在工程施工过程中,需要对铝合金材料的抗弯曲强度进行评估和监控,以确保结构的施工质量和安全性。

结语。

铝合金的抗弯曲强度是一个重要的材料性能指标,对于工程设计和制造具有重要意义。

有关断热铝型材的强度计算

有关断热铝型材的强度计算

技术单文件编号共8页第1页有关断热铝型材的强度计算断热铝型材是一种符合节能潮流的节能建材,当它用于建筑幕墙和铝合金外窗之时,除了要考虑其保温隔热性能之外,还要充分考虑到其结构的安全性和可靠性。

因此建议断热铝材用于建筑幕墙和铝门窗的结构件时,应进行强度设计计算,铝材应计算弯曲最大拉应力,隔热塑料应计算最大弯曲拉应力和最大弯曲剪应力。

铝材和隔热塑料的分离面还应计算最大拉应力和最大剪应力。

断热铝型材从力学角度看:是两种不同材料复合而成的组合梁,有关复合梁的计算详见下列步骤:(摘自技术单J25-9832)1.确定中性轴的位置:中性轴到组合框截面底边的距离为Y=(EsAsYs+EaAaYa)/(EaAa+EsAs)Ys——钢内框形心到组合框截面底边的距离;Ya——钢外框形心到组合框截面底边的距离;Es——钢材的弹性模量,210000N/mm2;Ea——铝材的弹性模量,70000N/mm2;Aa——铝框的截面面积;As——钢框的截面面积。

2.钢框、铝框关于中性轴的惯性距:Is=I O s+As(Ys-Y)2 Ia=I O a+Aa(Ya-Y)2I O s——钢框对自身形心轴的惯性矩;I O a——铝框对自身形心轴的惯性矩。

3.挠度计算(简支梁):f=5qL4/384(EaIa+EsIs)q——简支梁的均布荷载标准值; L——简支梁的跨度。

4.强度计算(简支梁)钢框强度校核MEsYs/r(EsIs+EaIa)+NEs/(EaAa+EsAs)≤fs铝框强度校核MEaYa/r(EsIs+EaIa)+NEa/(EaAa+EsAs)≤faM——简支梁的弯矩设计值;N——竖框所受的拉力设计值;r——塑性发展系数,取;Ya——铝框外边缘到中性轴的距离;Ys——钢框外边缘到中性轴的距离;fa、fs——分别为铝材和钢材的强度设计值。

的取值方法见附页。

5.在进行断热条强度计算时,f断热条上述公式的等效参数计算已编制到《远大标准化软件》其“计算等效参数”部分。

铝合金板件螺栓连接承压强度试验与计算方法_王元清

铝合金板件螺栓连接承压强度试验与计算方法_王元清
[6 ]
屋盖采用铝合金单层网壳, 铝合金材料牌号为 6061 [2 ] - T6 , 网壳的铝合金节点采用螺栓连接 ; 在2001
收稿日期: 2010 - 11 - 12 基金项 目: 高 等 学 校 博 士 学 科 点 专 项 科 研 基 金 资 助 项 目 ( 20090002110046 ) 作者简介: 王元清( 1963 - ) , 男, 教授, 博导. 研究方向: 钢结构; mail: wang - yq@ tsinghua. edu. cn 铝合金结构. E-
铝合金板件螺栓连接的承压破坏形态有 2 种: [9 ] 螺栓从端部拉脱和螺栓孔塑性变形被拉长 。 其 承压承载力需要同时考虑强度准则和变形准则 , 考 [10 ] Kim 等 提出当螺栓孔变形 虑到正常使用的要求, 达到孔径的 30% 时, 认为螺栓连接不再适合继续承 EC9 也采用了这一限值规定。 载而达到了极限状态, 作者通过进行铝合金板件螺栓连接节点的承压 试验研究, 分析螺栓直径和端距对节点承压承载力 的影响。利用有限元分析手段对试验过程进行数值 模拟及参数分析, 探索铝合金板件承压强度的计算 方法。
研 究, 提出了设计建议公式 。 中国于2007 年颁布的
204
[7 ]
四川大学学报( 工程科学版)
第 43 卷
铝合金结构设计规范 给出了铝合金板件螺栓连 其中构件的承压强度直接按照 接的相关设计公式, 欧洲规范 ( EC9 ) 取值, 而目前国内铝合金板件螺 栓连接的承压性能仍然需要进一步研究 。
铝合金材料最初在航空等领域取得了成功的应 用, 由于其自重轻、 耐腐蚀性和耐久性好等特点而被 引入了建筑结构领域。当前铝合金结构在中国已经 取得了成功的应用, 主要结构形式包括铝合金网壳、
[1 ] 网架, 铝 合 金 桁 架 等, 展 现 了 良 好 的 应 用 前 景。 中国现代五项赛事中心游泳击剑馆位于成都市 , 其

铝合金模板早拆体系受力计算书

铝合金模板早拆体系受力计算书

陕西天利成建筑科技有限公司铝模板早拆体系开启----建筑低碳环保新时代陕西天利成建筑科技有限公司2016年10月陕西天利成建筑科技有限公司铝合金模板早拆体系受力计算书1.1.1 早拆体系包含楼面、梁底早拆体系,由早拆头、快拆锁条、单支顶、销钉、销片组成(如图1.1.1);本规程早拆支撑间距不应大于1300mm×1300mm。

(a)梁底早拆 (b) 楼面早拆图1.1.1早拆体系组成示意图1.2.1条文说明:目前各种铝合金模板系统的早拆体系组成部分基本相同,仅细部尺寸有所差异;部分企业的可调钢支顶采用单根钢管,下部安装可调螺杆;大部分企业的可调钢支顶采用两根直径不同的钢管上下套装,以满足支撑长度的可调性。

当具体工程与本规范给出的构造有差异时,应根据具体情况进行调整。

1.2.2本规程早拆体系适用于楼板厚不小于100mm,混凝土等级不低于C20的混凝土现浇楼面梁板结构,对预应力混凝土结构应经过专项研究后,方可使用。

1.2.2条文说明:建筑工程楼板施工采用模板早拆经济且安全可靠。

本规程模板早拆的适用范围为楼板和梁的早拆的施工。

混凝土楼板厚度增大,自重荷载随之增大,楼板抗弯刚度也随之增大;但抗弯刚度增加远大于荷载的增加。

在相同跨度的情况下,楼板越厚,楼板抗弯能力越强。

根据多年早拆施工实践,对板厚为100mm以上的楼板实施早拆是安全可靠的。

对板厚小于100mm的楼板应进行专门的分析和论证方可采用。

1.2.3冬期施工采用模板早拆技术所浇筑的混凝土,宜采用综合蓄热法,确保混凝土结构不受冻,强度不受影响。

(核查冬季施工规范)1.2.3条文说明:1.2.2-1.2.5 北京市地方标准《模板早拆施工技术规程》DB11/694-2009。

1.2.4早拆体系设计必须保证足够的强度、刚度和稳定性,满足施工过程中承受浇筑混凝土的自重荷载和施工荷载,确保安全。

早拆装置及连接、支撑的承载力可参考工程经验或通过试验确定。

标准模板的早拆体系承载力见附录F。

铝件配件计算公式是什么

铝件配件计算公式是什么

铝件配件计算公式是什么铝件配件计算公式是指在设计和制造铝件配件时所使用的各种计算公式。

铝件配件是指由铝材料制成的各种零部件和配件,广泛应用于汽车、航空航天、建筑等领域。

在设计和制造铝件配件时,需要进行各种计算,以确保其质量、性能和安全性。

下面将介绍一些常见的铝件配件计算公式。

1. 强度计算公式。

在设计铝件配件时,需要计算其强度,以确保其在使用过程中不会发生破裂或变形。

强度计算公式通常包括拉伸强度、屈服强度、抗压强度等。

其中,拉伸强度计算公式为:σ = F/A。

其中,σ为拉伸强度,F为受力,A为受力面积。

2. 疲劳寿命计算公式。

铝件配件在使用过程中会受到交变载荷的作用,容易发生疲劳破坏。

因此,需要计算其疲劳寿命,以确保其在设计使用寿命内不会发生疲劳破坏。

疲劳寿命计算公式通常包括受力应力、材料疲劳极限等。

其中,受力应力计算公式为:σa = (σmax + σmin)/2。

其中,σa为受力应力,σmax为最大应力,σmin为最小应力。

3. 刚度计算公式。

铝件配件在使用过程中需要承受一定的变形,因此需要计算其刚度,以确保其在使用过程中不会发生过大的变形。

刚度计算公式通常包括弹性模量、截面惯性矩等。

其中,弹性模量计算公式为:E = σ/ε。

其中,E为弹性模量,σ为应力,ε为应变。

4. 热膨胀计算公式。

铝件配件在使用过程中会受到温度的影响,容易发生热膨胀。

因此,需要计算其热膨胀,以确保其在使用过程中不会发生过大的变形。

热膨胀计算公式通常包括线膨胀系数、温度变化量等。

其中,线膨胀系数计算公式为:ΔL = αLΔT。

其中,ΔL为长度变化量,αL为线膨胀系数,ΔT为温度变化量。

以上是一些常见的铝件配件计算公式,设计和制造铝件配件时需要根据具体情况选择合适的计算公式,并进行合理的计算和分析。

通过科学的计算和分析,可以确保铝件配件的质量、性能和安全性,满足使用要求。

同时,也可以为铝件配件的设计和制造提供科学依据,提高工作效率和质量水平。

铝合金硬度与强度换算

铝合金硬度与强度换算

铝合金硬度与强度换算铝合金是一种常见的金属材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于航空、汽车、建筑等领域。

在铝合金的制造和应用过程中,硬度和强度是两个重要的指标。

本文将介绍铝合金硬度与强度的换算关系。

一、铝合金硬度的定义和测量方法硬度是材料抵抗划痕、压痕或穿孔的能力,是材料抵抗外力的能力。

铝合金的硬度可以通过几种方法进行测量,常用的有以下几种:1. 布氏硬度(HB):用布氏硬度计在试样表面施加一定压力,测量压痕的直径,根据压痕直径和压力计算出硬度值。

2. 洛氏硬度(HRC):用洛氏硬度计在试样表面施加一定压力,测量压痕的深度,根据深度和硬度计算出硬度值。

3. 维氏硬度(HV):用维氏硬度计在试样表面施加一定压力,测量压痕的对角线长度,根据长度和压力计算出硬度值。

二、铝合金强度的定义和测量方法强度是材料抵抗外力的能力,是材料在受力状态下的表现。

铝合金的强度可以通过以下几种方法进行测量:1. 屈服强度(σs):在拉伸试验中,当试样开始产生塑性变形时,应力达到最大值,称为屈服强度。

2. 抗拉强度(σb):在拉伸试验中,试样断裂前所承受的最大应力称为抗拉强度。

3. 延伸率(δ):在拉伸试验中,试样断裂前的伸长量与原始长度之比称为延伸率。

三、铝合金硬度与强度的换算关系铝合金的硬度和强度之间存在一定的换算关系,可以通过以下公式进行计算:1. 布氏硬度与抗拉强度的换算关系:σb=3.45×HB2. 洛氏硬度与抗拉强度的换算关系:σb=0.012×HRC2+0.32×HRC-4.163. 维氏硬度与抗拉强度的换算关系:σb=3.06×HV以上公式中,σb表示抗拉强度,HB表示布氏硬度,HRC表示洛氏硬度,HV表示维氏硬度。

四、结论铝合金的硬度和强度是两个重要的指标,可以通过不同的测量方法进行测量。

硬度和强度之间存在一定的换算关系,可以通过公式进行计算。

在铝合金的制造和应用过程中,了解硬度和强度的换算关系可以更好地控制材料的性能,提高产品的质量。

铝合金方管计算方法

铝合金方管计算方法

铝合金方管计算方法铝合金方管是一种广泛使用的建筑材料,具有轻质、高强度、美观等特点。

在设计和生产过程中,需要对其截面积、重量、承重、强度和弯曲系数等进行计算和评估。

以下是铝合金方管计算方法的主要内容:1. 铝合金方管截面积计算截面积是计算铝合金方管物理特性的重要参数之一。

可以根据铝合金方管的尺寸,采用以下公式计算截面积:截面积= (边长×边长) ×0.7854(用于计算矩形截面)或截面积= (直径×直径) ×0.7854(用于计算圆形截面)2. 铝合金方管重量计算重量是衡量铝合金方管材料用量和经济性的重要指标之一。

可以根据铝合金方管的尺寸和密度,采用以下公式计算重量:重量= 截面积×长度×密度需要注意的是,不同型号和尺寸的铝合金方管具有不同的密度,因此需要使用正确的密度值进行计算。

3. 铝合金方管承重计算承重是衡量铝合金方管承载能力的重要指标之一。

可以根据铝合金方管的尺寸和力学性能参数,采用以下公式计算承重能力:承重能力= (截面积×抗拉强度) / 1000其中,抗拉强度是指铝合金方管在承受拉力时能够承受的最大强度,需要根据铝合金的牌号和热处理状态进行选择。

4. 铝合金方管强度计算强度是衡量铝合金方管材料力学性能的重要指标之一。

可以根据铝合金方管的尺寸和力学性能参数,采用以下公式计算强度:强度= (截面积×屈服强度) / 1000其中,屈服强度是指铝合金方管在承受压力时能够承受的最大强度,需要根据铝合金的牌号和热处理状态进行选择。

5. 铝合金方管弯曲系数计算弯曲系数是衡量铝合金方管弯曲性能的重要指标之一。

可以根据铝合金方管的尺寸和弯曲角度,采用以下公式计算弯曲系数:弯曲系数= (弯曲角度/ 弯曲半径) ×(边长/ 2)其中,弯曲角度是指铝合金方管弯曲的角度,弯曲半径是指铝合金方管弯曲时所采用的半径,边长是指铝合金方管的边长。

铝合金模板计算书(顶撑、背楞、螺栓、销钉)

铝合金模板计算书(顶撑、背楞、螺栓、销钉)

铝合金模板配件受力计算书主要参数:梁高h=1200mm ,b=200mm ,板厚:150mm铝型材6061-T6的强度设计值F 为276N/mm2钢材Q235的强度设计值F=215 N/mm2销钉与螺栓的强度设计值F=420N/mm2铝模自重为22kg/ m2钢材弹性模量 25/101.2mm N E ⨯=Q420钢材抗剪 2/220mm KN fy =Q235钢材抗剪 2/125mm KN fy =1.顶撑验算顶撑采用Q235的钢材,外管采用 φ60×2.0mm 钢管,插管为 φ48×3.0mm 厚,插销为 φ14mm 。

本工程的计算高度为2800(实际2770)mm ,钢管支撑中间无水平拉杆。

计算独立支撑高度最大为2800时的允许荷载,考虑插管与套管之间因松动产生的偏心为半个钢管直径。

插管偏心值 e=D/2=48.3/2=24.3因此钢支撑按两端铰接的轴心受压构件计算长细比: i ul i 0==L λ钢管支撑的使用长度l=2800钢管支撑的计算长度 l l 0μ=22.1299.112n 1===++μ 12I I n ==18.51/9.32=1.99 8.1656.20280022.1i l===⨯μλi 为回转半径1.1.1 钢管受压稳定验算根据《钢结构设计规范》得 285.0=ϕN A N 5.26838215438285.0f ][2=⨯⨯=⋅⨯=ϕ其中2A 为套管截面积1.2钢管受压强度验算插销直径 14,管壁厚3.0mm ,管壁的端承面承压强度设计值2mm /325fce N =两个插销孔的管壁受压面积 13214.32140.32a 22d =⨯⨯⨯=⋅=πA 2mm 管壁承受容许荷载 N A N 42900132325fce ][=⨯=⋅=1.1.3插销受剪验算。

插销两处受剪。

插销截面积 220mm 7.15314.37=⨯=A插销承受容许荷载N N 384257.153125227.153fy ][=⨯⨯=⨯⨯=根据验算,取三项验算的最小容许荷载,故钢支撑在高度2800时的容许荷载为26838.5N1.4 最大构件的荷载验算本工程最大梁断面为200×1200mm ,顶撑间距为1300mm最大板厚为150mm ,板的顶撑间距为1300×1300mm铝模板自重22kg/㎡施工荷载按200 kg/㎡a、最大梁荷载组合(最大支撑间距1300mm)梁砼自重:0.2×1.2×1.3×25000=7800N铝模自重:0.2×1.3×220=57.2N恒载系数1.2:(7800+57.2)×1.2=9428.6N活载系数1.4:2000×1.4×0.2×1.3=728N合计:10156.6N(不考虑折减系数)b、最厚板荷载组合:顶撑间距按1300×1300计算,板厚160mm板砼自重:0.15×1.3×1.3×25000=6338N铝模自重:1.3×1.3×220=371.8N恒载系数1.2:(6338+371.8) ×1.2=8051.76N活载系数1.4: 2000×1.4×1.3×1.3=4732N合计:12784N(不考虑折减系数)经计算:无论是梁、板的最大荷载均﹤[N]= 26838.5N,故顶撑在不使用水平拉杆的情况下符合使用要求。

铝合金全部计算公式

铝合金全部计算公式

铝合金全部计算公式铝合金是一种常见的金属材料,具有轻质、耐腐蚀、导热性好等特点,被广泛应用于航空航天、汽车制造、建筑等领域。

在工程设计和生产过程中,需要对铝合金进行各种计算,以确保其性能和质量符合要求。

本文将介绍铝合金的全部计算公式,帮助读者更好地理解和应用这些公式。

1. 铝合金的密度计算公式。

铝合金的密度是指单位体积内的质量,通常用ρ表示,其计算公式为:ρ = m/V。

其中,ρ为密度,m为质量,V为体积。

在工程设计中,密度是铝合金材料的重要物理参数,对于计算材料的重量和体积具有重要意义。

2. 铝合金的强度计算公式。

铝合金的强度是指材料抵抗外部力量的能力,通常用σ表示,其计算公式为:σ = F/A。

其中,σ为强度,F为受力,A为受力面积。

在工程设计和生产过程中,需要对铝合金的强度进行计算,以确保其能够承受设计要求的载荷。

3. 铝合金的热膨胀系数计算公式。

铝合金的热膨胀系数是指材料在温度变化时长度、面积或体积的变化率,通常用α表示,其计算公式为:ΔL = L0 αΔT。

其中,ΔL为长度变化量,L0为初始长度,α为热膨胀系数,ΔT为温度变化量。

在工程设计中,需要考虑铝合金在温度变化时的热膨胀系数,以避免因温度变化而引起的尺寸变化问题。

4. 铝合金的导热系数计算公式。

铝合金的导热系数是指材料导热性能的指标,通常用λ表示,其计算公式为:q = λ A ΔT / L。

其中,q为热传导量,λ为导热系数,A为传热面积,ΔT为温度差,L为传热距离。

在工程设计中,需要对铝合金的导热系数进行计算,以确保其能够满足热传导的要求。

5. 铝合金的电阻率计算公式。

铝合金的电阻率是指材料对电流通过的阻力,通常用ρ表示,其计算公式为:R = ρ L / A。

其中,R为电阻,ρ为电阻率,L为长度,A为截面积。

在工程设计中,需要对铝合金的电阻率进行计算,以确保其能够满足电路设计的要求。

6. 铝合金的热容量计算公式。

铝合金的热容量是指材料单位质量在温度变化时吸收或释放的热量,通常用C表示,其计算公式为:Q = m C ΔT。

铝合金体系强度计算

铝合金体系强度计算

铝合金体系强度计算铝合金模板体系强度计算一.楼面模板的强度计算:楼面模板形式如图所示,计算时两端按简支考虑,其计算跨度C取1.2米.A..荷载计算:按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值.1.铝模板自重标准值: 230N/m22.150mm厚新浇混凝土自重标准值: 24000×0.15=3600 N/m23.钢筋自重标准值: 1100×0.15=165 N/m24.施工活载标准值: 2500 N/m25.跨中集中荷载: 2500 N均布线荷载设计值为:q1=0.9×[1.2×(230+3600+165)+1.4×2500] ×0.4=3308 N/m 模板自重线荷载设计值: q2=0.9×0.4×1.2×230=92 N/m跨中集中荷载设计值: P=0.9×1.4×2500 =3150 NB. 强度验算:施工荷载为均布线荷载:M1=q1l2/8=3308×1.22/8=596 Nm施工荷载为集中荷载:M2=q1l2/8+Pl/4=92×1.22/8+3150×1.2/4=962 Nm由于M2>M1,故采用M2验算强度.通过Solidworks软件求得:I XX=833964.23 mm4, e x=58.92 mmW XX=I XX/e x=833964.23/58.92=14154.2 mm3则: σ=M2/W XX=962000/14154.2=68 MPa<[σ]=180 MPa强度满足要求.C. 挠度计算:验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为:q=0.4×(230+3600+165)=1590 N/m=1.59 N/mm实际挠度值为:f=5ql4/(384EIXX)=5×1.59×12004/(384×1.83×105×833964.23)=0.35 mm<400/300=1.3 mm挠度满足要求.D. 面板厚度验算面板小方格按四面固定计算,由于L Y/L X=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.055, 最大挠度系数: K f=0.0014取1mm宽的板条为计算单元,荷载为:q=0.9×[1.2×(230+3600+165)+1.4×2500] =6775.2 N/m2=0.06775 N/mm2M X= K MX ql Y2=0.055×0.06775×3702=524 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=524/4.17=125.7 MPa<[σ]=180 MPa强度满足要求.E. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.0014×0.06775×3704/2155416=0.83 mm<[f]= l Y/300=370/300=1.23 mm挠度满足要求.二.剪力墙墙面模板的强度计算:A..荷载计算:按大模板计算,取F=50 KN/m2计算取F=60 KN/m2倾倒混凝土时对垂直面模板产生的水平荷载标准值取: 6 KN/m2计算取: 1.4×6=8.4 KN/m2荷载合计: P=68.4 KN/m2=0.0684 KN/mm2B. 面板厚度验算面板小方格按三面固定,一面铰接计算,由于L Y/L X=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.0629, 最大挠度系数: K f=0.00182 取1mm宽的板条为计算单元,荷载为:M X= K MX ql Y2=0.0629×0.0684×3702=589 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=589/4.17=141.3 MPa<[σ]=180 MPa强度满足要求.C. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.00182×0.06775×3704/2155416=1.1 mm<[f]= l Y/300=370/300=1.23 mm挠度满足要求.D. 对拉螺栓计算:作用于模板的混凝土侧压力:F s=P=0.0684 KN/mm2N=abF s, a=0.9 b=0.9N=0.9×0.9×0.0684=55400 N采用M24的穿墙螺栓,f t b=170 N/mm2 A=353 mm2A f t b=350×170=60010 N >55400 N对拉螺栓满足要求.E. 背楞的计算:选用100×50×3方管,两个一组,共三组,间距最大: 850mm线荷载: q=0.0684×850=58.14N/mm,M X=q1l2/8=58.14×0.92/8=5886675 NmmW X=22420×2=44840 mm3σ=M X/W X=5886675/44840=131.3 MPa<[σ]=205 MPa强度满足要求.三.梁模板的强度计算:(一).梁底面模板形式如图所示,因中间强度最弱,故计算之.计算时两端按简支考虑,其计算跨度C取1.2米.A.荷载计算:按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值.1铝模板自重标准值: 230N/m22. 750mm厚新浇混凝土自重标准值: 24000×0.75=18000 N/m23.钢筋自重标准值: 1100×0.75=825 N/m24.施工活载标准值: 2500 N/m25.跨中集中荷载: 2500 N均布线荷载设计值为:q1=0.9×[1.2×(230+1800+825)+1.4×2500] ×0.35=8298 N/m 模板自重线荷载设计值: q2=0.9×0.35×1.2×230=79.4 N/m 跨中集中荷载设计值: P=0.9×1.4×2500 =3150 NB. 强度验算:施工荷载为均布线荷载:M1=q1l2/8=8298×1.22/8=1494000 Nmm施工荷载为集中荷载:M2=q1l2/8+Pl/4=79.4×1.22/8+3150×1.2/4=959000 Nmm 由于M2<m1,故采用m1验算强度.< p="">通过Solidworks软件求得:I XX=813098.96 mm4, e x=58.42 mmW XX=I XX/e x=813098.96/58.42=14014.15 mm3则: σ=M1/W XX=1494000/14014.15=106.7 MPa<[σ]=180 MPa强度满足要求.C. 挠度计算:验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为: q=0.4×(230+18000+825)=6662.25 N/m=6.66 N/mm实际挠度值为:f=5ql4/(384EIXX)=5×6.66×12004/(384×1.83×105×813098.72)=1.2 mm<400/300=1.3 mm挠度满足要求.D. 面板厚度验算面板小方格按四面固定计算,由于L Y/L X=170/200=0.85,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.0626, 最大挠度系数: K f=0.00168取1mm宽的板条为计算单元,荷载为:q=0.9×[1.2×(230+18000+825)+1.4×2500]=23729 N/m2=0.23729 N/mm2M X= K MX ql Y2=0.0626×0.23729×1702=429.3 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=429.3/4.17=103 MPa<[σ]=180 MPa强度满足要求.E. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.00168×0.23729×1704/2155416=0.16mm<[f]= l Y/300=170/300=0.57 mm挠度满足要求.(二). 梁侧面模板相当于剪力墙墙面模板,其强度和挠度均满足要求.四. 顶撑的强度验算:1. 楼面顶撑的计算;A. 荷载: q=230+3600+165+2500=6495 N/m2则单个顶撑受轴向压力:(0.6+0.2+0.6)×(0.2+0.125+0.2) ×6495=4770 NB.顶撑采用φ48×3钢管,A=423mm2, 计算长度:l=3250-1500-100=1650mm,顶撑为中心受压杆件, i=15.9,λ=μl/i=1×1650/15.9=104,查表: Ψ=0.58σ=N/ΨA=4770/0.58×423=19.5 MPa<[σ]=205 MPa楼面顶撑强度满足要求.2. 梁顶撑的计算;A. 荷载: q=230+18000+825+2500=21555 N/m2则单个顶撑受轴向压力: (0.175+0.125)×(1.2+0.2) ×21555=9054 N C.顶撑采用φ48×3钢管,A=423mm2, 计算长度: l=3250-1500-100-600=1050mm,顶撑为中心受压杆件, i=15.9,λ=μl/i=1×1050/15.9=66,查表: ψ=0.88σ=N/ΨA=9054/0.88×423=25.5 MPa<[σ]=205 MPa梁顶撑强度满足要求.田志强138********</m1,故采用m1验算强度.<>。

2024t4铝合金循环强度系数

2024t4铝合金循环强度系数

2024t4铝合金循环强度系数【实用版】目录1.2024t4 铝合金简介2.循环强度系数的定义和意义3.2024t4 铝合金的循环强度系数测试方法4.2024t4 铝合金的循环强度系数对材料性能的影响5.结论正文一、2024t4 铝合金简介2024t4 铝合金是一种高强度、硬质、耐腐蚀的铝合金材料,广泛应用于航空航天、汽车、电子等领域的零部件制造。

其中,“2024”表示该合金的主要成分为 Cu20.5Cr3.5Mn0.5Al,而“t4”则表示该合金经过热处理后的状态。

二、循环强度系数的定义和意义循环强度系数(Cycling Strength Coefficient,CSC)是衡量材料在循环载荷作用下抗疲劳性能的一个重要参数,通常用符号 K 表示。

其定义为在规定的循环次数和应力幅范围内,材料破坏时的应力幅值与初始应力幅值之比。

循环强度系数 K 值越大,表示材料的抗疲劳性能越好。

三、2024t4 铝合金的循环强度系数测试方法测试 2024t4 铝合金的循环强度系数通常采用循环加载试验。

具体步骤如下:1.制备试样:根据标准规定,制备一定尺寸的 2024t4 铝合金试样;2.加载试验:在规定的循环次数和应力幅范围内,对试样进行循环加载试验;3.测量应力幅值:在试验过程中,实时测量试样的应力幅值;4.计算循环强度系数:根据试验数据,计算出 2024t4 铝合金的循环强度系数 K 值。

四、2024t4 铝合金的循环强度系数对材料性能的影响2024t4 铝合金的循环强度系数 K 值大小直接影响其抗疲劳性能。

K 值越大,表示材料在循环载荷作用下的抗疲劳性能越好,能够承受更多的循环载荷而不破坏。

因此,循环强度系数是评价 2024t4 铝合金性能的重要指标之一。

五、结论2024t4 铝合金作为一种高强度铝合金,其循环强度系数 K 值的大小对其抗疲劳性能具有重要影响。

6060铝合金 抗拉强度

6060铝合金 抗拉强度

6060铝合金抗拉强度6060铝合金是一种常见的铝合金材料,具有良好的强度和耐腐蚀性能。

在本文中,我们将逐步探讨6060铝合金的抗拉强度及其相关信息。

第一步:了解6060铝合金的基本特性6060铝合金主要由铝、镁、硅、锰等元素合金化而成。

它具有优异的强度、韧性和耐腐蚀性能,适用于各种工业应用场合。

相较于其他铝合金材料,6060铝合金具有较高的强度,并且具有良好的加工性能,可以轻松进行成型、切割、焊接等加工工艺。

第二步:了解抗拉强度的定义和计算方法抗拉强度是一个材料抵抗拉伸力的能力,通常用于评估材料的机械性能。

抗拉强度常以MPa(兆帕)为单位表示。

计算抗拉强度的公式为:抗拉强度= 断面最大拉力/ 断面积。

第三步:评估6060铝合金的抗拉强度6060铝合金的抗拉强度通常在120-180 MPa之间。

具体的抗拉强度取决于材料的成分、热处理工艺和处理状态。

通过控制合金成分的含量和调整热处理工艺,可以进一步提高6060铝合金的抗拉强度。

第四步:了解6060铝合金的热处理工艺对抗拉强度的影响热处理是提高6060铝合金抗拉强度的常用方法之一。

常见的热处理工艺包括固溶处理和时效处理。

固溶处理通过加热合金材料至固溶温度,然后迅速冷却,可以提高合金的强度和硬度。

时效处理通过在固溶处理后加热合金材料至较低温度一段时间,有助于细化合金的晶粒,提高其强度和抗拉性能。

第五步:了解6060铝合金抗拉强度的应用领域由于6060铝合金具有良好的强度和加工性能,广泛应用于建筑、航空航天、汽车、电子等领域。

在建筑行业中,6060铝合金常用于制造门窗、阳台栏杆、铝合金梯子等产品。

在航空航天领域,6060铝合金常用于制造飞机机身、零部件等。

在汽车工业中,6060铝合金可用于制造车身、车轮和发动机零部件等。

第六步:总结6060铝合金的抗拉强度与相关信息6060铝合金是一种强度较高的铝合金材料,具有良好的加工性能和耐腐蚀性能。

它的抗拉强度通常在120-180 MPa之间,可以通过热处理工艺进一步提高。

铝合金型材强度计算

铝合金型材强度计算

铝合金型材强度计算:型材设计:为防止连接处松动,型材的T形槽都是内凹的,具有这种结构的型材在对接时只有边缘的线接触,T形槽受力变形也被限定在弹性范围内,显著提高了结构的稳定性。

型材直线度:型材水平放置,任意位置的长度L2=300mm,其弯曲变形高度数h2的最大值不超过0.3mm(L2=300mm,h2≤0.3mm)。

型材全长L1的弯曲变形高度h1参照下表:型材扭曲度:型材水平放置,宽度W,因弯曲和扭曲而使端部翘起,其扭曲变形高度T参照下表计型材平面度:型材水平放置,型材短边W的最大平面容差D,参照下表:(二)铝合金机械性能参数表铝型材的强度校核:对于韧性材料制成的梁,当梁的危险截面上的最大正应力达到材料的屈服应力(σs)时,便认为梁发生失效;对于脆性材料制成的梁,当梁的危险截面上的最大正应力达到材料的强度极限(σb)时,便认为梁发生失效。

即:σmax=σs(韧性材料) σmax=σb(脆性材料)这就是判断梁是否失效的准则。

铝型材属于韧性材料。

为了保证型材具有足够的安全裕度,型材的危险截面上的最大正应力,必须小于许用应力,许用应力等于σs或σb除以一个大于1的安全因数ns(一般ns取1.3~1.5)。

于是,有:上述二式就是基于最大正应力的型材弯曲强度计算准则,又称为弯曲强度条件,式中[σ]为弯曲许用应力;ns和nb分别为对应于屈服强度和强度极限的安全因数。

型材的弯曲强度计算步骤:1:根据型材受到的约束性质,从表1中查出型材的最大弯矩计算公式,算出最大弯矩值;2:由最大弯矩值,根据公式算出型材在最大弯矩截面处所受的最大内应力;3:查表2,得出所用型材的屈服强度σ0.2.除以安全系数1.5,得出许用应力[σ];4:用算出的最大内应力与许用应力比较,当所受最大内应力小于许用应力[σ]时,型材的强度满足承载要求。

对于产生弯曲变形的型材,在满足强度条件的同时,为保证其正常工作还需对弯曲位移加以限制,即还应该满足刚度条件:式中,L为跨长, 为许可的挠度与跨长之比(简称许可挠跨比),一般工程中通常只限制梁的挠跨比在怡合达目录册中,规定所有受力型材,其最大挠跨比不超过。

测定铝合金材料的名义屈服强度

测定铝合金材料的名义屈服强度

图解法测定铝合金材料的弹性模量E 和屈服强度[实验目的]1、学习用图解法测定塑性材料的规定非比例延伸强度R P 。

2、了解电子引伸计测量试样伸长量的原理,掌握电子引伸计的安装和使用方法 ,并能正确使用。

3、测定铝合金材料的弹性模量E 和规定非比例延伸强度R P 0.2。

[使用仪器]万能试验机或拉力试验机、电子引伸计、游标卡尺(最小分度不大于0.05 mm )、自动绘图系统、待测铝合金拉伸试样等[实验原理]1、图解法测定铝合金材料的弹性模量E 在试验机自动记录的F -ΔL 曲线的弹性直线段上取相距尽可能远的A 、B 两点,并读取其相应的载荷增量值ΔF 和伸长增量值δL (见图5-1),则所测材料的弹性模量为:LS L F δΔE av e ⋅⋅=(5-1)式中L e 为引伸计标距,S av 为所用试样原始横截面平均面积。

2、图解法测定规定非比例延伸强度R P 0.2除了中、低碳钢、16锰钢及一些高强度低合金钢等金属材料外,大部分金属都不具有明显的屈服现象,它们的拉伸曲线由直线部分(弹性阶段)直接过渡到曲线部分(强化阶段),因此不能像测低碳钢那样测定这些材料的屈服强度,而材料的屈服强度是衡量材料强度的重要力学性能指标之一,所以对于没有明显屈服阶段的塑性材料,工程上常用对应于塑性应变(残余应变)ε =0.2﹪时的应力作为衡量材料强度的指标,并用R 0.2表示,称为材料的名义屈服强度或条件屈服强度或规定延伸强度R 0.2,其数值的确定方法如图5-2所示。

图中的CD 直线与弹性阶段内的直线部分平行,即在ε轴上取OC =0.2﹪,过C 点作直线CD 平行于σ-ε图中的直线段,交曲线于D 点,于是点D 的纵坐标即为R 0.2。

规定延伸强度R 0.2有两种含义:一是试样非比例延伸率等于引伸计标距的0.2﹪时的应力,称为规定非比例延伸强度,用R P 0.2表示,其测定方法是在加载情况下用图解法或引图5-1 材料的F -ΔL 曲线图5-2 R 0.2的确定方法伸计进行测定;另一种是试样在卸除应力后残余延伸率等于引伸计标距的0.2﹪ 时的应力,称为规定残余延伸强度,用 R r 0.2表示,其测定方法是利用塑性材料的冷作硬化现像,在卸载条件下用逐次逼近的方法进行测定(一般,因为R P0.2是在加载情况下测定的,其非比例伸长包括两部分:塑性变形和弹性变形,而后一部分在卸载后就消失了,所以R r 0.2稍大于R P0.2,但对于大多数金属材料两者相差不大,此时就不加区分,统一记作R 0.2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝合金模板体系强度计算一.楼面模板的强度计算:楼面模板形式如图所示,计算时两端按简支考虑,其计算跨度C取1.2米.A..荷载计算:按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值.1.铝模板自重标准值: 230N/m22.150mm厚新浇混凝土自重标准值: 24000×0.15=3600 N/m23.钢筋自重标准值: 1100×0.15=165 N/m24.施工活载标准值: 2500 N/m25.跨中集中荷载: 2500 N均布线荷载设计值为:q1=0.9×[1.2×(230+3600+165)+1.4×2500] ×0.4=3308 N/m模板自重线荷载设计值: q2=0.9×0.4×1.2×230=92 N/m跨中集中荷载设计值: P=0.9×1.4×2500 =3150 NB. 强度验算:施工荷载为均布线荷载:M1=q1l2/8=3308×1.22/8=596 Nm施工荷载为集中荷载:M2=q1l2/8+Pl/4=92×1.22/8+3150×1.2/4=962 Nm由于M2>M1,故采用M2验算强度.通过Solidworks软件求得:I XX=833964.23 mm4, e x=58.92 mmW XX=I XX/e x=833964.23/58.92=14154.2 mm3则: σ=M2/W XX=962000/14154.2=68 MPa<[σ]=180 MPa强度满足要求.C. 挠度计算:验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为:q=0.4×(230+3600+165)=1590 N/m=1.59 N/mm实际挠度值为:f=5ql4/(384EI XX)=5×1.59×12004/(384×1.83×105×833964.23)=0.35 mm<400/300=1.3 mm挠度满足要求.D. 面板厚度验算面板小方格按四面固定计算,由于L Y/L X=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.055, 最大挠度系数: K f=0.0014取1mm宽的板条为计算单元,荷载为:q=0.9×[1.2×(230+3600+165)+1.4×2500] =6775.2 N/m2=0.06775 N/mm2M X= K MX ql Y2=0.055×0.06775×3702=524 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=524/4.17=125.7 MPa<[σ]=180 MPa强度满足要求.E. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.0014×0.06775×3704/2155416=0.83 mm<[f]= l Y/300=370/300=1.23 mm挠度满足要求.二.剪力墙墙面模板的强度计算:A..荷载计算:按大模板计算,取F=50 KN/m2计算取F=60 KN/m2倾倒混凝土时对垂直面模板产生的水平荷载标准值取: 6 KN/m2计算取: 1.4×6=8.4 KN/m2荷载合计: P=68.4 KN/m2=0.0684 KN/mm2B. 面板厚度验算面板小方格按三面固定,一面铰接计算,由于L Y/L X=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.0629, 最大挠度系数: K f=0.00182取1mm宽的板条为计算单元,荷载为:M X= K MX ql Y2=0.0629×0.0684×3702=589 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=589/4.17=141.3 MPa<[σ]=180 MPa强度满足要求.C. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.00182×0.06775×3704/2155416=1.1 mm<[f]= l Y/300=370/300=1.23 mm挠度满足要求.D. 对拉螺栓计算:作用于模板的混凝土侧压力:F s=P=0.0684 KN/mm2N=abF s, a=0.9 b=0.9N=0.9×0.9×0.0684=55400 N采用M24的穿墙螺栓,f t b=170 N/mm2 A=353 mm2A f t b=350×170=60010 N >55400 N对拉螺栓满足要求.E. 背楞的计算:选用100×50×3方管,两个一组,共三组,间距最大: 850mm线荷载: q=0.0684×850=58.14N/mm,M X=q1l2/8=58.14×0.92/8=5886675 NmmW X=22420×2=44840 mm3σ=M X/W X=5886675/44840=131.3 MPa<[σ]=205 MPa强度满足要求.三.梁模板的强度计算:(一).梁底面模板形式如图所示,因中间强度最弱,故计算之.计算时两端按简支考虑,其计算跨度C取1.2米.A.荷载计算:按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值.1铝模板自重标准值: 230N/m22. 750mm厚新浇混凝土自重标准值: 24000×0.75=18000 N/m23.钢筋自重标准值: 1100×0.75=825 N/m24.施工活载标准值: 2500 N/m25.跨中集中荷载: 2500 N均布线荷载设计值为:q1=0.9×[1.2×(230+1800+825)+1.4×2500] ×0.35=8298 N/m 模板自重线荷载设计值: q2=0.9×0.35×1.2×230=79.4 N/m跨中集中荷载设计值: P=0.9×1.4×2500 =3150 NB. 强度验算:施工荷载为均布线荷载:M1=q1l2/8=8298×1.22/8=1494000 Nmm施工荷载为集中荷载:M2=q1l2/8+Pl/4=79.4×1.22/8+3150×1.2/4=959000 Nmm由于M2<M1,故采用M1验算强度.通过Solidworks软件求得:I XX=813098.96 mm4, e x=58.42 mmW XX=I XX/e x=813098.96/58.42=14014.15 mm3则: σ=M1/W XX=1494000/14014.15=106.7 MPa<[σ]=180 MPa强度满足要求.C. 挠度计算:验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为: q=0.4×(230+18000+825)=6662.25 N/m=6.66 N/mm实际挠度值为:f=5ql4/(384EI XX)=5×6.66×12004/(384×1.83×105×813098.72)=1.2 mm<400/300=1.3 mm挠度满足要求.D. 面板厚度验算面板小方格按四面固定计算,由于L Y/L X=170/200=0.85,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.0626, 最大挠度系数: K f=0.00168取1mm宽的板条为计算单元,荷载为:q=0.9×[1.2×(230+18000+825)+1.4×2500]=23729 N/m2=0.23729 N/mm2M X= K MX ql Y2=0.0626×0.23729×1702=429.3 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=429.3/4.17=103 MPa<[σ]=180 MPa强度满足要求.E. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.00168×0.23729×1704/2155416=0.16mm<[f]= l Y/300=170/300=0.57 mm挠度满足要求.(二). 梁侧面模板相当于剪力墙墙面模板,其强度和挠度均满足要求.四. 顶撑的强度验算:1. 楼面顶撑的计算;A. 荷载: q=230+3600+165+2500=6495 N/m2则单个顶撑受轴向压力:(0.6+0.2+0.6)×(0.2+0.125+0.2) ×6495=4770 NB.顶撑采用φ48×3钢管,A=423mm2, 计算长度:l=3250-1500-100=1650mm,顶撑为中心受压杆件, i=15.9,λ=μl/i=1×1650/15.9=104,查表: Ψ=0.58σ=N/ΨA=4770/0.58×423=19.5 MPa<[σ]=205 MPa楼面顶撑强度满足要求.2. 梁顶撑的计算;A. 荷载: q=230+18000+825+2500=21555 N/m2则单个顶撑受轴向压力: (0.175+0.125)×(1.2+0.2) ×21555=9054 N C.顶撑采用φ48×3钢管,A=423mm2, 计算长度:l=3250-1500-100-600=1050mm,顶撑为中心受压杆件, i=15.9,λ=μl/i=1×1050/15.9=66,查表: ψ=0.88σ=N/ΨA=9054/0.88×423=25.5 MPa<[σ]=205 MPa梁顶撑强度满足要求.田志强。

相关文档
最新文档