2018年陕西省中考数学试卷
2018年陕西省中考数学试卷【word,带解析】
2018年陕西省中考数学试卷一、选择题(共 小题,每小题 分,计 分。
每小题只有一个选项是符合题意的) .( 分)﹣的倒数是()✌. . . ..( 分)如图,是一个几何体的表面展开图,则该几何体是()✌.正方体 .长方体 .三棱柱 .四棱锥 .( 分)如图,若● ∥● ,● ∥● ,则图中与∠ 互补的角有()✌. 个 . 个 . 个 . 个.( 分)如图,在矩形✌中,✌(﹣ , ), ( , ).若正比例函数⍓⌧的图象经过点 ,则 的值为()✌. . .﹣ ..( 分)下列计算正确的是()✌.♋ ❿♋ ♋ .(﹣♋ ) ﹣♋ . ♋ ﹣ ♋ ♋ .(♋﹣ ) ♋ ﹣.( 分)如图,在△✌中,✌ ,∠✌,∠ ,✌⊥ ,垂足为 ,∠✌的平分线交✌于点☜,则✌☜的长为()✌. . ...( 分)若直线● 经过点( , ),● 经过点( , ),且● 与● 关于⌧轴对称,则● 与● 的交点坐标为()✌.(﹣ , ) .( , ) .(﹣ , ) .( , ).( 分)如图,在菱形✌中.点☜、☞、☝、☟分别是边✌、 、 和 ✌的中点,连接☜☞、☞☝、 ☟和☟☜.若☜☟☜☞,则下列结论正确的是()✌.✌☜☞ .✌☜☞ .✌☜☞ .✌☜☞ .( 分)如图,△✌是⊙ 的内接三角形,✌✌,∠ ✌,作 ∥✌,并与⊙ 相交于点 ,连接 ,则∠ 的大小为()✌. . . . .( 分)对于抛物线⍓♋⌧ ( ♋﹣ )⌧♋﹣ ,当⌧ 时,⍓> ,则这条抛物线的顶点一定在()✌.第一象限 .第二象限 .第三象限 .第四象限二、填空题(共 小题,每小题 分,计 分).( 分)比较大小: (填❽>❾、❽<❾或❽❾)..( 分)如图,在正五边形✌☜中,✌与 ☜相交于点☞,则∠✌☞☜的度数为 ..( 分)若一个反比例函数的图象经过点✌(❍,❍)和 ( ❍,﹣ ),则这个反比例函数的表达式为 ..( 分)如图,点 是 ✌的对称中心,✌>✌,☜、☞是✌边上的点,且☜☞✌;☝、☟是 边上的点,且☝☟ ,若 , 分别表示△☜☞和△☝☟的面积,则 与 之间的等量关系是 .三、解答题(共 小题,计 分。
2018年陕西省中考数学试卷
2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1. −711的倒数是()A.−711B.711C.−117D.117【答案】此题暂无答案【考点】倒数【解析】此题暂无解析【解答】此题暂无解答2. 如图,是一个几何体的表面展开图,则该几何体是( )A.长方体B.正方体C.四棱锥D.三棱柱【答案】此题暂无答案【考点】几何明的护开图【解析】此题暂无解析【解答】此题暂无解答3. 如图,若l1 // l2,l3 // l4,则图中与∠1互补的角有()A.2个B.1个C.4个D.3个【答案】此题暂无答案【考点】余因顿补角平行线明判轮与性质【解析】此题暂无解析【解答】此题暂无解答4. 如图,在矩形AOBC中,A(−2, 0),B(0, 1).若正比例函数y=kx的图象经过点C,则k的值为()A.1 2B.−12C.2D.−2【答案】此题暂无答案【考点】一次常数图按上点入适标特点矩来兴性质【解析】此题暂无解析【解答】此题暂无解答5. 下列计算正确的是()A.(−a2)3=−a6B.a2⋅a2=2a4C.(a−2)2=a2−4D.3a2−6a2=3a2【答案】此题暂无答案【考点】幂的乘表与型的乘方合较溴类项完全明方养式同底水水的乘法【解析】此题暂无解析【解答】此题暂无解答6. 如图,在△ABC中,AC=8,∠ABC=60∘,∠C=45∘,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.2√2B.43√2 C.3√2 D.83√2【答案】此题暂无答案【考点】勾体定展含因梯否角样直角三角形角平都北的定义角平较线的停质【解析】此题暂无解析【解答】此题暂无解答7. 若直线l1经过点(0, 4),l2经过点(3, 2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(2, 0)B.(−2, 0)C.(6, 0)D.(−6, 0)【答案】此题暂无答案【考点】一正间仅图宽与几何变换【解析】此题暂无解析【解答】此题暂无解答8. 如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连结EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=2EFB.AB=√2EFC.AB=√5EFD.AB=√3EF【答案】此题暂无答案【考点】菱都资性质中水射边形【解析】此题暂无解析【解答】此题暂无解答9. 如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65∘,作CD // AB,并与⊙O相交于点D,连结BD,则∠DBC的大小为()A.35∘B.15∘C.45∘D.25∘【答案】此题暂无答案【考点】圆明角研理【解析】此题暂无解析【解答】此题暂无解答10. 对于抛物线y=ax2+(2a−1)x+a−3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第二象限B.第一象限C.第四象限D.第三象限【答案】此题暂无答案【考点】二次明数织性质抛物线明x稀的交点【解析】此题暂无解析【解答】此题暂无解答二、填空题(共4小题,每小题3分,计12分)11. 比较大小:3________√10(填“>”、“<”或“=”).【答案】此题暂无答案【考点】实数根盖比较【解析】此题暂无解析【解答】此题暂无解答12. 如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为________.【答案】此题暂无答案【考点】多边形正东与外角正多验河和圆【解析】此题暂无解析【解答】此题暂无解答13. 若一个反比例函数的图象经过点A(m, m)和B(2m, −1),则这个反比例函数的表达式为________.【答案】此题暂无答案【考点】反比射函可铜象上误的坐标特征待定明数护确游比例函数解析式【解析】此题暂无解析【解答】此题暂无解答AB;14. 如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=12BC,若S1,S2分别表示△EOF和△GOH的面积,则S1 G、H是BC边上的点,且GH=13与S2之间的等量关系是________.【考点】平行四表形型性质中因校称【解析】此题暂无解析【解答】此题暂无解答三、解答题(共11小题,计78分。
2018年陕西省中考数学试卷及答案(Word版)
2018年陕西省中考数学试卷及答案(Word版)DC80<x≤9060 5100D90<x≤100m2796(第19题图)依据以上统计信息,解答下列问题:(1)求得m=_______,n=__________;(2)这次测试成绩的中位数落在_______组;(3)求本次全部测试成绩的平均数.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品 红枣 小米 规格 1kg /袋 2kg /袋 成本(元/袋) 40 38 售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)-2-23123.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作○O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .24.(本题满分10分)已知抛物线L :62-+=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C . (1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ’,且L ’与x 轴相交于A ’、B ’两点(点A ’在点B ’的左侧),并与y 轴交于点C ’,要使△A ’B ’C ’和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.(第23题图)ENM OD ABC25.(本题满分12分) 问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△AC 的外接圆半径R 的值为_______. 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值. 问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计)(第25题图)图③图②图①OM ABPC2018年陕西省中考数学试卷答案一、选择题1 2 3 4 5 6 7 8 9 10D C D A B C B D A C。
2018年陕西省数学中考试题及答案
2018年陕西省数学中考试题及答案一年一度的陕西省数学中考即将来临。
本文收集了2018年陕西省数学中考试题及答案,希望能够给考生们带来帮助。
让我们携起手来,拼搏地全力以赴,一起挑战数学的精彩与挑战!2018年陕西省数学中考试题及答案2018年陕西省数学中考试题如下:一、选择题:(共10小题,每小题2分,共20分)1.若函数 y ?sin 2 x的图象关于原点的对称中心是( )A.( 0,0) B.(0, ?1) C.(?π ,?1) D.(π ,1)2.若事件A,B的概率分别为 0.2,0.3,则事件A,B同时发生的概率为( ) A.0.2 B.0.3 C.0.02 D.0.63.已知m ,n都是正整数,且m ? n , 则下列式子的值:A. 2mnB. mnC. m 2D. mn24.若a、b、c满足 a 、 b 、 c 都是正数,且满足 a ? bc ? ab ,则必有( )A. a ? b ? cB. c ? b ? aC. b ? a ? cD. a ? c ? b答案:1.C 2.D 3.A 4.A二、填空题(共5小题,每小题2分,共10分)5.若a ? 2 ,则 a 1 ? ??答案:-26.已知 ?ABC 中, a ? b ? c ? 1 ,则 sin A ?答案:1/27.已知a,b两个点满足|a-b|=6,则a到b的距离是答案:68.若 sin x ? cos x ? A sin x ? cos x ? 0,则A的值为答案:-19.若函数 y ? 2 x ? 3 x ? 4最小值为-2,函数的最小值点是答案:1三、解答题(共5小题,每小题6分,共30分)10.已知函数 f ? x ? ? ln x ? x ? 1 ,求函数f ? x ?在x ? 0时的值域。
解:由函数的图像,当x≥0时,函数值从-1开始增加,所以函数f(x)在x∈[0,+∞)上是单调递增函数,故函数取值范围为 y∈[-1,+∞)。
2018年陕西省中考数学试题及详细解析
17.(5.00分)(2018•陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)
18.(5.00分)(2018•陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.
2018年陕西省中考数学试卷
一、选择题(共10小题,每小题3分,计30分。每小题只有一个选项是符合题意的)
1.(3.00分)(2018•陕西)﹣ 的倒数是( )
A. B. C. D.
2.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是( )
A.正方体B.长方体C.三棱柱D.四棱锥
A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)
8.(3.00分)(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是( )
A.AB= EFB.AB=2EFC.AB= EFD.AB= EF
22.(7.00分)(2018•陕西)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).
14.(3.00分)(2018•陕西)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF= AB;G、H是BC边上的点,且GH= BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.
2018年陕西省数学中考试题含答案
2018年陕西省初中毕业学业考试(考试时间:120分钟 满分:120分)第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. -711的倒数是( )A.711 B. -711 C. 117 D. -1172. 如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥第2题图 第3题图3. 如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有( ) A. 1个 B. 2个 C. 3个 D. 4个4. 如图,在矩形AOBC 中,A (-2,0),B (0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( ) A. -12 B. 12C. -2D. 2第4题图 第6题图5. 下列计算正确的是( )A. a 2·a 2=2a 4B. (-a 2)3=-a 6C. 3a 2-6a 2=3a 2D. (a -2)2=a 2-46. 如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( ) A.43 2 B. 2 2 C. 832 D.3 2 7. 若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)8. 如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是( )A. AB =2EFB. AB =2EFC. AB =3EFD. AB =5EF第8题图 第9题图9. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与⊙O 相交于点D ,连接BD ,则∠DBC 的大小为( ) A. 15° B. 35° C. 25° D. 45°10. 对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分) 11. 比较大小:3________10(填“>”、“<”或“=”).12. 如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为________.第12题图 第14题图13. 若一个反比例函数的图象经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为________. 14. 如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF =12AB ;G 、H 是BC 边上的点,且GH =13BC .若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是________.三、解答题(共11小题,计78分.解答应写出过程)15. (本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)0.16. (本题满分5分)化简:(a +1a -1-aa +1)÷3a +1a 2+a .17. (本题满分5分)如图,已知:在正方形ABCD 中,M 是BC 边上一定点,连接AM .请用尺规作图法,在AM上求作一点P,使△DP A∽△ABM.(不写作法,保留作图痕迹)第17题图18. (本题满分5分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF 相交于点G、H,若AB=CD.求证:AG=DH.第18题图19. (本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计图表组别分数/分频数各组总分/分A 60<x≤70382581B 70<x≤80725543C 80<x≤90605100D 90<x≤100m 2796第19题图依据以上统计信息,解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.20. (本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽,测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1 m,DE=1.5 m,BD=8.5 m,测量示意图如图所示.请根据相关测量信息,求河宽AB.第20题图21. (本题满分7分)经过一年多的精准帮扶、小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格 1 kg/袋 2 kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000 kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000 kg,其中,这种规格的红枣的销售量不低于600 kg,假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22. (本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字.此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.第22题图23. (本题满分8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.第23题图24. (本题满分10分)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A′、B′两点(点A′在点B′的左侧),并与y 轴相交于点C′,要使△A′B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.25. (本题满分12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为________;问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值;问题解决(3)如图③所示,AB 、AC 、BC ︵是某新区的三条规划路,其中,AB =6 km ,AC =3 km ,∠BAC =60°,BC ︵所对的圆心角为60°.新区管委会想在BC ︵路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F ,也就是,分别在BC ︵,线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天都要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷、环保和节约成本,要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)第25题图参考答案及解析2018年陕西省初中毕业学业考试1. D 【解析】本题考查了倒数的概念. ∵乘积为1的两个数互为倒数,∴-711的倒数是-117.故选D.2. C 【解析】本题考查了几何体的表面展开图. ∵三棱柱的表面展开图由两个三角形和三个长方形组成,∴该几何体是三棱柱.故选C.3. D 【解析】本题考查了平行线的性质、补角的定义以及对顶角相等.如解图,∵l 1∥l 2,∴∠3=∠5,∠2=∠4,∵∠2=∠3,∠4=∠5,∴∠2=∠3=∠4=∠5,∵l 3∥l 4,∴∠1+∠2=180°,∴与∠1互补的角有∠2、∠3、∠4、∠5,共4个.故选D.第3题解图4. A 【解析】本题考查了矩形的性质、正比例函数图象上点的坐标特征. ∵四边形AOBC 是矩形,∴OA =BC ,OB =AC ,∵A (-2,0),B (0,1),∴点C 的坐标为(-2,1),∵正比例函数y =kx 的图象经过点C (-2,1),∴-2k =1,∴k =-12.故选A.5. B 【解析】本题考查了整式的运算.逐项分析如下:选项 逐项分析 正误 A a 2·a 2=a 2+2=a 4≠2a 4 × B (-a 2)3=-a 2×3=-a 6 √ C 3a 2-6a 2=(3-6)a 2=-3a 2≠3a 2 × D(a -2)2=a 2-4a +4≠a 2-4×6. C 【解析】本题考查了直角三角形的性质、等腰三角形的性质以及解直角三角形.∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ACD 中,∵∠C =45°,AC =8,∴AD =AC ·sin45°=8×22=42,∵∠ABC =60°,∴∠BAD =90°-60°=30°,∵BE 平分∠ABC ,∴∠ABE =∠DBE =30°,∴∠BAD =∠ABE ,∴AE =BE ,在Rt △BDE 中,∵∠DBE =30°,∴DE =12BE =12AE ,∵AE +DE =AD ,∴AE +12AE =42,∴AE =83 2.故选C.7. B 【解析】本题考查了关于坐标轴对称的点的坐标、待定系数法求函数解析式以及求两直线的交点问题.点(0,4),点(3,2)关于x 轴对称的点的坐标分别为(0,-4),(3,-2),∵l 1与l 2关于x 轴对称,且点(0,4)在l 1上,点(3,2)在l 2上,∴直线l 1经过点(0,4),(3,-2),直线l 2经过点(3,2),(0,-4),设直线l 1的解析式为y =kx +4,将(3,-2)代入直线l 1的解析式中,得-2=3k +4,解得k =-2,则直线l 1的解析式为y =-2x +4;同理可得直线l 2的解析式为y =2x -4;联立直线l 1与l 2的解析式得⎩⎪⎨⎪⎧y =-2x +4y =2x -4,解得⎩⎪⎨⎪⎧x =2y =0,∴直线l 1与l 2的交点坐标为(2,0).故选B. 8. D 【解析】本题考查了菱形的性质、矩形的性质以及勾股定理.如解图,连接HF ,∵四边形ABCD 是菱形,∴AD =BC ,AD ∥BC ,∵点F 、H 分别是边BC 和DA 的中点,∴AH =BF ,∴四边形ABFH 是平行四边形,∴AB =HF ,∵点E 、F 、G 、H 是菱形ABCD 各边的中点,∴四边形EFGH 是矩形,∴∠HEF =90,∴FH 2=EF 2+EH 2,∵AB =HF ,EH =2EF ,∴AB 2=EF 2+(2EF )2,即AB 2=5EF 2,∴AB =5EF .故选D.第8题解图9. A 【解析】本题考查了圆周角定理、平行线的性质、等腰三角形的性质以及三角形内角和定理. ∵AB =AC ,∠BCA =65°,∴∠CBA =∠BCA =65°,∴∠A =180°-65°-65°=50°,∵AB ∥CD ,∴∠ACD =∠A =50°,∵∠ABD =∠ACD =50°,∴∠DBC =∠ABC -∠ABD =65°-50°=15°.故选A.10. C 【解析】本题考查了抛物线与系数的关系、二次函数的性质.∵当x =1时,y >0,∴将x =1代入抛物线表达式中,得y =a +(2a -1)+a -3=4a -4>0,解得a >1,∴抛物线开口向上,∵b 2-4ac =(2a -1)2-4a (a -3)= 8a +1>0,∴抛物线与x 轴有两个交点,∵抛物线的对称轴为直线x =-2a -12a =1-2a 2a <0,∴抛物线的对称轴在y 轴的左侧,∴抛物线的顶点在第三象限.故选C. 11. < 【解析】本题考查了实数的大小比较. ∵3=9,且9<10,∴3<10.12. 72° 【解析】本题考查了正多边形内角和定理、正多边形的性质及三角形外角和定理.∵五边形ABCDE 是正五边形,∴AB =AE =BC ,∠BAE =∠ABC =(5-2)×180°5=108°,∴∠ABE =∠AEB =180°-108°2=36°,∠BAC =∠BCA =180°-108°2=36°,∴∠AFE =∠ABE +∠BAC =36°+36°=72°.13. y =4x 【解析】本题考查了反比例函数图象上点的坐标特征. 设这个反比例函数的表达式为y =k x ,∵反比例函数图象经过点A (m ,m )和点B (2m ,-1), ∴m 2=-2m =k ,即m 2+2m =0,解得m 1=-2,m 2=0(不合题意,舍去),∴k =(-2)×(-2)=4,∴这个反比例函数的表达式为y =4x.14. 2S 1=3S 2(S 1=32S 2或S 2=23S 1均正确) 【解析】如解图,连接AC 、OB ,∵点O 是▱ABCD 的对称中心,∴点O 是▱ABCD 两条对角线的交点,∴OA =OC ,∴S △AOB =S △BOC ,∵EF =12AB ,GH =13BC ,∴S 1=12S △AOB ,S 2=13S △BOC ,∴S 1S 2=12S △AOB 13S △BOC ,即S 1S 2=32,∴2S 1=3S 2.15. 解:原式=18+2-1+1……………………………………(3分)=32+2-1+1=4 2.………………………………………………(5分) 16. 解:原式=a 2+2a +1-a 2+a (a -1)(a +1)·a (a +1)3a +1……………………(2分)=3a +1(a -1)(a +1)·a (a +1)3a +1=aa -1.………………………………………………………………(5分) 17. 解:如解图所示,点P 即为所求. …………………………………… (5分)第17题解图【作法提示】 ①以点D 为圆心,AD 长为半径画弧,交直线AM 于点E ;②分别以点A 、E 为圆心,以大于12AE 长为半径画弧,两弧交于点G ;③作直线DG ,交AM 于点P ,点P 即为所求. 18. 证明:∵AB ∥CD ,∴∠A =∠D.又∵EC ∥BF , ∴∠AHB =∠DGC .………………………………………………(2分) 在△ABH 和△DCG 中,∵AHB DGC A D AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△DCG (AAS), ∴AH =DG .又∵AH =AG +GH , DG =DH +GH ,∴AG =DH . ……………………………………………………(5分)19. 解: (1)30,19%; ………………………………………………(2分)(2) B (或70<x ≤80); …………………………………………………………………………(4分)(3)本次全部测试成绩的平均数为:2581+5543+5100+2796200=80.1(分), ∴ 本次全部测试成绩的平均数是80.1分. ………………………………… (7分)20.解:∵CB ⊥AD ,ED ⊥AD ,∴CB ∥ED ,∴△ABC ∽△ADE ,…………………………(3分)∴AB AD =BC DE,………………………………(5分) ∵BC =1 m ,DE =1.5 m ,BD =8.5 m , ∴AB AB +8.5=11.5,解得AB =17, ∴河宽AB 为17 m. ……………………………… (7分)21. 解: (1)设前五个月小明家网店销售这种红枣a 袋,销售小米b 袋,根据题意,得⎩⎪⎨⎪⎧a +2b =300020a +16b =42000,解得⎩⎪⎨⎪⎧a =1500b =750. ∴这前五个月小明家网店销售这种规格的红枣1500袋; ……………………………… (3分)(2)设后五个月小明家网店销售这种红枣x kg ,则销售小米(2000-x )kg ,由题意,得y =20x +16(2000-x )2=20x +16000-8x =12x +16000(x ≥600),……………………(5分) 在y =12x +16000中,∵k =12>0,∴y 的值随x 的增大而增大,∴当x 取最小值时,y 取最小值,∵x ≥600,∴当x =600时,y 有最小值,y 最小值=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. ……………………………… (7分)22. 解:(1)由题意知数字1、3所在的扇形的圆心角度数都为120°,∴数字-2所在的两个扇形圆心角的度数之和为120°,∴P (转出的数字是-2)=120°360°=13;……………………………… (2分) (2)由题意画树状图如解图:第22题解图 ………………………………………………………………………………………………(6分)由树状图可知,转动转盘两次,这两次转出的数字之积共有9种等可能的结果,其中两数字之积为正数的结果有5种情况,则P (这两次分别转出的数字之积为正数)=59. ………………………… (7分) 23. 证明:(1)如解图,连接ON ,∵NE 为⊙O 的切线,∴ON ⊥NE ,∵D 为AB 的中点,∠ACB =90°,∴AD =BD =CD ,∴∠B =∠DCB, …………………………………………(2分)∵OC =ON ,∴∠ONC =∠OCN ,∵∠OCN =∠DCB ,且∠B =∠DCB ,∴∠B =∠ONC ,∴ON ∥AB ,∵ON ⊥NE ,∴NE ⊥AB ; …………………………………………(4分)第23题解图(2)如解图,连接ND ,∵CD 为⊙O 的直径,∴∠DMC =∠DNC =90°,由(1)得BD =CD ,∴CN =NB ,∵∠ACB =90°,∴四边形CMDN 是矩形 ,………………………………………… (6分)∴MD =CN ,∴MD =NB . ……………………………………………………………………(8分)24. 解:(1) 在y =x 2+x -6中,令y =0,得x 2+x -6=0,解得x 1=-3,x 2=2,……………………………………(2分)令x =0,得y =-6,∴A (-3,0),B (2,0),C (0,-6),………………………………… (3分)∴AB =5,OC =6,∴S △ABC =12AB ·OC =5×62=15;…………………………………(4分) (2)由题意,得A′B′=AB =5.要使S △A ′B ′C ′=S △ABC ,只要抛物线L′与y 轴的交点为C ′( 0,-6)或C ′(0,6)即可.设所求抛物线L ′的函数表达式为y =x 2+nx -6或y =x 2+mx +6.…………………………………(7分)由(1)知抛物线C 的顶点坐标为(-12,-254) ∵抛物线L ′与抛物线L 的顶点纵坐标相同,∴-24-n 24=-254,24-m 24=-254. 解得n =±1(n =1舍去),m =±7∴抛物线L ′的函数表达式为y =x 2-x -6,y =x 2-7x +6或y =x 2+7x +6.………………………(10分)25. 解: (1)5;…………………………………(2分)【解法提示】如解图①,⊙O 是△ABC 的外接圆,∵AB =AC ,∴OA ⊥BC ,∵∠BAC =120°,∴∠OAB =∠OAC =60°,∵OA =OB ,∴△OAB 是等边三角形,∴OA =AB =5,即R =5.第25题解图①(2)如解图②,连接OP 、OM 、OA ,∵M 是AB 的中点,∴OM ⊥AB ,AM =BM =12AB =12,∵OP =OA =13,∴OM =OA 2-AM 2=132-122=5,………………………………… (4分)∵点P 为⊙O 上一动点,∴PM≤OP +OM =13+5=18,当P 、O 、M 三点共线时,取等号,此时PM 有最大值,最大值为18; ……………………………(5分)第25题解图②(3)如解图③,P ′为BC ︵上任意一点,分别作点P ′关于直线AB 、AC 的对称点P ′1、P ′2,连接P ′1P ′2,分别与AB 、AC 相交于点E′、F′,连接P′E′、P′F′,∴△P′E′F ′的周长为P ′1E ′+E′F′+P ′2F′=P ′1P ′2,对于点P′及分别在AB 、AC 上的任意点E 、F ,则有△P′EF 的周长≥△P′E′F′的周长=P ′1P ′2, 即△P′EF 的周长最小值为P ′1P′2的长. …………………………………(7分)连接AP ′1、AP′、AP′2,则AP ′1=AP′=AP ′2,∠P′AB =∠P ′1AB ,∠P ′2AC =∠P′AC ,∴∠P ′1AP ′2=2∠BAC =120°, P ′1P ′2=3AP ′1=3AP ′,…………………………………(8分) ∴要使P ′1P ′2最短,只要AP′最短,设O 为BC ︵所在圆的圆心,连接OB 、OC 、OP′ 、OA 、BC ,且OA 与BC ︵相交于点P ,则AP ′+P′O ≥AO ,∴AP ′≥AP. …………………………………(9分)易证△ACB 为直角三角形,且∠ABC =12∠BOC =30°,∠ACB =90°, ∴BC =AC ·tan60°=33,∵∠BOC =60°,OB =OC ,∴BO =BC =33,∠OBC =60°, ∠ABO =∠ABC +∠OBC =90°, 在Rt △ABO 中,AO =AB 2+BO 2=62+(33)2=37, …………………………… (11分) ∴3AP =3(AO -OP )=3(37-33)=321-9,∴P ′1P ′2最小值为3AP =321-9,∴PE +EF +FP 的最小值为(321-9)km. ……………………………………(12分)第25题解图③。
2018年陕西省中考数学试卷【word,带解析】
2018年陕西省中考数学试卷一、选择题(共 小题,每小题 分,计 分。
每小题只有一个选项是符合题意的).( 分)﹣的倒数是( ) . . . . .( 分)如图,是一个几何体的表面展开图,则该几何体是( ).正方体 .长方体 .三棱柱 .四棱锥.( 分)如图,若 ∥ , ∥ ,则图中与∠ 互补的角有( ). 个 . 个 . 个 . 个.( 分)如图,在矩形 中, (﹣ , ), ( , ).若正比例函数 的图象经过点 ,则 的值为( ). . .﹣ ..( 分)下列计算正确的是( ). .(﹣ ) ﹣ . ﹣ .( ﹣ ) ﹣.( 分)如图,在△ 中, ,∠ ,∠ , ⊥ ,垂足为 ,∠ 的平分线交 于点 ,则 的长为( ). . . ..( 分)若直线 经过点( , ), 经过点( , ),且 与 关于 轴对称,则 与 的交点坐标为( ) .(﹣ , ) .( , ) .(﹣ , ) .( , ).( 分)如图,在菱形 中.点 、 、 、 分别是边 、 、 和 的中点,连接 、 、 和 .若 ,则下列结论正确的是( ). . . ..( 分)如图,△ 是⊙ 的内接三角形, ,∠ ,作 ∥ ,并与⊙ 相交于点 ,连接 ,则∠ 的大小为( ). . . ..( 分)对于抛物线 ( ﹣ ) ﹣ ,当 时, > ,则这条抛物线的顶点一定在( ).第一象限 .第二象限 .第三象限 .第四象限二、填空题(共 小题,每小题 分,计 分).( 分)比较大小: (填 > 、 < 或 )..( 分)如图,在正五边形 中, 与 相交于点 ,则∠ 的度数为 ..( 分)若一个反比例函数的图象经过点 ( , )和 ( ,﹣ ),则这个反比例函数的表达式为 ..( 分)如图,点 是 的对称中心, > , 、 是 边上的点,且 ; 、 是 边上的点,且 ,若 , 分别表示△ 和△ 的面积,则 与 之间的等量关系是 .三、解答题(共 小题,计 分。
2018年陕西省中考数学试卷
精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前陕西省2018年初中毕业学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.117-的倒数是( )A .117B .117-C .711D .711-2.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .正方体D .长方体3.如图,若12l l ∥,34l l ∥,则图中与1∠互补的角有( )A .1个B .2个C .3个D .4个4.如图,在矩形AOBC 中,(2,0)A -,(0,1)B .若正比例函数y kx =的图象经过点C ,则k 的值为( )A .2-B .12-C .2D .125.下列计算正确的是( )A .2242a a a =B .22(2)4a a -=-C .236()a a -=-D .222363a a a -=6.如图,在ABC △中,8AC =,60ABC ∠=,45C ∠=,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( )A .22B .32C .423D .8237.若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( )A .(2,0)B .(2,0)-C .(6,0)D .(6,0)-8.如图,在菱形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD 和DA 的中点,连接EF ,FG ,GH 和HE .若2EH EF =,则下列结论正确的是 ( ) A .2AB EF = B .3AB EF = C .2AB EF = D .5AB EF = 9.如图,ABC △是O 的内接三角形,AB AC =,65BCA ∠=,作CD AB ∥,并与O 相交于点D ,连接BD ,则DBC ∠的大小为( )A .15B .25C .35D .4510.对于抛物线2(21)3y ax a x a =+-+-,当1x =时,0y >,则这条抛物线的顶点一定在 ( )A .第一象限B .第二象限C .第三象限D .第四象限第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题3分,共12分.请把答案填写在题中的横线上) 11.比较大小:310(填“>”“<”或“=”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)12.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .13.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的表达式为 .14.如图,点O 是ABCD 的对称中心,AD AB >,E ,F 是AB 边上的点,且12EF AB =;G ,H 是BC 边上的点,且13GH BC =.若S 1,S 2分别表示EOF △和GOH △的面积,则S 1与S 2之间的等量关系是 .三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)计算:0(3)(6)|21|(52)π--⨯-+-+.16.(本小题满分5分)化简:2131()11a a a a a a a++-÷-++.17.(本小题满分5分)如图,已知:在正方形ABCD 中,M 是BC 边上一定点,连接AM .请用尺规作图法,在AM 上作一点P ,使DPA ABM △∽△.(不写作法,保留作图痕迹)18.(本小题满分5分)如图,AB CD ∥,E ,F 分别为AB ,CD 上的点,且EC BF ∥,连接AD ,分别与EC ,BF 相交于点G ,H .若AB CD =,求证:AG DH =.19.(本小题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A ,B ,C ,D 四组,绘制了如下统计图表:组别 分数/分 频数 各组总分/分A 6070x <≤38 2 581 B 7080x <≤ 72 5 543 C 8090x <≤ 60 5 100 D90100x <≤m2 796依据以上统计信息解答下列问题: (1)求得m = ,n = ; (2)这次测试成绩的中位数落在 组; (3)求本次全部测试成绩的平均数.20.(本小题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第5页(共22页) 数学试卷 第6页(共22页)河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D ,竖起标杆DE ,使得点E 与点C ,A 共线.已知:CB AD ⊥,ED AD ⊥,测得1m BC =, 1.5m DE =,8.5m BD =.测量示意图如图所示.请根据相关测量信息,求河宽AB .21.(本小题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.商品 红枣 小米 规格 1 kg/袋 2 kg/袋 成本(元/袋) 40 38 售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知2018年前五个月,小明家网店销售上表中规格的红枣和小米共3 000 kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计2018年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2 000 kg ,其中,这种规格的红枣的销售量不低于600 kg .假设这后五个月,销售这种规格的红枣为x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(本小题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是2-的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(本小题满分8分)如图,在Rt ABC △中,90ACB ∠=,以斜边AB 上的中线CD 为直径作O ,分别与AC ,BC 交于点M ,N .(1)过点N 作O 的切线NE 与AB 相交于点E ,求证:NE AB ⊥; (2)连接MD ,求证:MD NB =.24.(本小题满分10分)已知抛物线L :26y x x =+-与x 轴相交于A ,B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A ,B ,C 三点的坐标,并求ABC △的面积;(2)将抛物线L 向左或向右平移,得到抛物线L ',且L '与x 轴相交于A ',B '两点(点A '在点B '的左侧),并与y 轴相交于点C ',要使A B C '''△和ABC △的面积相等,求所有满足条件的抛物线的函数表达式.25.(本小题满分12分) 问题提出(1)如图1,在ABC △中,120A ∠=,5AB AC ==,则ABC △的外接圆半径R 的值为 ;问题探究(2)如图2,O 的半径为13,弦24AB =,M 是AB 的中点,P 是O 上一动点,求PM 的最大值. 问题解决(3)如图3所示,AB ,AC ,BC 是某新区的三条规划路,其中,6km AB =,3km AC =,60BAC ∠=,BC 所对的圆心角为60.新区管委会想在BC 路边建物资总站点P ,在AB ,AC 路边分别建物资分站点E ,F ,也就是,分别在BC 、线段AB 和AC 上选取点P ,E ,F .由于总站工作人员每天都要将物资在各物资站点间按P E F P →→→的路径进行运输,因此,要在各物资站点之间规划道路PE ,EF 和FP .为了快捷、环保和节约成本.要使得线段PE ,EF ,FP 之和最短,试求PE EF FP ++的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共22页) 数学试卷 第8页(共22页)图1图2图3山西省2018年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】A 中,02>-,错;B 中,53-<,正确;C 中,23->-,错误;D 中,14>-,错误,故选B .【考点】有理数的大小比较. 2.【答案】B【解析】“算经十书”包括《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《张丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算经》在四个选项中《几何原经》是古希腊数学家欧几里得所著的一部数学著作,故选B . 【考点】我国古代数学著作.3.【答案】D【解析】A 中,322326()(1)()a a a -=-=,错误;B 中,222235a a a +=,错误;C 中,2352 =2a a a ,错误;D 中,2633()28b ba a-=-,正确,故选D . 【考点】整式的运算. 4.【答案】C【解析】A 中,22 4(2) 40b ac ∆=-=-=>,此方程有两个不相等的实数根,不符合题意;B 中,224441(1)200b ac ∆=-=-⨯⨯-=>,此方程有两个不相等的实数根,不符合题意;C 中,22 4(4)42380b ac ∆=-=--⨯⨯=-<,此方程没有实数根,符合题意;D中,原方程变形为23520x x -+=,224(5)43210b ac ∆=-=--⨯⨯=>.此方程有两个不相等的实数根,不符合题意,故选C .【考点】一元二次方程根的判别式.5.【答案】C【解析】把这7个数据按从小到大的顺序排列为302.34,319.79,332.68,338.87,416.01,725.86,303.78,位于最中间的数据为338.87故选C .【考点】中位数. 6.【答案】C【解析】1 010立方米/秒 1 010 3 600=⨯立方米/时=3 636 000立方米/时63.636 10=⨯立方米/时,故选C . 【考点】科学记数法. 7.【答案】A【解析】画树状图如图所示,共有9种等可能的结果,其中两次摸出的小球都是黄球的结果有4种,所以P (两次都摸到黄球)4=9,故选A .【考点】列表法或画树状图法求概率. 8.【答案】D【解析】连接BB ',由旋转的性质知,=AC A C ',又°60A =∠,∴ACA '△是等边三角形∴°=60ACA'∠,由旋转可知°==60BCB ACA ''∠∠, BC B C '=,∴BCB '△为等边三角形,∴BB BC'=.在Rt ABC △中, tan606BC AC ︒===∴点B '与点B 之的距离是D .【考点】旋转的性质、等边三角形的判定与性质、锐角三角函数. 9.【答案】B【解析】22289816169(4)25y x x x x x =--=-+--=--,故选B . 【考点】二次函数表达式的一般式与顶点式的转换. 10.【答案】A精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第9页(共22页) 数学试卷 第10页(共22页)【解析】∵四边形ABCD 为正方形,∴AB BC CD AD ===,4AC BD ==, ∴AB AD BC CD S S S S ===弓形弓形弓形弓形.如图所示,290π41 42443602ABDAEF S S S π⨯=-=-⨯⨯=-△阴影扇形,故选A .【考点】正方形的性质、扇形的面积公式.第Ⅱ卷二.填空题 11.【答案】17【解析】原式22 11(81 17=-=-=. 【考点】平方差公式 12.【答案】360【解析】由多边形的外角和为°360,知°12345=360∠+∠+∠+∠+∠. 【考点】多边形的外角和定理. 13.【答案】55【解析】设长为8 cm x ,高为11 cm x ,根据题意,得8+11+20115x x ≤,解得5x ≤,1155x ≤ ,即符合此规定的行李箱的高的最大值为55 cm【考点】一元一次不等式的应用. 14.【答案】【解析】如图,过点A 作AG PQ ⊥于点G ,由尺规作图可知,1=2∠∠,∵MN PQ ∥,∴1=3∠∠.∴2=3∠∠.∵°=60ABP ∠,∴°2=3=30∠∠.在Rt ABG △中° sin602AG AB ===在Rt AGF △中,∵°3=30∠,∴2AF AG ==【考点】解直角三角形、角平分线的作法、平行线的性质、三角形外角的性质.15.【答案】125【解析】如图,连接EF ,DE ,DF .∵°=90ACB ∠,∴EF 为O 的直径,∴EF 必过圆心O ∵CD 为O 的直径,∴DE AC ⊥,DF BC ⊥,∵°=90ACB ∠, AD BD =,∴5CD AD BD ===,∴3AE CE ==,4CF BF ==,∴EF AB ∥,∴FGB OFG =∠∠,∵FG 为O 的切线,∴°=90OFG ∠,∴°=90FGB ∠,在Rt CDF △中,3DF ==,在Rt BDF △中,∵DF BF BD FG =,∴ 341255DF BF FG BD ⨯===.三、解答题 16.【答案】(1)7 (2)2x x - 【解析】(1)原式8421=-++ 7=(2)原式22(1)(1)11(2)2x x x x x x -+----=-数学试卷 第11页(共22页) 数学试卷 第12页(共22页)+1122x x x =--- 2xx =-.【考点】实数的运算、分式的混合运算.17.【答案】解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D ,∴1142,2 4.k b k b -+=-⎧⎨+=⎩解,得:11,2.k b =⎧⎨=⎩∴一次函数的表达式为12y x =+.∵反比例函数22k y x=的图象经过点(2,4)D , ∴24=2k ,∴2=8k . ∴反比例函数的表达式为28y x=. (2)由10>y ,得20x >+.∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<.【解析】解:(1)∵一次函数11y k x b =+的图象经过点(4,2)C --,(2,4)D ,∴1142,2 4.k b k b -+=-⎧⎨+=⎩解,得:11,2.k b =⎧⎨=⎩∴一次函数的表达式为12y x =+. ∵反比例函数22k y x=的图象经过点(2,4)D , ∴24=2k ,∴2=8k . ∴反比例函数的表达式为28y x=. (2)由10>y ,得20x >+. ∴2x >-.∴当2x >-时,10y >. (3)4x <-或02x <<.【考点】待定系数法求一次函数与反比例函数的解析式、一次函数与反比例函数交点问题.18.【答案】解:(1)补全条形统计图和扇形统计图如图所示.(2)101004010+15⨯=%%. 答:男生所占的百分比为40%. (3)15002105⨯=%(人)答:估计其中参加“书法”项目活动的有105人. (4)1515515+10+8+154816==.答:正好抽到参加“器乐”活动项目的女生的概率为516. 【解析】解:(1)补全条形统计图和扇形统计图如图所示.精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第13页(共22页) 数学试卷 第14页(共22页)(2)101004010+15⨯=%%. 答:男生所占的百分比为40%. (3)15002105⨯=%(人)答:估计其中参加“书法”项目活动的有105人. (4)1515515+10+8+154816==.答:正好抽到参加“器乐”活动项目的女生的概率为516. 【考点】条形统计图、扇形统计图、概率公式. 19.【答案】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC △中,90ADC ︒=∠,=38A ︒∠.∵tan38CDAD︒=,∴5tan380.84CD x AD x ︒=≈=.在Rt BDC △中,90BDC ︒=∠,8B ︒=∠2.∵tan28CDBD︒=,∴2tan280.5CD x BD x ︒=≈=. ∵234AD BD AB +==,∴522344x x +=.解,得72x ≈.答:斜拉索顶端点C 到桥面的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 【解析】解:(1)过点C 作CD AB ⊥于点D .设CD x =米,在Rt ADC △中,90ADC ︒=∠,=38A ︒∠.∵tan38CDAD︒=,∴5tan380.84CD x AD x ︒=≈=.在Rt BDC △中,90BDC ︒=∠,8B ︒=∠2.∵tan28CDBD︒=,∴2tan280.5CD x BD x ︒=≈=. ∵234AD BD AB +==,∴522344x x +=.解,得72x ≈.答:斜拉索顶端点C 到桥面的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等. 【考点】解直角三角形的应用.20.【答案】解法一:设乘坐“复兴号”G92次列车从太原南到北京西需要x 小时,由题意,得50050040151()646x x =+--.解,得83x =经检验,83x =是原方程的根. 答:乘坐“复兴号"G92次列车从太原南到北京西需要83小时.解法二:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x 小时,由题意,得5005004054x x =+.解,得52x =. 经检验,52x =是原方程的根.518263+=(小时).数学试卷 第15页(共22页) 数学试卷 第16页(共22页)答:乘坐“复兴号”C92次列车从太原南到北京西需要83个小时.【解析】解法一:设乘坐“复兴号”G92次列车从太原南到北京西需要x 小时,由题意,得50050040151()646x x =+--.解,得83x =经检验,83x =是原方程的根. 答:乘坐“复兴号"G92次列车从太原南到北京西需要83小时.解法二:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x 小时,由题意,得5005004054x x =+.解,得52x =. 经检验,52x =是原方程的根.518263+=(小时). 答:乘坐“复兴号”C92次列车从太原南到北京西需要83个小时. 【考点】分式方程的应用.21.【答案】解:(1)四边形AXYZ 是菱形. 证明:∵ZY AC ∥,YX ZA ∥, ∴四边形AXYZ 是平行四边形. ∵=ZA YZ ,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴1=2∠∠.∵ZY AC ∥,∴1=3∠∠. ∴2=3∠∠.∴=YB YZ .∵四边形AXYZ 是菱形,∴==AX XY YZ .∴==AX BY XY .(3)D (或位似)【解析】解:(1)四边形AXYZ 是菱形. 证明:∵ZY AC ∥,YX ZA ∥, ∴四边形AXYZ 是平行四边形. ∵=ZA YZ ,∴AXYZ 是菱形.(2)证明:∵CD CB =,∴1=2∠∠.∵ZY AC ∥,∴1=3∠∠. ∴2=3∠∠.∴=YB YZ .∵四边形AXYZ 是菱形,∴==AX XY YZ . ∴==AX BY XY . (3)D (或位似)【考点】菱形的判定与性质、等腰三角形的判定与性质、相似三角形的判定与性质、位似.22.【答案】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°===90CBE ABC GHC ∠∠∠. ∴12=90︒∠+∠.∵四边形CEFG 为正方形, ∴CG CE =,=90CCE ︒∠ ∴13=90︒∠+∠∴2=3∠∠.精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第17页(共22页) 数学试卷 第18页(共22页)∴GHC CBE △≌△. ∴HC BE =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =, BE AB =,∴22BC BE HC ==. ∴HC BH =.∴GH 垂直平分BC . ∴点G 在BC 的垂直平分线上.(3)点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上). 证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N . ∴90BMN ENM ENF ︒===∠∠∠.∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°90CBE ABC ==∠∠,∴四边形BENM 为矩形. ∴BM EN =,90BEN ︒=∠,∴1290︒=∠+∠. ∵四边形CEFG 为正方形, ∴EF EC =,°90CEF =∠, ∴°2390=∠+∠,∴13=∠∠.∵90CBE ENF ︒==∠∠,∴ENF EBC △≌△. ∴NE BE =.∴BM BE =.∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =.AB BE =,∴2BC BM =,∴BM MC =. ∴FM 垂直平分BC ,∴点F 在BC 边的垂直平分线上.证法二:过F 作FN BE ⊥交BE 的延长线于点N ,连接FB ,FC .四边形ABCD 是矩形,点E 在AB 的延长线上,∴90CBE ABC N ︒===∠∠∠.∴1390︒=∠+∠, ∵四边形CEFG 为正方形, ∴EC EF =,90CEF ︒=∠. ∴1290︒=∠+∠∴23=∠∠. ∴ENF CBE △≌△.∴NF BE =,NE BC =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =,BE AB =.∴设BE a =,则2BC EN a ==,NF a =.∴BF .CF .CF ==.∴BF CF =,∴点F 在BC 边的垂直平分线上.【解析】(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A 在线段GF 的垂直平分线上.(2)证明:过点G 作GH BC ⊥于点H ,∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°===90CBE ABC GHC ∠∠∠. ∴12=90︒∠+∠.∵四边形CEFG 为正方形, ∴CG CE =,=90CCE ︒∠ ∴13=90︒∠+∠∴2=3∠∠. ∴GHC CBE △≌△. ∴HC BE =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =, BE AB =,∴22BC BE HC ==. ∴HC BH =.∴GH 垂直平分BC . ∴点G 在BC 的垂直平分线上.(3)点F 在BC 边的垂直平分线上(或点F 在AD 边的垂直平分线上).数学试卷 第19页(共22页) 数学试卷 第20页(共22页)证法一:过点F 作FM BC ⊥于点M ,过点E 作EN FM ⊥于点N . ∴90BMN ENM ENF ︒===∠∠∠.∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴°90CBE ABC ==∠∠,∴四边形BENM 为矩形. ∴BM EN =,90BEN ︒=∠,∴1290︒=∠+∠. ∵四边形CEFG 为正方形, ∴EF EC =,°90CEF =∠, ∴°2390=∠+∠,∴13=∠∠.∵90CBE ENF ︒==∠∠,∴ENF EBC △≌△. ∴NE BE =.∴BM BE =.∵四边形ABCD 是矩形,∴AD BC =.∵2AD AB =.AB BE =,∴2BC BM =,∴BM MC =. ∴FM 垂直平分BC ,∴点F 在BC 边的垂直平分线上.证法二:过F 作FN BE ⊥交BE 的延长线于点N ,连接FB ,FC .四边形ABCD 是矩形,点E 在AB 的延长线上, ∴90CBE ABC N ︒===∠∠∠.∴1390︒=∠+∠, ∵四边形CEFG 为正方形, ∴EC EF =,90CEF ︒=∠. ∴1290︒=∠+∠∴23=∠∠. ∴ENF CBE △≌△.∴NF BE =,NE BC =.∵四边形ABCD 是矩形,∴AD BC =. ∵2AD AB =,BE AB =.∴设BE a =,则2BC EN a ==,NF a =.∴BF =.CF .CF ==.∴BF CF =,∴点F 在BC 边的垂直平分线上.【考点】平行线分线段成比例、等腰三角形的性质矩形的性质、全等三角形的判定与性质、正方形的判定与性质、线段垂直平分线的判定定理. 23.【答案】(1)由0y =,得2114033x x --=.解,得13x =-,24x =.∴点A ,B 的坐标分别为(3,0)A -,(4,0)B . 由0x =,得4y =-.∴点C 的坐标为(0,4)C .(2)1(4)22Q -,2(1,3)Q -. (3)过点F 作FG PQ ⊥于点G ,则FG x ∥轴.由(4,0)B ,(0,4)C -.得OBC △为等腰直角三角形. ∴45OBC QFG ︒==∠∠.∴2GQ FG FQ ==. ∵PE AC ∥,∴12=∠∠.∴FG x ∥轴,∴23=∠∠,∴13=∠∠.∵90FGP AOC ︒==∠∠,∴FGP AOC △∽△.∴FG GPAO OC=,即4FG GP =. ∴44233GP FG FQ ===.∴QPGQGP =+=,∴FQ =,精品文档,名师推荐! 来源网络,造福学生———————欢迎下载,祝您学习进步,成绩提升———————数学试卷 第21页(共22页) 数学试卷 第22页(共22页)∴PM x ⊥轴,点P 的横坐标为m ,45MBQ ︒=∠, ∴4QM MB m ==-,211433PM m m =---.∴2211144(4)+33QP PM QM m m m m m ==-++--=--.∴2214+)33FQ m m ==-=+. ∵0<,∴QF 有最大值,∴当27m ==时,QF 有最大值. 【解析】(1)由0y =,得2114033x x --=.解,得13x=-,24x=.∴点A ,B 的坐标分别为(3,0)A -,(4,0)B . 由0x =,得4y =-.∴点C 的坐标为(0,4)C .(2)14)Q ,2(1,3)Q -. (3)过点F 作FG PQ ⊥于点G ,则FG x ∥轴.由(4,0)B ,(0,4)C -.得OBC △为等腰直角三角形. ∴45OBC QFG ︒==∠∠.∴GQ FG ==. ∵PE AC ∥,∴12=∠∠.∴FG x ∥轴,∴23=∠∠,∴13=∠∠.∵90FGP AOC ︒==∠∠,∴FGP AOC △∽△.∴FG GPAO OC=,即4FG GP =.∴44233GP FG FQ ===. ∴QP GQ GP =+=+=,∴FQ =, ∴PM x ⊥轴,点P 的横坐标为m ,45MBQ ︒=∠,∴4QM MB m ==-,211433PM m m =---.∴2211144(4)+3333QP PM QM m m m m m ==-++--=--.∴2214+)773377FQ m m ==-=+. ∵0<,∴QF有最大值,∴当2m ==时,QF 有最大值. 解法二:提示,先分别求出BQ 和BF 关于m 的代数式,再由QF BF BQ =-得到QF 关于m 的代数式【考点】抛物线的性质、等腰三角形的性质、二次函数与一元二次方程的关系、勾股定理、相似三角形的判定与性质.。
2018年陕西省中考数学试卷【word,带解析】
2018年陕西省中考数学试卷一、选择题(共 小题,每小题 分,计 分。
每小题只有一个选项是符合题意的).( 分)﹣的倒数是(). . . ..( 分)如图,是一个几何体的表面展开图,则该几何体是().正方体 .长方体 .三棱柱 .四棱锥.( 分)如图,若 ∥ , ∥ ,则图中与∠ 互补的角有(). 个 . 个 . 个 . 个 .( 分)如图,在矩形 中, (﹣ , ), ( , ).若正比例函数 的图象经过点 ,则 的值为(). . .﹣ ..( 分)下列计算正确的是(). .(﹣ ) ﹣ . ﹣ .( ﹣) ﹣.( 分)如图,在△ 中, ,∠ ,∠ , ⊥ ,垂足为 ,∠ 的平分线交 于点 ,则 的长为(). . . . .( 分)若直线 经过点( , ), 经过点( , ),且 与 关于 轴对称,则 与 的交点坐标为().(﹣ , ) .( , ) .(﹣ , ) .( , ).( 分)如图,在菱形 中.点 、 、 、 分别是边 、 、 和 的中点,连接 、 、 和 .若 ,则下列结论正确的是(). . . ..( 分)如图,△ 是⊙ 的内接三角形, ,∠ ,作 ∥ ,并与⊙ 相交于点 ,连接 ,则∠ 的大小为(). . . ..( 分)对于抛物线 ( ﹣ ) ﹣ ,当 时, > ,则这条抛物线的顶点一定在().第一象限 .第二象限 .第三象限 .第四象限二、填空题(共 小题,每小题 分,计 分).( 分)比较大小: (填 > 、 < 或 )..( 分)如图,在正五边形 中, 与 相交于点 ,则∠ 的度数为 ..( 分)若一个反比例函数的图象经过点 ( , )和 ( ,﹣ ),则这个反比例函数的表达式为 ..( 分)如图,点 是 的对称中心, > , 、 是 边上的点,且 ; 、 是 边上的点,且 ,若 , 分别表示△ 和△ 的面积,则 与 之间的等量关系是 .三、解答题(共 小题,计 分。
2018年陕西省中考数学试卷【word,带解析】
2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)﹣的倒数是()A.B.C.D.2.(3.00分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3.00分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2 D.25.(3.00分)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣4 6.(3.00分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2 C.D.37.(3.00分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)8.(3.00分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3.00分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3.00分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)比较大小:3(填“>”、“<”或“=”).12.(3.00分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3.00分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3.00分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
陕西省2018年中考数学试卷及答案解析(word版)
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1.-的倒数是A. B.- C. D.-【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3.如图,若l 1∥l2,l 3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠ 1 互补的角的个数 .【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A.-B.C.-2D. 2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.A. a ・= 2aB. (- a )=- aC. 3a -6a = 3aD. ( a -2)=a -4【详解】 A. a ・a = a ,故 A 选项错误;B. (- a )=- a ,正确;C. 3a - 6a = -3a ,故 C 选项错误;D. (a - 2)= a - 4a+4,故 D 选项错误, ,, 【详解】∵ A(- 2,0), B(0, 1),∴ OA=2, OB=1, ∵四边形 OACB 是矩形, ∴ BC=OA=2,AC=OB=1,∵点 C 在第二象限,∴ C 点坐标为( -2, 1), ∵正比例函数 ∴ -2k=1, ∴ k=-, 故选 A.y =kx 的图像经过点C ,【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点 解题的关键 .5.下列计算正确的是C 的坐标是a2 362 2 22 2【答案】 B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得 2 2 42 3 6 2 2 2 2 2 故选 B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算.的运算法则是解题的关键.6.如图,在△ABC 中,AC = 8,∠ ABC = 60°∠ C = 45° AD ⊥ BC ,垂足为 D ,∠ABC 的平分线交 AD 于点E ,则 AE 的长为° A.B. 2C.D. 3【答案】 C【解析】【分析】由已知可知 △ADC 是等腰直角三角形,根据斜边 AC=8可得 AD=4,在 Rt △ABD 中,由∠ B=60°,可得 BD==,再由 BE 平分∠ ABC ,可得∠ EBD=30°,从而可求得 DE 长,再根据AE=AD-DE 即可 【详解】∵ AD ⊥ BC ,∴△ ADC 是直角三角形, ∵∠ C=45°, ∴∠ DAC=45, ∴ AD=DC , ∵ AC=8,∴ AD=4,在 Rt △ABD 中,∠ B=60°,∴ BD===,∵ BE 平分∠ ABC ,∴∠ EBD=30°, ∴ DE=BD?tan30°= ∴ AE=AD-DE= 故选 C.=,,【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键7.若直线 l 1经过点 (0,4),l 2经过 (3, 2),且 l 1与 l 2关于 x 轴对称,则 l 1与 l 2的交点坐标为.A. (- 2,0)B. (2, 0)C. (- 6,0)D. (6, 0)【答案】 B【解析】【分析】根据 l 1与 l 2关于 x 轴对称,可知l 2必经过 (0, -4), l 1必经过点 (3, -2),然后根据待定系数法分别求出 l 1、 l 2的解析式后,再联立解方程组即可得.【详解】由题意可知l 1经过点 (3,-2),( 0, 4),设 l 1的解析式为 y=kx+b ,则有,解得,所以 l 1的解析式为 y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l 1的解析式为y=mx+n,则有,解得,所以l 2的解析式为y=2x-4,联立所以交点坐标为(故选B. ,解得:2,0),,【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8.如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A. AB=EFB. AB=2EFC. AB=EFD. AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA= AC,OB= BD,AC⊥BD,由中位线定理可得EH= BD,EF= AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB= EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA= AC,OB= BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH= BD,EF= AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB=故选D.= EF,10.对于抛物线 y =ax + (2a - 1)x + a -3,当 x =1时, y > 0,则这条抛物线的顶点一定在 , °° - 【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题 的关键 .9.如图,△ABC 是⊙ O 的内接三角形, AB =AC ,∠ BCA = 65°作 CD ∥AB ,并与O 相交于点 D ,连接 BD , 则∠ DBC 的大小为A. 15°B. 35°C. 25°D. 45° 【答案】 A【详解】∵ AB=AC ,∴∠ ABC=∠ ACB=65°,∴∠ A=180°-∠ ABC-∠ ACB=50°,∵ DC//AB ,∴∠ ACD=∠ A=50°, 又∵∠ D=∠ A=50°,∴∠ DBC=180 -∠ D -∠BCD=180 -50°( 65°+50°) =15°, 故选 A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容 是解题的关键 .2A.第一象限B.第二象限C.第三象限D.第四象限【答案】 C【详解】∵ 3 =9, 9<10,) ) 【解析】【分析】先由题意得到关于 标的取值范围,据此即可得出答案.a 的不等式,解不等式求出 a 的取值范围,然后再确定抛物线的顶点坐【详解】由题意得: ∴ 2a-1>0,a+(2a-1)+a-3>0,解得: a>1,∴<0,,∴抛物线的顶点在第三象限, 故选 C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键二、填空题:(本大题共 4题,每题 3分,满分 12分).11.比较大小:3_________ 【答案】 <(填 <, >或= ).【解析】【分析】根据实数大小比较的方法进行比较即可得答案 2.∴ 3<,故答案为: <.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12.如图,在正五边形 ABCDE 中, AC 与 BE 相交于点 F ,则 【答案】 72°AFE 的度数为 ________【解析】【分析】首先根据正五边形的性质得到AB=BC=AE ,∠ABC=∠ BAE=108°,然后利用三角形内角和定理得∠ BAC=∠ BCA=∠ ABE=∠ AEB=( 180°-108°÷2=36°,最后利用三角形的外角的性质得到 ∠ AFE=∠ BAC+∠ ABE=72°. 【详解】∵五边形ABCDE 为正五边形,∴ AB=BC=AE ,∠ABC=∠ BAE=108°,∴∠ BAC=∠ BCA=∠ ABE=∠AEB=(180°-108°÷2=36°, ∴∠ AFE=∠BAC+∠ABE=72°, 故答案为: 72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13.若一个反比例函数的图象经过点A(m , m)和 B(2m ,- 1),则这个反比例函数的表达式为______由题意得: m =2m ×(-1),【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于的值,再由待定系数法即可求得反比例函数的解析式-19.y=,【详解】设反比例函数解析式为2解得: m=-2或 m=0(不符题意,舍去), 所以点 A ( -2, -2),点 B (-4, 1), 所以 k=4,y=,所以反比例函数解析式为: 故答案为: y= .m 的方程,解方程即可求得m【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数 解题的关键 .k 是14.点 O 是平行四边形ABCD 的对称中心, AD > AB ,E 、 F 分别是 AB 边上的点,且 EF = AB ; G 、 H 分别是 BC 边上的点,且 GH = BC ;若 S 1,S 2分别表示 ? EOF 和 ? GOH 的面积,则 S 1,S 2之间的等量关系是 ______________ 【答案】 2S 1= 3S 2【解析】【分析】过点 O 分别作 OM ⊥ BC ,垂足为 M ,作 ON ⊥AB ,垂足为 N ,根据点 O 是平行四边形ABCD的对称中心以及平行四边形的面积公式可得AB?ON=BC?OM ,再根据S 1= EF?ON ,S 2= GH?OM , EF = AB , GH = BC ,则可得到答案 . 【详解】过点O 分别作 OM ⊥ BC ,垂足为 M ,作 ON ⊥ AB ,垂足为 N ,∵点 O 是平行四边形ABCD 的对称中心,∴ S 平行四边形ABCD =AB?2ON, S 平行四边形ABCD=BC?2OM ,∴ AB?ON=BC?OM ,∵ S 1= EF?ON , S 2= GH?OM , EF = AB ,GH = BC , ∴ S 1= AB?ON , S 2= BC?OM ,∴ 2S 1= 3S 2,- 1|+ (5- 2π)( - 1|+ (5- 2π)故答案为: 2S 1= 3S 2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面 积是解题的关键 .三、解答题(共 11小题,计 78分.解答应写出过程)15.计算: (-)×-)+|【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、 序进行计算即可 .0次幂的计算,然后再按运算顺【详解】 (-= 3 = 4)×(- +.)+ |- 1+ 1【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键16.化简: 【答案】.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得 【详解】= =.=.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17.如图,已知在正方形ABCD 中, M 是 BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ ABM (不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点 .【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明?ABH≌?DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在?ABH和?DCG中,,∴?ABH≌?DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学 们设计了“垃圾分类知识及投放情况 布情况,他们将全部测试成绩分成”问卷,并在本校随机抽取若干名同学进行了问卷测试.A 、B 、C 、D 四组,绘制了如下统计图表:根据测试成绩分“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得 m =, n =;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1) 30; 19%;( 2) B ;( 3) 80.1分 .【解析】【分析】( 1)根据 B 组的频数以及频率可求得样本容量,然后用样本容量乘以D 组的百分比可求得m 的值,用 A 的频数除以样本容量即可求得n 的值;( 2)根据中位数的定义进行解答即可得解; ( 3)根据平均数的定义进行求解即可得【详解】(1) 72÷36%=200, m=200× 15%=30, n=故答案为: 30, 19%;.=19%,( 2)一共有 200个数据,从小到大排序后中位数是第 中位数落在 B 组, 故答案为: B ;( 3)本次全部测试的平均成绩=100个、第 101个数据的平均数,观察可知=80.1分.【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键 .20.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【答案】河宽为17米.【解析】【分析】由题意先证明?ABC∽?ADE,再根据相似三角形的对应边成比例即可求得AB的长 .【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴?ABC∽?ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21.经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品规格成本(元/袋)售价(元/袋)红枣1kg/袋4060小米2kg/袋3854根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共求这前五个月小明家网店销售这种规格的红枣多少袋;3000kg,获得利润4.2万元,(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000 kg,其中,这种规格的红枣的销售量不低于枣味x(kg),销售这种规格的红枣和小米获得的总利润为600kg.假设这后五个月,销售这种规格的红y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【答案】(1)前五个月小明家网店销售这种规格的红枣店销售这种规格的红枣和小米至少获得总利润23200元.1500袋,销售小米750袋;(2)小明家网【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据等量关系:①销售红枣和小米共3000kg,②获得利润4.2万元,列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润,可得即可得答案 .y与x间的函数关系式,根据一次函数的性质【详解】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意得:,解得:,答:前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)根据题意得:y=(60-40)x+(54-38)×∵k=12>0,∴y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润=12x+16000,23200元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,弄清题意,找出各个量之间的关”” 和所、” 系是解题的关键 .22.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“ 1的”扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转 出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘, 直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【答案】(1);( 2) .【解析】【分析】(1)根据题意可求得 2个“- 2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;( 2)由题意可得转出“1、“3、“- 2”的概率相同,然后列表得到所有可能的情况,再找出符合条 件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”“3”占的扇形圆心角为120°,所以 2个“- 2”所占的扇形圆心角为360°- 2×120°= 120°, ∴转动转盘一次,求转出的数字是-2的概率为=;( 2)由( 1)可知,该转盘转出第一次第1二次 “1”“3、“- 2”的概率相同,均为- 2,所有可能性如下表所示:31 -2 3(1, 1)(- 2, 1)(3, 1)(1,- 2)(-2,- 2)(3,- 2)(1, 3)(- 2, 3)(3, 3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为., 【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在Rt ABC 中,∠ ACB = 90°以斜边 AB 上的中线 CD 为直径作⊙ O ,分别与 AC 、BC 相交于 点 M 、 N .(1)过点 N 作⊙ O 的切线 NE 与 AB 相交于点 E ,求证: NE ⊥AB ; (2)连接 MD ,求证: MD = NB .【答案】(1)证明见解析;( 2)证明见解析 .【解析】【分析】(1)如图,连接 ON ,根据直角三角形斜边中线等于斜边的一半可得AD = CD =DB ,从而可得∠ DCB =∠ DBC ,再由∠ DCB =∠ ONC ,可推导得出 ON ∥ AB ,再结合 NE 是⊙ O 的切线,ON//AB , 继而可得到结论;( 2)如图,由( 1)可知 ON ∥AB ,继而可得 N 为 BC 中点,根据圆周角定理可知∠CMD = 90°,继而可得 MD ∥ CB ,再由 D 是 AB 的中点,根据得到【详解】(1)如图,连接 ON ,∵ CD 是 Rt △ABC 斜边 AB 上的中线, ∴ AD = CD =DB , ∴∠ DCB =∠ DBC ,又∵ OC=ON ,∴∠ DCB =∠ ONC , ∴∠ ONC =∠ DBC , ∴ ON ∥ AB ,∵ NE 是⊙ O 的切线, ON 是⊙ O 的半径, ∴∠ ONE = 90°,∴∠ NEB =90°,即 NE ⊥ AB ;( 2)如图所示,由( 1)可知 ON ∥ AB , ∵ OC = OD ,∴∴ CN = NB = CB ,MD =NB .。
2018年陕西省中考数学试卷及答案解析word版
2018年陕西省中考数学试卷及答案解析word版解答:解:A、a2•a2=a4,此选项错误;B、(﹣a2)3=﹣a6,此选项正确;C、3a2﹣6a2=﹣3a2,此选项错误;D、(a﹣2)2=a2﹣4a+4,此选项错误;故选:B.6.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2C.D.3分析:在Rt△ADC中,利用等腰直角三角形的性质可求出AD的长度,在Rt△ADB 中,由AD的长度及∠ABD的度数可求出BD的长度,在Rt△EBD中,由BD的长度及∠EBD的度数可求出DE的长度,再利用AE=AD﹣DE即可求出AE的长度.解答:解:∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ADC中,AC=8,∠C=45°,∴AD=CD,∴AD=AC=4.在Rt△ADB中,AD=4,∠ABD=60°,∴BD=AD=.∵BE平分∠ABC,∴∠EBD=30°.在Rt△EBD中,BD=,∠EBD=30°,∴DE=BD=,∴AE=AD﹣DE=.故选:C.7.(3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0) B.(2,0)C.(﹣6,0) D.(6,0)分析:根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.解答:解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA 的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF分析:连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.解答:解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EF∥AC,EH=BD,EH∥BD,∴四边形EFGH是矩形,∵EH=2EF,∴OB=2OA,∴AB==OA,∴AB=EF,故选:D.9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°分析:根据等腰三角形性质知∠CBA=∠BCA=65°,∠A=50°,由平行线的性质及圆周角定理得∠ABD=∠ACD=∠A=50°,从而得出答案.解答:解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限分析:把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.解答:解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.二、填空题三、11.(3分)比较大小:3 <(填“>”、“<”或“=”).分析:首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.解答:解:32=9,=10,∴3<.12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为72°.分析:根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可.解答:解:∵五边形ABCDE 是正五边形,∴∠EAB=∠ABC==108°,∵BA=BC ,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.13.(3分)若一个反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),则这个反比例函数的表达式为.分析:设反比例函数的表达式为y=,依据反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),即可得到k 的值,进而得出反比例函数的表达式为.解答:解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),∴k=m 2=﹣2m ,解得m 1=﹣2,m 2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.14.(3分)如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=AB ;G 、H 是BC 边上的点,且GH=BC ,若S 1,S 2分别表示△EOF 和△GOH的面积,则S 1与S 2之间的等量关系是= .分析:根据同高的两个三角形面积之比等于底边之比得出==,==,再由点O 是▱ABCD 的对称中心,根据平行四边形的性质可得S △AOB=S △BOC =S ▱ABCD ,从而得出S 1与S 2之间的等量关系.解答:解:∵==,==,∴S 1=S △AOB ,S 2=S △BOC .∵点O 是▱ABCD 的对称中心,∴S △AOB =S △BOC =S ▱ABCD ,∴==.即S 1与S 2之间的等量关系是=.故答案为=.三、解答题15.(5分)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0分析:先进行二次根式的乘法运算,再利用绝对值的意义和零指数幂的意义计算,然后合并即可.解答:解:原式=+﹣1+1=3+﹣1+1=4.16.(5分)化简:(﹣)÷.分析:先将括号内分式通分、除式的分母因式分解,再计算减法,最后除法转化为乘法后约分即可得.解答:解:原式=[﹣]÷=÷=•=.17.(5分)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)分析:过D点作DP⊥AM,利用相似三角形的判定解答即可.解答:解:如图所示,点P即为所求:∵DP⊥AM,∴∠APD=∠ABM=90°,∵∠BAM+∠PAD=90°,∠PAD+∠ADP=90°,∴∠BAM=∠ADP,∴△DPA∽△ABM.18.(5分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.分析:由AB∥CD、EC∥BF知四边形BFCE是平行四边形、∠A=∠D,从而得出∠AEG=∠DFH、BE=CF,结合AB=CD知AE=DF,根据ASA可得△AEG≌△DFH,据此即可得证.解答:证明:∵AB∥CD、EC∥BF,∴四边形BFCE是平行四边形,∠A=∠D,∴∠BEC=∠BFC,BE=CF,∴∠AEG=∠DFH,∵AB=CD,∴AE=DF,在△AEG和△DFH中,∵,∴△AEG≌△DFH(ASA),∴AG=DH.19.(7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息解答下列问题:(1)求得m= 30 ,n= 19% ;(2)这次测试成绩的中位数落在 B 组;(3)求本次全部测试成绩的平均数.分析:(1)用B组人数除以其所占百分比求得总人数,再用总人数减去A、B、C 组的人数可得m的值,用A组人数除以总人数可得n的值;(2)根据中位数的定义求解可得;(3)根据平均数的定义计算可得.解答:解:(1)∵被调查的学生总人数为72÷36%=200人,∴m=200﹣(38+72+60)=30,n=×100%=19%,故答案为:30、19%;(2)∵共有200个数据,其中第100、101个数据均落在B组,∴中位数落在B组,故答案为:B;(3)本次全部测试成绩的平均数为=80.1(分).20.(7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.分析:由BC∥DE,可得=,构建方程即可解决问题.解答:解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经检验:AB=17是分式方程的解,答:河宽AB的长为17米.21.(7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.分析:(1)设这前五个月小明家网店销售这种规格的红枣x袋.根据总利润=42000,构建方程即可;(2)构建一次函数,利用一次函数的性质即可解决问题;解答:解:(1)设这前五个月小明家网店销售这种规格的红枣x袋.由题意:20x+×16=42000解得x=1500,答:这前五个月小明家网店销售这种规格的红枣1500袋.(2)由题意:y=20x+×16=12x+16000,∵600≤x≤2000,当x=600时,y有最小值,最小值为23200元.答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元22.(7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.分析:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,根据概率公式计算可得;(2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.解答:解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,所以转出的数字是﹣2的概率为=;(2)列表如下:由表可知共有36种等可能结果,其中数字之积为正数的有20种结果,所以这两次分别转出的数字之积为正数的概率为=.23.(8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.分析:(1)连接ON,如图,根据斜边上的中线等于斜边的一半得到CD=AD=DB,则∠1=∠B,再证明∠2=∠B得到ON∥DB,接着根据切线的性质得到ON⊥NE,然后利用平行线的性质得到结论;(2)连接DN,如图,根据圆周角定理得到∠CMD=∠CND=90°,则可判断四边形CMDN为矩形,所以DM=CN,然后证明CN=BN,从而得到MD=NB.解答:证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵CD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.24.(10分)已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B 的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.分析:(1)解方程x2+x﹣6=0得A点和B点坐标,计算自变量为0的函数值得到C点坐标,然后利用三角形面积公式计算△ABC的面积;(2)利用抛物线平移得到A′B′=AB=5,再利用△A'B′C′和△ABC的面积相等得到C′(0,﹣6)或(0,6),则设抛物线L′的解析式为y=x2+bx﹣6或y=x2+bx+6,当m+n=﹣b,mn=﹣6,然后利用|n﹣m|=5得到b2﹣4×(﹣6)=25,于是解出b得到抛物线L′的解析式;当m+n=﹣b,mn=6,利用同样方法可得到对应抛物线L′的解析式.解答:解:(1)当y=0时,x2+x﹣6=0,解得x1=﹣3,x2=2,∴A(﹣3,0),B(2,0),当x=0时,y=x2+x﹣6=﹣6,∴C(0,﹣6),∴△ABC的面积=•AB•OC=×(2+3)×6=15;(2)∵抛物线L向左或向右平移,得到抛物线L′,∴A′B′=AB=5,∵△A'B′C′和△ABC的面积相等,∴OC′=OC=6,即C′(0,﹣6)或(0,6),设抛物线L′的解析式为y=x2+bx﹣6或y=x2+bx+6设A'(m,0)、B′(n,0),当m、n为方程x2+bx﹣6=0的两根,∴m+n=﹣b,mn=﹣6,∵|n﹣m|=5,∴(n﹣m)2=25,∴(m+n)2﹣4mn=25,∴b2﹣4×(﹣6)=25,解得b=1或﹣1,∴抛物线L′的解析式为y=x2﹣x﹣6.当m、n为方程x2+bx+6=0的两根,∴m+n=﹣b,mn=6,∵|n﹣m|=5,∴(n﹣m)2=25,∴(m+n)2﹣4mn=25,∴b2﹣4×6=25,解得b=7或﹣7,∴抛物线L′的解析式为y=x2+7x+6或y=x2﹣7x+6.综上所述,抛物线L′的解析式为y=x2﹣x﹣6或y=x2+7x+6或y=x2﹣7x+6.25.(12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为 5 .问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC 上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)分析:(1)设O是△ABC的外接圆的圆心,易证△ABO是等边三角形,所以AB=OA=OB=5;(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=AB=12,再由勾股定理可知:OM=5,所以PM=OM+OP=18,(3)设连接AP,OP,分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,所以AM=AP=AN,设AP=r,易求得:MN=r,所以PE+EF+PF=ME+EF+FN=MN=r,即当AP最小时,PE+EF+PF可取得最小值.解答:解:(1)设O是△ABC的外接圆的圆心,∴OA=OB=OC,∵∠A=120°,AB=AC=5,∴△ABO是等边三角形,∴AB=OA=OB=5,(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=AB=12,∵OA=13,∴由勾股定理可知:OM=5,∴PM=OM+OP=18,(3)设连接AP,OP分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,∴AM=AP=AN,∵∠MAB=∠PAB,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°,∴∠MAN=120°∴M、P、N在以A为圆心,AP为半径的圆上,设AP=r,易求得:MN=r,∵PE=ME,PF=FN,∴PE+EF+PF=ME+EF+FN=MN=r,∴当AP最小时,PE+EF+PF可取得最小值,∵AP+OP≥OA,∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,设AB的中点为Q,∴AQ=AC=3,∵∠BAC=60°,∴AQ=QC=AC=BQ=3,∴∠ABC=∠QCB=30°,∴∠ACB=90°,∴由勾股定理可知:BC=3,∵∠BOC=60°,OB=OC=3,∴△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=90°∴由勾股定理可知:OA=3,∵OP=OB=3,∴AP=r=OA﹣OP=3﹣3,∴PE+EF+PF=MN=r=3﹣9∴PE+EF+PF的最小值为(3﹣9)km.第21页(共22页)第22页(共22页)。
2018年陕西省中考数学试卷
2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)﹣的倒数是()A.B.C.D.2.(3.00分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个4.(3.00分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2 D.25.(3.00分)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣46.(3.00分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()A.B.2 C.D.37.(3.00分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)8.(3.00分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3.00分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O 相交于点D,连接BD,则∠DBC的大小为()A.15° B.35° C.25° D.45°10.(3.00分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)比较大小:3 (填“>”、“<”或“=”).12.(3.00分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3.00分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3.00分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)(2018?陕西)﹣的倒数是()A.B.C.D.2.(3.00分)(2018?陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体 B.长方体 C.三棱柱 D.四棱锥3.(3.00分)(2018?陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3.00分)(2018?陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2 D.25.(3.00分)(2018?陕西)下列计算正确的是()A.a2?a2=2a4 B.(﹣a2)3=﹣a6 C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣46.(3.00分)(2018?陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2C.D.37.(3.00分)(2018?陕西)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0) B.(2,0) C.(﹣6,0) D.(6,0)8.(3.00分)(2018?陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3.00分)(2018?陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15° B.35° C.25° D.45°10.(3.00分)(2018?陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)(2018?陕西)比较大小:3(填“>”、“<”或“=”).12.(3.00分)(2018?陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3.00分)(2018?陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3.00分)(2018?陕西)如图,点O是?ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
解答应写出过程)15.(5.00分)(2018?陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)016.(5.00分)(2018?陕西)化简:(﹣)÷.17.(5.00分)(2018?陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)18.(5.00分)(2018?陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.19.(7.00分)(2018?陕西)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表组别分数/分频数各组总分/分A 60<x≤7038 2581B 70<x≤8072 5543C 80<x≤90 60 5100D 90<x≤100m 2796依据以上统计信息解答下列问题:(1)求得m= ,n= ;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.20.(7.00分)(2018?陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.(7.00分)(2018?陕西)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(7.00分)(2018?陕西)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8.00分)(2018?陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.24.(10.00分)(2018?陕西)已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.25.(12.00分)(2018?陕西)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R 的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF 和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)2018年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)(2018?陕西)﹣的倒数是()A.B.C.D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:﹣的倒数是﹣,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018?陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体 B.长方体 C.三棱柱 D.四棱锥【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【解答】解:由图得,这个几何体为三棱柱.故选:C.【点评】考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.3.(3.00分)(2018?陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.【点评】此题主要考查了平行线的性质,注意不要漏角是解题关键.4.(3.00分)(2018?陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2 D.2【分析】根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.【解答】解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣,故选:A.【点评】本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.5.(3.00分)(2018?陕西)下列计算正确的是()。