《整式的乘除》复习导学案
第一章《整式的乘除》复习导学案
=⎪⎭⎫ ⎝⎛p a 1第一章《整式的乘除》复习导学案【教学过程】:一、复习回顾1、幂的运算(1)同底数幂的乘法:a m ﹒a n = (m 、n 为正整数)推广:=⋅⋅p n m a a a (m 、n 、p 都为正整数)逆用:a m+n = (m 、n 、都为正整数) 变形: (2)幂的乘方(a m )n = (m 、n 为正整数) 推广: (m 、n 、p 都为正整数)逆用:()mn a = (m 、n 为正整数)(3)积的乘方:(ab )n = (n 为正整数)推广:()n abc = (n 为正整数)逆用:=⋅n n b a (n 为正整数)(4)同底数幂的除法:a m ÷a n = (a ≠0,m 、n 为正整数,n m >) 推广:=÷÷p n m a a a (a ≠0,m 、n 、p 为正整数,p n m +>)逆用:a m-n = (a ≠0,m 、n 为正整数,n m >)(5)零指数幂:a 0= (注意考底数范围a ≠0). 0的0次幂无意义.(6)负指数幂:=-p a (根据定义)= (根据底倒指反) (a ≠0,p 为正整数) ※0的负指数幂无意义. 逆用: (a ≠0,p 为正整数) 2、整式的乘法:(1)、单项式乘以单项式:(2)、单项式乘以多项式:(3)、多项式乘以多项式:3.整式乘法公式:(1)、平方差公式: 逆用: (2)、公式变形:①系数变化:()[]=p n m a ()⎩⎨⎧=n a -()⎩⎨⎧=n a -b ()()=-+b a b a =-22b a =⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 214214②符号变化: ③指数变化:()()=-+3232b a b a ④位置变化:()()=+-+a b a b公式变形:①系数变化: ②符号变化:()()=--+-1515x x③指数变化:()()=-+3232b a b a④位置变化:()()=+-+a b a b⑤连用公式:()()()=++-3932a a a 完全平方公式:逆用:变形: ①=+22b a ()2b a + ab 2=()2b a - ab 2 ②ab 2=()2b a + ()22b a +=()22b a + ()2b a -③()2b a +=()2b a -+ ()2b a -=()2b a +-4、整式的除法:(1)、单项式除以单项式:(2)、多项式除以单项式:二、课堂练习1.计算① n m )5.0()21(⨯ ②232)2(c b a - ③()()3222a -a -⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 214214()()=--+-1515x x ()=+2b a ()=-2b a =++222a b ab =+-222b ab a④333)32()31()9(-⋅⋅- ⑤225)(--+-⋅÷b b bn n ⑥()()()x -22-x 2-x 32⋅⋅2.解答①已知510=a ,210b =,求b a 3210+的值。
整式的乘除导学案
整式的乘除导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第12章 整式的乘除§12.1.1 《幂的运算》导学案(第一课时)同底数幂的乘法学生班级: 姓名: 组别: 时间:2015年 月 日学习目标:1、在推理判断中得出同底数冪乘法的运算法则,并掌握法则的应用。
2、经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力。
3、在小组合作交流中,培养协作精神,探究精神,增强学习信心。
学习重点:同底数冪乘法运算性质的推导和应用。
学习难点:同底数冪的乘法的法则的应用。
一、自主学习,个体质疑 1、(1)阅读课本P 18-19(2)32 表示几个2相乘?23表示什么? 5a 表示什么?ma 呢?(3)把22222⨯⨯⨯⨯表示成 na 的形式2、请同学们通过计算探索规律:(1)()()()342222222222⨯=⨯⨯⨯⨯⨯=(2)=⨯4355 (3)=⨯-673)3((4)()3111101010⎛⎫⎛⎫⎛⎫⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)=⨯43a a3、比较:(1)4322⨯和 72(2)43a a ⨯和 7a (代数式表示)观察计算结果,你能猜想出 n ma a⨯的结果吗?二、小组合作,碰撞激疑问题:(1)这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想这个结果有什么规律?(3)请同学们推算一下n m a a ⨯的结果?同底数幂的乘法法则: 用字母表示:合作评析课后练习:(1)课本P 19页练习题1、2 (2)课本P 24页习题12.1第1题 三、合作探究,师生析疑1、计算 (1) 4444⋅- (2)43)6()6(-⨯- (3)2015201622- (4)5342412523⨯+⨯-⨯2、若y x 、是正整数,且12216x y +⋅=,则 y x 、的值是什么?3、已知 28,7,4===c b a m m m ,则c b a 、、之间的关系是什么?四、当堂检测,过关解疑1、计算:(1)10432b b b b ⋅⋅⋅ (2)()()876x x x -⋅-(3)()()()562x y y ---- (4)()()()3645p p p p ⋅-+-⋅-2、把下列各式化成 ()n y x + 或 ()n y x -的形式.(1)()()12+++m m y x y x (2)()()()x y y x y x ---233、已知 3110m m x x x +-⋅= 求m 的值.课堂反思(自主补充延伸):§12.1.2 《幂的运算》导学案(第二课时)幂的乘方学生班级: 姓名: 组别: 时间:2015年月 日学习目标:1、理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质。
整式的乘除课堂用导学案
15.1.1 同底数幂的乘法【学习目标】1.理解同底数幂的乘法法则。
2.应用同底数幂的乘法法则计算。
3. 经历探索同底数幂的乘法运算性质的过程中,发展推理能力和有条理的表达能力;学习同底幂乘法的运算性质,提高解决问题的能力。
【学习重点】:同底数冪乘法运算性质的推导和应用.【学习难点】:同底数冪的乘法的法则的应用.【学习过程】一、温故知新 1、8×8×8×8×8×8=2.的意义是个,我们把这种运算叫做乘方。
乘方的结果叫做。
叫做,是。
4.根据乘方的意义填空:。
5.二、问题探究1.探究:根据乘方的意义填空,看看计算结果有什么规律:(1)(2)(3)2. 猜想:(都是正整数)。
3.验证:=4.归纳:同底数幂的乘法法则:(都是正整数)。
语言:同底数幂相乘,底数,指数。
5.类比猜想:(都是正整数)。
三、问题检测1.下列各项中,两个幂是同底数幂的是()2.计算等于()3. 下列各等式中,正确的是()四、例题学习 1、课本142页,并作相应练习2,计算:3、练习:①②③④ y2n·y n+14:光的速度为3×千米/秒,太阳光照射到地球上约需5×秒,问:地球离太阳多远?若飞机时速856千米/秒,飞行这么远的距离需多长的时间?五、问题拓展公式也可以逆用成来解决一些问题。
1.已知求之值。
2.已知求的值。
六、学习反思1.本节有哪些收获?(知识上,思想方法上)七、问题达标1.判断,正确的打“√”,错误的打“×”。
(1) ( ) (2) ( )(3) ( ) (4) ( )(5) ( )2.若则括号内应填的代数式为()3. 可以写成()4. (1)( 2)(3) (4)8×4 = 2x,则 x = ;(5)3×27×9 = 3x,则 x = (6)x · x3()= x75、计算:(1)(2)(3)(4)6、判断正误:⑴()⑵()⑶()⑷()8、选择:⑴可写成()A 、 B、 C、 D、⑵在等式中,括号里面的代数式应当是()A、 B、 C、 D、⑶若,,则的值为()A、8B、15C、D、9.已知求m的值.15.1.2 幂的乘方【学习目标】1.理解幂的乘方法则。
整式的乘除复习学案
平凉七中八年级数学(上)导学案 编号: 主备人: 崔恒泰 审核人: 马小芸单元章节 :整式乘除复习 课时: 第 1 课时 课型: 复习课学生姓名 使用日期: 小组评价: 教师评价:复习目标:1、 整式的混合运算,提高整式的运算能力;2、 整式的综合应用,对全章知识体系的梳理和把握;3、 通过实践,培养学习数学的严谨态度。
学习重点:整式的综合应用,特别是乘法公式的灵活应用。
学习难点:乘法公式的灵活应用。
知识梳理:(温馨提示:查阅课本,准确填写)整式加减的方法步骤:①②③整式的除法单项式除以单项式法则:多项式除以单项式法则:整式概念单项式: 多项式:系数:次数: 定义: 次数:定义:同底数幂的乘法法则,用字母表示: 幂的乘方法则,用字母表示: 积的乘方法则,用字母表示:同底数幂的除法法则,用字母表示: 特殊规定:a=幂的运算整式乘法单项式乘单项式法则:单项式乘多项式法则: 多项式乘多项式法则:平方差公式,用字母表示:完全平方公式,用字母表示:知识点:1、同底数幂的乘法,底数不变,指数相加。
即:n m n m a a a +=⋅(m ,n 都是正整数)。
(1)()()=-⨯-6533 (2)=⋅+12m m b b2、幂的乘方,底数不变,指数相乘。
即:()mn nm a a =(m ,n 都是正整数)。
(1)()232=_______ (2)()=55b (3)()=-312n x3、积的乘方等于每一个因数乘方的积。
即:()n n nb a ab =(n 是正整数) 填空:(1)()=23x (2)()=-32b (3)421⎪⎭⎫⎝⎛-xy =4、同底数幂相除,底数不变,指数相减。
即:n m n m a a a -=÷(n m n m a >都是正整数,且,,0≠), =0a ,=-p a (是正整数p a ,0≠) (1)=÷47a a (2)()()=-÷-36x x (3)()()=÷xy xy 45、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
第一章整式的乘除复习教案
第一章《整式的乘除》复习教案复习目标:1、掌握整式的加减、乘除,幂的运算;并能运用乘法公式进行运算。
2、掌握幂的运算法则,并会逆向运用;熟练运用乘法公式。
3、掌握整式的运算在实际问题中的应用。
一、知识梳理:1、幂的运算性质:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。
(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。
(6)负指数幂:11()(0)ppp a a a a-==≠(底倒,指反)2、整式的乘除法:(1)、单项式乘以单项式:wwW.x k B 1.c Om法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
(2)、单项式乘以多项式:m(a+b+c)=ma+mb+mc 。
法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
(3)、多项式乘以多项式:(m+n)(a+b)=ma+mb+na+nb 。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(4)、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
(5)、多项式除以单项式:().a b c m a m b m c m ++÷=÷+÷+÷多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
浙教版七年级下册-第3章-整式的乘除的复习导学案
第3章 整式的乘除一、同底数幂的乘法1.同底数幂的乘法法则同底数幂相乘,底数 ,指数 。
即:=∙n ma a (m ,n 都是正整数)。
公式拓展:p n ma a a⋅⋅= 。
【典型例题】例1:计算:(1)821010⨯; (2)23x x ⋅-(-)(); (3)32)(x x -⋅例2:计算:(1)()32a a a ∙-∙- (2)23x 2y y x -⋅()(2-)(3) )()()(25y x x y y x -⋅-⋅- (4)n 2n 1na a a a ++⋅⋅⋅2 逆用同底数幂的法则 逆用法则为:=+nm a(m 、n 都是正整数)【典型例题】 (1)已知n m n m n mx x x x ++==2,5,3和求【变式练习】 已知43=a ,32434=+ba ,试求b 的值。
二.幂的乘方(重点)幂的乘方法则:幂的乘方,底数 ,指数 。
即()=mn a (m ,n 都是正整数)。
例1、填空:.______)()(,__________])[(____,)(35224223=⋅=-=-x x y x x 例2、计算:321212)(--+⋅⋅n n n a a a23422225)()()()(2a a a a ⋅--⋅-例3、已知,)(1135a a a m =⋅则._______=m 例4、____________1682245=⋅⋅ 【变式练习】1、填空:__________])([_____,)(____,)(323223=--=-=y x x a()________)(,216,28723)(23=⋅-==x x2、若32=a ,则________________,86==a a3、已知x 3=m ,x 5=n ,试用含m ,n 的代数式表示x 11三.积的乘方(重点)积的乘方法则:积的乘方,等于把积得每一个因式分别乘方,再把所得的幂相乘。
()=n ab例1、填空:__________)21(_________,)2(_____,)(233324=-=-=-xy b a xy例2、计算: (1)()()2332x x -⋅-; (2)()4xy -; (3)()3233a b-例3、已知53,32==a a ,求a 12的值已知 2x +5y =3,求y x324∙的值已知x 3n =2,y 2n =3,求 (x 2n )3+(y n )6-(x 2y )3n ·y n 的值例4、计算:20132012)34(75.0-⋅ 201320122011)1(5.1)32(-⨯⨯四.单项式与单项式相乘(重点)法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式例含有的字母,则连同它的指数作为积的一个因式。
整式乘除复习1
宝鸡市东风路高级中学年级:初一 学科: 数学 章节、课时:第一章课题: 整式的乘除复习学案(1) 创建人:秦小龙 使用人:王军辉 秦小龙整式的乘除复习学案(1)复习目标:1、 整式的混合运算,提高整式的运算能力;2、 整式的综合应用,对全章知识体系的梳理和把握;3、 通过实践,培养学习数学的严谨态度。
学习重点:整式的综合应用,特别是乘法公式的灵活应用。
学习难点:乘法公式的灵活应用。
知识梳理:(温馨提示:查阅课本,准确填写)整式加减的方法步骤:①②③一、 巩固练习:1、-(x 2)3=_________,(-x 2)3=_________,(-21xy 2)2=_________.2、81x 2y 10= ( )2,(x 3)2·x 5=_________,_________)()(35=÷n n x x3、()()4352________________m m --=整式的除法单项式除以单项式法则: 多项式除以单项式法则: 整式概念 单项式: 多项式:系数: 次数: 定义: 次数: 定义:同底数幂的乘法法则,用字母表示: 幂的乘方法则,用字母表示: 积的乘方法则,用字母表示:同底数幂的除法法则,用字母表示: 特殊规定:a 0= a -p = 幂的运算 整式乘法 单项式乘单项式法则: 单项式乘多项式法则: 多项式乘多项式法则:年级:初一 学科: 数学 章节、课时:第一章 课题: 整式的乘除复习学案(1) 创建人:秦小龙 使用人:王军辉 秦小龙4、()2322________________a b -=5、()()____________3122=-+-a a 6、()()232a a +-=_________________6、()()42y y +-=_________________ 7、()()()()_____________3232=--++x x x x8、()23b a +-=________________()23b a -- 9、下列计算中正确的是( )A.a 2·a 3=a 6B.(a 3)2=a 6C.(a 2b )3=a 6bD.a 8÷a 2=a 410、、下列运算正确的是( )A. x 2+x 2=x 4B. x ·x 4=x 4C. x 6÷x 2=x 4D.(ab )2=ab 211、-a n =(-a )n (a ≠0)成立的条件是( )A. n 是奇数B. n 是偶数C. n 是整数D. n是正整数12、、下列计算(a m )3·a n 正确的是( )A. a m 3+nB. a 3m +nC. a 3(m +n )D. a 3mn13、若943a a a a n =⋅⋅,则n 等于( )A 1B 2C 3D 414、计算)108()106(53⨯⋅⨯的结果是( )A 、91048⨯B 、 9108.4⨯C 、9108.4⨯D 、151048⨯15、如果多项式92++mx x 是一个完全平方式,则m 的值是( )A 、±3B 、3C 、±6D 、616、如果多项式k x x ++82是一个完全平方式,则k 的值是( )A 、-4B 、4C 、-16D 、1617、计算:(1)()()3223332a a a a -+-+⋅ (2)()()()1122+--+x x x(3)()()z y x z y x -+++ (4)()()()212113+---+-a a a(5)()()2234232-+--x x x x (6)()()2222b a b a ---+。
初中数学-整式的乘除-复习课教学设计学情分析教材分析课后反思精选全文完整版
可编辑修改精选全文完整版七下第一章《整式的乘除》复习教学设计教学目标:1、掌握同底数幂的乘法、幂的乘方和积的乘方。
2、能灵活运用单项式和多项式的乘法。
3、熟练平方差公式和完全平方公式4、通过练习,梳理知识建立系统的知识体系。
教学重点:重点:掌握同底数幂的乘法、幂的乘方和积的乘方。
能灵活运用单项式和多项式的乘法。
难点:熟练和灵活运用平方差公式和完全平方公式教学思路:先复习整式乘除一系列的知识,通过学生自己对自我知识的掌握情况有针对性的找出重点题、易错题、难题,小组对题目分析和理解,然后全班交流,以学生为主体、教师主导,共同分享解决问题,最后归纳方法、思路,明确知识。
教学方法:小组分组学习为主教学过程:教学过程预设环节教师活动(教学内容的呈现)学生活动(学习活动的设计)设计意图一、梳理知识①请一位学生将梳理的整式的乘除这部分的知识进行板书。
学生板书②其余学生小组交流,互相检查,看看是否同学是否写对了,有遗漏之处,互相补充。
小组学员互助二、学生自主出题把学生分成6个大组,每个大组再分成两个小组,小组之间互相共享、推荐、解决学生自己找出的重点题、易错题、难题,然后每组派一个代表上黑板给全班同学推荐好题,并由学生充当小老师讲解,然后不当之处教师点播。
提起学生的兴趣提高学生的辨析题目的能力提高学生的语言表达能力提高学生的逻辑思维能力七下第一章《整式的乘除》学情分析及教学方法和学法从年龄特点来看,初一学生好动,好奇,好表现,爱发表见解,希望得到老师的表扬,所以在教学中要抓住这一生理特点,充分调动学生的的兴趣、创造性,另一方面要创造条件和机会,让其发表见解,发挥学习的主动性。
从知识掌握层次来看,学生已经学会了整式运算的相关知识,具备了一定解题技巧和能力,只是缺少对零散知识点进行组串,使之条理化、系统化,形成新的认知结构。
此时让学生让学生根据以往的作业、试卷、课外题等手头的资料,根据自己平时的易错题、重点题目,进行反思总结,集大家的智慧与一体,教师和学生们进行甄选。
第一章整式的乘除复习(教案)
3.重点难点解析:在讲授过程中,我会特别强调整式的乘法法则和除法步骤这两个重点。对于难点部分,如合并同类项和运用平方差、完全平方公式,我会通过具体的例题和对比分析来帮助大家理解。
(三)实践活动
1.ห้องสมุดไป่ตู้组讨论:学生们将分成若干小组,每组讨论一个涉及整式乘除的实际问题。
2.实验操作:为了加深对整式乘除的理解,我们将进行一个简单的数学实验,通过实际操作来演示整式乘除的基本原理。
三、教学难点与重点
1.教学重点
-单项式乘以单项式的运算法则:重点掌握系数相乘、相同字母相乘、不同字母相乘的法则,并能够熟练运用。
-多项式乘以多项式的运算法则:强调先用一个多项式的每一项乘以另一个多项式的每一项,然后合并同类项。
-平方差公式和完全平方公式的应用:熟练掌握(a+b)(a-b)=a^2-b^2和(a+b)^2=a^2+2ab+b^2等公式,并能解决相关问题。
(二)新课讲授
1.理论介绍:首先,我们要复习整式的乘法和除法的基本概念。整式的乘法是指将两个或多个整式相乘,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。整式的除法则是指将一个整式除以另一个整式,关键是找到商和余数。这些运算是解决许多数学问题的基础。
2.案例分析:接下来,我们通过一个具体的案例来分析整式的乘除在实际中的应用。例如,解决几何图形面积问题时,可能会涉及到整式的乘法和除法运算。
3.培养数学建模意识:将现实生活中的问题转化为整式的乘除运算,使学生体会数学建模的过程,提高解决实际问题的能力。
七年级数学下册第11章《整式的乘除》导学案
第十一章 整式的乘除11.1 同底数幂的乘法【学习目标】1.运用幂的意义探索同底数幂乘法的运算法则2.掌握同底数幂乘法法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维.【重难点】同底数幂乘法法则的应用预习导航一.预习自学1.回顾有理数的乘方:23 )2(3- 23-分别代表什么意义?幂的意义:an2.由乘方的意义你会计算531010⨯吗,试一试.3.仿照上面的过程,计算23)2()2(-⨯-4.计算nmaa ⋅5.你发现左边两个底数什么关系,指数呢?结果有什么特点?2.总结同底数幂乘法法则.【小试牛刀】1.下列计算对不对,如果不对,应怎样改正? (1)1052aa a =⋅ (2)6332aa a=⋅(3)633aa a =+(4)aa a =⋅2.计算下列各题(1)5244⨯(2)73)5()5(-⨯-二.我的疑惑课内探究探究点一:同底数幂的乘法法则的运用例1. 计算.(1)85)3()3(-⨯-(2)32)21()21)(21(x x x(3)78aa ⋅(4)1253)(aa a ⋅-⋅(5)23)()()(y x y x y x +⋅+⋅+(6) 33425xx x x x x ⋅-⋅+⋅法则运用的过程中,你发现需要注意哪些问题?探究点二:同底数幂乘法法则的灵活运用 (1)4234⨯=?能否用同底数幂乘法的运算法则运算?结构可否写成幂的形式?(2)计算32-)()(a b b a -∙【我的收获】【达标检测】1.计算题:(1))(y x +2∙n y x )(+(n 为正整数)(2)m 2∙m3∙ )(m -22.光年是天文学上的长度单位,1光年是光在真空中一年中所走过的路程(光的速度大约为每秒8103⨯米,一年大约有7103⨯秒),我们用肉眼观察到的星星都是银河系的成员.银河系的直径大约10万光年.银河系的直径大约为多少?拓 展 提 升已知2b =5,2a =3,求2a+b+3的值.11.2 积的乘方和幂的乘方(1)【学习目标】1.运用积的乘方意义探索积的乘方的运算法则2.掌握积的乘方法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维. 【重难点】积的乘方法则的应用预习导航一.预习自学1.积的乘方:(1)(2a)2=2a⨯2a=( 2 ⨯2 )⨯( a ⨯ a )=___ _=(2)(2a)3=2a⨯2a⨯2a=( ⨯⨯ )⨯( ⨯⨯ )=_ __(3)(2a)4=2a⨯2a⨯2a ⨯2a=( ⨯⨯⨯ )⨯ ( ⨯⨯⨯ )= ____结论:(ab)n= (n为正整数),就是说:积的乘方等于推广:(abc)n = (n为正整数) 小试牛刀1.判断(正确的打“√”,错误的打“×”)(1)(xy)4=xy4 ( )(2)8352bbb=+(4)(2xy)3=8x3y3 ()(5)(-2a)2=-4a2 ()2.计算.(1)(xy)2(2)(-3x)3 (3)(14ab)2 二.我的疑惑课内探究探究点一积的乘方逆运用例1.计算(1)82⨯(0.125)2(2)0.1254⨯(-8)4例2.已知xxx ba6,3,2求==.归纳总结:应用需要注意什么?【针对性练习】 1.计算(1)22125.0-8)(⨯(2)201320124)25.0(⨯2.已知5x n =,3y n=,求()n xy 的值.探究点二 积的乘方实际运用例3 为完善学校绿化,潍坊蓝海学校决定将边长为a 米的正方形花坛扩大为边长为2a 米的正方形花坛,扩大后新花坛的面积是多少平方米?扩大了多少?【我的收获】【达标检测】1.计算4)21)(1(mn - 4)2)(2(y3)2)(3(y - 2)4)(4(mn -2.()02a 1-2b 2=-+,则 20172017b a的值是多少?3. 已知5x n=,3y n =,求()n xy 的值. 拓 展 提 升计算42)21(n m -11.2 积的乘方和幂的乘方(2) 【学习目标】1.运用积的乘方意义探索积的乘方的运算法则2.掌握积的乘方法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维.【重点】积的乘方法则的应用【难点】预习导航一.预习自学幂的乘方:(1)(62)4=62×62×62×62 =6 + + +=6 ⨯ =6 =_____ (2)[(-3)2]3=(-3)2×(-3)2×(-3)2=(-3)+ +=(-3) ⨯=(-3)=_____(3)(a 2)3= a 2. a 2. a 2=a + + =a ⨯ =a =结论:(a m )n= ______________(其中m.n 都是正整数)就是说:幂的乘方,底数__________,指数__________. 小试牛刀1.判断(正确的打“√”,错误的打“×”),并改正(1)(ab)3=ab 3( ) (2)a 5+a 5=2a 10 ( ) (3)(x 3)3=x 6 ( ) (4)(3xy)3=9x 3y 3( ) (5)229)3(x x -=- ( ) 2.计算(1)(103)3(2)[(32)3]4\(3)[(-6)3]4 (4)(x 2)5二.我的疑惑课内探究探究点一:幂的乘方逆运用 (1) 已知5=na ,求na 3的值.(2)已知42=n x ,求23)(n x 的值.(3)已知0353=-+y x ,求yx328⋅的值解题心得:【针对性练习】已知a 10=5,b 10=6,求b a 321010+探究点二:幂运算的综合应用1.()223b a 72.()()2222x -3x ⋅3.若32=a ,52=b ,求2232++b a 的值【针对性练习】 计算1.()33233a 2-)a (a ⋅2.201720164)41(⋅3.已知m 10=2,n 10=3,求2n 3m 10+的值【我的收获】【达标检测】1.下面计算对不对,如果不对,应怎样改正? (2)()923a a = (2)933a a a =⋅(4)333a 2a a =+ (4)()1046a a =2.计算下列各题 (1)()4310 (2)34x )((3)()22x 3- (4)()42xy3. 已知5x n=,3y n =,求()2nxy 的值.拓展提升比较3555,4444,5333的大小11.3 单项式的乘法(1)【学习目标】通过对具体实例的探究,掌握单项式乘单项式的乘法法则,并能灵活运用法则进行准确计算【重难点】单项式乘单项式的乘法法则的运用预习导航一.预习自学王大伯有一块长方形菜地,他把这快菜地分成6个大小相等的菜畦,每个菜畦的宽都是a 米,长都是ka 米,这块菜地的面积用S 1表示.问题1:如图,若将菜地的面积看成是六个小长方形,面积为 ,若将其看成是一个长为a 2,宽为ka 3的长方形,面积为 .你能得到一个怎样的等式?问题2:观察上面等式左右两边的特点,请你用自己的话说出单项式相乘的法则并说明其理论依据.一般的单项式与单项式相乘有以下法则:单项式相乘,把它们的 相乘,字母部分的 分别相乘.对于 含有的字母,连同 作为积的一个因式.小试牛刀1. 下列计算对不对,如果不对,请改正.(1)623632x x x =⋅ ( ) (2) 523532x x x =+ ( )(3)abc bc ab 63)2(-=⋅- ( ) (4) 33212)3()34(y x xy xy -=-⋅-( ) 2.计算(1)3b 3·b 2 (2)227(2)ax a bx ⋅-(3))95(332yz x y x -⋅ (4)(-6ay 3)(-a 2)二.我的疑惑56课内探究探究点:单项式相乘法则的灵活应用例1.计算(1)322)()2(a a ⋅ 2.(-3x )3·(5x 2y )例2.若单项式y x 8与)3(242x y x b a ∙)(是同类项,求出a ,b 的值【针对性练习】 1.计算(1))(22mn mn -)( (2))()2(32x xy -- 2.已知3=+nm x,2=+nm y,求代数式)21()31(m n n m y x y x -∙-的值.【我的收获】【达标检测】1.对于两个单项式,下列说法不正确的是 ( )A. 它们的积仍为单项式B. 它们的和仍为单项式C. 它们的积的次数不一定等于它们的次数之和D. 它们的和的次数等于较高者的次数 2.计算(1)2a 2b · 3ab 2 (2)4ab 2· 5b(3)2321-6)(xy x (4)32-2-)(xy x拓展提升2.已知3x m-2y 5+n 与-8x 的积是2x 4y 9的同类项,则m+n= .11.3 单项式的乘法(2) 【学习目标】通过对具体实例的探究,掌握单项式乘多项式的乘法法则,并能灵活运用法则进行准确计算【重难点】单项式乘多项式的乘法法则的运用预习导航一.预习自学问题3:如图,王大伯菜地的两侧已知各有一条宽0.5米的小路.这时包括小路在内的菜地的面积为S 2.若分别看成一个大长方形或者六个小长方形菜地和两条小路时,面积分别是多少?你能得到一个怎样的等式?它的左右两边有什么特点?解:菜地(包括小路在内)的长为________ 宽为________)13(2+∙=ka a s_______________= (乘法分配律) ____________=根据上面探究我们得到:m (a+b+c )= (通过运用____________律,将单项式与多项式的乘法,转化为__________与__________的乘法)归纳总结:单项式与多项式相乘,先将单项式_______________,再把所得的_____ ___. 计算①23()xy x y xy ⋅-②)8521(432xy x x x +-⋅-思考:单项式与多项式的乘积是多项式,积的次数和项数有什么特点?二.我的疑惑课内探究探究点:单项式乘多项式法则的灵活应用例1 化简(1)()2325 1.5a a a -⋅+(2))()(222b a b b a a -⋅++⋅-【针对性练习】 1.化简 (1)()32223t t t t ⎡⎤---⎣⎦(2).2.先化简,再求值22321(1)(1),x 2x x x x x x x ⋅-+-⋅-+-其中=例2.已知y x =2-2,求x(x-3y)+y(3x-1)-2的值.【我的收获】【达标检测】1.计算(1)2a 2b (ab -3ab 2)(2)(x -xy )·(-12y ).(3))13()2(22-+⋅-t t t(4)22124(3)393b ab a ⎛⎫--⋅- ⎪⎝⎭2.如图,梯形ABCD 的下底长为a ,上底长为b ,四边形ABEF 是正方形.用多项式表示图中阴影部分的面积.3.解下列方程109)23(262-=++⋅-x x x x拓展提升如图是L 形钢条截面,求它的面积 .12133411.4【学习目标】【重难点】一.预习自学活动路线是经过学校领导和老师们多次仔细的勘测后才确定下来的,拉练队伍6途经A学校.B公园.C大桥.D湖畔.E某纪念馆.F樱桃园.G桃林.H鱼塘.I风景区等地.七年级的小明根据路线将路线均看作一条直线,于是得到到如下图的长方形,你能求出同学们所走过的地方围成的面积吗?问题1为,请求出长方形的面积问题2区域的面积和为多少?问题3:问题1和问题2方形的面积.在下面.预习自测(1))()(52+∙-xx(2))()(yxyx32+∙-(3))()(axax+∙-22(4))()(2187-∙-xx二.我的疑惑课内探究探究点:多项式乘多项式法则的灵活应用游泳馆的结构如图所示(长度单位:米).如果游泳池与休息区铺瓷砖,男女更衣室铺木地板,那么瓷砖与木地板的面积各是多少平方米?游泳池休息区男更衣女更衣室例2.若(x 2+b )(x 2+ax +8)的乘积中不含x 2和x3项,则求a ,b 的值【针对性练习】1.若(x +a)(x +2)=x 2-5x +b ,则a =__________,b =__________. 2.若(x +a )(x +b )=x 2-kx +ab ,则k 的值为( ) A .a +bB .-a -bC .a -bD .b -a3.试说明代数式a a a a a a a ----++--)42(2)1()3)(1(322的值与a 的取值无关.【我的收获】【达标检测】1.两式相乘并化简为1832--a a 的是( )A.()()92+-a aB.()()92-+a aC.()()36-+a aD.()()36+-a a 2.计算(1))()(1432+∙-m m(2))()(n m n m -∙++212 (3))()()(15223+∙-∙-x x x(4))()(5312622-+-∙--t t t t拓展提升一个三角形底边的长为a ,高为h ,如果将底边增加1,高减少1,为了使面积不变,那么a 和h 应满足什么关系?游泳池休息区男更衣女更衣室11.5同底数幂的除法【学习目标】1.运用幂的意义探索同底数幂除法的运算法则2.掌握同底数幂除法法则并能进行简单的计算3.体会探究过程中的分类讨论.猜想证明和特殊到一般的数学思想方法,培养学生的数学思维.【重难点】同底数幂除法法则的应用预习导航一.预习自学1.填空:(1)=⋅24x x(2)()=33a .2.计算: (1)()323322y y y -⋅(2)()()23322416xy y x -+【自主构建】 (一)()23553222222⨯=∴÷= (二)()m n m n m n m a a a a a a ++=∴÷=归纳:()mna a a÷=证明:(同底数幂的除法法则的推导) 当a ≠0 , m .n 是正整数 , 且m >n 时()()_______(________)_______aa n am mnm nn n aaa a a a a a a a aaa a a a a a a a a a-⨯⨯⨯⋅⋅⋅⋅÷=⨯⨯⨯⋅⋅个个个个个===★归纳法则:同底数的幂相除, .二.我的疑惑课内探究探究点一:同底数幂除法法则的应用例1.【针对性练习】 (按照例1格式)(1)6877÷ (2)a a ÷5(3)25)()(m m -÷- (4) 26)41()41(÷-(5)346)(])()[(n m m n n m -⋅-÷-5.1)5.1()5.1()5.1()5.1(17878-=-=-=-÷--探究点二:同底数幂除法法则的逆运用例2若a x=3,则求13-x 的值.【针对性练习】已知2=xa ,3=ya ,则求yx a -的值.【我的收获】【达标检测】1.下列计算对不对,如果不对,应怎样改正? (1)326aa a =÷(2)()()23-aa a -=-÷(3)33a a am m=÷(4)211a a am m =÷-+2.计算(1)615m m ÷ (2)242-+÷m m a a(3)4731-31-⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛ (4)m m m ⋅÷263.(1)若0337=-+n m ,求nm 3755⨯的值(2)若0337=--n m ,则求n m3755÷的值4.已知162847413=÷∙+++m m m ,求m 的值5.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的多少倍?(精确到百分位)拓展提升已知4a a a n m=⋅,2a a a n m =÷,求m.n 的值.11.6零指数幂和负整数指数幂(1) 【学习目标】掌握零指数幂和负整数指数幂的概念【重难点】掌握零指数幂和负整数指数幂预习导航一.预习自学知识点一:零指数幂的概念 1.用除法直接计算:2233÷= ,4455÷= . 如果仿照同底数幂除法的运算性质进行计算,就得:2233÷= ,4455÷= . 对比以上两式,可以得出:03= ,05= .当0≠a 时,n n a a ÷=nn a -=0a = .总结:任何不等于零....的数的零次幂等于 ,零的零次幂 .用字母表示为:0a = (0≠a )2. 练习(1)()08-=(2)0)(y x -= (y x ≠) (3)()114.30--π=(4)202a a a ⨯÷=(5)()()00101010100⨯÷⨯= 知识点二:负整数指数幂的概念 1.(1)由分数的意义和约分法则计算:① )(53212222222222=⨯⨯⨯⨯⨯⨯=÷②)(6210110101010101010101010=⨯⨯⨯⨯⨯⨯=÷(2)仿照同底数幂除法的运算性质进行计算,就得: ①)()(532222==÷②)()(6210101010==÷由上可得:______22=- , _______104=-. 一般的,规定1(0,)p p a a p a -=≠是正整数,归纳:任何不等于零....的数的n -(n 为正整数)次幂,等于_______________________________.零的负整数指数幂没有意义. 2. 计算(1)34-= (2)3(1)--=(3)3(0.2)-= (4)31()2-=(5)()2--b a = (6)22--=二.我的疑惑课内探究探究点一:整数指数幂的运算例1.计算(1)221-⎪⎭⎫⎝⎛- (2)23--(3)30)2( (4)22103--⨯(5)55-÷a a(6)32)23()31(--⨯你觉得计算过程中哪些地方容易出错?【针对性练习】(1)2155-÷ (2)3211()()22-⨯(3)23()a -- (4)235()m n -(5)328333-⨯÷ (6)238x x x ⋅÷=【我的收获】【达标检测】1.看谁算的快 (1)=05 (2) =-0)8((3)=--0)35.0((4)0)(y x -=)(y x ≠(5)=-⨯0)21(21 (6)=-25 (7)()=-22.0(8)()=--51 (9)=-3)21((10)=--30)2(2.下列计算正确的是( ) A.104553---=÷m m m a a aB.2234x x x x =÷÷C.()152100=⨯- D.001.0104=-3.在①()150=-,②()111=--,③2233a a=-, ④()()235x x x -=-÷-中,其中正确的式子有()A.1个B.2个C.3个D.4个 4.若23.0-=a ,23--=b ,21()3c -=-,0)31(-=d ,则( )A.d c b a <<<B.c d a b <<<C.b c d a <<<D.b d a c <<<拓展提升当=x ________时,式子230-+)(x 无意义11.6零指数幂和负整数指数幂(2) 【学习目标】能进行整数指数幂的运算,掌握科学记数法【重难点】能进行整数指数幂的运算,掌握科学记数法预习导航一.预习自学一个绝对值小于1的非零小数可记作na -⨯±10, 其中101<≤a ,n 是正整数.n 等于原数中第一个非零数字前面所有零的个数(包括小数点前面的那个零).二.我的疑惑课内探究探究点一:幂的混合运算例1. 填空 (1)若131=-n ,则2n = ,若6414=m,则m = . 【针对性练习】1.若式子20)2()1(---+x x 有意义,则x 满足 . 2. 计算:(1)213)1()1(1--+÷+⋅+a a a )((2)02)3(91)31(-+÷--π(3)221122-⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭(4)()()23--÷-x y y x探究点二:绝对值小于1的非零小数的科学计数法例2 用科学计数法表示下列各数(1)000000314.0=(2)0004008.0-=将下列各数写成小数的形式:(1)53.6710-⨯=(2)62.810--⨯= 【针对性练习】纳米是一种长度单位,1纳米=910-米.已知某花粉的直径为3500纳米,那么用科学记数法表示这种花粉的直径为 米.【我的收获】【达标检测】1.下列选项中(1)331=- (2)81)2(3=--(3)916)43(2=-- (4)1)14.3-(0=π(5)25a a a =⋅- (6)4222)2(aa =-(7)m m m m =÷⋅834(8)2221)(ba b a =-- 正确的是 (填序号).2. 当=x ________时,式子230-+)(x 无意义. 3. 用科学计数法表示下列各数0.0000000000012 -0.00000000000560800000000014.计算:(1)12015)21()3()1(--+---(2)101)32()32()23(---+(3)213)1()1(1--+÷+⋅+a a a )((4)02)3(91)31(-+÷--π(5)221122-⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭(6)()()23--÷-x y y x拓展提升若65)3(0=+-x ,求x 的取值范围.。
整式的乘除导学案
积的乘方
,指数
3
3
b
5 5
x2
m
3 5
; x mn
m n
2
2.计算① 2 3 和 2 3 33 ;② 3 5 和 3 2 5 2 ;③ ab2 和 a 2 b 2 (请观察
2 2
比较)
④怎样计算 2a 3
三.达标练习: 1.下列计算中正确的是( ) (A) x 2
3
2 x3
2
2
x12 (B) 3a 2 b
(D) xy 2
2ab
2 2
3
5
7 6
4
5
(3) (3) (3)
3
1 1 1 (4) 10 10 10
(5) a a
3 4 7 ⒊计算(1) 2 2 和 2 ;
3
3
4
a
(2) 3 2 35 和 37
2008
3.已知: 3m 2n 8 求: 8 m 4 n 的值。
4.一个正方体的棱长为 2 102 毫米, ①它的表面积是多少?②它的体积是多少?
第四课时 幂的运算巩固练习
一.自学活动: ⑴叙述幂的运算法则?(三个) ⑵谈谈这三个幂运算的联系与区别?
二.交流展示: 1.计算: x 2 x x 2
1、计算 : ① 10 10
3
4
②aa
3
3 5 ③aa a
2 2 ④ x x x x
初中数学 第一章 整式的乘除 全章导学案
第一章 整式的乘除1.1 同底数幂的乘法一、学习目标1.经历探索同底数幂乘法运算性质过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题二、学习重点:同底数幂的乘法运算法则的推导过程以及相关计算三、学习难点:对同底数幂的乘法公式的理解和正确应用 四、学习设计(一)预习准备预习书p 2-4(二)学习过程1. 试试看:(1)下面请同学们根据乘方的意义做下面一组题:①34722(222)(2222)2⨯=⨯⨯⨯⨯⨯⨯= ②3555⨯=_____________=()5③a 3.a 4=_____________=a ( )(2)根据上面的规律,请以幂的形式直接写出下列各题的结果:421010⨯= 541010⨯= n m 1010⨯= m )101(×n )101(= 2. 猜一猜:当m,n为正整数时候,m a .n a = a a a a a 个__________)(⨯⨯⨯⨯. a a a a a 个_____________)(⨯⨯⨯⨯= aa a a a个___________⨯⨯⨯⨯=(____)a 即a m ·a n = (m 、n 都是正整数)3. 同底数幂的乘法法则:同底数幂相乘运算形式:(同底、乘法) 运算方法:(底不变、指加法)当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为a m ·a n ·a p = a m +n +p (m 、n 、p 都是正整数)练习1. 下面的计算是否正确? 如果错,请在旁边订正(1).a 3·a 4=a 12 (2).m ·m 4=m 4 ( 3).a 2·b 3=ab 5 (4).x 5+x 5=2x 10(5).3c 4·2c 2=5c 6 (6).x 2·x n =x 2n (7).2m ·2n =2m ·n (8).b 4·b 4·b 4=3b 42.填空:(1)x 5 ·( )= x 8 (2)a ·( )= a 6(3)x · x 3( )= x 7 (4)x m ·( )=x 3m(5)x 5·x ( )=x 3·x 7=x ( ) ·x 6=x ·x ( ) (6)a n +1·a ( )=a 2n +1=a ·a ( )例1.计算(1)(x +y )3 · (x +y )4 (2)26()x x -⋅-(3)35()()a b b a -⋅- (4)123-⋅m m a a (m 是正整数)变式训练.计算(1)()3877⨯- (2)()3766⨯- (3)()()435555-⨯⨯-.(4)()()b a a b -⋅-2 (5)(a -b )(b -a )4(6) x x x x n n n ⋅+⋅+21 (n是正整数)拓展.1、填空(1) 8 = 2x ,则 x =(2) 8 × 4 = 2x ,则 x =(3) 3×27×9 = 3x ,则 x = .2、 已知a m =2,a n =3,求n m a +的值3、 221352m m m b b b b b b b ---⋅+⋅-⋅4、已知513381,(45)x x -=-求的值。
2013年第一章整式的乘除导学案
(3) (a -b)3(b - a)5(4) a 3m a 2m ^ (m 是正整数)第一章 整式的乘除 1.1同底数幕的乘法一、 学习目标1 •经历探索同底数幕乘法运算性质过程,进一步体会幕的意义. 2•了解同底数幕乘法的运算性质,并能解决一些实际问题二、 学习重点:同底数幕的乘法运算法则的推导过程以及相关计算 三、 学习难点:对同底数幕的乘法公式的理解和正确应用 四、 学习设计 (一)预习准备预习书p2-4 (二)学习过程1.试试看:(1)下面请同学们根据乘方的意义做下面一组题:① 23><24 =(2 x2x2)x(2 x2x2x2) =27 ② 5^<55= _____________________________ =5()34()^③ a • a = ______________________ =a(2)根据上面的规律,请以幕的形式直接写出下列各题的结果:102104=104105= 10m10n=(^)mX (丄)n=10 102.猜一猜:当m,n 为正整数时候,a m a n= (axaxa 沃…xa). (a^a^a 沃…><a) = a^a xa^^xa = a (—)__________ 个a __________________________ 个a ____________ 个a即a m • a n =(m 、n 都是正整数)3.同底数幕的乘法法则:同底数幕相乘 运算形式:(同底、乘法)运算方法:(底不变、指加法)当三个或三个以上同底数幕相乘时,也具有这一性质,用公式表示为a m a a p = a m+n+p (m 、n 、p 都是正整数)练习1.下面的计算是否正确?如果错,请在旁边订正341244、2355510(1) • a a =a (2) • m-m =m (3) • a b =ab (4) • x +x =2x(5). 3C 42C 2=5C 62 n 2n ,、(6) • X X =X (7) •m ^n m - n2 2 =2(8 )• 4.4.44b b b =3b2.填空: (1)5 X ()=X 8(2) a ()=a 6(3) 3X X ()=x 7m(4) X()=3mX(5) 5 (X X ( )=X 3X 7=X ()6X =XX () (6) n+1 a a ()2n+1( =a =a a)例1 •计算(1) (x+y)3 (x+y)4 (2)—X 2 (—X )6变式训练•计算(1)_7 8 73 (2) -6 7 63 ( 3) - 5 5 53一54.(4) b —a 2 a —b (5)(a-b ) (b-a)4(6) x n x n 1 x 2n x(n 是正整数)3、b 2 b m ° b b m 」-b 3 b m 』b 2拓展.1、填空 (1)8 = 2x ,则 x =(2) 8X 4 = 2x ,贝U x = (3)3X 27X 9 = 3x ,贝U x =.2、已知a m =2, a n =3,求a m n 的值4、已知35x 』=81,求(4x -5)3的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=⎪⎭⎫ ⎝⎛p a 1第一章《整式的乘除》复习导学案
【教学过程】:
一、复习回顾
1、幂的运算
(1)同底数幂的乘法:a m ﹒a n = (m 、n 为正整数) 推广:=⋅⋅p n m a a a (m 、n 、p 都为正整数) 逆用:a m+n = (m 、n 、都为正整数) 变形: (2)幂的乘方(a m )n = (m 、n 为正整数) 推广: (m 、n 、p 都为正整数) 逆用:()mn a = (m 、n 为正整数)
(3)积的乘方:(ab )n = (n 为正整数)
推广:()n abc = (n 为正整数)
逆用:=⋅n n b a (n 为正整数)
(4)同底数幂的除法:a m ÷a n = (a ≠0,m 、n 为正整数,n m >) 推广:=÷÷p n m a a a (a ≠0,m 、n 、p 为正整数,p n m +>)
逆用:a m-n = (a ≠0,m 、n 为正整数,n m >)
(5)零指数幂:a 0= (注意考底数范围a ≠0). 0的0次幂无意义.
(6)负指数幂:=-p a (根据定义)= (根据底倒指反) (a ≠0,p 为正整数) ※0的负指数幂无意义. 逆用: (a ≠0,p 为正整数)
2、整式的乘法:
(1)、单项式乘以单项式:
(2)、单项式乘以多项式:
(3)、多项式乘以多项式:
3.整式乘法公式: ()[]
=p n m a ()⎩⎨⎧=n a -()⎩⎨⎧=n a -b ()()=-+b a b a =-2
2b a
(1)、平方差公式: 逆用: (2)、公式变形:①系数变化:
②符号变化: ③指数变化:
()()=-+3232b a b a ④位置变化:
()()=+-+a b a b
公式变形:①系数变化: ②符号变化:()()=--+-1515x x
③指数变化:()()=-+3232b a b a
④位置变化:()()=+-+a b a b
⑤连用公式:
()()()=++-3932a a a 完全平方公式: 逆用:
变形: ①=+22b a ()2b a + ab 2=()2
b a - ab 2 ②ab 2=()2b a + ()22b a +=()22b a + ()2b a -
③()2b a +=()2b a -+ ()2b a -=()2b a +-
4、整式的除法:
(1)、单项式除以单项式:
(2)、多项式除以单项式:
=⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 214214=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝
⎛+b a b a 214214()()=
--+-1515x x ()=+2b a ()=
-2b a =++222a b ab =
+-222b ab a
二、课堂练习
1.计算
① n m )5.0()21
(⨯ ②232)2(c b a - ③()()3
222a -a -⋅
④333)32()31()9(-⋅⋅- ⑤225)(--+-⋅÷b b b
n n ⑥()()()x -22-x 2-x 32⋅⋅
2.解答
①已知510=a ,210b =,求b a 3210
+的值。
②若2=n x ,3=n y ,求()n xy 3的值。
3.①)15()31(2232b a b a -⋅ ②xy y xy y x 3)221
(22⋅+-
③)86)(93(++x x ④()()
22y xy x y x ++-
4. ①199201⨯ ②222012201240262013+⨯-
5.①()()z y x z y x --++ ②()2
c b a -+
6.①)()(222c ab bc a ÷ ②)2()1264(2223ab ab b a b a ÷+-
例4、如图1是一个长为2m、宽为2 n的长方形,沿虚线剪开,均分成4块小长方形,拼成如图2的长方形。
(1)阴影正方形的边长是多少?
(2)请用不同的两中方法计算阴影正方形的面积
(3)观察图2,你能写出(m+n)2,(m-n)2,mn三个代数式之间的关系?
四、课堂小结
我的收获是什么?
2m
2n
如图1
如图2。