第九章沉淀平衡与沉淀分析法
第九章沉淀平衡
例如 Ksp(BaSO4)、Ksp(PbCl2 )、Ksp{Fe(OH)3}。
9.1溶度积和溶解度
一、溶度积常数、溶解度和溶度积规则 难溶(强)电解质:在水中溶解度很小,而 且溶解的部分完全解离。 摩尔溶解度S:一升溶液中溶解难溶电解质摩尔数。 沉淀反应:Ag+(aq)+ Cl—(aq)≒ AgCl(s) 溶解平衡: AgCl(s) ≒ Ag+(aq)+ Cl-(aq) 平衡常数:Ks pθ=[Ag+][Cl-](称为溶度积常数)
K sp[Cr(OH)3]=6.3×10-31
• Pb2+开始沉淀的OH-浓度: K sp=[Pb2+][OH-]2 K sp=1.2×10-15 =[Pb2+][OH-]2=0.003 [OH-]2 解得: [OH-]=6.32×10 -7 PH=7.80 • Cr3+开始沉淀的OH-浓度:K sp=[Cr3+][OH-]3 K sp=6.3×10-31 =[Cr3+][OH-]3=0.02 [OH-]3 解得: [OH-]=3.16 × 10 -10 PH=4.50 ★因此: Cr3+先开始沉淀.
Question
Solution
在含有0.10 mol· -1 Fe3+和 0.10 mol· -1 L L
Ni2+的溶液中,欲除掉Fe3+,Ni2+仍留在 溶液中,应控制 pH为多少?
θ K sp
开始沉淀 pH 沉淀完全 pH 7.15 3.2
Ni(OH) 2 2.0 1015 Fe(OH) 3 4.0 1038
)ห้องสมุดไป่ตู้
1 — 3
=1.59 × 10 –12
无机化学(人卫版)沉淀溶解平衡和沉淀分析(1)
= 5.7×10-15 mol.L-1
QB FeS = 0.1×5.7×10-15 > Kspө = 1.6×10-19
此时有FeS 沉淀生成
1/29/2020
Inorganic & Analitycal Chemistry
思考:
在AgCl饱和溶液中,加入NaCl, AgCl的S变大 还是变小?加入KNO3呢?
ΔrGmΘ 计算方法为 △rGmθ=∑νB△fGmθ(B) △rGmθ=△rHmθ-T△rSmθ △rHmθ=∑νB△fHmθ(B) △rSmθ=∑νBSθ(B)
2.溶解度与溶度积的关系: • Kspө的大小反应难溶电解质的溶解能力
• 溶解度(s):一定温度下,1升难溶电解质饱和溶液中 所含溶质的量,是浓度的一种形式。单位:g·L-1; mol·L-
小结:
通式:AnBm(s)
nAm+(aq)+ mBn-(aq)
则 Ksp(AnBm)= [Am+]n·[Bn-]m
试一试
难溶物 AgI
BaSO4 Mg(OH)2 Ca3(PO4)2
写出下列难溶物的沉淀溶解平衡表达式和
溶度积表达式
沉淀溶解平衡表达式
Ksp表达式
AgI(s)
Ag++ I-
Ksp =[Ag+ ] [I- ]
① 能否产生Mg(OH)2 沉淀? ②若上述溶液中,加入NH4Cl(s),不使Mg(OH)2沉
淀出来,问C(NH4Cl)至少需多大?
1/29/2020
Inorganic & Analitycal Chemistry
解: ①混合后:
cMg 2
0.1 10 20
第九章沉淀溶解平衡
K
[CrO42 ] [S 2 ]
[Pb2 ][CrO42 ] [Pb2 ][S 2 ]
Ksp,PbCrO4 1.77 1014 1.96 1014 Ksp,PbS 9.04 1029
分步沉淀
• 多种离子体系中,控制一定条件下,使 一种离子先沉淀,而其他离子在另一条 件下沉淀,达到分离的目的.
1.6 1010 4.9 10-2
3.3109
mol dm3
• 说明溶液中Ag+几乎为零而Pb2+保留在溶液中。
溶解度s和溶度积Ksp
CaF2(s) :Ksp = [Ca2+][F-]2= s (2s)2 = 4s3
• 注意: • 1. 已溶的难溶盐一步完全电离,几乎没有分子
第九章 沉淀溶解平衡
MA(s)
MA(aq)
M A-
溶解
MA(s)
M A-
沉淀
溶解
AgCl(s)
Ag Cl-
沉淀
Kθsp
aAg aCl aAgCl(s)
aAg aCl
Ksp c c Ag Cl-
• 一般情况
溶解 AmBn (s) 沉淀 mAn (aq) nBm- (aq)
• 由于在溶液中存在大量固体微粒或在容器 壁上附有微小的“玻璃核”,构晶离子在这种 外来“晶种”的诱导下形成晶核称异相成核作
沉淀的形成过程
• (2) 晶核的成长
异相成核
定向排列晶型沉淀
• 构晶离子 晶核 沉淀微粒
均相成核
聚合无定型沉淀
沉淀的形成过程
• 10-10m → 10-9~10-6m → > 10-6m • 经过胶体阶段
沉淀的形成
第29讲
第九章 重量分析法
第2讲
•三、沉淀条件对沉淀类型的影响 • 早在20世纪初期,冯·韦曼(Van Weimarn)曾 以BaSO4沉淀为对象,对沉淀颗粒大小与溶液浓度的 关系作过研究。结果发现,沉淀颗粒的大小与形成沉 淀的初速度 (即开始形成沉淀的进度 )有关,而初速度 又与溶液的相对过饱和度成正比。 • 形成沉淀的初速率v=K(Q-S)/S 式中Q为溶液中混合反应物瞬时产生的物质总浓度, S为沉淀的溶解度,Q-S为沉淀开始时的过饱和程度, 此数值越大,生成晶核的数目就越多。K为常数,它 与沉淀的性质、介质、温度等因素有关。
14
第29讲
第九章 重量分析法
第2讲
•2.吸留与包夹 • 在沉淀过程中,当沉淀剂的浓度比较大、 加入比较快时沉淀迅速长大,则先被吸附在 沉淀表面的杂质离子来不及离开沉淀,于是 就陷入沉淀晶体内部,这种现象称为吸留。 如留在沉淀内部的是母液,则称为包夹。这 种现象造成的沉淀不纯是无法洗去的,因此, 在进行沉淀时应尽量避免此种现象的发生。
13
第29讲
第九章 重量分析法
第2讲
• 此外,吸附杂质量的多少,还与下列因素有 关: • (1)沉淀的总表面积愈大,吸附杂质的量愈多。 所以无定形沉淀较晶形沉淀吸附杂质多,细小的 晶形沉淀较粗大的晶形沉淀吸附杂质多。 • (2)杂质离子的浓度愈大,被吸附的量也愈多。 • (3) 溶液的温度也影响着杂质的吸附量,因为 吸附作用是一个放热过程,所以溶液的温度愈高, 吸附的杂质量愈少。
10
第29讲
第九章 重量分析法
第 2讲
图示
BaSO4晶体表面吸附示意图
沉淀表面形成双电层: 吸附层——吸附剩余构晶离子SO42 扩散层——吸附阳离子或抗衡离子Fe3+
第九、十章-沉淀滴定法和重量分析法答案
第九章沉淀滴定法练习题参考答案1. 莫尔法测定Cl-采用滴定剂及滴定方式是 ( B )(A)用Hg2+盐直接滴定 (B)用AgNO3直接滴定(C) 用AgNO3沉淀后,返滴定 (D)用Pb2+盐沉淀后,返滴定2. 下列试样中的氯在不另加试剂的情况下,可用莫尔法直接测定的是 ( D )(A) FeCl3 (B) BaCl2(C) NaCl+Na2S (D) NaCl+Na2SO43. 用莫尔法测定Cl-的含量时,酸度过高,将使(Ag2CrO4不易形成,不能确定终点),碱性太强,将生成(生成褐色Ag2O,不能进行测定)。
4.关于以K2CrO4为指示剂的莫尔法,下列说法正确的是(C)(A)指示剂K2CrO4的量越少越好(B)滴定应在弱酸性介质中进行(C)本法可测定Cl—和Br—,但不能测定I—或SCN—(D)莫尔法的选择性较强5.(√)佛尔哈德法是以NH4SCN为标准滴定溶液,铁铵矾为指示剂,在稀硝酸溶液中进行滴定。
6. 佛尔哈德法测定Ag+时, 应在(酸性)(酸性,中性), 这是因为(若在中性介质中,则指示剂Fe3+水解生成Fe(OH)3,影响终点观察)。
7.(×)用佛尔哈德法测定Ag+,滴定时必须剧烈摇动。
用返滴定法测定Cl-时,也应该剧烈摇动。
8.以铁铵矾为指示剂,用返滴法以NH4CNS标准溶液滴定Cl-时,下列错误的是(D)(A)滴定前加入过量定量的AgNO3标准溶液(B)滴定前将AgCl沉淀滤去(C)滴定前加入硝基苯,并振摇(D)应在中性溶液中测定,以防Ag2O析出9.(√)在法扬司法中,为了使沉淀具有较强的吸附能力,通常加入适量的糊精或淀粉使沉淀处于胶体状态。
10. 卤化银对卤化物和各种吸附指示剂的吸附能力如下: 二甲基二碘荧光黄>Br->曙红>Cl->荧光黄。
如用法扬司法测定Br-时, 应选(曙红或荧光黄)指示剂;若测定Cl-,应选(荧光黄)指示剂。
11. 用沉淀滴定法测定银,下列方式中适宜的是 ( C )(A) 莫尔法直接滴定 (B) 莫尔法间接滴定(C) 佛尔哈德法直接滴定 (D) 佛尔哈德法间接滴定12. 用佛尔哈德法测定Cl -时, 若不采用加硝基苯等方法, 分析结果(偏低); 法扬司法滴定Cl -时, 用曙红作指示剂,分析结果(偏低)。
无机及分析-沉淀平衡
12
第一节 沉淀—溶解平衡
二、溶度积规
例2 在50 cm3 0.01 mol·dm-3的MgCl2溶液中, ① 加 入 50 cm3 0.1mol·dm-3 NH3·H2O , 问 有 无
Mg(OH)2沉淀生成? ②加入50cm3 0.1 mol·dm-3 NH3·H2O + NH4Cl 混合
液,情况又如何?
29
第三节 分步沉淀及沉淀的转化
二、沉淀的溶解
②难溶弱酸盐
BaCO3(s)+2H+ = Ba2+ +CO2 +H2O
Kθ=
Ksθp(BaCO3)/
Kaθ·1 K
θ a2
(H2CO3)
=2.4×108> 107
能溶解完全。
30
第三节 分步沉淀及沉淀的转化
二、沉淀的溶解
一般地: ❖所有碳酸盐均可溶于强酸中。 碳酸盐 Ksθp=10-7~10-17,而H2CO3 的 Kaθ×1 Kaθ2=2.11×10-17,即Kθ=1010~0.5
因此只有相同类型的且基本不水解的难溶强电 解质,可以根据 Ksθp 的大小比较它们溶解度的相对 大小。
10
第一节 沉淀—溶解平衡
二、溶度积规则
1. 溶度积规则
AmBn (s ) mAn++nBmQi = [c(An+)]m ·[c(Bm-)]n
Ksθp=[c(An+)]eqm ·[c(Bm-)]eqn
故Mg(OH)2 (s)易溶于酸。
27
第三节 分步沉淀及沉淀的转化
二、沉淀的溶解
一般地:
Kθ >107 Gθ< - 40 kJ·mol-1 逆反应几乎不能进行;
第九章 沉淀反应
2
2 4
6
x 9.1 10
6
3.0 10 mol / L
3
例(P220 9-6):在0.30mol﹒L-1 HCl 溶液中含 0.1mol﹒L-1 Cd2+,室温下通H2S气体达到饱和,此 时CdS是否沉淀? 解: H2S饱和溶液的浓度近似按0.1mol﹒L-1处理。 (1)方法1:利用分布分数 由物料平衡: [S2-]+[HS-]+[H2S]=0.1
解:混合后离子未发生反应时各自的浓度分别
为0.5mol/L,其离子积为:
[Ca ][ SO ] 0.5 K sp 9.1 10
2 2 2 4
6
可以断定溶液中有CaSO4 沉淀生成。设沉淀 达到平衡时剩余[Ca2+]=[SO42-]=xmol/L,则:
[Ca ][ SO ] x K sp 9.1 10
加入NaNO3后
实 验 结 果 表 明 , KNO3 的 浓 度 由 0 增 大 到 0 . 0 1 mol/L 时 , AgCl 的 溶 解 度 可 增 大 1 2 % , BaSO4溶解度则增大70%。
由上表可看出,在Na2SO4 浓度较小时,同离 子效应起主要作用,但是当Na2SO4浓度进一步增 大时,盐效应起主导作用,溶解度又逐步增大。
8
同离子效应在离子富集和提取方面具有 重要应用,可采用过量沉淀剂沉淀稀溶液中 的微量贵重金属离子。
盐效应:
在难溶电解质的饱和溶 液中,加入强电解质时,可 以使其溶解度进一步增大的 现象叫做盐效应。 对于同离子效应,当加 入的强电解质浓度过大时, 也会产生盐效应或其它副反 应。
PbI2黄色沉淀
利用生成配合物使沉淀溶解: 许多难溶电解质,因其解离出的金属离子能 够生成更为稳定的配合物而在含有配位体的溶 液中发生溶解。如AgCl可溶解于氨水中,红色的 碘化汞HgI2可以溶解在碘化钾KI溶液中等。
第九章 沉淀溶解平衡
9
9Precipitation equilibrium
01
掌握溶度积概念,并应用此概念 判断沉淀的生成和溶解
02
掌握沉淀生成、沉淀溶解和转化的 基本方法
Copyright 2020. SCCE of SJTU. ALL RIGHTS RESERVED
单位:
8
Copyright 2020. SCCE of SJTU. ALL RIGHTS RESERVED
9
9Precipitation equilibrium
9
Copyright 2020. SCCE of SJTU. ALL RIGHTS RESERVED
9
3. 同一类型、基本不水解的难溶电解质(AgX),在相同温度下可直接按照KƟsp 大小进行比较其溶解度。
与离子浓度无关。在实际应用中常采用25℃时溶度积的数值。
9Precipitation equilibrium
5
Copyright 2020. SCCE of SJTU. ALL RIGHTS RESERVED
9
溶解度
• 在100g溶剂中达到饱和时所加入 的溶质的克数。(高中概念)
• 溶解度表示物质的溶解能力,它 是随其它离子存在的情况不同而 改变;
n Fifteen milligrams of calcium fluoride, CaF2 dissolve in 1 L of water at equilibrium. What is the value of the KƟsp? MCaF2 =78.1
先求算饱和溶液时CaF2溶解度,再换算成溶度积常数
• 溶解度就是物质达到溶解平衡时 的浓度(mol/L)
第9章1重量分析法
第28讲
第九章 重量分析法
第1讲
N已a知N例OK3s9p溶(-A1液g试Cl中)=计1的.算8溶×A解1g0C度-1l0和,各KBs比pa(B在SaSOO纯44)在=水10中.1.0×增101大0m-1多0o。l少·L?-1 解: 设AgCl在纯水中的溶解度为S1,则 S1=Ksp(AgCl)1/2=1.3×10-5(mol·L-1) 度为设S2A,g离Cl子在强0.0度10为mol·L-1NaNO3 溶 液 中 的 溶 解
aM+aA-=γ[M+][M+]γ[A-][A-]=Kap
[M+][A-]=Kap/γ[M+]γ[A-]= Ksp
Ksp称为溶度积常数,简称溶度积,它的大小随
着溶液中离于强度而变化。如果溶液中电解质的浓度
增大,则离子强度增大,活度系数减小,于是溶度积
便增大,因而沉淀的溶解度也会增大。沉淀的溶解度
等于:
Ksp’=[M’][A’]= KspαMαA
1,故KKsspp’’>称为Ks条p。件溶度积。因为αM 、αA均大于
S=[M’]=[A’]= Ksp’1/2>S理论
=[M]=[A]= Ksp1/2
第28讲
第九章 重量分析法
第1讲
二、影响沉淀溶解度的因素
影响沉淀溶解度的因素有同离子效应、盐效 应、酸效应和络合效应。另外,温度、介质、晶 体颗粒的大小等对溶解度也有影响。现分别讨论 于下。
第28讲
第九章 重量分析法
第1讲
一、沉淀的溶解度
(一)溶解度和固有溶解度
当水中存在有难溶化合物MA时,则MA将 有部分溶解,当其达到饱和状态时,即建立如 下平衡关系: MA(固)=MA(水)=M++A上式表明,固体MA的溶解部分,以M+、A-状 态和MA分子状态存在。例如AgCl在水溶液中 除了存在着Ag+和Cl-以外,还有少量未离解的 AgC1分子。M+和A-之间也可能由于静电引力 的作用,互相缔合成为M+A-离子对状态而存在。 例 外,如还Ca存SO在4在着水Ca溶2+S液O中42-,的离除子存对在。Ca2+和SO42-之
沉淀分析法的名词解释
沉淀分析法的名词解释沉淀分析法是一种常用的分析化学方法,用于确定溶液中特定物质的存在及其浓度。
该方法基于物质溶解度和沉淀反应的原理,通过观察和测定溶液中沉淀形成与结论,进而分析样品中目标物质的含量。
一、沉淀反应与溶解度沉淀反应是指在溶液中存在着溶解度较小的物质,在一定条件下与其他物质结合生成沉淀的化学反应。
这些物质通常是由于溶解度限制、化学反应或双电离交换等原因而无法保持在溶液中稳定存在的。
溶解度是指在给定温度和压力下,在饱和条件下溶质在溶剂中溶解的最大量。
它与物质的性质、温度和压力相关。
当溶质的浓度超过其溶解度时,就会发生沉淀反应。
二、沉淀分析的步骤沉淀分析通常包括以下主要步骤:1. 取样和制备:首先需要取得待测样品,并进行制备。
制备包括固体样品的溶解或浸取,液体样品的稀释等。
2. 沉淀形成:通过加入适当的试剂,使目标物质与溶液中其他物质发生化学反应,生成沉淀。
这个反应通常是可见的,可以通过观察颜色的变化或者直接观察到沉淀的形成来确定。
3. 沉淀分离:将沉淀与溶液分离。
这个过程通常通过过滤、离心等方法实现。
分离后,沉淀被收集在滤纸或离心管中,溶液则被留下。
4. 沉淀处理:对沉淀进行处理以去除杂质或纯化目标物质。
这可能包括洗涤、干燥和煅烧等步骤。
5. 沉淀称量:称取并定量所得的沉淀。
沉淀的重量与目标物质的含量成正比。
6. 结果计算:根据反应方程式和沉淀的量来计算目标物质在样品中的浓度或百分含量。
三、沉淀分析的应用沉淀分析法可应用于多种实际问题的解决。
以下是一些常见的应用领域:1. 环境监测:沉淀分析可用于监测水体、土壤和大气中的重金属、有机污染物等。
2. 食品分析:通过沉淀分析可以检测食品中的添加剂、残留农药等。
3. 药物分析:沉淀分析可用于药物中各种成分的测定,以确保其质量和安全性。
4. 地质矿产分析:沉淀分析可用于矿石中宝贵金属的测定,例如金、银等。
5. 生物化学分析:沉淀分析可用于分析生物样品中的蛋白质、核酸等重要成分。
分析化学:第9章课后习题答案
第九章思考题与习题1.重量分析对沉淀的要求是什么?答:要求沉淀要完全、纯净。
对沉淀形式的要求:溶解度要小,纯净、易于过滤和洗涤,易于转变为称量形式。
对称量形式的要求:沉淀的组分必须符合一定的化学式、足够的化学稳定性、尽可能大的摩尔质量。
2.解释下列名词:沉淀形式,称量形式,固有溶解度,同离子效应,盐效应,酸效应,络合效应,聚集速度,定向速度,共沉淀现象,后沉淀现象,再沉淀,陈化,均匀沉淀法,换算因数。
答:沉淀形式:往试液中加入沉淀剂,使被测组分沉淀出来,所得沉淀称为沉淀形式。
称量形式:沉淀经过过滤、洗涤、烘干或灼烧之后所得沉淀。
固有溶解度:难溶化合物在水溶液中以分子状态或离子对状态存在的活度。
同离子效应:当沉淀反应达到平衡后,加入与沉淀组分相同的离子,以增大构晶离度,使沉淀溶解度减小的效应。
盐效应:由于强电解质盐类的存在,引起沉淀溶解度增加的现象。
酸效应:溶液的酸度对沉淀溶解度的影响。
配位效应:溶液中存在能与沉淀构晶离子形成配位化合物的配位剂时,使沉淀的溶解度增大的现象。
聚集速度:沉淀形成过程中,离子之间互相碰撞聚集成晶核,晶核再逐渐长大成为沉淀的微粒,这些微粒可以聚集为更大的聚集体。
这种聚集过程的快慢,称为聚集速度。
定向速度:构晶离子按一定的晶格排列成晶体的快慢,称为定向速度。
共沉淀现象:在进行沉淀时某些可溶性杂质同时沉淀下来的现象。
后沉淀现象:当沉淀析出后,在放置过程中,溶液中的杂质离子漫漫在沉淀表面上析出的现象。
再沉淀:将沉淀过滤洗涤之后,重新溶解,再加入沉淀剂进行二次沉淀的过程。
陈化:亦称熟化,即当沉淀作用完毕以后,让沉淀和母液在一起放置一段时间,称为陈化。
均匀沉淀法:在一定条件下,使加入沉淀剂不能立刻与被测离子生成沉淀,然后通过一种化学反应使沉淀剂从溶液中慢慢地均匀的产生出来,从而使沉淀在整个溶液中缓慢地、均匀地析出。
这种方法称为均匀沉淀法。
换算因数:被测组分的摩尔质量与沉淀形式摩尔质量之比,它是一个常数。
第9章沉淀重量法
9-4 沉淀的形成及沉淀条件(1)
沉淀的形成
构晶离子
成核作用 异相成核 均相成核
长大
晶核
沉淀颗粒
无定形沉淀
胶体
凝乳状
Fe(OH)3 颗粒直径 <0.02 m
AgCl
颗粒直径 0.020.1 m
晶形沉淀
BaSO4 CaC2O4 颗粒直径 0.11 m
9-4 沉淀的形成及沉淀条件(2)
定向速率:由沉淀自身性质决定 聚集速度:即晶核形成速度,可用Von Weimarn经验公式
均相沉淀法:通过化学反应缓慢而均匀地释放沉淀剂, 避免了相对过饱和度过大,有利于生成颗粒较大的沉 淀。
Ca2+的测定
Ca 2
C2O
2 4
CaC 2O4
CONH
2
2
若能了解沉淀的溶解度及其影响因素,就能控制适当的沉 淀条件,降低溶解损失,使测定的准确度满足要求。
9-2-1 活度积、溶度积和条件溶度积
MA固
——以1-1型难溶化合物MA为例
MA水
M A
活度积:K
sp
aM
aA
仅与温度有关,p352附录11
溶度积:K sp
M A
K
sp
/ M
A
条件溶度积:K'sp M' A' Ksp αM αA
9-3-2 后沉淀
难以析出或形成稳定过饱和溶液而不能单独析出的物质, 在另一种组分沉淀之后被“诱导”沉淀出来的现象。
通H2S沉淀0.01mol·L-1HCl介质中的Zn2+(含Ni2+)
陈化时间/h ZnS中含Ni% 空白(只有NiCl2)
3
0
0
大学沉淀平衡实验报告
一、实验目的1. 理解沉淀平衡的概念及其在化学中的应用。
2. 掌握沉淀溶解平衡的计算方法。
3. 通过实验验证沉淀平衡的存在,并探究影响沉淀平衡的因素。
二、实验原理沉淀平衡是指在溶液中,难溶电解质(沉淀)的溶解和沉淀的生成达到动态平衡的状态。
当溶液中某一离子的浓度超过其溶度积常数(Ksp)时,该离子会与溶液中的其他离子结合形成沉淀。
沉淀平衡的建立遵循以下公式:\[ K_{sp} = [A^{+}] \times [B^{-}] \]其中,\( A^{+} \) 和 \( B^{-} \) 分别代表沉淀中的阳离子和阴离子。
三、实验仪器与试剂1. 仪器:锥形瓶、滴定管、磁力搅拌器、电子天平、移液管等。
2. 试剂:饱和氯化银溶液、饱和硫化银溶液、硝酸银溶液、硫化氢气体、氯化钠溶液、硫酸铜溶液等。
四、实验步骤1. 准备实验装置,将饱和氯化银溶液倒入锥形瓶中。
2. 用移液管取一定量的饱和硫化银溶液,缓慢滴入锥形瓶中,同时用磁力搅拌器搅拌。
3. 观察沉淀的形成,待沉淀稳定后,用电子天平称量沉淀的质量。
4. 将沉淀过滤、洗涤、干燥,再次称量沉淀的质量。
5. 重复步骤2-4,分别进行氯化钠溶液和硫酸铜溶液的实验。
6. 计算不同溶液中沉淀的溶度积常数(Ksp)。
五、实验结果与分析1. 实验结果显示,在饱和氯化银溶液中加入饱和硫化银溶液后,沉淀质量逐渐增加,直至稳定。
这说明沉淀平衡存在。
2. 通过计算,得到饱和氯化银溶液的Ksp为1.8×10^-10,饱和硫化银溶液的Ksp 为1.0×10^-50。
3. 与理论值相比,实验结果存在一定的误差,可能是由于实验操作过程中的误差或实验条件的影响。
六、结论1. 本实验验证了沉淀平衡的存在,并掌握了沉淀溶解平衡的计算方法。
2. 通过实验,我们了解到影响沉淀平衡的因素,如离子浓度、温度等。
3. 本实验为后续化学实验奠定了基础,有助于我们更好地理解和应用沉淀平衡知识。
B136-分析化学-第九、十章 沉淀滴定法和重量分析法答案 (2)
第九章沉淀滴定法一、莫尔(Mohr)法1. 莫尔法测定Cl-采用滴定剂及滴定方式是(B )(A)用Hg2+盐直接滴定(B)用AgNO3直接滴定(C) 用AgNO3沉淀后,返滴定(D)用Pb2+盐沉淀后,返滴定2. 下列试样中的氯在不另加试剂的情况下,可用莫尔法直接测定的是( D )(A) FeCl3(B) BaCl2(C) NaCl+Na2S (D) NaCl+Na2SO43. 用莫尔法测定Cl-的含量时,酸度过高,将使(Ag2CrO4不易形成,不能确定终点),碱性太强,将生成(生成褐色Ag2O,不能进行测定)。
4.关于以K2CrO4为指示剂的莫尔法,下列说法正确的是(C )(A)指示剂K2CrO4的量越少越好(B)滴定应在弱酸性介质中进行(C)本法可测定Cl—和Br—,但不能测定I—或SCN—(D)莫尔法的选择性较强二、佛尔哈德(Volhard)法5.(√)佛尔哈德法是以NH4SCN为标准滴定溶液,铁铵矾为指示剂,在稀硝酸溶液中进行滴定。
6. 佛尔哈德法测定Ag+时, 应在(酸性)(酸性,中性), 这是因为(若在中性介质中,则指示剂Fe3+水解生成Fe(OH)3,影响终点观察)。
7.(×)用佛尔哈德法测定Ag+,滴定时必须剧烈摇动。
用返滴定法测定Cl-时,也应该剧烈摇动。
8.以铁铵矾为指示剂,用返滴法以NH4CNS标准溶液滴定Cl-时,下列错误的是(D )(A)滴定前加入过量定量的AgNO3标准溶液(B)滴定前将AgCl沉淀滤去(C)滴定前加入硝基苯,并振摇(D)应在中性溶液中测定,以防Ag2O析出三、法扬司(Fajans)法9.( √ )在法扬司法中,为了使沉淀具有较强的吸附能力,通常加入适量的糊精或淀粉使沉淀处于胶体状态。
10. 卤化银对卤化物和各种吸附指示剂的吸附能力如下: 二甲基二碘荧光黄>Br ->曙红>Cl ->荧光黄。
如用法扬司法测定Br -时, 应选(曙红或荧光黄)指示剂;若测定Cl -,应选(荧光黄)指示剂。
第九章 沉淀溶解平衡
同种类型的难溶电解质,溶度积Ksp越大,其溶解度s也越大,
而以(g/L)所表示的溶解度却没有上述必然关系。 而对不同类型的难溶电解质不能简单地直接比较。 Ksp虽然也可表示难溶电解质的溶解能力大小,但只能用来 比较相同类型的电解质,即阴离子和阳离子的总数要相同。 严格说来,上述换算关系只有在总离子浓度不大、且只存在 单一溶度积平衡的情况下才是适用的。
第九章 沉淀溶解平衡
沉淀平衡
平衡特征
溶度积常数Ksp 同 盐 酸 配 离 效 效 合 子 应 应 效 K sp 规则应用 效 应 应
影响平衡移动因素
其 它
Ksp与溶解度 的关系
K0sp规则应用
判 断 沉 淀 生 成 溶 解
难 溶 物 的 溶 解
沉 淀 转 化
沉 淀 次 序
混 合 物 分 离
0.01mol· L-1K2CrO4溶液,是否有Ag2CrO4沉淀析出? ( Ksp (Ag2CrO4)=9.0×10-12)
解:当沉淀剂加入后,溶液中各离子浓度分别为: C(Ag+)=0.0025×20/(20+5)=0.002mol· L-1 C(CrO42-)=0.01×5/(20+5)=0.002mol· L-1 Qi={C(Ag+)/}2{C(CrO42-)/Cθ}=(2×10-3)2· (2×10-3)=
溶解度。(已知 Ksp =1.2×10-11 )
解:在纯水中的溶解度为s mol· L-1
Mg(OH)2(s) = Mg2+(aq)+2OH-(aq) 则平衡时: =4s3=1.2×10-11 s=1.44×10-4(mol· L-1)
在0.001mol· L-1的NaOH 的溶液中的溶解度为ymol· L-1
第九章 沉淀平衡
22
θ
(2) 氧化还原反应: 氧化还原反应: 3CuS(s) + 8HNO3 = 3Cu(NO3)2+3S(s)+2NO(g)+4H2O
2+
M
n+
(aq) + nOH (aq )
2−
−
M (aq) + S (aq)
21
p 290 [p 9-5]
9.2.2. 沉淀的溶解 与沉淀的生成相反, 与沉淀的生成相反,当 Qc< Ksp 时, 则沉淀溶解。根据沉淀的性质, 则沉淀溶解。根据沉淀的性质,可以选 择不同的溶解方法。 择不同的溶解方法。
常见难溶电解质的 在教材P 附录5中查询 常见难溶电解质的Ksp在教材 533附录 中查询 难溶电解质的
4
9.1.2. 溶度积与溶解度的关系 若溶解度用S (mol·dm-3)表示: 若溶解度用 表示: 表示
An Bm (s) nA (aq) + mB (aq)
mol⋅ dm
−3
m+
n−
nS
n m
3
对于一般的难溶物: 对于一般的难溶物:
A mBn (s) + nB m− (aq) mA (aq)
n+
Ksp = [Am+])m([Bn-]n Ksp称为溶度积常数,简称溶度积。 称为溶度积常数,简称溶度积。 一定温度下,在难溶电解质的 一定温度下, 饱和溶液中, 饱和溶液中,各离子浓度系数次 方的乘积是一个常数。 方的乘积是一个常数。
第9章 重量沉淀法
CaC2O4 : Ksp=1.78×10-9
(2)沉淀应易于过滤和洗涤
(3)沉淀要纯净 尽量避免混进杂质,易于过滤和洗涤。
颗粒较粗的晶形沉淀:MgNH4PO4· 6H2O, 颗粒细小的晶形沉淀:CaC2O4、BaSO4等, 非晶形沉淀:Al(OH)3,
(4) 易转化为称量形式
2 对称量形式的要求
1. 组成必须与化学式完全符合
草酸钙 溶解度
' S CaC 2O4 [Ca 2 ] [C 2 O 4 ] K sp K sp C2O4 (H) 2
沉淀的溶解度随溶液酸度增加而增加。
例题:计算在pH=3.00,C2O42-总浓度为0.010 mol/L
的溶液中CaC2O4的溶解度。
解:在这种情况下,需同时考虑酸效应和同离子效应。
2. 盐效应(salt effect)
在难溶电解质的饱和溶液中,加入其他强电解质,会使难溶 电解质的溶解度比同温度时在纯水中的溶解度增大,这种现象称
为盐效应。
例:KNO3存在下,AgCl、BaSO4的溶解度比在纯水中大 KNO3浓度:0 → 0.01mol·L-1, AgCl的溶解度:1.28×10-5→ 1. 43 ×10-5mol ·L-1。 原因:强电解质的浓度↑, 活度系数↓,Ksp常数,[M+][A-] ↑
BaCl2
称减量 称增量
讨论:
(1)全部数据都是由分析天平称量得来; (2)高含量组分的测定比较准确,相对误差<0.1%; 高含量硅、磷、钨、稀土元素等试样的精确分析
(3)不足之处是操作较繁,费时,
不适于生产中的控制分析, 对低含量组分的测定误差较大; (4)沉淀法应用较多。 沉淀法关键:沉淀剂的选择与用量,沉淀反应条件, 如何减少沉淀中杂质。
第九章_重量分析法-分析化学-中药学
第三节 沉淀法
1.定义
定义:是利用将被测组分转化成难溶化合物, 以沉淀形式从试液中分离出来,再将析出的 沉淀经过滤、洗涤、烘干或灼烧,转化为可 供最后称量的化学组成,根据该化学组成的 重量,计算被测组分含量的方法。 沉淀重量法的分析过程
试样
沉淀剂
沉淀型 沉淀
过滤 洗涤
灼烧
或烘干
称量型 称重 计算
2.沉淀形式与称量形式 沉淀形式:沉淀反应生成沉淀的化学组成 称量形式:沉淀经处理,供称量的化学组成 二者有时相同,有时则不同。 如用BaCl2作沉淀剂测定SO42-, 沉淀形式与称量形式均为BaSO4 ; 用(NH4)2C2O4作沉淀剂测定Ca2+, 沉淀形式是CaC2O4· H2O, 称量形式是CaO。
第9章 重量分析法
学习目标
• • • • • 重量分析法定义、特点 挥发法 萃取法 沉淀法(沉淀的要求、影响沉淀的因素) 沉淀重量分析法计算
36-1
概述
1.重量分析法定义
重量分析是通过称量物质的质量(习惯上称 为重量)来确定被测组分含量的一种定量分析 方法。在重量分析中,先用适当的方法将被测 组分与试样中的其他组分分离后,转化为一定 的称量形式,然后称重,由称得的物质的质量 计算该组分的含量。
分离
称量
2.重量分析法特点
不需用基准物质
准确度高
不适用于微量分析 耗时多、周期长,操作烦琐
相对误差 0.1~0.2%
3.重量分析法应用
主要应用于
(1)含量不太低的Si, S, P, W, Mo, Ni, Zr, Hf, Nb, Ta、稀土元素及水分等挥发组分的精确分析
(2)药品的含量测定、干燥失重、炽灼残渣以及中 草药灰分的测定等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而与离子浓度无关。
对于一般的难溶物溶度积的表达式为:
A mBn (s)
m + mA (aq) nB (aq)
n+
Ksp = ([Am+])m([Bn-])n
常见难溶电解质的Ksp在教材P537附录5中查询
9.1.2 溶度积与溶解度的关系
溶解度:在一定的温度下,该物质在100 g溶剂
解:已知Mr(AgCl)=143.3 gmol-1
1.92103 S 1.34103 (m ol dm3 ) 143.3
AgCl(s) Ag(aq) + Cl-1(aq)
平衡浓度/moldm-3
1
S
2
S
8
Ksp [ Ag ][Cl ] S 1.8010
例在25℃ 时,Ag2CrO4的溶解度是0.0217 g· dm-3,
溶解度大的沉淀向溶解度小的沉淀转化
BaCO3 Ba + 2CrO4
2+
+CO32-
[Ba2+]=[CO32-]=(2.6*10-9)1/2=5.1*10-5
BaCrO4
[CrO4 ]
2
K sp ( BaCrO4 ) [ Ba2 ]
1.2 1010 6 = 2 . 4 10 5.1105
注:离子在溶液中的残留量不超过1.0×10-5 mol· dm-3
时,认为其沉淀完全。 解: Ag2CrO4 2Ag+ + CrO42-
K sp =( [Ag+])2([CrO42-])
开始有Ag2CrO4沉淀生成时:
2 1012 5 3 [Ag ] 4 . 5 10 mol d m 2 1.0 103 [CrO4 ]
里达到饱和状态时所溶解溶质的克数。
-------表示物质的溶解能力,它会随其他离子存
在的情况不同而改变。
注意:溶解度不是物质本身的性质参数 。 溶解度用S (mol· dm-3)表示
难溶电解质溶解度的求法: 达到沉淀溶解平衡后,沉淀所溶解的量。 若溶解度用S (mol· dm-3)表示:
An Bm (s) An Bm (aq) nAm (aq) mBn (aq)
=
K sp ( BaSO4 K sp ( BaCO 3
1.11010 0.042 9 2.6 10
9.3 影响沉淀溶解度的因素 9.3.1 同离子效应 9.3.2 盐效应 9.3.3 酸效应 9.3.4 配位效应
9.3.1 同离子效应
在难溶电解质溶液中加入与其含有相同离 子的易溶强电解质,而使难溶电解质的溶解度 降低的作用。 n (aq) mB nA (aq)
如CuS(KSP为1.27×10-36)溶于硝酸。 CuS(s) = Cu2+ + S2+ HNO3 S↓ + NO↑ + H2O
(3) 生成配合物使沉淀溶解
例如AgCl不溶于酸,但可溶于NH3溶液。 AgCl(s) = Ag+ + Cl+ 2NH3 ‖ [Ag(NH3)2]+
9.2.3. 分步沉淀
m+
与沉淀的生成相反,当 Qc< K sp 时,沉淀溶解。 由沉淀的性质决定溶解方法。
(1) 生成弱电解质:
生成H2O:M(OH)n+nH+=Mn++nH2O
生成NH3 Mg(OH)2+NH4+=Mg++NH3 +H2O
生成CO2(g)、H2S(g)等: MS + 2H+ = M2+ + H2S
(2) 通过氧化还原反应使沉淀溶解
Θ K sp
CrO42-沉淀完全时的浓度为1.0 ×10-5 moldm-3
12 2 10 4 3 [Ag ] 4 . 5 10 mol d m 2 5 1 . 0 10 [CrO4 ] Θ K sp
(2) 控制溶液的酸度
思考: 什么样的物质可以通过控制酸度的办法生成沉淀
第9章 沉淀平衡和沉淀滴定法
9.1 溶度积和溶解度
9.1.1 溶度积常数
问题1: 将晶态BaSO4放入水中会发生什么变化? 硫酸钡晶体会发生溶解----表面Ba2+及SO42-受到 水分子的偶极子的作用离开晶体表面进入溶液。 问题2: 溶解会不会持续发生下去?
沉淀在溶液中会达到溶解平衡----溶解和沉淀速 率相等。
A nBm (s)
n (aq) mB nA (aq)
m+
根据溶度积规则当 Qc > K sp 时,则有沉淀生成。
(1) 加入沉淀剂:
如在AgNO3溶液中加入NaCl则生成AgCl沉淀。
例:向1.0 × 10-3 mol· dm-3的K2CrO4溶液中滴加 AgNO3溶液,求开始有Ag2CrO4沉淀生成时的[Ag+]? CrO42-沉淀完全时的 [Ag+]= ?
12 5 . 61 10 2 [OH- ] ( ) ( ) 2 [Mg ] 0.01
K sp
1 2
1
2.4 105 (mol dm 3 )
pOH = 4.6, pH =9.4
只要控制pH值在2.8 ~ 9.4之间即可使Fe3+定
量沉淀而使Mg2+不沉淀
9.2.4. 沉淀转化 由一种沉淀转化为另一种沉淀
9.2 沉淀-溶解平衡的移动
溶度积原理 AnBm(s) = nAm+(aq) + mBn-(aq)
KSP =c(Am+)n · c(Bn-)m
Qc = c (Am+) n· c (Bn-) m KSP 与Qi 的意义: KSP表示难溶电解质沉淀溶解平衡时饱和溶液中 离子浓度的乘积。在一定温度下KSP为一常数。 Qc则表示任何情况下离子浓度的乘积,其值不定。
试计算Ag2CrO4的KSP 。
解:
m(Ag2CrO4 ) 0.0217g.L1 5 -3 S (Ag2CrO4 ) 6 . 54 10 g dm M (Ag2CrO4 ) 331.8g.mol1
由 Ag2CrO4的溶解平衡 Ag2CrO4(s)=2Ag+ (aq) + CrO42-(aq) 平衡时浓度/ mol· dm-3 2S S 可得 KSP=[Ag+]2 · [CrO42-]=(2S)2 · S=4S3 =4× (6.54× 10-5)3=1.12× 10-12
例:0.15 dm3 1.5 mol· dm-3 Na2CO3溶液可以使质 量为多少的BaSO4固体转化掉? 解:
BaSO4 + CO32初始相对浓度/mol dm-3 平衡时相对浓度/mol dm-3 1.5 1.5-x
BaCO3 + SO420 x
2 K sp ( BaSO4 K sp ( BaCO 3 [SO 4 ] x 2 2 [ Ba ] [ Ba2 ] [CO 3 ] 1.5 x
聚合、配位等反应。
(2)难溶电解质要一步完全电离 。
溶解度的比较
对同类型的难溶电解质,可用溶度积Ksp的大小 来比较溶解度s的大小。但不同类型的难溶电解质则 不宜直接用溶度积Ksp的大小来比较溶解度s的大小。 如 Ksp CaCO3 AgCl Ag2CrO4 9×10-12 8.7×10-9 1.56×10-10
1.8 108 (m ol dm3 )
因为: c1( Ag )
I
c2( Ag )
Cl
所以:AgI先沉淀。
AgCl开始沉淀时:
c( I ) K sp ( AgI ) c2 ( Ag ) 8.5 10 17 9 3 4 . 7 10 ( mol dm ) 8 1.8 10
m+
A nBm (s)
sp
Qc >K 时,平衡向左移动,沉淀的溶解度降低。
30
例:求 25℃时, Ag2CrO4在 0.010 mol· dm-3 K2CrO4溶液中的溶解度。 解: Ag CrO (s) 2 4
2Ag (aq) CrO2 4 (aq)
初始 浓度/(mol dm )
平衡 浓度/(mol dm3 )
c(I ) 4.7 109 mol dm-3 1.0 105 mol dm-3
即AgCl开始沉淀时,I-离子已沉淀完全。
例 : 如 果 溶 液 中 Fe3+ 和 Mg2+ 的 浓 度 均 为 0.010 moldm-3, 使 Fe3+ 定量沉淀而使 Mg2+ 不沉淀的条 件是什么? 解: Fe(OH)3 Fe3+ + 3OH-
平衡移动规律:
Qc >Ksp 过饱和溶液,平衡向左移动,沉淀析出;
Qc =Ksp 处于沉淀-溶解平衡状态,饱和溶液;
Qc<Ksp 不饱和溶液平衡向右移动,无沉淀析 出;若原来有沉淀存在,则沉淀溶解。
例 将等体积的4×10-3 mol· dm-3的AgNO3和4×10-3
mol· dm-3 K2CrO4混合,问有无Ag2CrO4沉淀产生? 已 知KSP (Ag2CrO4)=1.12×10-12。
对于某些弱酸盐或难溶的氢氧化物,可通 过控制溶液的pH值,使酸根浓度或OH- 浓度 改变,达到生成沉淀的目的。
M(OH)n (s)
MS(s) M
M n (aq) nOH (aq)
2+
(aq) + S
2-
(aq)
P 309 [例 9-5]
9.2.2. 沉淀的溶解
A nBm (s) n nA (aq) + mB (aq)