绝对值经典练习题精编版

合集下载

绝对值练习题(精)100道之欧阳法创编

绝对值练习题(精)100道之欧阳法创编

绝对值综合练习题1、有理数的绝对值一定是_________。

2、绝对值等于它本身的数有________个。

3、下列说确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数2021.03.09 欧阳法创编4.若有理数在数轴上的对应点如下图所示(b aA、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且2021.03.09 欧阳法创编a<b<c,求a、b、c的值。

12、如果m>0,n<0,m<|n|,那么m,n,-m,-n的大小关系_________________.13、如果,则的取值围是()A.>O B.≥OC.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.2021.03.09 欧阳法创编18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。

22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。

绝对值练习题(经典)100道

绝对值练习题(经典)100道

绝对值综合练习题1、有理数的绝对值一定是_________。

2、绝对值等于它本身的数有________个。

3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。

22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。

23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。

绝对值练习题100道

绝对值练习题100道

绝对值练习题(精)100道(D O C)(总8页)--本页仅作为文档封面,使用时请直接删除即可--绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()b aA、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

9、实数a、b在数轴上位置如图所示,则|a|、|b|的大小关系是_______。

a b10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。

绝对值专项练习60题(有答案)8页精编版

绝对值专项练习60题(有答案)8页精编版

……………………………………………………………最新资料推荐…………………………………………………绝对值专项练习60题(有答案)1.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或13.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.如果|a|=﹣a,那么a的取值范围是()A .a>0 B.a<0 C.a≤0 D.a≥06.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|7.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣210.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3 C.﹣3 D.0﹣313.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A .a>0 B.a≥0 C.a<0 D.自然数24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()....29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。

绝对值试题(经典)100道

绝对值试题(经典)100道
60、化简:|3x+1|+|2x-1|.
61 ,求 + +… + .
62、已知 与 互为相反数,设法求代数式
63.已知 , 且 ,求 的值。
64.a与b互为相反数,且 ,求 的值.
65、(整体的思想)方程 的解的个数是______。
66、若 ,且 , ,则 .
67、大家知道 ,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子 在数轴上的意义是.
A、正数 B、负数 C、非正数 D、非负数
16、有理数m,n在数轴上的位置如图,
17、若|x-1| =0, 则x=__________,若|1-x |=1,则x=_______.
18、如果 ,则 , .
19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=
绝对值试题(经典)100道
———————————————————————————————— 作者:
———————————————————————————————— 日期:
绝对值综合练习题
1、有理数的绝对值一定是_________。
2、绝对值等于它本身的数有________个。
3、下列说法正确的是()
21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,
求代数式 +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23、如果 a,b互为相反数,那么a + b =,2a+ 2b =.

绝对值(超级经典)100道练习题

绝对值(超级经典)100道练习题

绝对值(超级经典)100道练习题绝对值练习题2、绝对值等于它本身的数有________个。

3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

211、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,34求代数式xb a ++x 2+cd 的值。

22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。

23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。

(精品整理)绝对值专题训练及答案

(精品整理)绝对值专题训练及答案

绝对值专题训练及答案1.如果|a|=﹣a,那么a的取值范围是()A .a>0 B.a<0 C.a≤0 D.a≥02.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个3.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a6.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣27.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或18.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|10.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.13.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.14.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a| 15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A a>0B a≥0C a<0 D自然数....24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A .1个B.2个C.3个D.无穷多个29.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3 C.﹣3 D.0﹣330.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57. 下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数58.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.59.若ab<0,试化简++.60.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.参考答案:1.因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.2.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5 A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.6.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.7.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9. 依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.10.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.13.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b14.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29. ∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.58.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160. ∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.。

绝对值练习题(经典)100道

绝对值练习题(经典)100道

绝对值练习题(经典)100道绝对值综合练习题1、有理数的绝对值⼀定是_________。

2、绝对值等于它本⾝的数有________个。

3、下列说法正确的是()A、—|a|⼀定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若⼀个数⼩于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所⽰,则下列结论中正A、a>|b|B、aC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值⼩于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的⼤⼩关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不⼤于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a⼀定是()A、正数B、负数C、⾮正数D、⾮负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式xb a ++x 2+cd 的值。

22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。

23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若⼀个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。

绝对值(超级经典)100道练习题

绝对值(超级经典)100道练习题

绝对值练习题2、绝对值等于它本身的数有________个。

3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。

22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。

23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。

初中数学《非负数的性质—绝对值》典型题精编

初中数学《非负数的性质—绝对值》典型题精编

初中数学《非负数的性质—绝对值》典型题精编一、选择题1. △ABC 中,∠A ,∠B 均为锐角,且有|tan 2B −3|+(2sinA −√3)2=0,则△ABC 是( )A. 直角(不等腰)三角形B. 等边三角形C. 等腰(不等边)三角形D. 等腰直角三角形2. 已知√a −2+|b +3|=0,则P(—a,—b)的坐标为( )A. (2,3)B. (2,—3)C. (—2,3)D. (—2,—3)3. 已知:|m −2|+(n −1)2=0,则方程2m +x =n 的解为( )A. x =−4B. x =−3C. x =−2D. x =−14. 已知有理数x ,y 满足√x −1+|y +3|=0,则x +y 的值为( )A. −2B. 2C. 4D. −45. 已知a 、b 、c 是三角形的三边长,如果满足(a −3)2+√b −4+|c −5|=0,则三角形的形状是()A. 底与边不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形6. 已知|m +3|与(n −2)2互为相反数,那么m n 等于( )A. 6B. −6C. 9D. −97. 若|3x −2y −1|+√x +y −2=0,则x ,y 的值为( )A. {x =1y =4B. {x =2y =0C. {x =0y =2D. {x =1y =18. 若a ,b ,c 为△ABC 的三边长,且满足|a −5|+(b −3)2=0,则c 的值可以为( )A. 7B. 8C. 9D. 109. 若|x +y +2|+(xy −1)2=0,则(3x −xy +1)−(xy −3y −2)的值为( )A. 3B. −3C. −5D. 1110. 如果|a +3|+(b −2)2=0,那么代数式(a +b)2017的值为( )A. 5B. −5C. 1D. −111. 在△ABC 中,若(2cosA −√2)2+|1−tanB|=0,则△ABC 一定是 ( )A. 锐角三角形B. 钝角三角形C. 等边三角形D. 等腰直角三角形12. 若a ,b 为实数,且|a −3|+(b +2)2=0,点P(−a,−b)的坐标是( )A. (−2,3)B. (2,−3)C. (−3,2)D. (−3,−2)13. 已知√a −2+|b −2a|=0,则a +2b 的值是( )A. 4B. 6C. 8D. 1014.已知实数a,b满足|a−2|+(b−4)2=0,则以a,b的值为两边的等腰三角形的周长是()A. 10B. 8或10C. 8D. 以上都不对15.方程|4x−8|+√x−y−m=0,当y>0时,m的取值范围是()A. 0<m<1B. m≥2C. m<2D. m≤216.若|a+1|+√b+3+c2−4c+4=0,则a+b2+c3的值等于()A. 0B. 6C. 16D. 2217.若m、n满足|m+1|+(n−2)2=0,则m n的值等于()A. −1B. 1C. −2D. 1418.下列各式中,一定是负数的是()A. −aB. −|a|C. −a3D. −a2−119.若|m−4|+(n+2)2=0,则mn的值是()A. 16B. −16C. 8D. −820.已知△ABC的三边长分别为a,b,c,且满足(a−5)2+|b−12|+√c−13=0,则△ABC()A. 不是直角三角形B. 是以a为斜边的直角三角形C. 是以b为斜边的直角三角形D. 是以c为斜边的直角三角形二、填空题21.若√a−2+|b+1|=0,则(a+b)2020=______.22.已知√x+3+|3x+2y−15|=0,则√x+y的算术平方根为______.23.已知√a−b+|b−1|=0,则a+1=______.24.若|a−2|+(b−3)2=0,则a b的值为______.25.若|6−x|与|y+9|互为相反数,则x=______,y=______,(x+y)÷(x−y)=______.26.若实数x,y满足(2x+3)2+|9−4y|=0,则xy的立方根为______.27.若|a−2|+(b−5)2=0,则点P(a,b)关于x轴对称的点的坐标为______.28.已知|2x−y−1|+(x+y−5)2=0,则x=______,y=______.29.若|a−2|与|b+3|互为相反数,则a−b的值为______ .30.已知|a−2|+|3−b|=0,则a+b=______.答案和解析1.【答案】B【解析】【分析】本题考查了非负数的性质以及等边三角形的判定,利用非负数的性质得出tan2B−3=0,2sinA−√3=0是解题关键,又利用了特殊角三角函数值.根据非负数的性质,可得特殊角三角函数,根据特殊角三角函数值,可得答案.【解答】解:由|tan2B−3|+(2sinA−√3)2=0,得tan2B−3=0,2sinA−√3=0,由∠A,∠B均为锐角,得tanB=√3,sinA=√3,2A=60°,B=60°,∠C=180°−∠A−∠B=60°,∴∠C=∠A=∠B=60°,∴△ABC是等边三角形,故选B.2.【答案】C【解析】【分析】本题考查了点的坐标,非负数的性质,正确求出a,b的值是解题的关键.先由√a−2+|b+3|=0,根据非负数的性质求出a=2,b=−3,进而求解即可.【解答】解:∵√a−2+|b+3|=0,∴a−2=0,b+3=0,∴a=2,b=−3,∴P(−a,−b)的坐标为(−2,3),故C正确.故选C.3.【答案】B【解析】【分析】此题主要考查学生对解一元一次方程,和非负数的性质的理解和掌握,根据绝对值和偶次方不可能为负数,即|m−2|=0,(n−1)2=0,解得m、n的值,然后代入方程即可求解.【解答】解:∵|m−2|+(n−1)2=0,∴|m−2|=0,(n−1)2=0,∴m−2=0,n−1=0,解得:m=2,n=1,将m=2,n=1代入方程2m+x=n,得4+x=1移项,得x=−3.故选B.4.【答案】A【解析】【分析】本题考查了本题考查了算术平方根及绝对值的非负性;明确几个非负数的和为0时,这几个非负数都为0是解题的关键.根据非负数的性质,可求出x、y的值,然后代入求值即可.【解答】解:∵√x−1+|y+3|=0,∴x−1=0,y+3=0;∴x=1,y=−3,∴原式=1+(−3)=−2故选:A.5.【答案】D【分析】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a−3)2+√b−4+|c−5|=0,由非负数的性质可得:(a−3)2≥0,√b−4≥0,|c−5|≥0,∴a−3=0,b−4=0,c−5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=9+16=25=52=c2,∴以a、b、c为边的三角形是直角三角形.故选D.6.【答案】C【解析】【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:∵|m+3|与(n−2)2互为相反数,∴|m+3|+(n−2)2=0,∴m+3=0,n−2=0,解得m=−3,n=2,所以,m n=(−3)2=9.故选C.7.【答案】D【解析】本题考查二元一次方程组的解法和应用,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.根据二元一次方程组的解法以及非负数的性质即可求出答案.【解答】解:由题意可知:{3x −2y −1=0x +y −2=0, 解得:{x =1y =1, 故选D .8.【答案】A【解析】解:由题意得,a −5=0,b −3=0,解得a =5,b =3,∵5−3=2,5+3=8,∴2<c <8,∴c 的值可以为7.故选A .根据非负数的性质列方程求出a 、b 的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c 的取值范围,然后解答即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.9.【答案】C【解析】解:由|x +y +2|+(xy −1)2=0,得x +y +2=0,xy −1=0,即x +y =−2,xy =1,则(3x −xy +1)−(xy −3y −2)=3x −xy +1−xy +3y +2=3x +3y −2xy +3=3(x +y)−2xy +3=3×(−2)−2+3故选:C.根据非负数的和为零,x+y与xy的值,再根据代数式求值,可得答案.本题考查了整式的加减,利用非负数的性质求出x+y与xy的值是解题关键.10.【答案】D【解析】【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+3=0,b−2=0,解得a=−3,b=2,所以(a+b)2017=(−3+2)2017=−1.故选D.11.【答案】D【解析】【分析】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得A、B的值,根据直角三角形的判定,可得答案.【解答】解:由,(2cosA−√2)2+|1−tanB|=0,得2cosA=√2,1−tanB=0.解得A=45°,B=45°,则△ABC一定是等腰直角三角形,故选D.12.【答案】C【解析】解:∵|a−3|+(b+2)2=0,∴a−3=0,b+2=0,∴a=3,b=−2,∴P(−3,2),故选:C.先根据非负数的性质求出a,b的值,即可确定P点的坐标.本题考查了点的坐标,解决本题的关键是先根据非负数的性质求出a,b的值.13.【答案】D【解析】解:∵√a−2+|b−2a|=0,∴a−2=0,b−2a=0,解得:a=2,b=4,故a+2b=10.故选:D.直接利用绝对值和二次根式的性质分别化简得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.14.【答案】A【解析】解:根据题意得a−2=0,b−4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.本题考查了等腰三角形的性质,非负数的性质,解题的关键是熟练利用三角形的三边关系进行判断.15.【答案】C【解析】解:根据题意得:{4x −8=0x −y −m =0, 解方程组就可以得到{x =2y =2−m, 根据题意得2−m >0,解得:m <2.故选C .先根据非负数的性质列出方程组,用m 表示出y 的值,再根据y >0,就得到关于m 的不等式,从而求出m 的范围.本题考查了初中范围内的两个非负数,利用非负数的性质转化为解方程,这是考试中经常出现的题目类型. 16.【答案】C【解析】【分析】此题主要考查了非负数的性质和代数式求值,正确得出a ,b ,c 的值是解题关键.首先根据绝对值的非负性,二次根式的非负性和偶次方的非负性求出a ,b ,c 的值,然后代入所求代数式进行计算即可.【解答】解:∵|a +1|+√b +3+c 2−4c +4=0,∴|a +1|+√b +3+(c −2)2=0,∴a =−1,b =−3,c =2,∴a +b 2+c 3=−1+9+8=16.故选C .17.【答案】B【解析】解:∵|m +1|+(n −2)2=0,∴m +1=0,n −2=0,∴m =−1,n =2,∴m n =(−1)2=1.故选:B .根据非负数的性质求出m 、n 的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.【答案】D【解析】解:当a=0时,A、B、C都不是负数,不论a取什么值,a2+1>0,即−(a2+1)<0,一定是负数;故选:D.根据负数的意义:负数小于0,小于0的数为负数进行判断选择.本题主要考查正数和负数的知识点,掌握负数的定义是解答此题的关键.19.【答案】D【解析】解:∵|m−4|+(n+2)2=0,∴m−4=0,n+2=0,解得,m=4,n=−2,∴mn=4×(−2)=−8,故选:D.首先根据非负数的性质,得出m与n的值,然后代入mn中求值即可.题主要考查了非负数的性质.解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.【答案】D【解析】【分析】此题主要考查了绝对值以及偶次方的性质再结合二次根式的性质、勾股定理的逆定理等知识,正确得出a,b,c的值是解题关键.直接利用绝对值以及偶次方的性质再结合二次根式的性质得出a,b,c的值,进而得出答案.【解答】解:∵(a−5)2+|b−12|+√c−13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是以c为斜边的直角三角形.故选:D.【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义,掌握非负数的意义求出a、b的值是解决问题的关键.22.【答案】√3【解析】【分析】本题考查了非负数的性质.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得:x+3=0,3x+2y−15=0,解得x=−3,y=12,所以√x+y=√−3+12=3,所以√x+y的算术平方根为√3.故答案为√3.23.【答案】2【解析】解:∵√a−b+|b−1|=0,∴b−1=0,a−b=0,解得:b=1,a=1,故a+1=2.故答案为:2.直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.【解析】解:∵|a−2|+(b−3)2=0,∴a−2=0,b−3=0,解得:a=2,b=3,则a b的值为:23=8.故答案为:8.直接利用偶次方的性质以及结合绝对值的性质分析得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.25.【答案】6 −9−15【解析】解:由题意得,|6−x|+|y+9|=0,则6−x=0,y+9=0,解得,x=6,y=−9,则(x+y)÷(x−y)=−1,5.故答案为:6;−9;−15根据相反数的概念列出算式,求出x、y的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.26.【答案】−32【解析】【分析】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9−4y|=0,∴2x+3=0,解得x=−3,29−4y=0,解得y=9,4xy =−32×94=−278, ∴xy 的立方根为−32.故答案为−32. 27.【答案】(2,−5)【解析】【分析】根据非负数的性质求出a 、b 的值,从而得到点P 的坐标,再根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:由题意得,a −2=0,b −5=0,解得a =2,b =5,所以,点P 的坐标为(2,5),所以,点P (a,b)关于x 轴对称的点的坐标为(2,−5).故答案为:(2,−5).28.【答案】2 3【解析】解:根据题意得:{2x −y −1=0x +y −5=0, 解得:{x =2y =3. 首先根据绝对值与偶次方的非负性,根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值.本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.29.【答案】5【解析】解:由题意得,|a−2|+|b+3|=0,则a−2=0,b+3=0,解得,a=2,b=−3,则a−b=2−(−3)=5,故答案为:5.根据相反数的定义列出算式,根据非负数的性质求出a、b的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数或式的绝对值相加和为0时,则其中的每一项都必须等于0是解题的关键.30.【答案】5【解析】解:由题意得:a−2=0,3−b=0,解得:a=2,b=3,则a+b=2+3=5,故答案为:5.根据绝对值具有非负性可得a−2=0,3−b=0,解出a、b的值,进而可得答案.此题主要考查了绝对值,解题的关键是掌握绝对值具有非负性.。

绝对值练习题(经典)100道精编版

绝对值练习题(经典)100道精编版

绝对值综合练习题1、有理数的绝对值一定是_________。

2、绝对值等于它本身的数有________个。

3、下列说法正确的是()A、—|a|一定是负数B、只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。

6、-4的倒数的相反数是______。

7、绝对值小于2的整数有________。

8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

10、已知|a|+|b|=9,且|a|=2,求b的值。

11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。

12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系_________________.13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。

20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。

22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。

23、如果 a,b 互为相反数,那么 a + b = ,2a + 2b= .24、a+5的相反数是3,那么, a = .25、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=______26、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______28、已知|X —4|+|Y+2|=0,求2X —|Y|的值。

绝对值练习题(精)100道

绝对值练习题(精)100道

千万于值概括训练题之阳早格格创做1、有理数的千万于值一定是_________.2、千万于值等于它自己的数有________个.3、下列道确的是()A、—|a|一定是背数B、惟有二个数相等时它们的千万于值才相等C、若|a|=|b|,则a与b互为好同数D、若一个数小于它的千万于值,则那个数为背数4.若有理数正在数轴上的对付应面如下图所示,则下A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、好同数等于-5的数是______,千万于值等于5的数是________.6、-4的倒数的好同数是______.7、千万于值小于2的整数有________.8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______.10、已知|a|+|b|=9,且|a|=2,供b的值.11、已知|a|=3,|b|=2,|c|=1,且a<b<c,供a、b、c的值.12、如果m>0,n<0,m<|n|,那么m,n,-m,-n的大小闭系_________________.13、如果,则的与值围是()A.>O B.≥O C.≤O D.<O14()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、背数C、非正数D、非背数16、有理数m,n正在数轴上的位子如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 供│x+y│的值.20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为好同数,c、d互为倒数,x的千万于值是1,供代数式x ba +x2+cd的值.22、已知│a│=3,│b│=5,a与b同号,供│a-b│的值.23、如果 a,b互为好同数,那么a + b = ,2a + 2b = .24、a+5的好同数是3,那么, a = .b c a1025、若X 的好同数是—5,则X=______;若—X 的好同数是—3.7,则X=______26、若一个数的倒数是1.2,则那个数的好同数是________,千万于值是________27、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 28、已知|X —4|+|Y+2|=0,供2X —|Y|的值.29.若)5(--=-x ,则=x ________,42=-x ,则=x ________30、千万于值小于4且没有小于2的整数是________31.已知|a|=3, |b |=5,且a<b,则a +b 等于32.若1<a <3,则=-+-a a 13__________ 33.若∣x -2│=7,则x=34.给出二个论断:①a b b a -=-;②-21>-31.其中 . ①②精确C.①②皆精确 D.①②皆没有精确35、若|a|=2,|b|=5,则a+b=( )36、 如果|a|=4,|b|=3,且a>b ,供a ,b 的值.37.对付于式子|x|+13,当x 等于什么值时,有最小值?最小值是几?38对付于式子2-|x|,当x 等于什么值时,有最大值?最大值是几39.已知a <c <0<b ,化简|b-c|-|b+c|+|a-c|-|a+c|-|a+b|40.a<0时,化简||3a a a+截止为( ) 41.有理数a,b,c 正在数轴上的位子如图所示:试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________.42.已知│a-3│+│-b+5│+│c-2│=0,估计2a+b+c 的值.43.如果a 、b 互为好同数,c 、d 互为倒数,x 的千万于值是1,供代数式x 2+(a+b)x-•cd 的值.44.化简│1-a │+│2a+1│+│a │(a<-2).45.已知-a<b<-c<0<-d,且│d │<│c │,试将a,b,c,d,0•那五个数由大到小用“>”依次排列出去.46.若|x |=51,则x 的好同数是_______.47.若|m -1|=m -1,则m _______1.48.若|m -1|>m -1,则m _______1.49.若|x |=|-4|,则x =_______.50.若|-x |=|21-|,则x =_______.51.若|x -2|+|y +3|+|z -5|=0估计:(1)x ,y ,z 的值.(2)供|x |+|y |+|z |的值.52.若2<a <4,化简|2-a |+|a -4|.53.(1)若x x =1,供x . (2)若x x=-1,供x .54、若3+-y x 与1999-+y x 互为好同数,供yx y x -+的值. 55、a +b <0,化简|a+b-1|-|3-a-b |.56、若y x -+3-y =0 ,供2x+y 的值.57、当b 为何值时,5-12-b 有最大值,最大值是几?58、已知a 是最小的正整数,b 、c 是有理数,而且有|2+b |+(3a +2c )2=0. 供式子4422++-+c a c ab 的值. 59、若|x |=3,|y |=2,且|x-y |=y-x ,供x+y 的值.60、化简:|3x+1|+|2x-1|. 6102b 1=++-a ,供()2001b a ++()2000b a ++…()2b a ++=+b a .62、已知2-ab 与1-b 互为好同数,设法供代数式63.已知5=a ,3=b 且b a b a +=+,供b a +的值.64.a 与b 互为好同数,且54=-ba ,供12+++-ab a b ab a 的值. 65、(完全的思维)圆程x x -=-20082008 的解的个数是______.66、若m n n m -=-,且4m =,3n =,则2()m n +=. 67、大家知讲|5||50|=-,它正在数轴上的意思是表示5的面与本面(即表示0的面)之间的距离.又如式子|63|-,它正在数轴上的意思是表示6的面与表示3的面之间的距离.类似天,式子|5|a +正在数轴上的意思是.68、(距离问题)瞅察下列每对付数正在数轴上的对付应面间的距离 4与2-,3与5,2-与6-,4-与3. 并回问下列各题:(1)您能创造所得距离与那二个数的好的千万于值有什么闭系吗?(2)若数轴上的面A 表示的数为x ,面B 表示的数为―1,则A 与B 二面间的距离不妨表示为__________.(3)分离数轴供得23x x -++的最小值为,博得最小值时x 的与值围为 ________.(4) 谦脚341>+++x x 的x 的与值围为__________.69.已知y=|2x+6|+|x-1|-4|x+1|,供y 的最大值.70.设a <b <c <d ,供|x-a |+|x-b |+|x-c |+|x-d |的最小值.71.若2+|4-5x |+|1-3x |+4的值恒为常数,供x 该谦脚的条件及此常数的值. 72.02b 1=++-a ,供()2001b a ++()2000b a ++…()2b a ++=+b a .73.化简100211003120021200312003120041-++-+- 74.设有理数a ,b ,c 正在数轴上的对付应面如图1-1所示,化简|b-a |+|a+c |+|c-b |.75..若y x -+3-y =0 ,供2x+y 的值.76. 当b 为何值时,5-12-b 有最大值,最大值是几?77.已知a 是最小的正整数,b 、c 是有理数,而且有|2+b |+(3a +2c )24422++-+c a c ab 的值. 78、b a --9 有最值,其值为3++b a 有最值,其值为79、若033=-+-x x , 则 x 的与值围为80、若a a -= ,则=---a a 2181、11-++x x 的最小值是.82、若0432=-+-+-c b a ,供c b a ++2的值.。

绝对值经典20题

绝对值经典20题

绝对值基础练习题
【经典20题】
1.有理数a、b、在数轴上的位置如图所示.
(1)用“>”或“<”填空:a+b0,c﹣b0;
(2)化简:|a+b|+|c|﹣|c﹣b|.
2.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b ﹣c|.
3.已知:a=3,|b|=2,求(a+b)3的值.
4.比较下列各组数的大小.
(1)﹣与﹣;
(2)﹣|﹣3.5|与﹣[﹣(﹣3.5)].
5.若|x﹣1|+|y+2|+|z﹣3|=0,求(x+1)(y﹣2)(z﹣3)的值.6.已知|2﹣m|+|n+3|=0,试求m+2n的值.
7.已知|x﹣2|与|y+5|互为相反数,求x﹣y的值.
8.已知|2﹣b|与|a﹣b+4|互为相反数,求ab﹣2012的值.9.|﹣a|=21,|+b|=21,且|a+b|=﹣(a+b),求a﹣b的值.10.若m、n互为相反数,则|﹣2+m+(﹣2)﹣5+n|的值.11.已知|a|=2,|b|=2,b>a,求a,b的值.
13.求最大的负整数与最小的正整数以及绝对值最小的数的和.
14.已知|a|=4,|b|=5,求2a+b的值.
15.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|+|2a|.
16.列式计算:
求绝对值大于1而不大于5的所有负整数的和.
17.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.
19.如果x<0,且|x﹣1|=4,求x的值.
20.写出绝对值大于3且不大于8的所有整数,并指出其中的最大数和最小数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值专项训练
一、基础题 1、(绝对值的意义)
1°绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.
2°绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.
(2006年贵阳)(1)2-的绝对值等于( )A 、2
1
-
B 、2
C 、2-
D 、2
1 (2006年连云港)(2)3-等于 ( ) A 、3 B 、-3 C 、3
1
D 、
3
1- (2005年梅州)(3)设a 是实数,则|a|-a 的值( )
A 、可以是负数
B 、不可能是负数
C 、必是正数
D 、可以是正数也可以是负数
2、(绝对值的性质)(1)任何数都有绝对值,且只有________个.
(2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.
(3)绝对值是正数的数有_____个,它们互为_________.
(4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________.
(2006年资阳)(4)绝对值为3的数为____________
3、(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.
(2005年无锡)(5)比较4
1,31,21
--的大小,结果正确的是( )
A 、413121
<-<- B 、314121-<<- C 、213141-<-< D 、4
12131<-<-
二、[典型例题]
1、(教材变型题)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.
2、(易错题)化简(4)--+的结果为___________
3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( ) A 、0a > B 、0a ≥ C 、0a ≤ D 、0a <
4、(创新题)代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、5
5、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( )
A 、a b b a <-<<-
B 、b a b a -<<<-
C 、a b b a -<<-<
D 、b b a a -<<-<
三、[自主练习题] 一、选择题
1、有理数的绝对值一定是 ( )
A 、正数
B 、整数
C 、正数或零
D 、自然数 2、下列说法中正确的个数有 ( )
①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A 、1个 B 、2个 C 、3个 D 、4个
3、如果甲数的绝对值大于乙数的绝对值,那么 ( )
A 、甲数必定大于乙数
B 、甲数必定小于乙数
C 、甲、乙两数一定异号
D 、甲、乙两数的大小,要根据具体值确定 4、绝对值等于它本身的数有 ( )
A 、0个
B 、1个
C 、2个
D 、无数个 5、下列说法正确的是( )
A 、a -一定是负数
B 、只有两个数相等时它们的绝对值才相等
C 、若a b =,则a 与b 互为相反数
D 、若一个数小于它的绝对值,则这个数为负数 二、填空题
6、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.
7、绝对值小于π的整数有______________________
8、当0a >时,a =_________,当0a <时,a =_________, 9、如果3a >,则3a -=__________,3a -=___________. 10、若
1x x =,则x 是_______(选填“正”或“负”)数;若1x
x
=-,则x 是_______(选填“正”或“负”)数;
11、已知3x =,4y =,且x y <,则x y +=________ 三、解答题
12、已知420x y -++=,求x ,y 的值
13、比较下列各组数的大小
(1)35-,34- (2)56-,45-,11
5
-
四、掌握命题动态
1、(2006年成都)2--的倒数是( )A 、2 B 、
1
2
C 、
12
-
D 、-2
2、(2005年济南)若a 与2互为相反数,则|a +2|等于( )
A 、0
B 、-2
C 、2
D 、4
3、(2005年广东深圳)实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-a 的结果是
A 、2a -b
B 、b
C 、-b
D 、-2a+b 二、把握命题趋势
1、(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b
m cd a b c
++-++的值.
2、(章节内知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简
0a b c -+--
b a
c
3、(科学探究题)已知3a =,2b =,1c =且a b c <<,求a b c ++的值
4、(学科综合题)不相等的有理数a 、b 、c 在数轴上的对应点分别是A 、B 、C

如果||||||
a b b c a c
-+-=-,那么点B ().
A.在A、C点的右边B.在A、C点的左边C.在A、C点之间D.上述三种均可能
5、(课标创新题)已知a b c
、、都是有理数,且满足a b c
a b c
++=1,求代数式:
6
abc
abc
-的值.
6、(实际应用题)检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:
(1)最接近标准质量的是几号水泥?
(2)质量最多的水泥比质量最少的水泥多多少千克?
7、(阅读理解题)阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为︱AB ︱.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,
O A B B O A B O A
B (A )O ︱AB ︱=︱OB ︱=︱b ︱=︱a -b ︱;
图1 图2 图3 图4 当AB 两点都不在原点时,
①如图2,点A 、B 都在原点的右边,
︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱=b -a =︱a -b ︱; ②如图3,点A 、B 都在原点的左边,
︱AB ︱=︱OB ︱-︱OA ︱= ︱b ︱-︱a ︱=-b -(-a )= ︱a -b ︱; ③如图4,点A 、B 在原点的两边,
︱AB ︱=︱OA ︱+︱OB ︱=︱a ︱+︱b ︱=a +(-b )= ︱a -b ︱. 综上,数轴上A 、B 两点之间的距离︱AB ︱= ︱a -b ︱. (2)回答下列问题:
①数轴上表示2和5的两点之间的距离是__________,数轴上表示-2和-5的两点之间的距离是__________,数轴上表示1和-3的两点之间的距离是__________;
②数轴上表示x 和-1的两点A 和B 之间的距离是__________,如︱AB ︱=2,那么x 为__________;
③当代数式︱x +1︱+︱x -2︱取最小值时,相应的x 的取值范围是__________.。

相关文档
最新文档