2013年六盘水市中考数学试卷及答案(word解析版)
2013年贵州省黔东南州中考数学试卷及答案(word解析版)

贵州省黔东南州2013年中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)本大题每小题均有ABCD 四个备选答案,其中只有一个是正确的。
1(4分)(2013•黔东南州)(﹣1)2的值是()A﹣1 B 1 C ﹣2 D 2考点:有理数的乘方分析:根据平方的意义即可求解解答:解:(﹣1)2=1故选B点评:本题考查了乘方的运算,负数的奇数次幂是负数,负数的偶数次幂是正数2(4分)(2013•黔东南州)下列运算正确的是()A(a 2)3=a 6B a2+a=a5C(x﹣y)2=x2﹣y2D+=2考点:幂的乘方与积的乘方;实数的运算;合并同类项;完全平方公式专题:计算题分析:A、利用幂的乘方运算法则计算得到结果,即可作出判断;B、原式不能合并,错误;C、原式利用完全平方公式展开得到结果,即可作出判断;D、原式利用立方根的定义化简得到结果,即可作出判断解答:解:A、(a2)3=a6,本选项正确;B、本选项不能合并,错误;C、(x ﹣y)2=x 2﹣2xy+y2,本选项错误;D 、+=2+,本选项错误,故选A点评:此题考查了积的乘方与幂的乘方,合并同类项,同底数幂的乘法,以及完全平方公式,熟练掌握公式及法则是解本题的关键3(4分)(2013•黔东南州)如图是有几个相同的小正方体组成的一个几何体它的左视图是()A B C D考点:简单组合体的三视图分析:根据左视图是从左面看到的图判定则可解答:解:左面看去得到的正方形第一层是2个正方形,第二层是1个正方形故选B点评:本题主要考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,难度适中4(4分)(2013•黔东南州)从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够成三角形的概率是()A B C D考点:列表法与树状图法分析:列举出所有情况,让能组成三角形的情况数除以总情况数即为所求的概率解答:解:共有10、7、5;10、7、3;10、5、3;7、3、5;4种情况,10、7、3;10、5、3这两种情况不能组成三角形;所以P(任取三条,能构成三角形)=故选:C点评:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=构成三角形的基本要求为两小边之和大于最大边5(4分)(2013•黔东南州)如图,已知a∥b,∠1=40°,则∠2=()A140°B120°C40°D50°考点:平行线的性质;对顶角、邻补角专题:计算题分析:如图:由a∥b,根据两直线平行,同位角相等,可得∠1=∠3;又根据邻补角的定义,可得∠2+∠3=180°,所以可以求得∠2的度数解答:解:∵a∥b,∴∠1=∠3=40°;∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°故选A点评:此题考查了平行线的性质:两直线平行,同位角相等以及邻补角互补6(4分)(2013•黔东南州)某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,成绩如下:126,144,134,118,126,152这组数据中,众数和中位数分别是()A126,126 B130,134 C126,130 D118,152考点:众数;中位数分析:根据众数和中位数的定义求解即可解答:解:这组数据按从小到大的顺序排列为:118,126,126,134,144,152,故众数为:126,中位数为:(126+134)÷2=130故选C点评:本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键7(4分)(2013•黔东南州)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r 为半径作圆,若圆C与直线AB相切,则r的值为()A2cm B24cm C3cm D4cm考点:直线与圆的位置关系分析:R的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出r的值解答:解:Rt△ABC中,∠C=90°,AC=3cm,BC=4cm;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=R;∵S△ABC=AC•BC=AB•r;∴r=24cm,故选B点评:本题考查的知识点有:切线的性质、勾股定理、直角三角形面积的求法;斜边上的高即为圆的半径是本题的突破点8(4分)(2013•黔东南州)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A a<0,b<0,c>0,b2﹣4ac>0B a>0,b<0,c>0,b2﹣4ac<0C a<0,b>0,c<0,b2﹣4ac>0D a<0,b>0,c>0,b2﹣4ac>0考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,再结合抛物线的对称轴与y轴的关系判断b 与0的关系,由抛物线与y轴的交点判断c与0的关系,根据抛物线与x轴交点的个数判断b2﹣4ac与0的关系解答:解:∵抛物线的开口向下,∴a<0,∵对称轴在y轴右边,∴a,b异号即b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∵抛物线与x轴有2个交点,∴b2﹣4ac>0故选D点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0(4)b2﹣4ac由抛物线与x轴交点的个数确定:2个交点,b2﹣4ac>0;1个交点,b2﹣4ac=0;没有交点,b2﹣4ac<09(4分)(2013•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()A m>﹣1B m<1 C﹣1<m<1 D﹣1≤m≤1考点:两条直线相交或平行问题专题:计算题分析:联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可解答:解:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,解不等式②得,m<1,所以,m的取值范围是﹣1<m<1故选C点评:本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用10(4分)(2013•黔东南州)如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A(10)B(10)或(﹣10)C(20)或(0,﹣2)D(﹣21)或(2,﹣1)考点:反比例函数与一次函数的交点问题;坐标与图形变化-旋转专题:计算题分析:联立直线与反比例解析式,求出交点A的坐标,将△ABO绕点O旋转90°,得到△A′B′O,利用图形及A的坐标即可得到点A′的坐标解答:解:联立直线与反比例解析式得:,消去y得到:x2=1,解得:x=1或﹣1,∴y=2或﹣2,∴A(1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1)故选D点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形变化﹣旋转,作出相应的图形是解本题的关键二、填空题(本题共6小题,每小题4分,共24分)11(4分)(2013•黔东南州)平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0)考点:关于x轴、y轴对称的点的坐标分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可以直接写出答案解答:解:点A(2,0)关于y轴对称的点A′的坐标为(﹣2,0),故答案为:(﹣2,0)点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律12(4分)(2013•黔东南州)使根式有意义的x的取值范围是x≤3考点:二次根式有意义的条件分析:根据被开方数大于等于0列式计算即可得解解答:解:根据题意得,3﹣x≥0,解得x≤3故答案为:x≤3点评:本题考查的知识点为:二次根式的被开方数是非负数13(4分)(2013•黔东南州)将一副三角尺如图所示叠放在一起,则的值是考点:相似三角形的判定与性质分析:由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:,然后利用三角函数,用AC表示出AB与CD,即可求得答案解答:解:∵∠BAC=∠ACD=90°,∴AB∥CD,∴△ABE∽△DCE,∴,∵在Rt△ACB中∠B=45°,∴AB=AC,∵在RtACD中,∠D=30°,∴CD==AC,∴==故答案为:点评:此题考查了相似三角形的判定与性质与三角函数的性质此题难度不大,注意掌握数形结合思想的应用14(4分)(2013•黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C ﹣∠B,则∠B=60度考点:三角形内角和定理分析:先整理得到∠A+∠C=2∠B,再利用三角形的内角和等于180°列出方程求解即可解答:解:∵∠B﹣∠A=∠C﹣∠B,∴∠A+∠C=2∠B,又∵∠A+∠C+∠B=180°,∴3∠B=180°,∴∠B=60°故答案为:60点评:本题考查了三角形的内角和定理,是基础题,求出∠A+∠C=2∠B是解题的关键15(4分)(2013•黔东南州)若两个不等实数m、n满足条件:m2﹣2m﹣1=0,n2﹣2n﹣1=0,则m2+n2的值是6考点:根与系数的关系分析:根据题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,所以利用根与系数的关系来求m2+n2的值解答:解:由题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,则m+n=2,mn=﹣1所以,m2+n2=(m+n)2﹣2mn=2×2﹣2×(﹣1)=6故答案是:6点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法16(4分)(2013•黔东南州)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是1014049考点:规律型:数字的变化类分析:根据已知数字变化规律,得出连续奇数之和为数字个数的平方,进而得出答案解答:解:∵1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,∴1+3+5+…+2013=()2=10072=1014049故答案为:1014049点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键三、解答题:(本大题共8个小题,共86分)17(10分)(2013•黔东南州)(1)计算:sin30°﹣2﹣1+(﹣1)0+;(2)先简化,再求值:(1﹣)÷,其中x=考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题分析:(1)分别根据负整数指数幂、0指数幂的计算法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可解答:解:(1)原式=﹣+1+π﹣1=π;(2)原式=÷=×=,当x=时,原式==+1点评:本题考查的是分式的混合运算及实数的运算,熟知分式混合运算的法则是解答此题的关键18(8分)(2013•黔东南州)解不等式组,并把解集在数轴上表示出来考点:解一元一次不等式组;在数轴上表示不等式的解集专题:计算题分析:先求出两个不等式的解集,再求其公共解解答:解:,解不等式①得,x<2,解不等式②得,x≥﹣2,在数轴上表示如下:所以,不等式组的解集是﹣2≤x<2点评:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示19(8分)(2013•黔东南州)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F求证:AM=EF考点:正方形的性质;全等三角形的判定与性质;矩形的判定与性质专题:证明题分析:过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,根据题干条件证明出AP=MF,PM=ME,进而证明△APM≌△FME,即可证明出AM=EF解答:证明:过M点作MQ⊥AD,垂足为Q,作MP垂足AB,垂足为P,∵四边形ABCD是正方形,∴四边形MFDQ和四边形PBEM是正方形,四边形APMQ是矩形,∴AP=QM=DF=MF,PM=PB=ME,∵在△APM和△FME中,,∴△APM≌△FME(SAS),∴AM=EF点评:本题主要考查正方形的性质等知识点,解答本题的关键是熟练掌握全等三角形的判定定理以及矩形的性质等知识,此题正确作出辅助线很易解答20(10分)(2013•黔东南州)为了解黔东南州某县2013届中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图成绩分组组中值频数25≤x<30 275 430≤x<35 325 m35≤x<40 375 2440≤x<45 a 3645≤x<50 475 n50≤x<55 525 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表分析:(1)求出组距,然后利用375加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值;(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数解答:解:(1)组距是:375﹣325=5,则a=375+5=425;根据频数分布直方图可得:m=12,则n=100﹣4﹣12﹣24﹣36﹣4=20;(2)优秀的人数所占的比例是:=06,则该县中考体育成绩优秀学生人数约为:4000×06=2400(人)点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题21(12分)(2013•黔东南州)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中选出2名主持人(1)用树形图获列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率考点:列表法与树状图法分析:(1)首先根据题意画出树状图,由树状图求得所有等可能的结果;(2)由选出的是2名主持人来自不同班级的情况,然后由概率公式即可求得;(3)由选出的是2名主持人恰好1男1女的情况,然后由概率公式即可求得解答:解:(1)画树状图得:共有20种等可能的结果,(2)∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:=;(3)∵2名主持人恰好1男1女的情况有12种,∴2名主持人恰好1男1女的概率为:=点评:此题考查的是用列表法或树状图法求概率注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比22(12分)(2013•黔东南州)如图,在直角三角形ABC中,∠ABC=90°(1)先作∠ACB的平分线;设它交AB边于点O,再以点O为圆心,OB为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC是所作⊙O的切线;(3)若BC=,sinA=,求△AOC的面积考点:作图—复杂作图;切线的判定分析:(1)根据角平分线的作法求出角平分线FC,进而得出⊙O;(2)根据切线的判定定理求出EO=BO,即可得出答案;(3)根据锐角三角函数的关系求出AC,EO的长,即可得出答案解答:(1)解:如图所示:(2)证明:过点O作OE⊥AC于点E,∵FC平分∠ACB,∴OB=OE,∴AC是所作⊙O的切线;(3)解:∵sinA=,∠ABC=90°,∴∠A=30°,∴∠ACB=∠OCB=ACB=30°,∵BC=,∴AC=2,BO=tan30°BC=×=1,∴△AOC的面积为:×AC×OE=×2×1=点评:此题主要考查了复杂作图以及切线的判定和锐角三角函数的关系等知识,正确把握切线的判定定理是解题关键23(12分)(2013•黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?考点:一次函数的应用分析:(1)根据函数图象由待定系数法就可以直接求出y与x之间的函数关系式;(2)设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,根据购进甲品牌文具盒120个可以求出乙品牌的文具盒的个数,由共需7200元为等量关系建立方程求出其解即可;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,根据条件建立不等式组求出其解即可解答:解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,∴y与x之间的函数关系式为y=﹣x+300;(2)∵y=﹣x+300;∴当x=120时,y=180设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+180×2a=7200,解得:a=15,∴乙品牌的进货单价是30元答:甲、乙两种品牌的文具盒进货单价分别为15元,30元;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,由题意,得,解得:180≤m≤181,∵m为整数,∴m=180,181∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(﹣m+300)=﹣5m+2700∵k=﹣5<0,∴W随m的增大而减小,∴m=180时,W 最大=1800元点评:本题考查了待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,列一元一次不等式组解实际问题的运用,解答时求出第一问的解析式是解答后面问题的关键24(14分)(2013•黔东南州)已知抛物线y 1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y 2=x+1的一个交点的横坐标为2(1)求抛物线的解析式;(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P 在抛物线上,当S △PAB≤6时,求点P的横坐标x的取值范围考点:二次函数综合题分析:(1)首先求出抛物线与直线的交点坐标,然后利用待定系数法求出抛物线的解析式;(2)确定出抛物线与x轴的两个交点坐标,依题意画出函数的图象由图象可以直观地看出使得y1≥y2的x的取值范围;(3)首先求出点B的坐标及线段AB的长度;设△PAB中,AB边上的高为h,则由S △PAB≤6可以求出h的范围,这是一个不等式,解不等式求出x P的取值范围解答:解:(1)∵抛物线与直线y2=x+1的一个交点的横坐标为2,∴交点的纵坐标为2+1=3,即交点坐标为(2,3)设抛物线的解析式为y1=a(x﹣1)2+4,把交点坐标(2,3)代入得:3=a(2﹣1)2+4,解得a=﹣1,∴抛物线解析式为:y 1=﹣(x﹣1)2+4=﹣x2+2x+3(2)令y1=0,即﹣x2+2x+3=0,解得x1=3,x2=﹣1,∴抛物线与x轴交点坐标为(3,0)和(﹣1,0)在坐标系中画出抛物线与直线的图形,如图:根据图象,可知使得y 1≥y2的x的取值范围为﹣1≤x≤2(3)由(2)可知,点A坐标为(3,0)令x=3,则y 2=x+1=3+1=4,∴B(3,4),即AB=4设△PAB中,AB边上的高为h,则h=|x P﹣x A|=|x P﹣3|,S △PAB=AB•h=×4×|x P﹣3|=2|x P﹣3|已知S△PAB≤6,2|x P﹣3|≤6,化简得:|x P﹣3|≤3,去掉绝对值符号,将不等式化为不等式组:﹣3≤x P﹣3≤3,解此不等式组,得:0≤x P≤6,∴当S △PAB≤6时,点P的横坐标x的取值范围为0≤x P≤6点评:本题考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、三角形的面积、解不等式(组)等知识点题目难度不大,失分点在于第(3)问,点P在线段AB的左右两侧均有取值范围,注意不要遗漏。
2013年六盘水中考数学

贵州省六盘水市2013年中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,只有一项符合题意要求)C﹣B C DB C D()9.(3分)(2013•六盘水)已知关于x的一元二次方程(k﹣1)x﹣2x+1=0有两个不相等的实B C D二、填空题(本题8小题,每小题4分,共计32分)11.(4分)(2013•六盘水)H7N9禽流感病毒的直径大约为0.0000000805米,用科学记数法表示为米(保留两位有效数字)12.因式分解:4x3﹣36x=.13.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)13题15题14.在六盘水市组织的“五城联创”演讲比赛中,小明等25人进入总决赛,赛制规定,13人早上参赛,12人下午参赛,小明抽到上午比赛的概率是.15.(4分)(2013•六盘水)如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于.16.若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为cm.17.无论x取任何实数,代数式都有意义,则m的取值范围为.18.(4分)(2013•六盘水)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为,经过61次旋转后,顶点O经过的总路程为.三、解答题(本题共7个小题,共88分,解答时应写出必要的文字说明,证明过程或演算步骤)19.(1)+(2013﹣π)0(2)先化简,再求值:(),其中x2﹣4=0.20.(12分)(2013•六盘水)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式.(2)计算本次调查的学生人数和图(2)选项C的圆心角度数.(3)请根据图(1)中选项B的部分补充完整.(4)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.21.(10分)(2013•六盘水)在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交与点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论.(2)若AD:AO=6:5,BC=3,求BD的长.22.(10分)(2013•六盘水)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosasinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan15°=tan(45°﹣30°)===根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据,)23.(14分)(2013•六盘水)为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?24.(10分)(2013•六盘水)(1)观察发现 如图(1):若点A 、B 在直线m 同侧,在直线m 上找一点P ,使AP+BP 的值最小,做法如下:作点B 关于直线m 的对称点B ′,连接AB ′,与直线m 的交点就是所求的点P ,线段AB ′的长度即为AP+BP 的最小值.如图(2):在等边三角形ABC 中,AB=2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP+PE 的值最小,做法如下:作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP+PE 的最小值为. (2)实践运用如图(3):已知⊙O 的直径CD 为2,的度数为60°,点B 是的中点,在直径CD 上作出点P ,使BP+AP 的值最小,则BP+AP 的值最小,则BP+AP 的最小值为 .(3)拓展延伸 如图(4):点P 是四边形ABCD 内一点,分别在边AB 、BC 上作出点M ,点N ,使PM+PN 的值最小,保留作图痕迹,不写作法.25.(16分)(2013•六盘水)已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,OA=,若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处. (1)求经过点O ,C ,A 三点的抛物线的解析式. (2)求抛物线的对称轴与线段OB 交点D 的坐标.(3)线段OB 与抛物线交与点E ,点P 为线段OE 上一动点(点P 不与点O ,点E 重合),过P 点作y 轴的平行线,交抛物线于点M ,问:在线段OE 上是否存在这样的点P ,使得PD=CM ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.。
2013年安徽省中考数学试卷及答案(Word解析版)

安徽省2013年中考数学试卷一、选择题(共10小题,每小题4分,满分40分)))5.(4分)(2013?安徽)已知不等式组,其解集在数轴上表示正确的是()放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率123∴能让两盏灯泡同时发光的概率为:=();当CE=3,CF=3EC=,而EM=3EC?CF=﹣;CE=BC=3CF=CD=3,而EM=3,所以EC?CF=x6xCBP=安徽)若x≤.x≤.x≤、PC的=8.2BCEF=EF=EF=时,四边形EF=EF=EF=,所以由已知条件可以推知EF=EF=AB=.EF=BD===EF=EF=.分)﹣|.=2×+12+=0,0),17.(8分)(2013?安徽)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1)放在直角坐标系中,设其中第一个基本图的对称中心x1,2),规律型:图形的变化类;规律型:点的坐标.M==M=2×=,=;+2=3)的对称中心的横坐标为=5,=7,=4025,,汛AE.(结ABF=∠α=60°=10m∠β=45°AE==10m2000元要)根据购买的两种球拍数一样,列出方程=,求出方程的=,21.(12分)(2013?安徽)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统400×=64q=30+q=20+35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(30+20+=3530+x20+﹣=﹣y=,x﹣(∴随时,最大,y=﹣=23.(14分)(2013?安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不,∴△ABE∽△DEC∴,∴。
2013中考数学真题及答案(word解析版)

2013年红河州哈尼族彝族自治州初中学业水平考试数学试题一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分) 1.12-的倒数是(A )A .2-B .2C .12-D .12【答案】A2.右图是某个几何体的三视图,该几何体是(B ) A .正方体 B .圆柱 C .圆锥 D .球【答案】B3.下列运算正确的是(D )A .2a a a +=B .632a a a ÷= C .0( 3.14)0π-= D.=【答案】D4.不等式组3x x <⎧⎨⎩≥1的解集在数轴上表示为 (C )【答案】CABCD主视图俯视图左视图5.B)A.3-B.3C.9-C.9【答案】B6.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为(C)A.60°B.65°C.70°D.75°【答案】C7.在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)【答案】C8.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分ABC∠,则下列结论错误的是(D)A.AD DC=B.AD DC= C.ADB ACB∠=∠D.DAB CBA∠=∠【答案】DABA CDE二、填空题(本大题共6个小题,每小题3分,满分18分)9.红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4 500 000用科学记数法表示为 . 【答案】64.510⨯10.分解因式:29ax a -= . 【答案】()()33a x x +-11.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 . 【答案】 100 12.在函数11y x =-中,自变量x 的取值范围是 . 【答案】1x ≠13.已知扇形的半径是30cm ,圆心角是60,则该扇形的弧长为 cm (结果保留π). 【答案】 10 π14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆.【答案】 42三、解答题(本大题共9个小题,满分58分)……(1) (2) (3)BACD E15.解方程212xx x +=+. 【答案】解:方程两边同时乘以(2)x x +得:22(2)(2)x x x x +++=. 22242x x x x +++=.1x =-.检验:把1x =-代入(2)0x x +≠. ………………………………4分 ∴1x =-是原方程的解. ………………………………5分16.如图,D 是△ABC 的边AB 上一点,E 是AC 的中点,过点C 作//CF AB ,交DE 的延长线于点F .求证:AD = CF . 【答案】证明:∵E 是AC 的中点,∴AE = CE . ………………………1分 ∵CF ∥AB ,∴∠A =∠ECF , ∠ADE =∠F . ………………………………3分 在△ADE 与△CFE 中,,,,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (AAS ). ……………………………4分 ∴AD CF =. ……………………………5分17.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:=100%⨯售价-进价利润率进价)【答案】解:设这件外衣的标价为x 元,依题意得: ……………………………1分0.820020010%x -=⨯. ……………………………3分0.820200x =+.0.8220x =.275x =. ……………………………5分答:这件外衣的标价为275元. ……………………………6分 18.今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量. 【答案】解:(1)统计表和条形统计图补充如下:…………………………………………………………3分植树数量(棵)植树数量(棵)(2)抽样的50名学生植树的平均数是:354205156104.650x ⨯+⨯+⨯+⨯==(棵).……………………5分 (3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵. 于是4.6×800 =3 680(棵),∴估计该校800名学生植树约为3 680棵. ……………………………7分19.今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 【答案】解:(1)列表法表示如下:或树形图:……………………………………………………………………4分(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种, 所以抽奖人员的获奖概率为61122p ==. …………………………7分 20.如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号).【答案】解:由题意可知,△ACD 与△BCD 都是直角三角形.在Rt △BCD 中, ∵∠BDC = 45°,∴BC = CD = 100.在Rt △ACD 中,∵∠ADC = 60°,CD = 100, ∴tan60ACCD=, 即100AC= 1234211332443开 始D6045∴AC = …………………………4分 ∴AB AC BC =-1)=. …………………………5分答:手机信号中转塔的高度为1)米. …………………………6分21.(2013云南红河州,21,6分)如图,正比例函数1y x =的图象与反比例函数2ky x=(0k ≠)的图象相交于A 、B 两点,点A 的纵坐标为2. (1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当12y y >时,自变量x 的取值范围. 【答案】解:(1)设A 点的坐标为(m ,2)2m =,所以点A 的坐标为(2,2). ∴224k =⨯=.∴反比例函数的解析式为:24y x=.…………………………3分 (2)当12y y =时,4x x=. 解得2x =±.∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2). 由图象可知,当12y y >时,自变量x 的取值范围是:20x -<<或2x >.……………………………………………………………………6分22.(2013云南红河州,22,7分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E .(1)判断四边形ACED 的形状,并说明理由; (2)若BD = 8cm ,求线段BE 的长.BACDE【答案】解:(1)四边形ACED 是平行四边形. ………………………………1分理由如下:∵四边形ABCD 是正方形, ∴AD ∥BC ,即AD ∥CE . ∵DE ∥AC ,∴四边形ACED 是平行四边形. ………………………………3分 (2)由(1)知,BC = AD = CE = CD , 在Rt △BCD 中, 令BC CD x ==,则2228x x +=. ………………………………5分解得1x =2x =-.∴2)BE x cm ==. ………………………………7分23.(2013云南红河州,23,9分)如图,抛物线24y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为D ,交直线BC 于点E .(1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标;(3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)在24y x =-+中,当y =0时,即240x -+=,解得2x =±.当0x =时,即04y =+,解得4y =.所以点A 、B 、C 的坐标依次是A (-2,0)、 B (2,0)、C (0,4).设直线BC 的解析式为y kx b =+(0k ≠),则204k b b +=⎧⎨=⎩,解得24k b =-⎧⎨=⎩. 所以直线BC 的解析式为24y x =-+. ………………………………3分 (2)∵点E 在直线BC 上,∴设点E 的坐标为(, 24)x x -+,则△ODE 的面积S 可表示为:221(24)2(1)12S x x x x x =-+=-+=--+. ∴当1x =时,△ODE 的面积有最大值1.此时,242142x -+=-⨯+=,∴点E 的坐标为(1,2). …………………5分 (3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下: 设点P 的坐标为2(, 4)x x -+,02x <<.因为△OAC 与△OPD 都是直角三角形,分两种情况: ①当△PDO ∽△COA 时,PD ODCO AO=, 2442x x-+=,解得11x,21x =(不符合题意,舍去).当1x =时,21)42y =-+=. 此时,点P的坐标为2).②当△PDO ∽△AOC 时,PD OD AO CO=, 2424x x -+=,解得3x =,4x =(不符合题意,舍去).当x =24y =-+此时,点P的坐标为. 综上可得,满足条件的点P 有两个:112)P,2P . ………………………9分 (注:本卷中所有解答题,若有其它方法得出正确结论的,请参照评分标准给分)。
2013年河北省中考数学试卷加详解答案

2013年河北省中考数学试卷.C D .. =±3 =2 C. = = C = D . =向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( )10.(3分)(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()11.(3分)(2013•河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()阴影D .π如图2.则下列说法正确的是( )从点A 出发,沿折线AD ﹣DC ﹣CB 以每秒1个单位长的速度运动到点B 停止.设运动时间为t 秒,y=S △EPF ,则y 与t 的函数图象大致是( ).CD .17.(3分)(2013•河北)如图,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是 .18.(3分)(2013•河北)若x+y=1,且x≠0,则(x+)÷的值为.19.(3分)(2013•河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.20.(3分)(2013•河北)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(9分)(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.22.(10分)(2013•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(10分)(2013•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.24.(11分)(2013•河北)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.25.(12分)(2013•河北)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W 的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)26.(14分)(2013•河北)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是CQ∥BE,BQ的长是3dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.2013年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(2分)(2013•河北)截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为.C D.C.=±3=27.(3分)(2013•河北)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每.==C=D.=可得方程=,8.(3分)(2013•河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()9.(3分)(2013•河北)如图,淇淇和嘉嘉做数学游戏:10.(3分)(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()得到y=得到y=11.(3分)(2013•河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()==12.(3分)(2013•河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()13.(3分)(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()14.(3分)(2013•河北)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()D.πCD=2CD==2﹣××﹣××=15.(3分)(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()<AD16.(3分)(2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P 从点A出发,沿折线AD﹣DC﹣CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是().C D.=13BC=tEF tEFB=(=EF PN=二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)(2013•河北)如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.与桌面接触的概率是:=故答案为:18.(3分)(2013•河北)若x+y=1,且x≠0,则(x+)÷的值为1.)÷=×=19.(3分)(2013•河北)如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.∠×∠BNF=20.(3分)(2013•河北)如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(9分)(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.22.(10分)(2013•河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.②==5.323.(10分)(2013•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.,)过点(,,则+b24.(11分)(2013•河北)如图,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.相切,T==8××,即点的距离为;点在优弧25.(12分)(2013•河北)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W 的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),﹣70x﹣<[40m%=或26.(14分)(2013•河北)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是CQ∥BE,BQ的长是3dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.=3×BCQ=;PBB=,得∠=2<=××(2.﹣参与本试卷答题和审题的老师有:sd2011;zhjh;caicl;lantin;星期八;HJJ;sks;gbl210;HLing;未来;sjzx;zcx(排名不分先后)菁优网2014年1月9日。
2013六盘水中考联考数学试卷

六盘水市三中教研合作学校联考试卷(第1页 共4页)2012年六盘水市第三中学教研合作学校第一次联考数学试卷命题:市三中 审题:市十三中一、 选择题:(单项选择,每小题3分,满分30分;请把正确答案的代号填在下表的对应表格内。
)1、8-的倒数是:( )A .38- B .38 C .83 D .83-2、下列式子正确的是: ( )A .9=±3B .63264)4(x x -=-C .3mn-2n=mD .222)(b a b a +=+3、下列汽车的标志中,是轴对称图形的有( )个。
A .1B .2C .3D .44、下面4幅图中,经过折叠不能围成一个立体图的一幅是:( )5、如图,矩形OABC 的边OA 长为2 ,边AB 长为1,O A 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是:( )(第5题图)A .2.5B .2 2C . 3D . 56、如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离为S ,则S 关于t 的函数图象大致为:( )7、某公园计划用两种正多边形状的地板砖对地面进行密铺,收到了下列四种设计方案,哪种方案是不可行的:( )A .正三角形和正六边形B .正四边形和正八边形C .正五边形和正十边形D .正六边形和正十二边形8、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如c b a ++就是完全对称式,代数式:①2)(b a- ②ca bc ab ++ ③a c c b b a 222++,其中是完全对称式的是:( ) A .①② B .①③ C .②③ D .①②③9、美是一种感觉,当人体下半身长与身高的比值越接近0.618时, 越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为:( ) A .4cmB .6cmC .8cmD .10cm10、在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,.按照以上变换有:(())()()233232f gf -=-=,,,,那么()()53f h -,等于:()学校: 班级: 姓名: 考场号: 座位号:......................密........................封....................线...........................(第6题图) BAOA.B.C.D.六盘水市三中教研合作学校联考试卷(第2页 共4页)F D C A B O (第21题图)(3)(2)(1)C 3B 3A 3A 2C 1B 1A 1CBAC 2B 2B 2C 2ABC1B 1C 1A 2C 1B 11CBA…(第18题图)A .()53--,B .()53,C .()53-,D .()53-,二、填空题:(每小题4分,满分32分;请把答案填写在题中的横线上) 11、通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示为_____________人(保留两个有效数字)。
2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
江西省2013年中考数学试题及答案(Word解析版)

江西省2013年中等学校招生考试数学试卷解析(江西于都三中 蔡家禄)说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。
2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是( ).A .1B .-1C .±1D .0【答案】 B .【考点解剖】 本题考查了实数的运算性质,要知道什么是倒数.【解题思路】 根据倒数的定义,求一个数的倒数,就是用1除以这个数,所以-1的倒数为1(1)1÷-=-,选B.【解答过程】 ∵1(1)1÷-=-,∴选B .【方法规律】 根据定义直接计算.【关键词】 实数 倒数2.下列计算正确的是( ).A .a 3+a 2=a 5B .(3a -b )2=9a 2-b 2C .a 6b ÷a 2=a 3bD .(-ab 3)2=a 2b 6【答案】 D .【考点解剖】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.【解题思路】 根据法则直接计算.【解答过程】 A.3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B.是完全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为222(3)96a b a ab b -=-+;C.两个单项式相除,系数与系数相除,相同的字母相除(同底数幂相除,底数不变,指数相减),正确的结果为624a b a a b ÷=;D.考查幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变,指数相乘),正确,选D.【方法规律】 熟记法则,依法操作.【关键词】 单项式 多项式 幂的运算3则这组数据的中位数和众数分别是( ).A .164和163B .105和163C .105和164D .163和164【答案】 A .【考点解剖】 本题考查的是统计初步中的基本概念——中位数、众数,要知道什么是中位数、众数.【解题思路】 根据中位数、众数的定义直接计算.【解答过程】 根据中位数的定义——将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,所以342、163、165、45、227、163的中位数是163和165的平均数164,众数为163,选A.【方法规律】 熟知基本概念,直接计算.【关键词】 统计初步 中位数 众数4.如图,直线y =x +a -2与双曲线y=x 4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ).A .0B .1C .2D .5【答案】 C .【考点解剖】 本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】 反比例函数图象既是轴对称图形又是中心对称图形,只有当A 、B 、O 三点共线时,才会有线段AB 的长度最小OA OB AB +=,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】 把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法规律】 要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.【关键词】 反比例函数 一次函数 双曲线 线段最小5.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是( ).【答案】 C .【考点解剖】 本题考查的投影与视图中的画已知物体的三视图,要正确掌握画三视图的有关法则.【解题思路】 可用排除法,B 、D 两选项有迷惑性,B 是主视图,D 不是什么视图,A 少了上面的一部分,正确答案为C.【解答过程】 略.【方法规律】 先要搞准观看的方向,三视图是正投影与平行投影的产物,反映物体的轮廓线,看得到的画成实线,遮挡部分画成虚线.【关键词】 三视图 坐凳6.若二次涵数y =ax +bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是( ).A .a >0B .b 2-4ac ≥0C .x 1<x 0<x 2D .a (x 0-x 1)( x 0-x 2)<0【答案】 D .【考点解剖】 本题考查的是二次函数的性质,要求对二次函数的性质有比较深刻地理解,并能熟练地画函数草图作出分析.【解题思路】 抛物线与x 轴有不同的两个交点,则240b ac ->,与B 矛盾,可排除B 选项;剩下A 、C 、D 不能直接作出正误判断,我们分a >0,a <0两种情况画出两个草图来分析(见下图).由图可知a 的符号不能确定(可正可负,即抛物线的开口可向上,也右向下),所以012,,x x x 的大小就无法确定;在图1中,a >0且有102x x x <<,则0102()()ax x x x --的值为负;在图2中,a <0且有102x x x <<,则0102()()a x x x x --的值也为负.所以正确选项为D.【解答过程】 略.【方法规律】 先排除错误的,剩下的再画图分析(数形结合)【关键词】 二次函数 结论正误判断二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x 2-4= .【答案】 (x +2)(x -2).【考点解剖】 本题的考点是因式分解,因式分解一般就考提取公因式法和公式法(完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.【解题思路】 直接套用公式即.【解答过程】 24(2)(2)x x x -=+-.【方法规律】 先观察式子的特点,正确选用恰当的分解方法.【关键词】 平方差公式 因式分解8.如图△ABC 中,∠A =90°点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .【答案】65°.【考点解剖】 本题考查了平行线的性质、邻补角、直角三角形两锐角互余等知识,题目较为简单,但有些考生很简单的计算都会出错,如犯18015535︒-︒=︒之类的错误.【解题思路】 由1155∠=︒,可求得25BCD CDE ∠=∠=︒,最后求65B ∠=︒.【解答过程】 ∵∠ADE =155°, ∴∠EDC =25°.又∵DE ∥BC ,∴∠C =∠EDC =25°,在△ABC 中,∠A =90°,∴∠B+∠C=90°,∴∠B=65°.【方法规律】 一般求角的大小要搞清楚所求角与已知角之间的等量关系,本题涉及三角形内角和定理、两直线平行,内错角相等,等量代换等知识和方法.【关键词】 邻补角 内错角 互余 互补9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .【答案】⎩⎨⎧+==+12,34y x y x . 【考点解剖】 本题考查的是列二元一次方程组解应用题(不要求求出方程组的解),准确找出数量之间的相等关系并能用代数式表示.【解题思路】 这里有两个等量关系:井冈山人数+瑞金人数=34,井冈山人数=瑞金人数×2+1.所以所列方程组为34,2 1.x y x y +=⎧⎨=+⎩. 【解答过程】 略.【方法规律】 抓住关键词,找出等量关系【关键词】 列二元一次方程组10.如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为 .【答案】 26.【考点解剖】 本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半(即),这种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累.【解题思路】 △BCN 与△ADM 全等,面积也相等,口DFMN 与口BEMN 的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半.【解答过程】 12⨯=. 【方法规律】 仔细观察图形特点,搞清部分与整体的关系,把不规则的图形转化为规则的来计算.【关键词】 矩形的面积 二次根式的运算 整体思想11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).【答案】 (n +1)2 .【考点解剖】 本题考查学生的观察概括能力,发现规律,列代数式.【解题思路】 找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示.【解答过程】 略.【方法规律】 由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.【关键词】 找规律 连续奇数的和12.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 【答案】 x 2-5x +6=0.【考点解剖】 本题是道结论开放的题(答案不唯一),已知直角三角形的面积为3(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为2、3的直角三角形的面积就是3,以2、3为根的一元二次方程为2560x x -+=;也可以以1、6为直角边长,得方程为2760x x -+=.(求作一元二次方程,属“一元二次方程根与系数的关系”知识范畴,这种题型在以前相对考得较少,有点偏了.)【解题思路】 先确定两条符合条件的边长,再以它为根求作一元二次方程.【解答过程】 略.【方法规律】 求作方程可以用根与系数的关系,也可由因式分解法解一元二次方程.【关键词】 直角三角形 根 求作方程13.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【答案】 25°.【考点解剖】 本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】 已知两个平行四边形的周长相等,且有公共边CD ,则有AD =DE ,即△ADE 为等腰三角形,顶角∠ADE =∠BCF =60°+70°=130°,∴∠DAE =25°.【解答过程】 ∵□ABCD 与□DCFE 的周长相等,且有公共边CD ,∴AD =DE , ∠ADE =∠BCF =60°+70°=130°.∴∠DAE =11(180)502522ADE ︒-∠=⨯︒=︒. 【方法规律】 先要明确∠DAE 的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD =130°转化为∠BCD =130°,∠F =110°转化为∠DCF =70°,从而求得∠ADE =∠BCF =130°.【关键词】 平行四边形 等腰三角形 周长 求角度14.平面内有四个点A 、O 、B 、C ,其中∠AOB =120°,∠ACB =60°,AO =BO =2,则满足题意的OC 长度为整数的值可以是 .【答案】2,3,4.【考点解剖】 本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.【解题思路】 由∠AOB =120°,AO =BO =2画出一个顶角为120°、腰长为2的等腰三角形,由60︒与120︒互补,60︒是120︒的一半,点C 是动点想到构造圆来解决此题.【解答过程】【方法规律】 构造恰当的图形是解决此类问题的关键.【关键词】 圆 整数值三、(本大题共2小题,每小题5分,共10分)15.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来. 【答案】解:由x +2≥1得x ≥-1,由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3.解集在数轴上表示如下:【考点解剖】 本题考查不等式组的解法,以及解集在数轴上的表示方法.【解题思路】 分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集,最后画出数轴表示出公共部分(不等式组的解集),注意空心点与实心点的区别.【解答过程】【方法规律】 要保证运算的准确度与速度,注意细节(不要搞错符号). 【关键词】 不等式组 数轴16.如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无.刻度..的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点;(2)在图2中,画出△ABC 中AB 边上的高.【答案】 (1)如图1,点P 就是所求作的点;(2)如图2,CD 为AB 边上的高.【考点解剖】 本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题(1)是要作点,题(2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】 图1点C 在圆外,要画三角形的高,就是要过点B 作AC 的垂线,过点A 作BC 的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC 与圆的交点为E , 连接BE ,就得到AC 边上的高BE ;同理设BC 与圆的交点为D , 连接AD ,就得到BC 边上的高AD ,则BE 与AD 的交点就是△ABC 的三条高的交点;题(2)是题(1)的拓展、升华,三角形的三条高相交于一点,受题(1)的启发,我们能够作出△ABC 的三条高的交点P ,再作射线PC 与AB 交于点D ,则CD 就是所求作的AB 边上的高.【解答过程】 略.【方法规律】 认真分析揣摩所给图形的信息,结合题目要求思考.【关键词】 创新作图 圆 三角形的高四、(本大题共2小题,每小题6分,共12分)17.先化简,再求值:12244222+-÷+-x x x x x x ,在0,1,2,三个数中选一个合适的,代入求值.【答案】解:原式=xx 2)2(2-·)2(2-x x x +1 =212x -+ =2x . 当x =1时,原式=21. 【考点解剖】 本题考查的是分式的化简求值,涉及因式分解,约分等运算知识,要求考生具有比较娴熟的运算技能,化简后要从三个数中选一个数代入求值,又考查了考生的细心答题的态度,这个陷阱隐蔽但不刁钻,看到分式,必然要注意分式成立的条件.【解题思路】 先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到212x -+,可通分得22212222x x x --+=+=,也可将22x -化为12x -求解. 【解答过程】 略.【方法规律】 根据式子的特点选用恰当的解题顺序和解题方法.【关键词】 分式 化简求值18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( ).A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.【答案】(1)A .(2)依题意画树状图如下:从上图可知,所有等可能结果共有6种,其中第4、5种结果符合,∴P (A)=62=31 . 【考点解剖】 本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.【解题思路】 (1)是选择题,根据必然事件的定义可知选A ;(2)三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为6种,其中只有第4、5种结果符合,∴P (A)=62=31 ;也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两种,要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是丙的,乙必须抽到甲的才符合题意,∴P (A) =31 . 【解答过程】 略.【方法规律】 要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏.【关键词】 必然事件 概率 抽取礼物五、(本大题共2小题,每小题8分,共16分)19.如图,在平面直角坐标系中,反比例函数xk y (x>0)的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB =2,AD =4,点A 的坐标为(2,6) .(1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【答案】(1)B (2,4),C (6,4),D (6,6).(2)如图,矩形ABCD 向下平移后得到矩形''''A B C D ,设平移距离为a ,则A ′(2,6-a ),C ′(6,4-a )∵点A ′,点C ′在y =x k 的图象上, ∴2(6-a )=6(4-a ),解得a =3,∴点A ′(2,3),∴反比例函数的解析式为y =6x. 【考点解剖】 本题以矩形为背景考查用待定系数法求反比例函数的解析式.【解题思路】 先根据矩形的对边平行且相等的性质得到B 、C 、D 三点的坐标,再从矩形的平移过程发现只有A 、C 两点能同时在双曲线上(这是种合情推理,不必证明),把A 、C 两点坐标代入y =xk 中,得到关于a 、k 的方程组从而求得k 的值. 【解答过程】 略.【方法规律】 把线段的长转化为点的坐标,在求k 的值的时候,由于k 的值等于点的横坐标与纵坐标之积,所以直接可得方程2(6-a )=6(4-a ),求出a 后再由坐标求k ,实际上也可把A 、C 两点坐标代入y =xk 中,得到关于a 、k 的方程组从而直接求得k 的值. 【关键词】 矩形 反比例函数 待定系数法20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A .全部喝完;B .喝剩约31;C .喝剩约一半;D .开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫.升.? (3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶.?(可使用科学计算器) 【答案】(1)根据所给扇形统计图可知,喝剩约31的人数是总人数的50%, ∴25÷50%=50,参加这次会议的总人数为50人, ∵505×360°=36°, ∴D 所在扇形圆心角的度数为36°,补全条形统计图如下;(2)根据条形统计图可得平均每人浪费矿泉水量约为:(25×31×500+10×500×21+5×500)÷50 =327500÷50≈183毫升; (3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.【考点解剖】 本题考查的是统计初步知识,条形统计图与扇形统计图信息互补,文字量大,要求考生具有比较强的阅读理解能力.本题所设置的问题比较新颖,并不是象传统考试直接叫你求平均数、中位数、众数或方差,而是换一种说法,但考查的本质仍然为求加权平均数、以样本特性估计总体特性.显然这对考生的能力要求是非常高的.【解题思路】 (1)由扇形统计图可看出B 类占了整个圆的一半即50%(遗憾的是扇形中没有用具体的数字(百分比)表示出来,这是一种很不严谨的命题失误),从条形统计图又知B 类共25人,这样已知部分数的百分比就可以求出总人数,而D 类有5人,已知部分数和总数可以求出D 类所占总数百分比,再由百分比确定所占圆的圆心角的度数;已知总人数和A 、B 、D 类的人数可求出C 类的人数为10人,将条形统计图中补完整;(2)用总的浪费量除以总人数50就得到平均每人的浪费量;(3)每年开60次会,每次会议将有40至60人参加,这样折中取平均数算一年将有3000人参加会议,用3000乘以(2)中的结果(平均每人的浪费量),得到一年总的浪费量,再转换成瓶数即可. 【解答过程】 略.【方法规律】 能从实际问题中抽出数学问题,从题中抽出关键词即要弄清已知什么,要求什么(不要被其它无关信息干扰).【关键词】 矿泉水 统计初步六、(本大题共2小题,每小题9分,共18分)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB ,如图2所示,量得连杆OA 长为10cm ,雨刮杆AB 长为48cm ,∠OAB =120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示.(1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB 扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=23,cos60°=21,tan60°=3,721≈26.851,可使用科学计算器)【答案】解:(1)雨刮杆AB 旋转的最大角度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH ,∵∠OAB =120°,∴∠OAE =60°在Rt △OAE 中,∵∠OAE =60°,OA =10,∴sin ∠OAE =OA OE =10OE , ∴OE =53,∴AE =5.∴EB =AE +AB =53,在Rt △OEB 中,∵OE =53,EB =53,∴OB =22BE OE =2884=2721≈53.70;(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称, ∴△BAO ≌△OCD ,∴S △BAO =S △OCD ,∴雨刮杆AB 扫过的最大面积S =21π(OB 2-OA 2) =1392π.【考点解剖】 本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).【解题思路】 将实际问题转化为数学问题,(1)AB 旋转的最大角度为180°;在△OAB 中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠OAB =120°想到作AB 边上的高,得到一个含60°角的Rt △OAE 和一个非特殊角的Rt △OEB .在Rt △OAE 中,已知∠OAE =60°,斜边OA =10,可求出OE 、AE 的长,进而求得Rt △OEB 中EB 的长,再由勾股定理求出斜边OB 的长;(2)雨刮杆AB 扫过的最大面积就是一个半圆环的面积(以OB 、OA 为半径的半圆面积之差).【解答过程】 略.【方法规律】 将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.【关键词】 刮雨器 三角函数 解直角三角形 中心对称 扇形的面积22.如图,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点P (4,2)是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C .(1)证明P A 是⊙O 的切线;(2)求点B 的坐标;(3)求直线AB 的解析式.【答案】(1)证明:依题意可知,A (0,2)∵A (0,2),P (4,2),∴AP ∥x 轴 .∴∠OAP =90°,且点A 在⊙O 上,∴P A 是⊙O 的切线;(2)解法一:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥x 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP =90°,即∠OBP =∠PEC ,又∵OB =PE =2,∠OCB =∠PEC .∴△OBC ≌△PEC .∴OC=PC .(或证Rt △OAP ≌△OBP ,再得到OC=PC 也可)设OC=PC =x ,则有OE =AP =4,CE=OE -OC =4-x ,在Rt △PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x )2+22,解得x =25,…………………… 4分 ∴BC=CE =4-25=23, ∵21OB ·BC =21OC ·BD ,即21×2×23=21×25×BD ,∴BD =56.∴OD =22BD OB -=25364-=58, 由点B 在第四象限可知B (58,56-);解法二:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥y 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP =90°即∠OBP =∠PEC .又∵OB=PE =2,∠OCB =∠PEC ,∴△OBC ≌△PEC .∴OC=PC (或证Rt △OAP ≌△OBP ,再得到OC=PC 也可)设OC=PC =x ,则有OE=AP =4,CE=OE -OC =4-x ,在Rt △PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x )2+22,解得x =25,……………………………… 4分 ∴BC =CE =4-25=23, ∵BD ∥x 轴,∴∠COB =∠OBD ,又∵∠OBC =∠BDO=90°,∴△OBC ∽△BDO , ∴BD OB =OD CB =BOOC , 即BD 2=BD 23=225. ∴BD =58,OD =56. 由点B 在第四象限可知B (58,56-); (3)设直线AB 的解析式为y =kx +b ,由A (0,2),B (58,56-),可得⎪⎩⎪⎨⎧-=+=5658,2b k b ; 解得⎩⎨⎧-==,2,2k b ∴直线AB 的解析式为y =-2x +2. 【考点解剖】 本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.【解题思路】(1) 点A 在圆上,要证PA 是圆的切线,只要证PA ⊥OA (∠OAP =90°)即可,由A 、P 两点纵坐标相等可得AP ∥x 轴,所以有∠OAP +∠AOC =180°得∠OAP =90°;(2) 要求点B 的坐标,根据坐标的意义,就是要求出点B 到x 轴、y 轴的距离,自然想到构造Rt △OBD ,由PB 又是⊙O 的切线,得R t △OAP ≌△OBP ,从而得△OPC 为等腰三角形,在Rt △PCE 中, PE=OA =2, PC+CE=OE =4,列出关于CE 的方程可求出CE 、OC 的长,△OBC 的三边的长知道了,就可求出高BD ,再求OD 即可求得点B 的坐标;(3)已知点A 、点B 的坐标用待定系数法可求出直线AB 的解析式.【解答过程】 略.【方法规律】 从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.【关键词】 切线 点的坐标 待定系数法求解析式七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现:在等腰△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论正确的是 (填序号即可)①AF =AG =21AB ;②MD=ME ;③整个图形是轴对称图形;④∠DAB =∠DMB . ●数学思考:在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧..作等腰直角三角形,如图2所示,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状.答: .【答案】 解: ●操作发现:①②③④●数学思考:答:MD=ME ,MD ⊥ME ,1、MD=ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG ,∵M 是BC 的中点,∴MF ∥AC ,MF =21AC . 又∵EG 是等腰Rt △AEC 斜边上的中线, ∴EG ⊥AC 且EG =21AC , ∴MF=EG .同理可证DF=MG .∵MF ∥AC ,∴∠MF A +∠BAC =180°.同理可得∠MGA +∠BAC =180°,∴∠MF A =∠MGA .又∵EG ⊥AC ,∴∠EGA =90°.同理可得∠DF A =90°,∴∠MF A +∠DF A =∠MGA =∠EGA ,即∠DFM=∠MEG ,又MF=EG ,DF=MG ,∴△DFM ≌△MGE (SAS ),∴MD=ME .2、MD ⊥ME ;证法一:∵MG ∥AB ,∴∠MF A +∠FMG =180°,又∵△DFM ≌△MGE ,∴∠MEG =∠MDF .∴∠MF A +∠FMD +∠DME +∠MDF =180°,其中∠MF A +∠FMD +∠MDF =90°,∴∠DME =90°.即MD ⊥ME ;证法二:如图2,MD 与AB 交于点H ,∵AB ∥MG ,∴∠DHA =∠DMG ,又∵∠DHA =∠FDM +∠DFH ,即∠DHA=∠FDM+90°,∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形【考点解剖】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.【解题思路】(1)由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MD和ME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=90°,由△DFM≌△MGE得∠EMG=∠MDF, △DFM中四个角相加为180°,∠FMG 可看成三个角的和,通过变形计算可得∠DME=90°.(3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.【解答过程】略.【方法规律】由特殊到一般,形变但本质不变(仍然全等)【关键词】课题学习全等开放探究24.已知抛物线抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.【答案】解:(1)∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―a12+ a1=0,∴a1=0或1.由已知可知a1>0,∴a1=1.即y1=―(x―1)2+1方法一:令y1=0代入得:―(x―1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0)∴b1=2,方法二:∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―(b1―1)2+1=0,b1=2或0,b1=0(舍去).∴b1=2.又∵抛物线y2=―(x―a2)2+a2与x轴交于点A1(2,0),∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去).。
2013年六盘水市中考数学试卷及答案(word解析版)

贵州省六盘水市2013年中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,只有一项符合题意要求)1.(3分)(2013•六盘水)﹣2013相反数()A.﹣2013 B.C.2013 D.﹣考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数解答即可.解答:解:﹣2013的相反数为2013,故选C.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•六盘水)下面四个几何体中,主视图是圆的几何体是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图是从物体正面看所得到的图形,即可选出答案.解答:解:正方体的主视图是正方形,圆锥的主视图是三角形,圆柱体的主视图是长方形,球的主视图是圆,故选:D.点评:本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2013•六盘水)下列运算正确的是()A.a3•a3=a9B.(﹣3a3)2=9a6C.5a+3b=8ab D.(a+b)2=a2+b2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.专题:计算题.分析:A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;C、本选项不能合并,错误;D、利用完全平方公式展开得到结果,即可作出判断.解答:解:A、a3•a3=a6,本选项错误;B、(﹣3a3)2=9a6,本选项正确;C、5a+3b不能合并,本选项错误;D、(a+b)2=a2+2ab+b2,本选项错误,故选B点评:此题考查了积的乘方与幂的乘方,合并同类项,同底数幂的乘法,以及完全平方公式,熟练掌握公式及法则是解本题的关键.4.(3分)(2013•六盘水)下列图形中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据正多边形的性质和轴对称图形的定义解答即可.解答:解:根据轴对称图形的概念可直接得到A是轴对称图形,故选:A.点评:此题主要考查了轴对称图形,关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.5.(3分)(2013•六盘水)下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形B.正六边形C.正方形D.正五边形考点:平面镶嵌(密铺).分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.解答:解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.点评:本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.6.(3分)(2013•六盘水)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个B.3个C.4个D.6个考点:余角和补角.专题:计算题.分析:本题要注意到∠1与∠2互余,并且直尺的两边互相平行,可以考虑平行线的性质.解答:解:与∠1互余的角有∠2,∠3,∠4;一共3个.故选B.点评:正确观察图形,由图形联想到学过的定理是数学学习的一个基本要求.7.(3分)(2013•六盘水)在平面中,下列命题为真命题的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形考点:命题与定理.分析:分别根据矩形、菱形、正方形的判定与性质分别判断得出即可.解答:解:A、根据四边形的内角和得出,四个角相等的四边形即四个内角是直角,故此四边形是矩形,故此选项正确;B、只有对角线互相平分且垂直的四边形是菱形,故此选项错误;C、对角线互相平分且相等的四边形是矩形,故此选项错误;D、四边相等的四边形是菱形,故此选项错误.故选:A.点评:此题主要考查了矩形、菱形、正方形的判定与性质,正确把握相关定理是解题关键.8.(3分)(2013•六盘水)我省五个旅游景区门票票价如下表所示(单位:元),关于这五个景区票价的说法中,正确的是()景区名称黄果树大瀑布织金洞玉舍森林滑雪安顺龙宫荔波小七孔票价(元)180 120 200 130 180A.平均数126 B.众数180 C.中位数200 D.极差70考点:极差;算术平均数;中位数;众数.分析:根据极差、众数及中位数的定义,结合选项进行判断即可.解答:解:将数据从小到大排列为:120,130,180,180,200,A、平均数=(120+130+180+180+200)=162,结论错误,故本选项错误;B、众数为180,结论正确,故本选项正确;C、中位数为180,结论错误,故本选项错误;D、极差为200﹣120=80,结论错误,故本选项错误;故选B.点评:本题考查了中位数、众数、平均数及极差的知识,掌握各部分的定义是关键,在判断中位数的时候一样要将数据从新排列.9.(3分)(2013•六盘水)已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1考点:根的判别式;一元二次方程的定义.专题:计算题.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.解答:解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选D点评:此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.10.(3分)(2013•六盘水)下列图形中,阴影部分面积最大的是()A.B.C.D.考点:反比例函数系数k的几何意义.分析:分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可.解答:解:A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3,B、根据反比例函数系数k的几何意义,阴影部分面积和为:3,C、根据反比例函数系数k的几何意义,以及梯形面积求法可得出:阴影部分面积为:(1+3)=2,D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:×2×6=6,阴影部分面积最大的是6.故选:D.点评:此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.二、填空题(本题8小题,每小题4分,共计32分)11.(4分)(2013•六盘水)H7N9禽流感病毒的直径大约为0.0000000805米,用科学记数法表示为8.1×10﹣8米(保留两位有效数字)考点:科学记数法与有效数字.分析:首先利用科学记数法表示,再保留有效数字,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:0.000 0000 805=8.05×10﹣8≈8.1×10﹣8,故答案为:8.1×10﹣8.点评:此题主要考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.12.(4分)(2013•六盘水)因式分解:4x3﹣36x=4x(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.分析:首先提公因式4x,然后利用平方差公式即可分解.解答:解:原式=4x(x2﹣9)=4x(x+3)(x﹣3).故答案是:4x(x+3)(x﹣3).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(4分)(2013•六盘水)如图,添加一个条件:∠ADE=∠ACB(答案不唯一),使△ADE∽△ACB,(写出一个即可)考点:相似三角形的判定.专题:开放型.分析:相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件.解答:解:由题意得,∠A=∠A(公共角),则可添加:∠ADE=∠ACB,利用两角法可判定△ADE∽△ACB.故答案可为:∠ADE=∠ACB.点评:本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一.14.(4分)(2013•六盘水)在六盘水市组织的“五城联创”演讲比赛中,小明等25人进入总决赛,赛制规定,13人早上参赛,12人下午参赛,小明抽到上午比赛的概率是.考点:概率公式.分析:一共有25人参加比赛,其中13人早上参赛,利用概率公式即可求出小明抽到上午比赛的概率.解答:解:∵在六盘水市组织的“五城联创”演讲比赛中,小明等25人进入总决赛,又∵赛制规定,13人早上参赛,12人下午参赛,∴小明抽到上午比赛的概率是:.故答案为.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.15.(4分)(2013•六盘水)如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD 的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于19.考点:梯形;线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得DE=CE,然后求出四边形ABED的周长=AD+AB+BC,然后代入数据进行计算即可得解.解答:解:∵CD的垂直平分线交BC于E,∴DE=CE,∴四边形ABED的周长=AD+AB+BE+DE=AD+AB+BC,∵AD=4,AB=5,BC=10,∴四边形ABED的周长=4+5+10=19.故答案为:19.点评:本题考查了梯形,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记线段垂直平分线的性质是解题的关键.16.(4分)(2013•六盘水)若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为10或6cm.考点:圆与圆的位置关系.专题:分类讨论.分析:本题应分内切和外切两种情况讨论.解答:解:∵⊙A和⊙B相切,∴①当外切时圆心距AB=8+2=10cm,②当内切时圆心距AB=8﹣2=6cm.故答案为:10或6.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.外切时P=R+r;内切时P=R﹣r;注意分情况讨论.17.(4分)(2013•六盘水)无论x取任何实数,代数式都有意义,则m的取值范围为m≥9.考点:二次根式有意义的条件;非负数的性质:偶次方;配方法的应用.分析:二次根式的被开方数是非负数,即x2﹣6x+m=(x﹣3)2﹣9+m≥0,所以(x﹣3)2≥9﹣m.通过偶次方(x﹣3)2是非负数可求得9﹣m≤0,则易求m的取值范围.解答:解:由题意,得x2﹣6x+m≥0,即(x﹣3)2﹣9+m≥0,则(x﹣3)2≥9﹣m.∵(x﹣3)2≥0,∴9﹣m≤0,∴m≥9,故填:m≥9.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.18.(4分)(2013•六盘水)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为,经过61次旋转后,顶点O经过的总路程为.考点:弧长的计算;正方形的性质;旋转的性质.分析:为了便于标注字母,且更清晰的观察,每次旋转后向右稍微平移一点,作出前几次旋转后的图形,点O的第1次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,第2次旋转路线是以正方形的对角线长为半径,以90°圆心角的扇形,第3次旋转路线是以正方形的边长为半径,以90°圆心角的扇形;①根据弧长公式列式进行计算即可得解;②求出61次旋转中有几个4次,然后根据以上的结论进行计算即可求解.解答:解:如图,为了便于标注字母,且位置更清晰,每次旋转后不防向右移动一点,第1次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,路线长为=;第2次旋转路线是以正方形的对角线长为半径,以90°圆心角的扇形,路线长为=;第3次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,路线长为=;第4次旋转点O没有移动,旋转后于最初正方形的放置相同,因此4次旋转,顶点O经过的路线长为++=;∵61÷4=15…1,∴经过61次旋转,顶点O经过的路程是4次旋转路程的15倍加上第1次路线长,即×15+=.故答案分别是:;.点评:本题考查了旋转变换的性质,正方形的性质以及弧长的计算,读懂题意,并根据题意作出图形更形象直观,且有利于旋转变换规律的发现.三、解答题(本题共7个小题,共88分,解答时应写出必要的文字说明,证明过程或演算步骤)19.(16分)(2013•六盘水)(1)+(2013﹣π)0(2)先化简,再求值:(),其中x2﹣4=0.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)分别根据0指数幂、负整数指数幂的计算法则及绝对值的性质、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再根据x2﹣4=0求出x的值代入进行计算即可.解答:解:(1)原式=3﹣9+2﹣﹣2×+1=3﹣7﹣3+1=﹣6;(2)原式=(+)÷=×=×=,∵x2﹣4=0,∴x1=2(舍去),x2=﹣2,∴原式==1.点评:本题考查的是分式的化简求值及实数的运算,在解(2)时要注意x的取值要保证分式有意义.20.(12分)(2013•六盘水)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1﹣﹣1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了抽样调查方式.(2)计算本次调查的学生人数和图(2)选项C的圆心角度数.(3)请根据图(1)中选项B的部分补充完整.(4)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据题意可得这次调查是抽样调查;(2)利用选A的人数÷选A的人数所占百分比即可算出总数;再利用360°×选C的人数所占百分比即可得到圆心角度数;(3)用总数减去选A、C、D的人数即可得到选B的人数,再补全图形即可;(4)根据样本估计总体的方法计算即可.解答:解:(1)抽样调查;(2)本次调查的学生人数:60÷30%=200(人),选项C的圆心角度数:360°×=54°;(3)选B的人数:200﹣60﹣30﹣10=100(人),如图所示:(4)3000×5%=150(人),答:该校可能有150名学生平均每天参加体育活动的时间在0.5小时以下.点评:此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2013•六盘水)在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA 长为半径的圆与AC,AB分别交与点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论.(2)若AD:AO=6:5,BC=3,求BD的长.考点:切线的判定.分析:(1)连接OD,DE,求出∠ADE=90°=∠C推出DE∥BC∴∠EDB=∠CBD=∠A,根据∠A+∠OED=90°求出∠EDB+∠ODE=90°,根据切线的判定推出即可;(2)求出AD:DE:AE=6:8:10,求出△ADE∽△ACB,推出DC:BC:BD=AD:DE:AE=6:8:10,代入求出即可.解答:(1)直线BD与⊙O的位置关系是相切,证明:连接OD,DE,∵∠C=90°,∴∠CBD+∠CDB=90°,∵∠A=∠CBD,∴∠A+∠CDB=90°,∵OD=OA,∴∠A=∠ADO,∴∠ADO+∠CDB=90°,∴∠ODB=180°﹣90°=90°,∴OD⊥BD,∵OD为半径,∴BD是⊙O切线;(2)解:∵AD:AO=6:5,∴=,∴由勾股定理得:AD:DE:AE=6:8:10,∵AE是直径,∴∠ADE=∠C=90°,∵∠CBD=∠A,∴△ADE∽△ACB,∴DC:BC:BD=AD:DE:AE=6:8:10,∵BC=3,∴BD=.点评:本题考查了切线的判定,平行线性质和判定,等腰三角形性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理能力.22.(10分)(2013•六盘水)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosasinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan15°=tan(45°﹣30°)===根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据,)考点:解直角三角形的应用-仰角俯角问题.分析:(1)把15°化为45°﹣30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ计算,即可求出sin15°的值;(2)先根据锐角三角函数的定义求出BE的长,再根据AB=AE+BE即可得出结论.解答:解:(1)sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=;(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,∴BE=DE•tan∠BDE=DE•tan75°.∵tan75°=tan(45°+30°)===2+,∴BE=7(2+)=14+7,∴AB=AE+BE=1.62+14+7≈27.7(米).答:乌蒙铁塔的高度约为27.7米.点评:本题考查了:(1)特殊角的三角函数值的应用,属于新题型,解题的关键是根据题目中所给信息结合特殊角的三角函数值来求解.(2)解直角三角形的应用﹣仰角俯角问题,先根据锐角三角函数的定义得出BE的长是解题的关键.23.(14分)(2013•六盘水)为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设购进甲乙两种纪念品每件各需要x元和y元,根据购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元列出方程,求出x,y的值即可;(2)设购进甲种纪念品a件,则乙种纪念品(100﹣a)件,根据购进甲乙两种纪念品100件和购买这些纪念品的资金不少于6000元,同时又不能超过6430元列出不等式组,求出a的取值范围,再根据a只能取整数,得出进货方案;(3)根据实际情况计算出各种方案的利润,比较即可.解答:解:(1)设购进甲乙两种纪念品每件各需要x元和y元,根据题意得:,解得:,答:购进甲乙两种纪念品每件各需要80元和40元;(2)设购进甲种纪念品a件,则乙种纪念品(100﹣a)件,根据题意得:,解得:50≤a≤,∵a只能取整数,a=50,51,52,53,54,55,56,57,58,59,60,∴共11种进货方案,方案1:购进甲种纪念品50件,则购进乙种纪念品50件;方案2:购进甲种纪念品51件,则购进乙种纪念品49件;方案3:购进甲种纪念品52件,则购进乙种纪念品48件;方案4:购进甲种纪念品53件,则购进乙种纪念品47件;方案5:购进甲种纪念品54件,则购进乙种纪念品46件;方案6:购进甲种纪念品55件,则购进乙种纪念品45件;方案7:购进甲种纪念品56件,则购进乙种纪念品44件;方案8:购进甲种纪念品57件,则购进乙种纪念品43件;方案9:购进甲种纪念品58件,则购进乙种纪念品42件;方案10:购进甲种纪念品59件,则购进乙种纪念品41件;方案11:购进甲种纪念品60件,则购进乙种纪念品40件;(3)因为甲种纪念品获利最高,所以甲种纪念品的数量越多总利润越高,因此选择购进甲种纪念品60件,购进乙种纪念品40件利润最高,总利润=60×30+40×12=2280(元)则购进甲种纪念品60件,购进乙种纪念品40件时,可获最大利润,最大利润是2280元.点评:此题考查了一元一次不等式组的应用和二元一次方程组的应用,读懂题意,找到相应的关系,列出式子是解题的关键,注意第二问应求得整数解.24.(10分)(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD 上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN 的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB 的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.25.(16分)(2013•六盘水)已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求经过点O,C,A三点的抛物线的解析式.(2)求抛物线的对称轴与线段OB交点D的坐标.(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)在Rt△AOB中,根据AO的长和∠BOA的度数,可求得OB的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD 的度数和OC的长求得CD、OD的值,从而求出点C、A的坐标,将A、C、O的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式.(2)求出直线BO的解析式,进而利用x=求出y的值,即可得出D点坐标;(3)根据(1)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在Rt△OPN中,根据∠PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作MF⊥CD(即抛物线对称轴)于F,过P作PQ⊥CD于Q,若PD=CM,那么CF=QD,根据C、M、P、D四点纵坐标,易求得CF、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标.解答:解:(1)过点C作CH⊥x轴,垂足为H;∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,∴OB==4,AB=2;由折叠的性质知:∠COB=30°,OC=AO=2,∴∠COH=60°,OH=,CH=3;∴C点坐标为(,3).∵O点坐标为:(0,0),∴抛物线解析式为y=ax2+bx(a≠0),∵图象经过C(,3)、A(2,0)两点,∴,解得;∴此抛物线的函数关系式为:y=﹣x2+2x.(2)∵AO=2,AB=2,∴B点坐标为:(2,2),∴设直线BO的解析式为:y=kx,则2=2k,解得:k=,∴y=x,∵y=﹣x2+2x的对称轴为直线x=﹣=﹣=,∴将两函数联立得出:y=×=1,∴抛物线的对称轴与线段OB交点D的坐标为:(,1);(3)存在.∵y=﹣x2+2x的顶点坐标为(,3),即为点C,MP⊥x轴,垂足为N,设PN=t;∵∠BOA=30°,∴ON=t,∴P(t,t);作PQ⊥CD,垂足为Q,MF⊥CD,垂足为F;把x=t代入y=﹣x2+2x,得y=﹣3t2+6t,∴M(t,﹣3t2+6t),F(,﹣3t2+6t),同理:Q(,t),D(,1);要使PD=CM,只需CF=QD,即3﹣(﹣3t2+6t)=t﹣1,解得t=,t=1(舍),∴P点坐标为(,),∴存在满足条件的P点,使得PD=CM,此时P点坐标为(,).点评:此题主要考查了图形的旋转变化、解直角三角形、二次函数解析式的确定等重要知识点,表示出P点坐标利用CF=QD求出是解题关键.。
2013年贵州省毕节地区数学中考真题(word版含答案)

贵州省毕节地区2013年中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,中只有一个选项正确.)B3.2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将1070004.实数(相邻两个1之间依次多一个0),的解是()10.分式方程的半径()13.一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()14.将二次函数y=x的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()二、填空题(本大题共5个小题,每小题5分,共25分)16.二元一次方程组的解是.17.正八边形的一个内角的度数是度.18.已知⊙O 1与⊙O2的半径分别是a,b,且a、b满足,圆心距O1O2=5,则两圆的位置关系是.19.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是cm3(结果保留π)20.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).三、解答及证明(本大题共7个小题,各题的分值见题号,共80分)21.(8分)计算:.22.(10分)甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.23.(8分)先化简,再求值.,其中m=2.24.(12分)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.25.(12分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;(3)若BC=8,DE=6,求△AEF的面积.26.(14分)如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)27.(16分)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.贵州省毕节地区2013年中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,中只有一个选项正确.)1.B2.C3.B4.B5.C6.C7.C8.D9.D10.C11.D12.A13.C14.A15.A二、填空题(本大题共5个小题,每小题5分,共25分)16.17.135.18.外切.19.10π20.(2,12).三、解答及证明(本大题共7个小题,各题的分值见题号,共80分)21.解:原式=1+5+2﹣3﹣2=3.22.解:(1)画树状图得:∵共有6种等可能的结果,两数之和为偶数的有2种情况;∴甲获胜的概率为:21 63 =;(2)不公平.理由:∵数字之和为奇数的有4种情况,∴P(乙获胜)42 63 =,∴P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.23.解:原式=•+=+==,当m=2时,原式==2.25.(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是DCB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50(平方单位).26.解:设EC=x(米),在Rt△BCE中,∠EBC=30°,∴BC==x;在Rt△BCD中,∠DBC=60°,∴CD=BC•tan60°=x•=3x;在Rt△ACD中,∠DBC=45°,∴AC=CD,即:73.2+x=3x,解得:x=12.2(3+).塔高DE=CD﹣EC=3x﹣x=2x=2×12.2(3+)=24.4(3+)≈115.5(米).答:塔高DE约为115.5米.27.解:(1)∵点A(1,0)和点C(0,1)在抛物线y=ax2+b上,∴,解得:a=﹣1,b=1,∴抛物线的解析式为:y=﹣x2+1,抛物线的对称轴为y轴,则点B与点A(1,0)关于y轴对称,∴B(﹣1,0).(2)设过点A(1,0),C(0,1)的直线解析式为y=kx+b,可得:,解得k=﹣1,b=1,∴y=﹣x+1.∵BD∥CA,∴可设直线BD的解析式为y=﹣x+n,∵点B(﹣1,0)在直线BD上,∴0=1+n,得n=﹣1,∴直线BD的解析式为:y=﹣x﹣1.将y=﹣x﹣1代入抛物线的解析式,得:﹣x﹣1=﹣x2+1,解得:x1=2,x2=﹣1,∵B点横坐标为﹣1,则D点横坐标为2,D点纵坐标为y=﹣2﹣1=﹣3,∴D点坐标为(2,﹣3).如答图①所示,过点D作DN⊥x轴于点N,则DN=3,AN=1,BN=3,在Rt△BDN中,BN=DN=3,由勾股定理得:BD=;在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=;又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=;∴四边形ABCD的周长为:AC+BC+BD+AD=+++=+.(3)假设存在这样的点P,则△BPE与△CBD相似有两种情形:(I)若△BPE∽△BDC,如答图②所示,则有,即,∴PE=3BE.设OE=m(m>0),则E(﹣m,0),BE=1﹣m,PE=3BE=3﹣3m,∴点P的坐标为(﹣m,3﹣3m).∵点P在抛物线y=﹣x2+1上,∴3﹣3m=﹣(﹣m)2+1,解得m=1或m=2,当m=1时,点E与点B重合,故舍去;当m=2时,点E在OB左侧,点P在x轴下方,不符合题意,故舍去.因此,此种情况不存在;(II)若△EBP∽△BDC,如答图③所示,则有,即,∴BE=3PE.设OE=m(m>0),则E(m,0),BE=1+m,PE=BE=(1+m)=+m,∴点P的坐标为(m,+m).∵点P在抛物线y=﹣x2+1上,∴+m=﹣(m)2+1,解得m=﹣1或m=,∵m>0,故m=1舍去,∴m=,点P的纵坐标为:+m=+×=,∴点P的坐标为(,).综上所述,存在点P,使以B、P、E为顶点的三角形与△CBD相似,点P的坐标为(,).。
最新贵州省六盘水市中考数学试卷及答案解析

最新贵州省六盘水市中考数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平,答题时,请注意以下几点:1. 全卷共4页,有三大题,24小题,全卷满分150分,考试时间120分钟2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3. 答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg2.(4分)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.03.(4分)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn4.(4分)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°5.(4分)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数D.方差6.(4分)不等式3x+6≥9的解集在数轴上表示正确的是()A .B .C .D .7.(4分)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A.5000.3 B.4999.7 C.4997 D.50038.(4分)使函数y=有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤09.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>010.(4分)矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣111.(4分)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥12.(4分)三角形的两边a、b的夹角为60°且满足方程x2﹣3x+4=0,则第三边的长是()A .B.2C.2D.3二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为米.14.(5分)计算:2017×1983=.15.(5分)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={}.16.(5分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.17.(5分)方程﹣=1的解为x=.18.(5分)如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=.19.(5分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(,).20.(5分)计算1+4+9+16+25+…的前29项的和是.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+.22.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).23.(10分)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.24.(10分)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?25.(10分)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P 是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.26.(12分)已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y=的交点个数.最新贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•六盘水)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1千克,故选:A.【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目中的实际意义.2.(4分)(2017•六盘水)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形()A.B B.J C.4 D.0【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、B不是中心对称图形,是轴对称图形,故本选项错误;B、J不是中心对称图形,也不是轴对称图形,故本选项错误;C、4不是中心对称图形,也不轴对称图形,故本选项错误;D、0既是中心对称图形又是轴对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(4分)(2017•六盘水)下列式子正确的是()A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn 【分析】根据合并同类项法则解答.【解答】解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.【点评】本题考查了合并同类项,熟记同类项的概念是解题的关键.4.(4分)(2017•六盘水)如图,梯形ABCD中,AB∥CD,∠D=()A.120°B.135°C.145°D.155°【分析】由AB∥CD,得到∠A+∠D=180°,把∠A的度数代入即可求出答案.【解答】解:∵AB∥CD,∴∠A+∠D=180°,∵∠A=45°,∴∠D=180°﹣45°=135°,故选:B.【点评】本题主要考查了梯形的性质,平行线的性质等知识点,解此题的关键是根据平行线的性质得到∠A+∠D=180°.5.(4分)(2017•六盘水)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数D.方差【分析】根据平均数、中位数、众数以及方差的意义进行选择即可.【解答】解:∵=75,=75;甲的中位数为75,乙的中位数为75;甲的众数为90,60,乙的中位数为80,70;∴通过平均数、中位数、众数不能区别两组成绩,∴应通过方差区别两组成绩更恰当,故选D.【点评】本题考查了统计量的选择,掌握平均数、中位数、众数以及方差的意义是解题的关键.6.(4分)(2017•六盘水)不等式3x+6≥9的解集在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:3x≥9﹣6,合并同类项,得:3x≥3,系数化为1,得:x≥1,故选:C【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.(4分)(2017•六盘水)国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A.5000.3 B.4999.7 C.4997 D.5003【分析】根据算术平均数的定义计算可得.【解答】解:这组数据的平均数是[5000×10+(98+99+1+2﹣10﹣80+80+10﹣99﹣98)]=5000+×3=5000.3,故选:A.【点评】本题主要考查算术平均数,熟练掌握算术平均数的定义是解题的关键.8.(4分)(2017•六盘水)使函数y=有意义的自变量x的取值范围是()A.x≥3 B.x≥0 C.x≤3 D.x≤0【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数是解题关键.9.(4分)(2017•六盘水)已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0 B.b>0,c<0 C.b<0,c<0 D.b<0,c>0【分析】根据二次函数的性质一一判断即可.【解答】解:二次函数y=ax2+bx+c的开口向下,∴a<0,∵二次函数与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b>0,故选B.【点评】本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,灵活运用知识解决问题,属于基础题,中考常考题型.10.(4分)(2017•六盘水)矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣1【分析】根据黄金矩形的定义判断即可.【解答】解:∵宽与长的比是的矩形叫做黄金矩形,∴=,∴a=2,b=﹣1,故选D.【点评】本题主要考查了黄金矩形,记住定义是解题的关键.11.(4分)(2017•六盘水)桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥【分析】分别确定每个几何体的主视图和左视图即可作出判断.【解答】解:A、当圆柱侧面与桌面接触时,主视图和左视图有一个可能是长方形,另一个是圆,故选项符合题意;B、正方体的主视图和作左视图都是正方形,一定相同,故选项不符合题意;C、球的主视图和作左视图都是圆,一定相同,故选项不符合题意;D、直立圆锥的主视图和作左视图都是等腰三角形,一定相同,故选项不符合题意;故选A.【点评】本题考查了简单几何体的三视图,确定三视图是关键.12.(4分)(2017•六盘水)三角形的两边a、b的夹角为60°且满足方程x2﹣3x+4=0,则第三边的长是()A .B.2C.2D.3【分析】先利用因式分解法解方程x2﹣3x+4=0得到a=2,b=,如图,△ABC中,a=2,b=,∠C=60°,作AH⊥BC于H,再在Rt△ACH中,利用含30度的直角三角形三边的关系得到CH=,AH=,则BH=,然后在Rt△ABH中利用勾股定理计算AB的长即可.【解答】解:x2﹣3x+4=0,(x﹣2)(x ﹣)=0,所以x1=2,x2=,即a=2,b=,如图,△ABC中,a=2,b=,∠C=60°,作AH⊥BC于H,在Rt△ACH中,∵∠C=60°,∴CH=AC=,AH=CH=,∴BH=2﹣=,在Rt△ABH中,AB==,即三角形的第三边的长是.故选A.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解直角三角形.二、填空题(每题5分,满分40分,将答案填在答题纸上)13.(5分)(2017•六盘水)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为7.062×103米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为7.062×103米,故答案为:7.062×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(5分)(2017•六盘水)计算:2017×1983=3999711.【分析】把式子变形得到(2000+17)(2000﹣17),然后利用平方差公式计算.【解答】解:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为3999711.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.15.(5分)(2017•六盘水)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={1,0,﹣1}.【分析】根据新定义解答即可得.【解答】解:∵M={﹣1},N={0,1,﹣1},∴M∪N={1,0,﹣1},故答案为:1,0,﹣1.【点评】本题主要考查有理数,根据题意理解新定义是解题的关键.16.(5分)(2017•六盘水)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【分析】只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°﹣60°)÷2=15°,即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.【点评】本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(5分)(2017•六盘水)方程﹣=1的解为x=﹣2.【分析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:方程两边都除以(x+1)(x﹣1)得:2﹣(x+1)=(x+1)(x﹣1),解得:x=﹣2或1,经检验x=1不是原方程的解,x=﹣2是原方程的解,故答案为:﹣2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.18.(5分)(2017•六盘水)如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=.【分析】过O点作OM∥AD,求出AM和MO的长,利用△AEF∽△MEO,得到关于AF的比例式,求出AF的长即可.【解答】解:过O点作OM∥AD,∵四边形ABCD是平行四边形,∴OB=OD,∴OM是△ABD的中位线,∴AM=BM=AB=,OM=BC=4,∵AF∥OM,∴△AEF∽△MEO,∴=,∴=,∴AF=,故答案为.【点评】本题考查矩形的性质、三角形的中位线定理、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.19.(5分)(2017•六盘水)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶,黑棋C的坐标为(﹣1,1).【分析】根据已知A,B两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:∵A(﹣2,1),B(﹣6,0),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣1,1.【点评】本题考查了坐标确定位置,利用A点坐标确定平面直角坐标系是解题关键.20.(5分)(2017•六盘水)计算1+4+9+16+25+…的前29项的和是8555.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.三、解答题(本大题共6小题,共62分.解答应写出文字说明、证明过程或演算步骤.)21.(10分)(2017•六盘水)计算:(1)2﹣1+sin30°﹣|﹣2|;(2)(﹣1)0﹣|3﹣π|+.【分析】(1)首先利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=+﹣2=﹣1;(2)原式=1﹣(π﹣3)+π﹣3=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(10分)(2017•六盘水)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).【分析】(1)根据关于原点对称的点的坐标,可得答案;(2)根据弧长公式,可得答案.【解答】解:(1)如图;(2)由图可知:OB==3,∴=π•OB=3π.【点评】本题考查了旋转变换,利用关于原点对称的点的坐标是解题关键,又利用了弧长公式.23.(10分)(2017•六盘水)端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.【分析】(1)记两个是大枣味的粽子分别为A1,A2,两个火腿味的分别为B1,B2.画出树状图即可;(2)利用(1)中的结果,即可解决问题;【解答】解:(1)记两个是大枣味的粽子分别为A1,A2,两个火腿味的分别为B1,B2.树状图如图所示,(2)由(1)可知,一共有12种可能,小红拿到的两个粽子刚好是同一味道有4种可能,所以P同一味道==.【点评】本题考查树状图﹣列表法、概率的求法等知识,记住:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24.(10分)(2017•六盘水)甲乙两个施工队在六安(六盘水﹣安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【分析】(1)根据“每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离”,即可得出关于x、y的二元一次方程组;(2)解(1)中的二元一次方程组,即可得出结论.【解答】解:(1)∵甲队每天铺设x米,乙队每天铺设y米,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,∴.(2),解得:.答:甲队每天铺设600米,乙队每天铺设500米.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)熟练掌握二元一次方程组的解法.25.(10分)(2017•六盘水)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B 为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.【分析】(1)作点A关于MN的对称点A′,连接A′B,与MN的交点即为点P;(2)由(1)可知,PA+PB的最小值即为A′B的长,连接OA′、OB、OA,先求∠A′OB=∠A′ON+∠BON=60°+30°=90°,再根据勾股定理即可得出答案.【解答】解:(1)如图1所示,点P即为所求;(2)由(1)可知,PA+PB的最小值即为A′B的长,连接OA′、OB、OA,∵A′点为点A关直线MN的对称点,∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵B 为的中点,∴=,∴∠BON=∠AOB=∠AON=×60°=30°,∴∠A′OB=∠A′ON+∠BON=60°+30°=90°,又∵MN=4,∴OA′=OB=MN=×4=2,∴Rt△A′OB中,A′B==2,即PA+PB的最小值为2.【点评】本题主要考查作图﹣复杂作图及轴对称的最短路线问题,熟练掌握轴对称的性质和圆周角定理、圆心角定理是解题的关键.26.(12分)(2017•六盘水)已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y=的交点个数.【分析】(1)根据整数的定义,以及绝对值的性质分类讨论即可求解;(2)根据一次函数与反比例函数的作法画出图形即可求解;(3)根据函数图象分两种情况:当k=1时;当k=﹣1时;进行讨论即可求解.【解答】解:(1)∵b、k为整数且|bk|=1,∴b=1,k=1;b=1,k=﹣1;b=﹣1,k=1;b=﹣1,k=﹣1;(2)如图所示:(3)当k=1时,y=kx+b与y=的交点个数为4个;当k=﹣1时,y=kx+b与y=的交点个数为4个.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了分类思想的应用.第11页(共11页)。
2013年贵州省毕节地区中考数学试卷及答案(解析版)

贵州省毕节地区2013年中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,中只有一个选项正确.)1.(3分)(2013•毕节地区)﹣2的相反数是()A .±2B.2 C.﹣2 D.考点:相反数.分析:根据只有符号不同的两个数互为相反数即可求解.解答:解:﹣2的相反数为2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•毕节地区)如图所示的几何体的主视图是()A .B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(2013•毕节地区)2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学记数法表示为()A .10.7×104B.1.07×105C.107×103D.0.107×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将107000用科学记数法表示为1.07×105.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•毕节地区)实数(相邻两个1之间依次多一个0),其中无理数是()个.A .1 B.2 C.3 D.4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:﹣π,0.1010010001….共有2个.故选B.点评:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.(3分)(2013•毕节地区)估计的值在()之间.A .1与2之间B.2与3之间C.3与4之间D.4与5之间考点:估算无理数的大小.分析:11介于9与16之间,即9<11<16,则利用不等式的性质可以求得介于3与4之间.解答:解:∵9<11<16,∴3<<4,即的值在3与4之间.故选C.点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.6.(3分)(2013•毕节地区)下列计算正确的是()A .a3•a3=2a3B.a3÷a=a3C.a+a=2a D.(a3)2=a5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:结合各选项分别进行同底数幂的乘法、同底数幂的除法、合并同类项、幂的乘方等运算,然后选出正确选项即可.解答:解:A、a3•a3=a6,原式计算错误,故本选项错误;B、a3÷a=a3﹣1=a2,原式计算错误,故本选项错误;C、a+a=2a,原式计算正确,故本选项正确;D、(a3)2=a6,原式计算错误,故本选项错误.故选C.点评:本题考查了同底数幂的除法、同底数幂的乘法、幂的乘方等运算,属于基础题,掌握各运算法则是解题的关键.7.(3分)(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A .16 B.20或16 C.20 D.12考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为4和8两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;②当4为腰时,其它两边为4和8,∵4+4=8,∴不能构成三角形,故舍去,∴答案只有20.故选C.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(3分)(2013•毕节地区)在下列图形中既是轴对称图形又是中心对称图形的是()①线段,②角,③等边三角形,④圆,⑤平行四边形,⑥矩形.A .③④⑥B.①③⑥C.④⑤⑥D.①④⑥考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,不是中心对称图形;④是轴对称图形,也是中心对称图形;⑤不是轴对称图形,是中心对称图形;⑥是轴对称图形,也是中心对称图形;综上可得既是轴对称图形又是中心对称图形的有:①④⑥.故选D.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.(3分)(2013•毕节地区)数据4,7,4,8,6,6,9,4的众数和中位数是()A .6,9 B.4,8 C.6,8 D.4,6考点:众数;中位数.分析:根据众数和中位数的定义求解即可.解答:解:数据4出现3次,次数最多,所以众数是4;数据按从小到大排列:4,4,4,6,6,7,8,9,中位数是(6+6)÷2=6.故选D.点评:本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10.(3分)(2013•毕节地区)分式方程的解是()A .x=﹣3 B.C.x=3 D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解.故选C.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(3分)(2013•毕节地区)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A .30°B.60°C.90°D.45°考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质可得∠CFE=45°,再根据三角形内角与外角的关系可得∠E+∠D=∠CFE.解答:解:∵AB∥CD,∴∠ABE=∠CFE,∵∠EBA=45°,∴∠CFE=45°,∴∠E+∠D=∠CFE=45°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的关系,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.12.(3分)(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A .5 B.10 C.8 D.6考点:垂径定理;勾股定理.专题:探究型.分析:连接OB,先根据垂径定理求出BC的长,在Rt△OBC中利用勾股定理即可得出OB 的长度.解答:解:连接OB,∵OC⊥AB,AB=8,∴BC=AB=×8=4,在Rt△OBC中,OB===.故选A.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.(3分)(2013•毕节地区)一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A .k>0,b>0 B.k<0,b>0 C.k<0,b<0 D.k>0,b<0考点:反比例函数与一次函数的交点问题.分析:本题需先判断出一次函数y=kx+b与反比例函数的图象在哪个象限内,再判断出k、b的大小即可.解答:解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0又∵反比例函数的图象经过二、四象限,∴k<0.综上所述,k<0,b<0.故选C.点评:本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意图象在哪个象限内,是解题的关键.14.(3分)(2013•毕节地区)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为()A .y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3考点:二次函数图象与几何变换.分析:由二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,根据平移的性质,即可求得所得图象的函数解析式.注意二次函数平移的规律为:左加右减,上加下减.解答:解:∵二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,∴所得图象的函数解析式是:y=(x﹣1)2+3.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.15.(3分)(2013•毕节地区)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O 交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A .2,22.5°B.3,30°C.3,22.5°D.2,30°考点:切线的性质;等腰直角三角形.分析:首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.解答:解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选A.点评:此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.二、填空题(本大题共5个小题,每小题5分,共25分)16.(5分)(2013•毕节地区)二元一次方程组的解是.考点:解二元一次方程组.专题:计算题.分析:根据y的系数互为相反数,利用加减消元法求解即可.解答:解:,①+②得,4x=12,解得x=3,把x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.故答案为:.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.(5分)(2013•毕节地区)正八边形的一个内角的度数是135 度.考点:多边形内角与外角.分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为:×1080°=135°.故答案为:135.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).18.(5分)(2013•毕节地区)已知⊙O1与⊙O2的半径分别是a,b,且a、b满足,圆心距O1O2=5,则两圆的位置关系是外切.考点:圆与圆的位置关系;非负数的性质:绝对值;非负数的性质:算术平方根.分析:首先根据求得a、b的值,然后根据半径与圆心距的关系求解即可.解答:解:∵,∴a﹣2=0,3﹣b=0解得:a=2,b=3∵圆心距O1O2=5,∴2+3=5∴两圆外切,故答案为:外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.19.(5分)(2013•毕节地区)已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是10π cm3(结果保留π)考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解答:解:圆锥的侧面积=2π×2×5÷2=10π.故答案为:10π.点评:本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.20.(5分)(2013•毕节地区)一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.分析:把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.解答:解:∵一次函数y=kx+1的图象经过(1,2),∴2=k+1,解得,k=1.则反比例函数解析式为y=,∴当x=2时,y=.故答案是:.点评:本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.三、解答及证明(本大题共7个小题,各题的分值见题号,共80分)21.(8分)(2013•毕节地区)计算:.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等运算,然后按照实数的运算法则计算即可.解答:解:原式=1+5+2﹣3﹣2 =3.点评:本题考查了实数的运算,涉及了零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等知识,属于基础题.22.(10分)(2013•毕节地区)甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为偶数情况,再利用概率公式即可求得答案;(2)分别求得甲、乙两人获胜的概率,比较大小,即可得这个游戏规则对甲、乙双方是否公平.解答:解:(1)画树状图得:∵共有6种等可能的结果,两数之和为偶数的有2种情况;∴甲获胜的概率为: =;(2)不公平.理由:∵数字之和为奇数的有4种情况,∴P(乙获胜)==,∴P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(8分)(2013•毕节地区)先化简,再求值.,其中m=2.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分,并利用同分母分式的加法法则计算得到最简结果,将m的值代入计算即可求出值.解答:解:原式=•+=+==,当m=2时,原式==2.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.24.(12分)(2013•毕节地区)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.解答:解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.点评:此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.25.(12分)(2013•毕节地区)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心 A 点,按顺时针方向旋转90 度得到;(3)若BC=8,DE=6,求△AEF的面积.考点:旋转的性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠EBF=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.解答:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是DCB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°,∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50(平方单位).点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.26.(14分)(2013•毕节地区)如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设EC=x,则在Rt△BCE中,BC=EC=x;在Rt△BCD中,CD=BC=3x;在Rt△ACD中,AC=AB+BC=73.2+x,CD=3x,利用关系式AC=CD列方程求出x;塔高DE=CD﹣EC=2x可以求出.解答:解:设EC=x(米),在Rt△BCE中,∠EBC=30°,∴BC==x;在Rt△BCD中,∠DBC=60°,∴CD=BC•tan60°=x•=3x;在Rt△ACD中,∠DBC=45°,∴AC=CD,即:73.2+x=3x,解得:x=12.2(3+).塔高DE=CD﹣EC=3x﹣x=2x=2×12.2(3+)=24.4(3+)≈115.5(米).答:塔高DE约为115.5米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度,难度一般.27.(16分)(2013•毕节地区)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式,点B坐标可由对称性质得到,或令y=0,由解析式得到;(2)关键是求出点D的坐标,然后利用勾股定理分别求出四边形ABCD四个边的长度;(3)本问为存在型问题.可以先假设存在,然后按照题意条件求点P的坐标,如果能求出则点P存在,否则不存在.注意三角形相似有两种情形,需要分类讨论.解答:解:(1)∵点A(1,0)和点C(0,1)在抛物线y=ax2+b上,∴,解得:a=﹣1,b=1,∴抛物线的解析式为:y=﹣x2+1,抛物线的对称轴为y轴,则点B与点A(1,0)关于y轴对称,∴B(﹣1,0).(2)设过点A(1,0),C(0,1)的直线解析式为y=kx+b,可得:,解得k=﹣1,b=1,∴y=﹣x+1.∵BD∥CA,∴可设直线BD的解析式为y=﹣x+n,∵点B(﹣1,0)在直线BD上,∴0=1+n,得n=﹣1,∴直线BD的解析式为:y=﹣x﹣1.将y=﹣x﹣1代入抛物线的解析式,得:﹣x﹣1=﹣x2+1,解得:x1=2,x2=﹣1,∵B点横坐标为﹣1,则D点横坐标为2,D点纵坐标为y=﹣2﹣1=﹣3,∴D点坐标为(2,﹣3).如答图①所示,过点D作DN⊥x轴于点N,则DN=3,AN=1,BN=3,在Rt△BDN中,BN=DN=3,由勾股定理得:BD=;在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=;又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=;∴四边形ABCD的周长为:AC+BC+BD+AD=+++=+.(3)假设存在这样的点P,则△BPE与△CBD相似有两种情形:(I)若△BPE∽△BDC,如答图②所示,则有,即,∴PE=3BE.设OE=m(m>0),则E(﹣m,0),BE=1﹣m,PE=3BE=3﹣3m,∴点P的坐标为(﹣m,3﹣3m).∵点P在抛物线y=﹣x2+1上,∴3﹣3m=﹣(﹣m)2+1,解得m=1或m=2,当m=1时,点E与点B重合,故舍去;当m=2时,点E在OB左侧,点P在x轴下方,不符合题意,故舍去.因此,此种情况不存在;(II)若△EBP∽△BDC,如答图③所示,则有,即,∴BE=3PE.设OE=m(m>0),则E(m,0),BE=1+m,PE=BE=(1+m)=+m,∴点P的坐标为(m, +m).∵点P在抛物线y=﹣x2+1上,∴+m=﹣(m)2+1,解得m=﹣1或m=,∵m>0,故m=1舍去,∴m=,点P的纵坐标为:+m=+×=,∴点P的坐标为(,).综上所述,存在点P,使以B、P、E为顶点的三角形与△CBD相似,点P的坐标为(,).点评:本题是代数几何综合题,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、相似三角形的判定与性质、勾股定理等重要知识点.第(2)问的解题要点是求出点D的坐标,第(3)问的解题要点是分类讨论.。
2013年河北省数学中考试题及答案(WORD解析版)

2013年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.气温由-1℃上升2℃后是A.-1℃B.1℃C.2℃D.3℃答案:B解析:上升2℃,在原温度的基础上加2℃,即:-1+2=1,选B。
2. 截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为A.0.423³107 B.4.23³106 C.42.3³105 D.423³104答案:B解析:科学记数法的表示形式为a³10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4 230 000=4.23³106 3.下列图形中,既是轴对称图形又是中心对称图形的是答案:C解析:A是只中心对称图形,B、D只是轴对称图形,只有C既是轴对称图形又是中心对称图形。
4.下列等式从左到右的变形,属于因式分解的是A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1) 答案:D解析:因式分解是把一个多项式化为几个最简整式的积的形式,所以,A、B、C都不符合,选D。
5.若x=1,则||x-4=A.3 B.-3 C.5 D.-5答案:A解析:当x=1时,|x-4|=|1-4|=3。
2013年贵州省毕节地区中考数学试卷(解析版)

贵州省毕节地区2013年中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,中只有一个选项正确.)1.(3分)(2013•毕节地区)﹣2的相反数是()A.±2 B.2C.﹣2 D.考点:相反数.分析:根据只有符号不同的两个数互为相反数即可求解.解答:解:﹣2的相反数为2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•毕节地区)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(2013•毕节地区)2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学记数法表示为()A.10.7×104B.1.07×105C.107×103D.0.107×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将107000用科学记数法表示为1.07×105.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•毕节地区)实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1B.2C.3D.4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:﹣π,0.1010010001….共有2个.故选B.点评:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.(3分)(2013•毕节地区)估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间考点:估算无理数的大小.分析:11介于9与16之间,即9<11<16,则利用不等式的性质可以求得介于3与4之间.解答:解:∵9<11<16,∴3<<4,即的值在3与4之间.故选C.点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.6.(3分)(2013•毕节地区)下列计算正确的是()A.a3•a3=2a3B.a3÷a=a3C.a+a=2a D.(a3)2=a5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:结合各选项分别进行同底数幂的乘法、同底数幂的除法、合并同类项、幂的乘方等运算,然后选出正确选项即可.解答:解:A、a3•a3=a6,原式计算错误,故本选项错误;B、a3÷a=a3﹣1=a2,原式计算错误,故本选项错误;C、a+a=2a,原式计算正确,故本选项正确;D、(a3)2=a6,原式计算错误,故本选项错误.故选C.点评:本题考查了同底数幂的除法、同底数幂的乘法、幂的乘方等运算,属于基础题,掌握各运算法则是解题的关键.7.(3分)(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16 B.20或16 C.20 D.12考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为4和8两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当4为底时,其它两边都为8,4、8、8可以构成三角形,周长为20;②当4为腰时,其它两边为4和8,∵4+4=8,∴不能构成三角形,故舍去,∴答案只有20.故选C.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(3分)(2013•毕节地区)在下列图形中既是轴对称图形又是中心对称图形的是()①线段,②角,③等边三角形,④圆,⑤平行四边形,⑥矩形.A.③④⑥B.①③⑥C.④⑤⑥D.①④⑥考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,不是中心对称图形;④是轴对称图形,也是中心对称图形;⑤不是轴对称图形,是中心对称图形;⑥是轴对称图形,也是中心对称图形;综上可得既是轴对称图形又是中心对称图形的有:①④⑥.故选D.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.(3分)(2013•毕节地区)数据4,7,4,8,6,6,9,4的众数和中位数是()A.6,9 B.4,8 C.6,8 D.4,6考点:众数;中位数.分析:根据众数和中位数的定义求解即可.解答:解:数据4出现3次,次数最多,所以众数是4;数据按从小到大排列:4,4,4,6,6,7,8,9,中位数是(6+6)÷2=6.故选D.点评:本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10.(3分)(2013•毕节地区)分式方程的解是()A.x=﹣3 B.C.x=3 D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解.故选C.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(3分)(2013•毕节地区)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°考点:平行线的性质;三角形的外角性质.分析:根据平行线的性质可得∠CFE=45°,再根据三角形内角与外角的关系可得∠E+∠D=∠CFE.解答:解:∵AB∥CD,∴∠ABE=∠CFE,∵∠EBA=45°,∴∠CFE=45°,∴∠E+∠D=∠CFE=45°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的关系,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.12.(3分)(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A.5B.10 C.8D.6考点:垂径定理;勾股定理.专题:探究型.分析:连接OB,先根据垂径定理求出BC的长,在Rt△OBC中利用勾股定理即可得出OB 的长度.解答:解:连接OB,∵OC⊥AB,AB=8,∴BC=AB=×8=4,在Rt△OBC中,OB===.故选A.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.(3分)(2013•毕节地区)一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A.k>0,b>0 B.k<0,b>0 C.k<0,b<0 D.k>0,b<0考点:反比例函数与一次函数的交点问题.分析:本题需先判断出一次函数y=kx+b与反比例函数的图象在哪个象限内,再判断出k、b的大小即可.解答:解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0又∵反比例函数的图象经过二、四象限,∴k<0.综上所述,k<0,b<0.故选C.点评:本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意图象在哪个象限内,是解题的关键.14.(3分)(2013•毕节地区)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3 B.y=(x+1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3考点:二次函数图象与几何变换.分析:由二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,根据平移的性质,即可求得所得图象的函数解析式.注意二次函数平移的规律为:左加右减,上加下减.解答:解:∵二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,∴所得图象的函数解析式是:y=(x﹣1)2+3.故选A.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.15.(3分)(2013•毕节地区)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°考点:切线的性质;等腰直角三角形.分析:首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.解答:解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选A.点评:此题考查了切线的性质、圆周角定理、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.二、填空题(本大题共5个小题,每小题5分,共25分)16.(5分)(2013•毕节地区)二元一次方程组的解是.考点:解二元一次方程组.专题:计算题.分析:根据y的系数互为相反数,利用加减消元法求解即可.解答:解:,①+②得,4x=12,解得x=3,把x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.故答案为:.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.17.(5分)(2013•毕节地区)正八边形的一个内角的度数是135度.考点:多边形内角与外角.分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为:×1080°=135°.故答案为:135.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).18.(5分)(2013•毕节地区)已知⊙O1与⊙O2的半径分别是a,b,且a、b满足,圆心距O 1O2=5,则两圆的位置关系是外切.考点:圆与圆的位置关系;非负数的性质:绝对值;非负数的性质:算术平方根.分析:首先根据求得a、b的值,然后根据半径与圆心距的关系求解即可.解答:解:∵,∴a﹣2=0,3﹣b=0解得:a=2,b=3∵圆心距O1O2=5,∴2+3=5∴两圆外切,故答案为:外切.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.19.(5分)(2013•毕节地区)已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是10πcm3(结果保留π)考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解答:解:圆锥的侧面积=2π×2×5÷2=10π.故答案为:10π.点评:本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.20.(5分)(2013•毕节地区)一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.分析:把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.解答:解:∵一次函数y=kx+1的图象经过(1,2),∴2=k+1,解得,k=1.则反比例函数解析式为y=,∴当x=2时,y=.故答案是:.点评:本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.三、解答及证明(本大题共7个小题,各题的分值见题号,共80分)21.(8分)(2013•毕节地区)计算:.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等运算,然后按照实数的运算法则计算即可.解答:解:原式=1+5+2﹣3﹣2=3.点评:本题考查了实数的运算,涉及了零指数幂、去括号、负整数指数幂、二次根式的化简、绝对值等知识,属于基础题.22.(10分)(2013•毕节地区)甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为偶数情况,再利用概率公式即可求得答案;(2)分别求得甲、乙两人获胜的概率,比较大小,即可得这个游戏规则对甲、乙双方是否公平.解答:解:(1)画树状图得:∵共有6种等可能的结果,两数之和为偶数的有2种情况;∴甲获胜的概率为:=;(2)不公平.理由:∵数字之和为奇数的有4种情况,∴P(乙获胜)==,∴P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(8分)(2013•毕节地区)先化简,再求值.,其中m=2.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分,并利用同分母分式的加法法则计算得到最简结果,将m的值代入计算即可求出值.解答:解:原式=•+=+==,当m=2时,原式==2.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.24.(12分)(2013•毕节地区)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.解答:解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.点评:此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.25.(12分)(2013•毕节地区)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;(3)若BC=8,DE=6,求△AEF的面积.考点:旋转的性质;全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠EBF=90°,即∠F AE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到;(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.解答:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是DCB的延长线上的点,∴∠ABF=90°,在△ADE和△ABF中,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,∴∠BAF=∠DAE,而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠F AE=90°,∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到;故答案为A、90;(3)解:∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE==10,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90 度得到,∴AE=AF,∠EAF=90°,∴△AEF的面积=AE2=×100=50(平方单位).点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质以及勾股定理.26.(14分)(2013•毕节地区)如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设EC=x,则在Rt△BCE中,BC=EC=x;在Rt△BCD中,CD=BC=3x;在Rt△ACD中,AC=AB+BC=73.2+x,CD=3x,利用关系式AC=CD列方程求出x;塔高DE=CD﹣EC=2x可以求出.解答:解:设EC=x(米),在Rt△BCE中,∠EBC=30°,∴BC==x;在Rt△BCD中,∠DBC=60°,∴CD=BC•tan60°=x•=3x;在Rt△ACD中,∠DBC=45°,∴AC=CD,即:73.2+x=3x,解得:x=12.2(3+).塔高DE=CD﹣EC=3x﹣x=2x=2×12.2(3+)=24.4(3+)≈115.5(米).答:塔高DE约为115.5米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度,难度一般.27.(16分)(2013•毕节地区)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式,点B坐标可由对称性质得到,或令y=0,由解析式得到;(2)关键是求出点D的坐标,然后利用勾股定理分别求出四边形ABCD四个边的长度;(3)本问为存在型问题.可以先假设存在,然后按照题意条件求点P的坐标,如果能求出则点P存在,否则不存在.注意三角形相似有两种情形,需要分类讨论.解答:解:(1)∵点A(1,0)和点C(0,1)在抛物线y=ax2+b上,∴,解得:a=﹣1,b=1,∴抛物线的解析式为:y=﹣x2+1,抛物线的对称轴为y轴,则点B与点A(1,0)关于y轴对称,∴B(﹣1,0).(2)设过点A(1,0),C(0,1)的直线解析式为y=kx+b,可得:,解得k=﹣1,b=1,∴y=﹣x+1.∵BD∥CA,∴可设直线BD的解析式为y=﹣x+n,∵点B(﹣1,0)在直线BD上,∴0=1+n,得n=﹣1,∴直线BD的解析式为:y=﹣x﹣1.将y=﹣x﹣1代入抛物线的解析式,得:﹣x﹣1=﹣x2+1,解得:x1=2,x2=﹣1,∵B点横坐标为﹣1,则D点横坐标为2,D点纵坐标为y=﹣2﹣1=﹣3,∴D点坐标为(2,﹣3).如答图①所示,过点D作DN⊥x轴于点N,则DN=3,AN=1,BN=3,在Rt△BDN中,BN=DN=3,由勾股定理得:BD=;在Rt△ADN中,DN=3,AN=1,由勾股定理得:AD=;又OA=OB=OC=1,OC⊥AB,由勾股定理得:AC=BC=;∴四边形ABCD的周长为:AC+BC+BD+AD=+++=+.(3)假设存在这样的点P,则△BPE与△CBD相似有两种情形:(I)若△BPE∽△BDC,如答图②所示,则有,即,∴PE=3BE.设OE=m(m>0),则E(﹣m,0),BE=1﹣m,PE=3BE=3﹣3m,∴点P的坐标为(﹣m,3﹣3m).∵点P在抛物线y=﹣x2+1上,∴3﹣3m=﹣(﹣m)2+1,解得m=1或m=2,当m=1时,点E与点B重合,故舍去;当m=2时,点E在OB左侧,点P在x轴下方,不符合题意,故舍去.因此,此种情况不存在;(II)若△EBP∽△BDC,如答图③所示,则有,即,∴BE=3PE.设OE=m(m>0),则E(m,0),BE=1+m,PE=BE=(1+m)=+m,∴点P的坐标为(m,+m).∵点P在抛物线y=﹣x2+1上,∴+m=﹣(m)2+1,解得m=﹣1或m=,∵m>0,故m=1舍去,∴m=,点P的纵坐标为:+m=+×=,∴点P的坐标为(,).综上所述,存在点P,使以B、P、E为顶点的三角形与△CBD相似,点P的坐标为(,).点评:本题是代数几何综合题,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、相似三角形的判定与性质、勾股定理等重要知识点.第(2)问的解题要点是求出点D的坐标,第(3)问的解题要点是分类讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州省六盘水市2013年中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,只有一项符合题意要求)
B
B
6.(3分)
(2013•六盘水)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个( )
8.(3分)(2013•六盘水)我省五个旅游景区门票票价如下表所示(单位:元),关于这五
9.(3分)(2013•六盘水)已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的
. .
二、填空题(本题8小题,每小题4
分,共计32分)
11.(4分)(2013•六盘水)H7N9禽流感病毒的直径大约为0.0000000805米,用科学记数法表示为 8.1×10﹣8
米(保留两位有效数字)
12.(4分)(2013•六盘水)因式分解:4x3﹣36x=4x(x+3)(x﹣3).
13.(4分)(2013•六盘水)如图,添加一个条件:∠ADE=∠ACB(答案不唯一),使△ADE∽△ACB,(写出一个即可)
14.(4分)(2013•六盘水)在六盘水市组织的“五城联创”演讲比赛中,小明等25人进入总
决赛,赛制规定,13人早上参赛,12人下午参赛,小明抽到上午比赛的概率是.
.
故答案为
15.(4分)(2013•六盘水)如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD 的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于19.
16.(4分)(2013•六盘水)若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB 为10或6cm.
17.(4分)(2013•六盘水)无论x取任何实数,代数式都有意义,则m的取
值范围为m≥9.
查了二次根式的意义和性质.概念:式子(
18.(4分)(2013•六盘水)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为
,经过61次旋转后,顶点O经过的总路程为.
=
次旋转路线是以正方形的对角线长
=
经过的路线长为=
×15+=.
;
三、解答题(本题共7个小题,共88分,解答时应写出必要的文字说明,证明过程或演算步骤)
19.(16分)(2013•六盘水)(1)+(2013﹣π)
(2)先化简,再求值:(),其中x2﹣4=0.
=3﹣×
+1
+÷
×
×
,
=1
20.(12分)(2013•六盘水)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:
A.1.5小时以上
B.1﹣﹣1.5小时
C.0.5小时
D.0.5小时以下
根据调查结果绘制了两幅不完整的统计图.
请你根据以上信息解答下列问题:
(1)本次调查活动采取了抽样调查方式.
(2)计算本次调查的学生人数和图(2)选项C的圆心角度数.
(3)请根据图(1)中选项B的部分补充完整.
(4)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
×
21.(10分)(2013•六盘水)在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交与点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论.
(2)若AD:AO=6:5,BC=3,求BD的长.
∴=
.
22.(10分)(2013•六盘水)阅读材料:
关于三角函数还有如下的公式:
sin(α±β)=sinαcosβ±cosasinβ
tan(α±β)=
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
例:tan15°=tan(45°﹣30°)
===
根据以上阅读材料,请选择适当的公式解答下面问题
(1)计算:sin15°;
(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据
,)
××
;
=,
)=14+7
≈
23.(14分)(2013•六盘水)为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.
(1)购进甲乙两种纪念品每件各需要多少元?
(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?
(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?
,
,
24.(10分)(2013•六盘水)(1)观察发现
如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.
如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点
P,故BP+PE的最小值为.
(2)实践运用
如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD
上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.
(3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN 的值最小,保留作图痕迹,不写作法.
CE=;
的度数为的中点得到∠
AE=;
CE=BE=;
故答案为
∵是
OA=
故答案为
25.(16分)(2013•六盘水)已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求经过点O,C,A三点的抛物线的解析式.
(2)求抛物线的对称轴与线段OB交点D的坐标.
(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由.
OA=
=4
OC=AO=2
,
点坐标为(
(
∴
+2
AO=2
2
k
k=
x
+2﹣﹣,
×
,
+2的顶点坐标为(
t
t
t+2
,﹣
,
,
点坐标为(。