(完整版)工程光学第三版课后答案1

合集下载

(整理)工程光学第三版课后答案

(整理)工程光学第三版课后答案

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

第三版工程光学答案

第三版工程光学答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I 88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:1mmI 1=90︒n 1 n 2200mmL I 2 xn0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 .16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(完整版)工程光学第三版课后答案1

(完整版)工程光学第三版课后答案1

(完整版)⼯程光学第三版课后答案1第⼀章2、已知真空中的光速c =3*108m/s ,求光在⽔(n=1.333)、冕牌玻璃(n=1.51)、⽕⽯玻璃(n=1.65)、加拿⼤树胶(n=1.526)、⾦刚⽯(n=2.417)等介质中的光速。

解:则当光在⽔中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在⽕⽯玻璃中,n =1.65时,v=1.82*108m/s ,当光在加拿⼤树胶中,n=1.526 时,v=1.97*108m/s ,当光在⾦刚⽯中,n=2.417 时,v=1.24*108m/s 。

3、⼀物体经针孔相机在屏上成⼀60mm ⼤⼩的像,若将屏拉远50mm ,则像的⼤⼩变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则⽅向不变,令屏到针孔的初始距离为x ,则可以根据三⾓形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、⼀厚度为200mm 的平⾏平板玻璃(设n=1.5),下⾯放⼀直径为1mm 的⾦属⽚。

若在玻璃板上盖⼀圆形纸⽚,要求在玻璃板上⽅任何⽅向上都看不到该⾦属⽚,问纸⽚最⼩直径应为多少?解:令纸⽚最⼩半径为x,则根据全反射原理,光束由玻璃射向空⽓中时满⾜⼊射⾓度⼤于或等于全反射临界⾓时均会发⽣全反射,⽽这⾥正是由于这个原因导致在玻璃板上⽅看不到⾦属⽚。

⽽全反射临界⾓求取⽅法为:(1) 其中n2=1, n1=1.5,同时根据⼏何关系,利⽤平板厚度和纸⽚以及⾦属⽚的半径得到全反射临界⾓的计算⽅法为:(2)联⽴(1)式和(2)式可以求出纸⽚最⼩直径x=179.385mm ,所以纸⽚最⼩直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射⽅式传播时在⼊射端⾯的最⼤⼊射⾓)。

工程光学答案第三版习题答案

工程光学答案第三版习题答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

工程光学第3版第一章习题答案

工程光学第3版第一章习题答案
• 光的干涉与衍射的关联与区别:光的干涉和衍射是波动性的两种表现形式,理 解它们之间的联系和区别是解决相关问题的关键。需要注意干涉和衍射产生的 条件、现象及其在光学系统中的应用。
• 光学元件的特性与选择:不同光学元件具有不同的特性,如透镜的焦距、折射 率,反射镜的反射率、角度等。在选择和使用光学元件时,需要考虑系统的需 求和限制,如成像质量、光束直径、光谱范围等。
习题1.6
什么是光的衍射?衍射现象有哪些应用?
答案
光的衍射是指光波在遇到障碍物时,绕过障碍物的边缘继 续传播的现象。衍射现象在许多领域都有应用,如全息摄 影、光学仪器制造和光学信息处理等。
习题1.3答案
习题1.7
什么是光谱线及其分类?光谱分析的原理是什么?
答案
光谱线是指物质在特定温度和压力下发射或吸收的特定波长的光。根据产生机理 ,光谱线可分为发射光谱和吸收光谱。光谱分析的原理是利用物质对光的吸收、 发射或散射特性来分析物质的组成和结构。
习题1.2
简述光学显微镜的基本组成部分。
习题1.1答案
习题1.3
如何正确使用光学显微镜?
答案
使用光学显微镜时,应先调节光源亮度,然后调节聚光镜和物镜的焦距,确保 样品清晰可见。接着,通过调节载物台和调焦装置,使样品在显微镜视场中居 中。最后,通过目镜观察并记录观察结果。
习题1.2答案
习题1.4
什么是光的折射?折射率与题考察了光学显微镜的分辨本领与照 明方式、物镜的数值孔径和照明光的波长的 关系。光学显微镜的分辨本领主要取决于物 镜的数值孔径和照明光的波长。数值孔径越 大,照明光的波长越短,则显微镜的分辨本 领越高。同时,照明方式也会影响显微镜的 分辨本领,暗视场显微镜具有较高的对比度
练习题3

工程光学第三版课后答案

工程光学第三版课后答案

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学第三版课后答案1

工程光学第三版课后答案1
解:
视场光阑决定了物面大小,而物面又决定了照明的大小
6.为看清4km 处相隔150mm 的两个点(设1′=0.0003rad),若用开普勒望远镜观察,则:
(1) 求开普勒望远镜的工作放大倍率;
(2) 若筒长L=100mm,求物镜和目镜的焦距;
(3) 物镜框是孔径光阑,求出设光瞳距离;
(4) 为满足工作放大率要求,求物镜的通光孔径;
解:
(1)
(2)亮纹方程为 。 满足此方程的第一次极大
第二次极大
一级次极大
二级次极大
(3)
18、 一台显微镜的数值孔径为0。85,问(1)它用于波长 时的最小分辨距离是多少?(2)若利用油浸物镜使数值孔径增大到1.45,分辨率提高了多少倍?(3)显微镜的放大率应该设计成多大?(设人眼的最小分辨率是 )
解:(1)x= -∝,xx′=ff′得到:x′=0
(2)x′=0.5625
(3)x′=0.703
(4)x′=0.937
(5)x′=1.4
(6)x′=2.81
3、.设一系统位于空气中,垂轴放大率 ,由物面到像面的距离(共轭距离)为7200mm,物镜两焦点间距离为1140mm。求该物镜焦距,并绘出基点位置图。
(4) 戴上该近视镜后,求看清的远点距离;
(5) 戴上该近视镜后,求看清的近点距离。
解:这点距离的倒数表示近视程度
2.一放大镜焦距f′=25mm,通光孔径D=18mm,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数K=50%,试求:(1)视觉放大率;(2)线视场;(3)物体的位置。
6.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。

第三版工程光学答案

第三版工程光学答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01c o s 22=-=I 88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

工程光学第三版习题答案CH1

工程光学第三版习题答案CH1
物像位置如图 12(a)所示 从左侧观察时
r1=200mm
r2=-200mm
A'
A
B(B')
方法 1:将实际位置图 12(b-1)等价为 12(b-2) ,即可采用上述方法求解,但求解后 还要将结果转换成实际情况。
r1=200mm
r2=-200mm
r1=200mmr2=-200mmA'A
B(B')
B(B')
I 9 = 30
°
I 10 = I 2 = 30
°
° ′ I 11 = I 1 = 60 °
由以上分析可知:当光线以 60 入射角射入折射率为 3 的玻璃球后,可在如图 A、B、 C 三点连续产生折射反射现象。ABC 构成了玻璃球的内接正三角形,在 ABC 三点的反射光线 构成了正三角形的三条边。同时,在 ABC 三点有折射光线以 60 角进入空气中。 事实上:光照射到透明介质光滑界面上时,大部分折射到另一介质中,也有小部分光反 射回原来的介质中。当光照射到透明介质界面上时,折射是最主要的,反射是次要的。 10.一束平行细光束入射到一半径、折射率 n = 1.5 的玻璃球上。求其会聚点的位置。如果 在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会 聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各个会聚点的虚实。 【提示】 解题时应首先分析清楚成像过程: 即经过几个折射球面成像和中间像所在的物象空
β2 =
l '2 > 0 ,物像虚实相反,为实像。 l2
r2=-30mm
(2)当凸面镀反射膜时,平行细光束入射到玻璃球上, 经左侧球面反射后成像,如图所示。 将 l = −∞ 代入公式

工程光学第3版第一篇习题答案

工程光学第3版第一篇习题答案
l2 90 60 30 nl2 15, 2 l2 0 nl2
1 2 0
物像虚实相同,为实像.
[习题16解答]
(2)若凸面镀上反射膜, 光束经左侧球面反射成像.
1 1 2 l l r
求得:
l 15 l 0 l
物像虚实相反,成虚像。
[习题17]一折射球面r=150mm,n=1,n’=1.5, 问当物距分别为-、-1000mm、-100mm、0、 100mm、150mm和200mm时,垂轴放大率各 为多少?
解:根据近轴光学基本公式及垂轴放大率公式
n n n n l l r nl nl
先求l’ ,再求β .
为实像. 它又 物像虚实相同,故 A2 是左侧球面的物A3 ,为实物。根据光 路可逆性,可将A3看成左侧球面折射 形成的像。
[习题16解答]
(3)光束先经左侧球面折射形成 , 像 A1 ,再经右侧球面反射形成像 A2 。 最后经左侧球面折射形成像 A3
60 10 50 l3 n n n n 根据 l l r nl3 求得 l3 =75,3 = 0 nl3 物像虚实相反,成虚像。 即
前表面 后表面
1 n 1 n 2 R R n2
[习题15]一直径为20mm的玻璃球,其折射率 为 3 ,今有一光线以60入射角入射到该玻璃 球上,试分析光线经过玻璃球的传播情况。
解:在入射点A处,同时发生折 射和反射现象。 sin I1 n sin I 2
sin 60 ) 30 3 在A点处光线以60°的反射角返 回原介质,同时以30 °的折射角 进入玻璃球。折射光线到达B点, 并发生折射反射现象。由图得: I3 =I 2 =30, I5 =I3 =30 I 2 arcsin(

工程光学第三版课后答案

工程光学第三版课后答案

第一章2、真空中的光速c =3*108m/s ,求光在水〔〕、冕牌玻璃〔〕、火石玻璃〔〕、加拿大树胶〔〕、金刚石〔〕等介质中的 光速。

解:那么当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,假设将屏拉远50mm ,那么像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线那么方向 不变,令屏到针孔的初始距离为x ,那么可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃〔设〕,下面放一直径为1mm 的金属片。

假设在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,那么根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立〔1〕式和〔2〕式可以求出纸片最小直径, 所以纸片最小直径为。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径〔即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角〕。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律那么有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,那么有:(2)由〔1〕式和〔2〕式联立得到n0.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5 的玻璃球上,求其会聚点的位置。

工程光学第三版课后答案

工程光学第三版课后答案

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学第3版第一章习题答案

工程光学第3版第一章习题答案

选择题答案
B. 光波的波长越长,频率 越高。
A. 光波的频率越高,波长 越短。
选择题答案
01
03 02
选择题答案
C. 光波的振幅越大,亮度越高。
D. 光波的相位越稳定,干涉现象越明显。
判断题答案
总结词
光的干涉现象
光的干涉现象
干涉是光波动性的重要表现之一。当两束或多束相干光波同时作用在某一点时,它们的光程差会引起 光强的变化,形成干涉现象。干涉现象在光学实验中经常被用来验证光的波动性。
简答题2
02
03
简答题3
光在介质中的传播速度与介质的 折射率有关,折射率越大,光速 越小。
光在同一种均匀介质中沿直线传 播,当遇到不同介质时,会发生 折射或反射。
计算题答案
1 2
计算题1
根据光的折射定律,当光从空气射入水中时,入 射角为30°,折射角为18.4°,求介质的折射率。
计算题2
一束光在玻璃中的波长为λ,在空气中的波长为 λ0,求玻璃的折射率。
根据干涉相长条件和干涉相消条件,可以计算出 干涉条纹的位置和宽度。
论述题答案
论述题1
论述题3
论述光的干涉现象在光学仪器中的应 用。
论述光的偏振现象在光学仪器中的应 用。
论述题2
论述光的衍射现象在光学仪器中的应 用。
04 习题1.4答案

简答题答案
01
02
03
04
简答题1
光在真空中的传播速度 最快,约为299,792, 458米/秒。
简答题2
光波在各向异性介质中传 播时,其波前与波阵面不 重合。
简答题3
光的干涉现象是两束或多 束相干光波在空间某一点 叠加时,产生明暗相间的 干涉条纹的现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5 的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯式公式式:会聚点位于第二面后15mm 处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

还可以用β正负判断:(3)光线经过第一面折射:, , 第二面镀膜,则:得到:l 2 ' 10mm(4)在经过第一面折射:物像相反为虚像。

19、有一平凸透镜r1=100mm,r2=∞,d=300mm,n=1.5,当物体在-∞时,求高斯像的位置l '。

在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm,实际光线的像方截距为多少?与高斯像面的距离为多少?解:对于平面l=0 得到l’=0 ,即像为其本身,即焦面处发出的经第一面成像于无穷远处,为平行光出射20、一球面镜半径r=-100mm,求=0 ,-0.1 ,-0.2 ,-1 ,1 ,5,10,∝时的物距和像距。

解:(1)同理(2)(3)(4)(5)(6) (7)(8)21、一物体位于半径为r 的凹面镜前什么位置时,可分别得到:放大4 倍的实像,放大4 倍的虚像、缩小4 倍的实像和缩小4 倍的虚像? 解:(1)放大4倍的实像(2)放大四倍虚像 β=4(3)缩小四倍实像 β=﹣1/4(4)缩小四倍虚像 β=1/4第二章1、针对位于空气中的正透镜组()0'>f及负透镜组()0'<f ,试用作图法分别对以下物距∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。

解:1.0'>f()-∞=l a ()'22f fl b =-= ()'f f l c =-=()2/'2/f f l d =-= ()0=l e ()2/'2/f f l f -==')(f f l g -== '22)(f f l h -== +∞=l i )(2.0'<f-∞=l a )( f lb 2)(-= f lc -=)(2/)(f l d -= 0)(=l e 2/)(f lf =f lg =)( f lh 2)(= +∞=li )(2、 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解:(1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′=0.5625 (3)x ′=0.703 (4)x ′=0.937 (5)x ′=1.4(6) x ′=2.813、.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm ,物镜两焦点间距离为1140mm 。

求该物镜焦距,并绘出基点位置图。

解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4、已知一个透镜把物体放大-3x 投影在屏幕上,当透镜向物体移近18mm 时,物体将被放大-4x 试求透镜的焦距,并用图解法校核之。

解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ① 42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x⇒ 2'21'1/1/1/1/1l l l l -=- ④方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''f x -=βΘ 143''''2'121=+-=∆=+-=-∴fx f x x ββmm x f 216''=∆=∴5、一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm ,放大率为原先的3/4倍,求两块透镜的焦距为多少?解:6、有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm ,则所得像与物同大小,求该正透镜组的焦距。

解:由已知得:211'11-==l l β 12'22-==l l β10021+-=-l l由高斯公式:2'21'11111l l l l -=-解得:mm l f 10022'=-=-ll '1100mm -l 2l '27、希望得到一个对无限远成像的长焦距物镜,焦距f ′=1200mm ,由物镜顶点到像面的距离L=700 mm ,由系统最后一面到像平面的距离(工作距)为,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。

8、一短焦距物镜,已知其焦距为35 mm ,筒长L=65 mm ,工作距,按最简单结构的薄透镜系统考虑,求系统结构。

解:9、已知一透镜5.1,50,300,20021==-=-=n mm d mm r mm r ,求其焦距,光焦度,基点位置。

解:已知5.1,50,300,20021==-=-=n mm d mm r mm r 求:,'f ϕ,基点位置。

12122169.0)1())(1('/1--=-+--==m d nn n f ρρρρϕmm f 1440'-=mm d n n f l F1560)11('1'-=--=ρ mm d nn f l F 1360)11('2=-+-=ρmm dnn f l H120)1('1'-=--=ρ mm d nn f l H80)1('2-=-=ρ10、一薄透镜组焦距为100 mm ,和另一焦距为50 mm 的薄透镜组合,其组合焦距仍为100 mm ,问两薄透镜的相对位置。

第三章2、有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面镜平行,问两平面镜的夹角为多少?解:OA M M //32Θ3211M M N M ⊥∴1''1I I -=Θ又 2''2I I -=∴α同理:1''1I I -=α 321M M M ∆中 ︒=-+-+180)()(1''12''2I I I I α︒=∴60α答:α角等于60︒。

3、如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。

如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解:θ'2f y = rad 001.0100022=⨯=θ αθx=mm a x 01.0001.010=⨯=⨯=∴θ4.一光学系统由一透镜和平面镜组成,如图3-3所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB ,经透镜和平面镜后,所成虚像A "B "至平面镜的距离为150 mm ,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

解:图3-3 习题4图解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。

6.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm 的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。

相关文档
最新文档