线性代数 线性空间与线性变换
线性空间与线性变换
线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。
本文将介绍线性空间的定义、性质以及线性变换的概念和特性。
一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。
具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。
即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。
2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。
3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。
4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。
线性空间的性质还包括零向量、负向量和线性相关性。
零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。
线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。
二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。
具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。
2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。
线性变换的性质还包括零变换、恒等变换和可逆性。
零变换表示线性变换将所有向量映射为零向量。
恒等变换表示线性变换将每个向量映射为其本身。
可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。
三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。
线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。
线性代数向量空间与线性变换
线性代数向量空间与线性变换线性代数是数学的一个分支,研究向量空间和线性变换的性质和特征。
向量空间是线性代数的核心概念之一,而线性变换则是在向量空间内进行变换的关键操作。
本文将介绍向量空间和线性变换的定义、性质以及它们在数学和实际问题中的应用。
一、向量空间向量空间是指一个集合,其中的元素称为向量,满足一定的代数运算规律。
具体来说,一个向量空间必须满足以下条件:1. 封闭性:对于向量空间中的任意两个向量,它们的线性组合仍然属于该向量空间。
即对于任意向量u和v以及任意标量c和d,cu+dv仍然属于该向量空间。
2. 加法运算的结合性:对于向量空间中的任意三个向量u、v和w,满足(u+v)+w = u+(v+w)。
3. 加法运算的交换性:对于向量空间中的任意两个向量u和v,满足u+v = v+u。
4. 存在零向量:向量空间中存在一个零向量0,满足对于任意向量u,u+0 = u。
5. 存在负向量:对于向量空间中的任意向量u,存在一个负向量-v,满足u+(-v) = 0。
6. 标量乘法的结合性:对于标量的乘法运算,满足c(du) = (cd)u。
7. 标量乘法的分配性:对于标量的乘法运算和向量的加法运算,满足(c+d)u = cu+du,以及c(u+v) = cu+cv。
满足以上条件的集合即为向量空间。
在向量空间中,向量可以按照一定的线性关系进行运算和转换。
二、线性变换线性变换是指一个向量空间到另一个向量空间的映射,该映射满足以下两个性质:1. 保持线性关系:对于向量空间V中的任意两个向量u和v以及标量c,线性变换T必须满足T(cu+dv) = cT(u)+dT(v)。
2. 保持零向量:线性变换T必须满足T(0) = 0,即将零向量映射为零向量。
线性变换可以通过矩阵的乘法来表示。
设向量空间V和W分别为n 维和m维的向量空间,线性变换T:V→W可以表示为一个m×n的矩阵A,其中A的第i列为T(ei)的坐标表示,ei为向量空间V的基向量。
线性空间与线性变换
线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。
本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。
一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。
2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。
3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。
4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。
5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。
6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。
7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。
8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。
9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。
线性空间的例子包括n维向量空间和函数空间等。
它们满足上述定义中的所有条件。
二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。
2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。
3. 线性变换T将零向量映射为目标线性空间的零向量。
线性变换的例子包括平移、旋转和缩放等。
它们保持向量空间的线性结构和线性关系。
三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。
给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。
线性代数-线性空间与线性变换PPT课件
例1
次数不超过
n
的多项式的全体,记作
P
x
,
n
即
P x n p x anx n a1x a0 an, ,a1,a0 ,
对于通常的多项式加法、数乘多项式的乘法构成线性空间.
这是因为:通常的多项式加法、数乘多项式的乘法两种运算显然满足线性运算规律,
故只要验证
P
x
对运算封闭.
n
一、线性空间的定义
1
0 ,
E 22
0
1
线性无关,所以 E11, E12 , E21, E22 是 M2
的一个基,向量
A
a11 a21
a12 a22
在这个基下的
坐标就是 a11, a12, a21, a22 T .
二、基变换与坐标变换
设1,2, ,n 与 1, 2, , n 是线性空间Vn 中的两个基,且
第5章 线性空间与线性变换 20
目录/Contents
第5章 线性空间与线性变换 21
5.2 维数、基与坐标
一、线性空间的基、维数与坐标 二、基变换与坐标变换
一、线性空间的基、维数与坐标
第5章 线性空间与线性变换 22
定义 1 在线性空间V 中,如果存在n 个元素1,2, ,n 满足
(i) 1,2, ,n 线性无关; (ii) V 中任一元素 总可由1,2, ,n 线性表示,
x1, x2, , xn ,使
x11 x22 xnn ,
x1, x2, , xn 这组有序数就称为元素 在基1,2, ,n 下的坐标,并记作
x1, x2,
,xn
T
.
一、线性空间的基、维数与坐标
第5章 线性空间与线性变换 25
线性代数与解析几何 第7章 线性空间与线性变换
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
7.1.2 线性空间的性质
7.1.3 子空间
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
定义7.1
设是一个非空集合,为实数域. 若在中定义
了两种运算,一种运算称为加法:即对于中任意两个元素
, ,在中都有唯一的元素与它们相对应,称为与的
证明
因为 a, b R , R
有 a b ab R , a a R
即R+对上述定义的加法与数乘运算封闭.
a
,
b
,
c
R
, , R 时,有
又因
(1) a b ab=ba b a ;
(2) (a b) c (ab) c (ab)c a(bc) a(b c) a (b c) ;
A R mn
又对矩阵加法和数与矩阵的乘法两种运算满足线性运算规律,
所以R mn对矩阵加法和数与矩阵的乘法,构成实数域R
上的线性空间,称此线性空间为mn矩阵空间.
§ 7.1 线性空间的定义与性质
注7.1
检验一个集合是否构成线性空间,当然不能只象例
7.1、例7.2、例7.3那样检验对运算的封闭性.若所定义的加法
(7) ( + ) a a a a a a a a ;
(8) (a b) (ab) (ab) a b
a b a b ;
所以R+对上述定义的加法与数乘运算构成线性空间.
*第7章
线性空间与线性变换
线性空间又称向量空间,是线性代数的中心内容和
线性空间与线性变换
线性空间与线性变换线性空间(也称为向量空间)是线性代数的基本概念之一。
它是指由向量集合组成的集合,满足特定的运算规则。
线性空间中的向量可以是实数域上的实向量,也可以是复数域上的复向量。
线性空间的定义涵盖了许多重要的数学概念和定理,在各个领域中都有广泛的应用。
一、线性空间的定义线性空间的定义遵循以下几个基本条件:1. 封闭性:对于线性空间V中任意向量u和v,它们的线性组合也属于V。
即对于任意的标量a和b,有a*u + b*v∈V。
2. 加法结合性:对于线性空间V中任意向量u、v和w,有(u+v)+w = u+(v+w)。
3. 加法交换性:对于线性空间V中任意向量u和v,有u+v = v+u。
4. 零向量存在性:存在一个特殊的向量0,满足对于线性空间V中任意向量u,有u+0 = u。
5. 加法逆元存在性:对于线性空间V中任意向量u,存在一个向量-v,使得u+(-v) = 0。
6. 数量乘法结合性:对于线性空间V中任意的标量a、b和向量u,有(a*b)*u = a*(b*u)。
7. 标量乘法分配律:对于线性空间V中任意的标量a和向量u、v,有a*(u+v) = a*u + a*v。
8. 向量乘法分配律:对于线性空间V中任意的标量a和b,以及向量u,有(a+b)*u = a*u + b*u。
二、线性变换的定义与性质线性变换是一种将一个线性空间映射到另一个线性空间的函数。
线性变换也被称为线性映射或线性算子。
线性变换保持线性空间的线性结构,即对于线性空间V中任意的向量u和v,以及标量a和b,有以下性质:1. 线性变换将零向量映射到零向量,即T(0) = 0,其中T表示线性变换。
2. 线性变换保持向量的线性组合,即对于线性空间V中任意的向量u和v,以及标量a和b,有T(a*u + b*v) = a*T(u) + b*T(v)。
3. 线性变换的像空间是一个线性空间,即对于线性空间V中的线性变换T,其像空间W也是一个线性空间。
线性代数课件 第六章 线性空间与线性变换——第1节
如果上述的两种运算满足以下八条运算规律, 如果上述的两种运算满足以下八条运算规律,那 上的向量空间(或线性空间). 么 V 就称为数域 R 上的向量空间(或线性空间).
设α , β , γ ∈ V ; λ , µ ∈ R
(1) α + β = β + α ;
( 2) (α + β ) + γ = α + ( β + γ );
例7 n 个有序实数组成的数组的全体
S n = x = ( x1 , x2 ,⋯, xn ) x1 , x2 ,⋯ , xn ∈ R 对于通常的有序数组的加法及如下定义的乘法 λ ( x1 ,⋯, xn )T = (0,⋯ ,0) 不构成线性空间. 不构成线性空间. n S 对运算封闭. 但1 x = o, 不满足第五条运算规律 .
(2)一个集合,如果定义的加法和乘数运 一个集合, 算不是通常的实数间的加乘运算, 算不是通常的实数间的加乘运算,则必需检验是 否满足八条线性运算规律. 否满足八条线性运算规律. 正实数的全体, 例6 正实数的全体,记作 R + ,在其中定义加法 及乘数运算为 a ⊕ b = ab, λ a = a λ , (λ ∈ R, a , b ∈ R + ). 对上述加法与乘数运算构成线性空间. 验证 R + 对上述加法与乘数运算构成线性空间. 证明 ∀a , b ∈ R + , ⇒ a ⊕ b = ab ∈ R + ;
线
性
代
数
第六章 线性空间与线性变换
一、线性空间的定义
线性空间是线性代数最基本的概念之一, 线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念的推广. 一个抽象的概念,它是向量空间概念的推广. 线性空间是为了解决实际问题而引入的,它是 线性空间是为了解决实际问题而引入的, 某一类事物从量的方面的一个抽象, 某一类事物从量的方面的一个抽象,即把实际问题 看作向量空间, 看作向量空间,进而通过研究向量空间来解决实际 问题. 问题.
第五章 线性空间与线性变换
定义5.5 设1, 2,…, n是线性空间VK的一组基, 如
果VK可以表示为:
=x11+x22+…+xnn
则称(x1, x2,…xn)T为向量在基1, 2,…, n下的坐标.
可见, 坐标是由向量及基的选取唯一确定的.
例1 试求线性空间R3中向量=(1, 2, 3)T在基:
例如 n元实系数齐次线性方程组Ax=0的解空间U是Rn的子 空间.
K[x]n是K[x]的子空间.
Knn中所有对称矩阵构成Knn的子空间.
设1, 2,…r 是线性空间VK中的一组向量, 则 L(1,2,…r)={k11+k22+…+krr|k1,k2,…,krK}
是VK的子空间. 称为由1, 2,…r生成的子空间.
定义5.2 设V是一个非空集合, K是一个数域, 如果在 V上定义了加法和与K中数的乘法两种运算, 且满足 (1) +=+(加法交换律);
(2) (+)+=+(+)(加法结合律);
(3) V中有零元素0, 使V有 +0= ; (4) V, -V, 使 +(-)=0, 称-为的负元素; (5) k(+)=k+k , , V, kK; (6) (k+l)=k+l , V, k, lK; (7) (kl)=k(l ) , V, k, lK; (8) 1= , V, 1K; 则称V为数域K上的一个线性空间. 记为VK , 或V.
也可表示为:
1 , 2 , ..., n x1 x2 xn
二. 基变换与坐标变换
线性空间如果有基, 显然基不唯一. 那么一个向量在不 同基下就有不同的坐标, 下面就来讨论它们之间的关系. 设1, 2,…,n和1, 2,…, n是线性空间VK的两组基, 则, 这两个向量组等价. 如果
中国计量学院《线性代数b》第六章线性空间与线性变换
第六章 线性空间与线性变换沈 鸿6.1 基本概念 基本定理:6.1.1线性空间基本概念1、线性空间的概念设V 是一非集合,F 是一定数域,如果在V 中定义了两种运算:(1)加法,即对V 中任意两个元素α与β,按某一法则,在V 中都有惟一的元素γ与之对应,称γ为α和β的和,记作γ=α+β;(2)数乘,即对V 中任意元素α和F 中任意数k ,按某一法则,在V 中有惟一的一个元素δ与之对应,称δ为k 与α的积,记作δ=k α;并且这两种运算满足以下八条运算规则,那么V 就称为数域F 上的一个线性空间。
其中八条运算规则是: (1)αββα+=+; (2))()(γβαγβα++=++;(3)在V 中有一元素,记为0,对V 中任一元素α,都有α+0=α,称元素0为V 的零元素;(4)对V 中每一个元素α,都有V 中的一个元素β,使得α+β=0,β称为α的负元素,记作-α,即α+(-α)=0。
(5)1·α=α;(6)k (l α)=(k l ) α; (7)(k +l ) α=k α+l α; (8)k (α+β)=k α+k β.其中α,β,γ是集合V 中的任意元素,k , l 为F 中的任意娄。
2、子空间设V 是一个线性空间,L 是V 的一个非空子集,如果L 对于V 中所定义的加法和数乘运算也构成一个线性空间,就称L 为V 的子空间。
n 元齐次线性方程组AX=0的解的全体是R n的一个子空间,称为AX=0的解空间。
定理1 线性空间V 的非空子集L 构成子空间的充分必要条件是L 对于V 中的线性运算封闭。
6.1.2基、维数与坐标1、基与维数定义在线性空间V 中,如果存在n 个元素α1,α2,…,αn ,且满足: (1)α1,α2,…,αn 线性无关;(2)V 中的任一元素都可表示为α1,α2,…,αn 的线性组合,则称α1,α2,…,αn 为线性空间V 的一个基;n 称为线性空间V 的维数,并记为dimV=n.线性空间中的任一元素都可表示为它的一个基的线性组合,且这种表示是惟一的。
线性代数教案-线性空间与线性变换
地,如果取Vn U m ,那么T 是一个从线性空间Vn 到其自身的线性映射,称为线性空间Vn 中的线性变换.
二、线性变换的性质:
性质 1 T 0 0,T T ;
性质 2
若
k 1
k
12
2
km
m
,则T
kT 1
k T
12
2
kmT
m
;
性质 3 若1,2,,m 线性相关,则T 1,T 2,,T m 亦线性相关.
的一个基,n 称为线性空间V
的维数,记作 dimV
n 。只含一个零元
素的线性空间称为零空间,零空间没有基,规定它的维数为 0. n 维线性空间V 也记作Vn .
定义
2:设
, 1
,, 2
n
是线性空间Vn
的一个基,对于任一元素
Vn
,总有且仅有一组有序数组
x, 1
x, 2
,
xn
,使
x 11
x 22
xnn ,
集合,关于通常的函数加法和数乘函数的乘法构成线性空间.
例3
设
M
mn
A
a11 a21
am1
a12 a22
am2
a1n a2n
amn
aij 1 i m;1
j
n
是实数域上的矩阵全体所成的
集合. 显然 M mn 是非空的, M mn 对通常的矩阵加法和数乘构成线性空间. 特别地,
教 学 基本内容
一、线性变换的定义:
定义 1:设Vn,Um 分别是n 维和m 维线性空间,如果映射T :Vn Um 满足
(i)
任给 , 12
Vn ,有T
1
01_矩阵论_第一章线性空间与线性变换
则有
1 0 0 1 0 0 0 0 A a11 0 0 a12 0 0 a21 1 0 a22 0 1
因此 R22 中任何一个向量都可写成向量组
1 0 0 1 0 0 0 0 E11 0 0 , E12 0 0 , E21 1 0 , E22 0 1
Pn [ x] { ai xi | ai R}
i 0 n 1
在通常多项式加法和数乘多项式运算下构成线性 空间 Pn[x]。 值得指出的是次数等于 n 1 的多项式集合
V { ai x | ai R, an1 0}
i i [a, b] = {f (x) | f (x) 是区间 [a, b] 上 实连续函数 } ,对于函数的加法与数乘运算构成 实数域上的线性空间。
定义 1.3 设 1, 2, …, n 是线性空间 Vn(F) 的一组基,若 V,
xi i (1 2
i 1 n
x1 x2 n ) x n
(1.1)
则称数 x1, x2, …, xn 是 在基 {1, 2, …, n} 下 的坐标,(1.1) 式中向量 (x1, x2, …, xn)T 为 的坐 标向量,也简称为坐标。
从上述线性空间例子中可以看到,许多常见 的研究对象都可以在线性空间中作为向量来研究。 另外应理解加法和数乘分别是 V 中的一个二元运 算和数域 F 和 V 中元素间的运算,要求运算满足 定义 1.1 中的八条性质,它们已不再局限在数的 加法、乘法的概念中。
一个数学例子 取集合为正实数集合 R+,F 为实数域 R,加 法“”和数乘“”如下定义 :a, bR+,ab = ab, :kR(i.e. F ),aR+,k a = ak。 在此运算下,R+ 是 R 上的一个线性空间,其中 加法零元素是 R+ 中的数 1,R+ 中元素 a 的负元素 是 a1。
矩阵理论课件 第一章 线性空间与线性变换
a1n
a2n
ann
前述关系可以表示为 AT 或 T T A
则称矩阵 A 为基 到基 的过渡矩阵(唯一且可逆)
定义2 (坐标变换)
设x V L(P) ,向量 x 在 基 和基 下的
坐标之间的关系,称之为坐标变换。
坐标变换与过渡矩阵的关系:
设 x k1x1 k2 x2 kn xn 和 x t1 y1 t2 y2 tn yn
和 W W1 W2 为直和,记为 W W1 W2 。
例6 设 R4的3个子空间:
① V1 (a, b, 0, 0)T a, b R ② V2 (0,0,c, 0)T c R ③ V3 (0,d,e, 0)T d,e R
容易验证V1 是V2直和, V1 V3不,V是2 直 V和3。
事实上 不妨设简单基为 (III )e1, e2 , , en ( x1, x2 , , xn ) (e1, e2 , , en )C1 ( y1, y2 , , yn ) (e1, e2 , , en )C2
( x1, x2 , , xn )C11C2
C C11C2
例4 设线性空间P3[t] 的两个基为: (I ) f1(t) 1, f2(t) 1 t, f3(t) 1 t t 2,
表示,不妨记
y1 a11x1 a21x2
y2
a12 x1
a22 x2
yn a1n x1 a2n x2
称上述关系为两组基的基变换。
an1xn an2 xn
ann xn
x1
y1
a11 a12
若记
x2
,
y2
A
a21
a22
xn
yn
an1 an2
线性代数之第4章.向量空间与线性变换
内积空间定义及性质
定义
设 $V$ 是实数域或复数域 $F$ 上的线性空间,若在 $V$ 上定义了一个二元实函数 $(a, b)$,满足以下性 质
对称性
$(a, b) = overline{(b, a)}$
线性性
$(k_1a_1 + k_2a_2, b) = k_1(a_1, b) + k_2(a_2, b)$
变换矩阵的性质
线性变换的矩阵表示是可逆的当 且仅当T是一个可逆线性变换。
标准矩阵表示法:对于线性变换 T:V→W,可以选取V和W的一组 基,将T在这组基下的矩阵表示为 标准矩阵。标准矩阵是一个m×n 矩阵,其中m和n分别是W和V的 维数。
若T1和T2是两个线性变换,则它 们的复合T1∘T2也是一个线性变换, 且其矩阵表示为两个变换矩阵的乘 积。
性质
03
04
05
线性变换保持原点不动, 线性变换保持向量间的
即T(0)=0。
线性关系,即若向量u和
v线性相关,则T(u)和
T(v)也线性相关。
线性变换的矩阵表示是 唯一的,且与所选的基 无关。
线性变换矩阵表示法
线性变换的矩阵表示是线性的,即 对于任意两个向量x和y以及任意 标量k,有T(kx+y)=kT(x)+T(y)。
02
负定二次型判断方法
03
所有特征值均为负数。
正定二次型和负定二次型判断方法
奇数阶主子式为负,偶数阶主子式为正。
存在可逆矩阵C使得$C^TAC=-I$,其中I是单位矩阵。
二次型在优化问题中应用举例
最小二乘法
约束优化问题
在回归分析中,最小二乘法是一种常用的优 化方法,其目标是最小化残差平方和。该问 题可以转化为求解一个二次型的最小值问题。
第七章线性空间与线性变换
式加法和数与多项式的乘法,构成线性空间 P[ x]n
例5 所有收敛的实数数列按数列极限的加法和数乘,
构成线性空间 l 。
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间,
或矩阵 A 的核空间或零空间,即
对于 (1,2 ), =(1,2 ) 及 k R ,定义
加法 (1+1 ,2 +2 +11)
数乘
k
(k1
,
k2 +
1 2
k(k
1)12 )
判断 V 是否构成 R 上的线性空间.
三、线性空间的基本性质
定理12 如果 V 是数域 F 上的线性空间,则
(1) 线性空间V 中的零向量 是唯一的。
例14 集合 T1 {x x [x1, x2, 0]T , x1, x2 R} 是向 量空间。它是 R3 在 ox1 x2 平面上的投影子空间。
例15 R3 中过原点的直线是R3 的一个子空间。
判定非空集合是否为线性空间,要验算运算的封闭性, 以及8条运算律,相当地麻烦。至于判定线性空间的子 集是否为线性空间,就比较方便了。
(A1) 加法交换律: , (A2) 加法结合律:( ) ( ),
(A3) 具有加法单位元(零向量) R2 ,使得
(A4) 具有加法逆元(负向量) R2 ,使得 ( )
(M1) 数乘的结合律:k(l ) (kl) (M2) 数乘的单位元:1 (D1) 分配律1: k( ) k k (D2) 分配律2:(k l) k l
分析: 容易验证 1, 2, 3 线性无关,因此
也是 P[ x]3 的基。 由高等数学中的泰勒公式,可知
线性代数第三章 线性空间和线性变换3.3 欧几里得空间简介
向量个数不会超过n个。(因为线性无关的非零
向量个数不会超过n个) 其几何意义就是:在平
面上找不到3个两两垂直的非零向量,在空间中找
不到4个两两垂直的非零向量。
定义3.17 在n维欧氏空间V中,由n个向量组成的正交向量 组称为V的一个正交基;由单位向量组成的正交基称为标 准正交基。
§3.3 欧几里得空间简介
一、定义与基本性质 首先看一下向量的内积 定义3.12设V是实数域R上一个线性空间,在V上定义
了一个二元函数,称为内积,记作(α,β),它具有以 下性质:
(1) (α,β)= (β, α); (2) (kα,β)=k (α,β); (3) (α+β,γ)= (α, γ)+(β,γ); (4) (α,α)≥0,当且仅当α=0时, (α,α)=0. 其中αβγ是V中的任意向量,0为V中的零向量,k是 任意实数.这个定义了内积的线性空间V称为
同构映射。
相关结论: (1)、任意一个n维欧氏空间V都与n维欧氏空间R n同构 (2)、两个有限维欧氏空间同构的充要条件是它们有相同的维数
定义2.21: 如果一个非零向量组(即该向量组中的向
量都不是零向量) 1, 2, ,s (s2) 中的向量两两 正交, 则称1, 2, ,s为一个正交向量组.
,x n
)
,
则
xi ( ,i ), (i 1, 2,L , n)
设,
V,在V的标准正交基1,
2,L
,
下,有:
n
=x11 x2 2 L xn n
=y11 y2 2 L yn n
则(, )=x1 y1 x2 y2 L xn yn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只要验证 P[ x ]n 对运算封闭:
Copyright© 数学与计量经济学院
(an xn a1x a0 ) (bn xn b1x b0 ) (an bn )xn (a1 b1)x (a0 b0 ) P[x]n ,
(an xn a1x a0 ) (an )xn (a1)x (a0 ) P[x]n ,
就称为线性运算。
Copyright© 数学与计量经济学院
二、举例
例 1 次数不超过 n 的多项式的全体, 记
作P[ x ]n , 即
P[x]n {p(x) an xn an1xn1 a1x a0|an, ,a0 R}
对于通常的多项式加法、数乘多项式的乘法构成 线性空间.
解: 这是因为, 通常的多项式加法、数乘多
Copyright© 数学与计量经济学院
例 3 正弦函数的集合
S[x] {s Asin(x B) | A, B R}
对于通常的函数加法及数乘函数的乘法构成线性
空间. 这是因为, 通常的函数加法及乘数运算显然 满足线性运算规律, 故只要验证 S[ x ] 对运算封 闭:
s1 s2 A1 sin(x B1) A2 sin(x B2 ) (a1 cosx b1 sin x) (a2 cosx b2 sin x) (a1 a2 ) cosx (b1 b2 ) sin x Asin(x B) S[x] ,
所以 P[ x ]n是一个线性空间.
Copyright© 数学与计量经济学院
例 2 n 次多项式的全体
Q[x]n {p an xn a1x a0 | an , , a0 R,且 an 0}
对于通常的多项式加法和数乘运算不构成向量空 间. 这是因为 0 p = 0 xn + ···+ 0 x + 0 Q[ x ]n , 即 Q[ x ]n 对运算不封闭.
Copyright© 数学与计量经济学院
s1 A1 sin(x B1) (A1) sin(x B1) S[x] ,
所以 S[ x ] 是一个线性空间. 检验一个集合是否构成线性空间,当然不能
只检验对运算的封闭性(如上面两例). 若所定义的 加法和数乘运算不是通常的实数间的加乘运算, 则就应仔细检验是否满足八条线性运算规律.
Copyright© 数学与计量经济学院
(i) + = + ;
(ii) ( + ) + = + ( + ) ; (iii) 在 V 中存在零元素 0, 对任何 V , 都有 + 0 = ; (iv) 对任何 V , 都有 的负元素 V,
使
+=0;
(v) 1 = ;
a 1 a 1 a;
(iv) 对任何 a R+ , 有负元素 a-1 R+ , 使
a a1 aa1 1 ;
Copyright© 数学与计量经济学院
( v ) 1a a1 a; ( vi ) ( a) a (a ) a ( ) a; (vii) ( ) a a aa a a
第六章 线性空间与线性变换
线性空间 基、维数与坐标 线性变换
结束
1
2020/3/30
Copyright© 数学与计量经定义 1 设 V 是一个非空集合, R 为实数域.
如果对于任意两个元素 , V, 总有唯一的一 个元素 V 与之对应, 称为 与 的和, 记作 = + ; 又对于任一数 R 与任一元素 V , 总有唯一的一个元素 V 与之对应, 称为 与 的积, 记作 ; 并且这两种运算满足以下 八条运算规律(设 , , V ; , R):
即对任何 V, 有 + 01 = , +02 = . 于是特
别有
02 + 01 = 02 , 01 + 02 = 01 .
所以
01 = 01 + 02 = 02 + 01 = 02 .
即零元素是唯一的.
Copyright© 数学与计量经济学院
性质 2 任一元素的负元素是唯一的. 性质 3 0 = 0 ; (-1) = - ; 0 = 0. 性质 4 如果 = 0, 则 = 0 或 = 0 .
a a; (viii) (a b) (ab) (ab) ab
a b a b .
因此, R+ 对于所定义的运算构成线性空间. 下面讨论线性空间的性质.
Copyright© 数学与计量经济学院
三、线性空间的性质
性质 1 零元素是唯一的.
证明 设 01, 02 是线性空间V中的两个零元素,
Copyright© 数学与计量经济学院
四、子空间
在第三章中, 我们提过子空间, 今稍作修正.
定义 设 V 是一个线性空间, L 是 V 的一
个非空子集, 如果 L 对于 V 中所定义的加法和数 乘两种运算也构成一个线性空间, 则称 L 为 V 的 子空间.
a b ab R ;
Copyright© 数学与计量经济学院
对数乘封闭: 对任意的 R, a R+ , 有
a a R ;
( i ) a b ab ba b a ;
(ii) (a b) c (ab) c (ab)c a(bc) a (b c);
(iii) R+ 中存在零元素 1 , 对任何 a R+ , 有
Copyright© 数学与计量经济学院
例 4 正实数的全体, 记作 R+ , 在其中定
义 加法及乘数运算为
加法: a b ab (a,b R ) ,
数乘: a a ( R, a R ) ,
验证 R+ 对上述加法与乘数运算构成线性空间.
证 实际上要验证十条:
对加法封闭: 对任意的 a , b R+ , 有
(vi) ( ) = ( ) ;
Copyright© 数学与计量经济学院
(vii) ( + ) = + ; (viii) ( + ) = + .
那么, V 就称为(实数域 R 上的) 线性空间,
V 中的元素不论其本来的性质如何,
统称为(实)向量.
简言之, 凡满足八条规律的加法及乘数运算,