大学物理实验报告-等厚干涉

合集下载

等厚干涉原理与应用实验报告doc

等厚干涉原理与应用实验报告doc

等厚干涉原理与应用实验报告篇一:等厚干涉实验—牛顿环和劈尖干涉等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。

由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。

获得相干光方法有两种。

一种叫分波阵面法,另一种叫分振幅法。

1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。

(2)掌握读数显微镜的基本调节和测量操作。

(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。

2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。

分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。

分振幅干涉分两类称等厚干涉,一类称等倾干涉。

用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射Rre(a)(b)图9-1 牛顿环装置和干涉图样光,满足相干条件。

当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。

这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。

等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。

下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。

相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。

如图9-1(a)所示。

当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b)所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。

大学物理实验等厚干涉

大学物理实验等厚干涉

r mR
2 m
r nR
2 n
r r d d R ( m n) 4( m n)
2 m 2 n 2 m 2 n
实验仪器
读数标尺
读数显微镜
目镜
上下移动旋钮
物镜 读数盘
水平移动旋钮
读数显微镜的读数方法
主尺的分度值为1mm,测微鼓轮共有100个刻度,其 份度值为0.01mm,可估读到0.001mm。
n 1 U p cS P c ( Pi P) 2 n(n 1) i 1
c=2 (置信概率 P=95.5%)
3.计算R 的总不确定度
Up R 2 2 UR ( ) U p P 4(m n)
4.相对不确定度E
UR E 100 % R
5.结果表示:
R R U R E=
d nL

2
2.测细丝直径
(1)将被测细丝夹在两块平板玻璃的一端,另一端直 接接触,形成劈尖,然后置于显微镜的载物台上,将调 节螺丝朝下,如图2所示。
(2)调节显微镜和钠光灯位置,能看清十字叉丝、 干涉条纹、玻璃板交线和细丝,并将读数显微镜的 镜筒调至主尺读数范围的一侧边缘。 注意叉丝移动方向要垂直于干涉条纹方向 (3)测出玻璃板交线到细丝的长度L。 (4)再次将镜筒调回至玻璃板交线附近,测出50条 暗纹的长度,重复测量五次,将数据填入表格2中。 5)计算细丝直径的平均值d和不确定度Ud。
d
5.实验结果: d d U d , E ?(P 95.5%)
_
思考题:牛顿环中心斑在什么情况下是暗的?在什么情况下是亮的?
注意事项
1.应等待入射光电源工作几分钟后,处稳定状 态,
再进行实验。 2.为保护实验仪器,聚焦前,应先使物镜接近被测 物,然后使镜筒慢慢向上移直至聚焦。 3.测量读数时,目镜中的十字叉丝的横丝应与读数 标尺相平行,纵丝应与各暗环相切; 4.测量读数时,为避免转动部件的螺纹间隙产生的 空程误差,测微鼓轮只能向一个方向旋转。

(完整版)光的等厚干涉实验报告

(完整版)光的等厚干涉实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。

2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3. 掌握读数显微镜的使用方法。

实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。

当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。

由牛顿最早发现)。

由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。

牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。

根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。

由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。

光的等厚干涉实验报告

光的等厚干涉实验报告

光的等厚干涉实验报告光的等厚干涉实验是一项重要的光学实验,通过该实验可以观察到光的干涉现象,从而深入理解光的波动性质。

本次实验旨在通过等厚薄膜的干涉现象,验证光的波动性质,并通过实验数据分析得出结论。

实验仪器与原理。

实验中所使用的仪器包括,He-Ne激光器、准直器、半反射镜、等厚薄膜样品、平行玻璃板等。

实验原理是基于薄膜的反射和透射光程差引起的干涉现象。

当入射光线照射到薄膜表面时,一部分光被反射,另一部分光被透射。

在薄膜内部,反射光和透射光再次发生干涉,形成干涉条纹。

实验步骤。

1. 将He-Ne激光器与准直器对准,使激光垂直照射到半反射镜上。

2. 调整半反射镜,使激光分为两束,一束垂直照射到等厚薄膜样品上,另一束照射到平行玻璃板上。

3. 观察薄膜样品上的干涉条纹,记录下观察到的现象。

4. 改变薄膜样品的厚度,再次观察干涉条纹的变化。

5. 根据实验数据,分析得出结论。

实验结果与分析。

通过实验观察,我们发现在等厚薄膜样品上出现了清晰的干涉条纹。

随着薄膜厚度的改变,干涉条纹的间距也发生了相应的变化。

通过测量不同厚度下的干涉条纹间距,我们得出了一系列数据。

通过对数据的分析,我们发现干涉条纹的间距与薄膜厚度之间存在一定的关系,这与光的波动性质相吻合。

结论。

通过本次实验,我们验证了光的波动性质,并得出了光的等厚干涉条纹与薄膜厚度的关系。

实验结果表明,光在薄膜中的传播具有波动性质,能够产生干涉现象。

因此,光的波动理论能够很好地解释薄膜干涉现象。

总结。

光的等厚干涉实验是一项重要的光学实验,通过该实验可以深入理解光的波动性质。

通过本次实验,我们验证了光的波动性质,并得出了光的等厚干涉条纹与薄膜厚度的关系。

实验结果对于深入理解光的波动性质具有重要意义,也为光学理论的进一步研究提供了重要的实验依据。

通过本次实验,我们对光的波动性质有了更深入的了解,也为光学理论的研究提供了重要的实验数据。

希望本次实验结果能够对光学领域的研究和应用有所帮助。

实验四313《等厚干涉应用》实验报告

实验四313《等厚干涉应用》实验报告
我们可以通过取两个半径的平方差值来消除上述两种原因造成的误差。假设 附加厚度为a,则光程差为:
δ=2(e+a)+λ/2=(2k+1) λ/2

e=kλ/2-a
将(3)式代入得:
r2=kRλ-2Ra
(5)
取 m、n 级暗环,则对应的暗环半径为rm,rn,由(5)式可得:
rm2=mRλ-2Ra rn2=nRλ-2Ra
八、 思考题
1、此实验的注意事项有哪些? 答:①在调节读数显微镜的过程中要防止玻璃片与牛顿环、劈尖等元件相碰。
②在测量牛顿环直径的过程中,为了避免出现“空程”,只能单方向前进,不能
中途倒退后再前进。
2、牛顿环的中心在什么情况下是暗的?在什么情况下是亮的? 答:牛顿环是光的干涉现象,干涉光为上下两个表面的反射光。 暗是振动
2、利用劈尖干涉测定头发丝直径 将叠在一起的两块平板玻璃的一端插入一个薄片或细丝,则两块玻璃板间即
形成一空气劈尖,当用单色光垂直照射时,和牛顿环一样,在劈尖薄膜上下两表 面反射的两束光也将发生干涉,呈现出一组与两玻璃板交接线平行且间隔相等、 明暗相间的干涉条纹,这也是一种等厚干涉。
①将被测薄片或细丝夹于两玻璃片之间,用读数显微镜进行观察,描绘劈尖 干涉的图像。
d/cm 4.5255 10-3 5.0409 10-3 4.6589 10-3 4.7418 10-3
七、 误差分析
本实验的误差主要存在以下几点: ①仪器不准或精度不够,制作粗糙(牛顿环和劈尖)所造成的系统误差等。 ②由于牛顿环的暗纹很细,视野不是很明亮叉丝难以对准,内切外切很难对 到,造成误差。 ③劈尖干涉条纹也很细,不易测量,存在误差。 ④条纹太多,可能存在数错的情况。 ⑤测量时前后移动时有可能中途有回测的情况,会产生一定的空程误差。 ⑥劈尖干涉中头发丝的摆放位置不够直,导致在用游标卡尺测量 l 时也会存 在一定的误差等等。

等厚干涉实验报告

等厚干涉实验报告

一、实验目得:1、、观察牛顿环与劈尖得干涉现象。

2、了解形成等厚干涉现象得条件极其特点。

3、用干涉法测量透镜得曲率半径以及测量物体得微小直径或厚度。

二、实验原理:1.牛顿环牛顿环器件由一块曲率半径很大得平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。

当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜与玻璃之间存在一层从中心向外厚度递增得空气膜, 经空气膜与玻璃之间得上下界面反射得两束光存在光程差, 它们在平凸透镜得凸面(底面)相遇后将发生干涉, 干涉图样就是以接触点为中心得一组明暗相间、内疏外密得同心圆, 称为牛顿环(如图所示。

由牛顿最早发现)。

由于同一干涉圆环各处得空气薄膜厚度相等, 故称为等厚干涉。

牛顿环实验装置得光路图如下图所示:设射入单色光得波长为λ,在距接触点r k处将产生第k级牛顿环, 此处对应得空气膜厚度为d k, 则空气膜上下两界面依次反射得两束光线得光程差为式中,n为空气得折射率(一般取1), λ/2就是光从光疏介质(空气)射到光密介质(玻璃)得交界面上反射时产生得半波损失。

根据干涉条件,当光程差为波长得整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上得两束反射光得光程差存在两种情况:由上页图可得干涉环半径r k, 膜得厚度dk与平凸透镜得曲率半径R之间得关系。

由于dk远小于R, 故可以将其平方项忽略而得到。

结合以上得两种情况公式,得到:K=1,2,3,…、, 明环K=0,1,2,…、, 暗环,由以上公式课件, r k与d k成二次幂得关系,故牛顿环之间并不就是等距得, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。

而在实际中由于压力形变等原因, 凸透镜与平板玻璃得接触不就是一个理想得点而就是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环得级数与半径无法准确测量。

而使用差值法消去附加得光程差,用测量暗环得直径来代替半径,都可以减少以上类型得误差出现。

(完整版)光的等厚干涉实验报告.docx

(完整版)光的等厚干涉实验报告.docx

大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级0705成绩姓名童凌炜学号200767025实验台号教师签字实验时间2008 年11 月 04日,第 11 周,星期二第5-6节实验名称光的等厚干涉教师评语实验目的与要求:1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。

2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3.掌握读数显微镜的使用方法。

实验原理和内容:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。

当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。

由牛顿最早发现)。

由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。

牛顿环实验装置的光路图如下图所示:射入色光的波λ,在距接触点r k将生第k 牛,此的空气膜厚度d k,空气膜上下两界面依次反射的两束光的光程差k 2nd k2式中,n 空气的折射率(一般取1),λ/2是光从光疏介(空气)射到光密介(玻璃)的交界面上反射生的半波失。

根据干涉条件,当光程差波的整数倍干涉相,反之半波奇数倍干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2kk2d k22(2k 1)2K=1,2,3, ⋯., 明K=0,1,2, ⋯., 暗由上可得干涉半径r k,膜的厚度d k与平凸透的曲率半径R之的关系R2( R d k ) 2r k2。

由于 dk 小于 R,故可以将其平方忽略而得到2Rd k r k2。

合以上的两种情况公式,得到:r k22Rd k kR ,k 0,1,2..., 暗环由以上公式件,r k与 d k成二次的关系,故牛之并不是等距的,且了避免背光因素干,一般取暗作象。

等厚干涉(干涉法测微小量)

等厚干涉(干涉法测微小量)

姓名:;学号;班级;教师________;信箱号:______ 预约时间:第_____周、星期_____、第_____~ _____节;座位号:_______预习操作实验报告总分教师签字一、实验名称等厚干涉二、实验目的(1) 观察和研究等厚干涉的现象及其特点 .(2) 练习用干涉法测量透镜的曲率半径、微小厚度 ( 或直径 ).三、实验原理(基本原理概述、重要公式、简要推导过程、重要图形等;要求用自己的语言概括与总结,不可照抄教材)利用透明薄膜上、下两表面对入射光的依次反射,入射光的振幅将分解成有一定光程差的几个部分.这是一种获得相干光的重要途径,被多种干涉仪所采用若两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,则同一干涉条纹所对应的薄膜厚度相同.这就是所谓的等厚干涉。

(见右图)总的光程差为:(1)当△满足条件:(2)时,发生相长干涉,出现第K级亮纹。

而当:(3)时,发生相消干涉,出现第k级暗纹。

因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。

可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。

如图所示,设第k级条纹的半径为rk,对应的膜厚度为ek ,则:(4)在实验中,R的大小为几米到十几米,而ek的数量级为毫米,所以R >>ek ,ek2相对于2Rk 是一个小量,可以忽略,所以上式可以简化为(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得:(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。

由于从劈尖的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在劈尖的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于劈尖厚度的两倍,即n = 0时,,即在两玻璃片交线处为零级暗条纹。

如果在细丝处呈现n = N级条纹,则待测细丝直径为(9)四、实验内容和步骤(要求用自己的语言概括与总结,不可照抄教材)1. 观察牛顿环。

等厚干涉实验报告数据处理

等厚干涉实验报告数据处理

等厚干涉实验报告数据处理
一、实验介绍
实验主要内容是通过等厚干涉实验测量样品表面形貌和膜的折
射率,其中涉及到不同波长下样品的等厚条纹的观测和处理。

二、实验步骤
1. 准备样品和测量设备,调节设备,使其运行稳定。

2. 测量样品在不同波长下的等厚条纹,记录对应的干涉图像。

3. 采用数字化图像处理软件,将干涉图像转换成灰度图像,并
将灰度值峰值处的像素位置作为等厚条纹的位置。

4. 利用数字图像处理软件,对不同波长下的等厚条纹进行图像
处理和数据分析,得到样品表面形貌和薄膜的折射率等相关信息。

三、实验结果
1. 样品表面形貌
经过数据处理后,得到了样品表面的等高线图,通过对等高线
图的分析,可以得出样品表面形貌信息。

如图1所示,样品表面
有一定的起伏变化,最大不超过2微米。

2. 薄膜的折射率
通过对不同波长下等厚条纹的数据处理和分析,可以得到薄膜
的内部折射率信息。

根据实验结果,薄膜的平均折射率为1.68,
误差范围不超过0.05。

四、实验结论
通过等厚干涉实验的数据处理和分析,得到了样品表面形貌和
薄膜的折射率等相关信息。

实验结果表明,本实验方法准确可靠,为研究薄膜光学性质提供了有效的手段和方法。

五、参考文献
1. 清华大学物理实验教学手册
2. 陈文光等. “等厚干涉实验方法及其应用”,应用物理学报,2008年29卷1期
3. 徐岩等. “纳米材料表面结构及其光学特性的干涉测量”,中国科学,2006年36卷6期。

大学物理实验报告-等厚干涉

大学物理实验报告-等厚干涉

得分教师签名批改日期深圳大学实验报告课程名称:大学物理实验(一)实验名称:实验等厚干涉学院:物理科学与技术学院专业:课程编号:组号:16 指导教师:报告人:学号:实验地点科技楼509实验时间:2011 年06 月20 日星期一实验报告提交时间:年月日1、实验目的_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2、实验原理_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________3、实验仪器仪器名称组号型号量程△仪4、试验内容与步骤_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________5、数据记录 λ=环的级数 m24 23 22 21 20 19 18 17 16 15环的位置右侧/mm 左侧/mm环的直径mDmm 2mD2m m环的级数 n 14 13 12 11 10 9 8 7 6 5 环的位置右侧/mm 左侧/mm环的直径nDmm 2nD2m m22n m D D -2m mλ)(422n m D D R nm --=mR ∆m_______________±=R六 思考题1。

等厚干涉(完整版)

等厚干涉(完整版)

深圳大学实验报告课程名称:大学物理实验(一)实验名称:等厚干涉学院:专业:班级:组号:指导教师:报告人:学号:实验时间:年月日星期实验地点实验报告提交时间:一、实验目的a .复习和巩固等厚干涉原理,观察等厚干涉现象;b .利用牛顿环测量透镜球面的曲率半径;c .学会如何消除误差、正确处理数据的方法;二、实验原理:1. 等厚干涉原理当一束平行光ab 入射到厚度不均匀的透明介质薄膜上,在薄膜的表面上会产生干涉现象。

从上表面发射的光线1b 和从下表面反射并透过上表面的光线1a 在B 点相遇(如下图所示),由于1a ,1b 有恒定的光程差,因而将在B 点产生干涉。

若平行光束ab 垂直入射到薄膜面,即0==γi ,薄膜厚度为d ,则1a ,1b 的光程差为2/2λδ+=nd式中:2/λ是由于光线从光疏介质到光密介质,在界面反射时有一位相突变,即所谓的“半波 损失”而附加的光程差。

因此,明暗条纹出现的条件是: 暗纹:2/·)12(2/2λλ+=+m nd ,m = 0, 1, 2, 3,…;明纹:2/·22/2λλm nd =+,m = 1, 2, 3,…。

很容易理解,同一种条纹对应的空气厚度是一样的,所以称之为等厚干涉条纹。

要想在实验上观察到并测量这些条纹,还必须满足一下条件: a. 薄膜上下两平面的夹角足够小,否则由于条纹太密而无法分辨; b. 显微镜必须聚焦在B 点附近,见上图。

方能看到干涉条纹,也就是说,这种条纹是有定域问题的。

2. 利用牛顿环测一个球面镜的曲率半径牛顿环等厚干涉图样如下图所示。

设单色平行光的波长为λ,第k 级暗条纹对应的薄膜厚度为k d ,考虑到下界面反射时有半 波损失2/λ,当光线垂直入射时总光程差由薄膜干涉公式求得:2/22/2λλ+=+=∆k k d ndn 为空气的折射率,为1,根据干涉条件:()⎩⎨⎧=+==∆---3 2, 1, 0,k ,2/12---3 2, 1,k ,λλk k由下图的几何关系可得:()22222k k k k d Rd d R R r -=--=因为k d R >>,上式中的2k d 可略去不计,故:()R r d k k 2/2=将上述三式联立可得:明环:()--- 3, 2, 1,k ,2/ ·122=-=λR k r k 暗环:--- 3, 2, 1, 0,k ,2==λkR r k。

大物实验报告-光的等厚干涉

大物实验报告-光的等厚干涉

大物实验报告-光的等厚干涉一、实验目的1.加深对光的波动性,尤其是对干涉现象的认识。

2.了解读数显微镜的使用方法。

3.掌握逐差法处理实验数据。

4.提高误差分析和合理分配的能力。

二、实验原理两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象就是光的干涉现象。

形成稳定干涉的条件是:光波的频率相同、相位差恒定、振动方向一致的相干光源。

光的干涉现象是光的波动性的最直接、最有力的实验证据。

在各种干涉条纹中,等倾干涉条纹和等厚干涉条纹是比较典型的两种。

1.等厚干涉原理:当一束平行光a、b入射到厚度不均匀的透明介质薄膜上时,在薄膜的表面会产生干涉现象。

从上表面反射的光线b1和从下表面反射出上表面的光线a1在B点相遇,由于a1、b1有恒定的光程差,因而将在B点产生干涉。

该式中,λ/2是由于光线从光疏介质照射到光密介质,在界面发射时有一位相突变,即所谓的“半波损失”而附加的光程差,因此明暗纹出现的条件是:同一种条纹所对应的空气厚度是一样的,所以称之为等厚干涉条纹。

要想在实验中观察到并测量这些条纹,还必须满足以下条件:①薄膜上下两平面的夹角足够小,否则将由于条纹太密而无法分辨②显微镜必须聚焦在B点附近,方能看到干涉条纹,也就是说,这样的条纹是有定域问题的。

2.利用牛顿环测一个球面镜的曲率半径:设单色平行光的波长为λ,第k级暗纹对应的薄膜厚度为d,考虑到下届反射时有半波损失λ/2,当光线垂直入射时总光程差由薄膜干涉公式可求,该式中,n为空气的折射率,n=1,根据干涉条件。

原则上,若已知λ,用读数显微镜测出环的半径r,就可以利用上面两个公式求出曲率半径R。

但在实际测量中,由于牛顿环的级数k及环的中心都无法确定,为满足实际需求,精确地测量数据,基本思路有如下两条:(1)虽然不能确定具体某个环的级数k,但求级数之差(m-n)是毫无困难的。

(2)虽然不能确定环心的位置,即无法准确测得半径(或直径),但是测弦长是比较容易的。

(完整版)光的等厚干涉实验报告

(完整版)光的等厚干涉实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。

2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3. 掌握读数显微镜的使用方法。

实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。

当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。

由牛顿最早发现)。

由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。

牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。

根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。

由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。

【大学物理实验(含 数据+思考题)】光的等厚干涉现象实验报告

【大学物理实验(含 数据+思考题)】光的等厚干涉现象实验报告

实验3.3 光的等厚干涉测量一、实验目的(1)观察光的等厚干涉现象。

(2)利用牛顿环测量平凸透镜的曲率半径R。

(3)学习使用读数显微镜。

二、实验仪器读数显微镜、牛顿环、钠光灯。

三、实验原理(1)等厚干涉当一束单色光入射到透明薄膜上时,通过薄膜上下表面依次反射而产生两束相干光。

如果这两束反射光相遇时的光程差仅取决于薄膜厚度,则同一级干涉条纹对应的薄膜厚度相等,这就是所谓的等厚干涉。

(2)牛顿环在光学上,牛顿环是一个薄膜干涉现象。

光的一种干涉图样,是一些明暗相间的同心圆环。

例如用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。

这些圆圈的距离不等,随离中心点的距离的增加而逐渐变窄。

它们是由球面上和平面上反射的光线相互干涉而形成的干涉条纹。

(3)利用牛顿环测量平凸透镜的曲率半径R 的简单原理和计算表达式由光路图可得,与第k 级牛顿环相对应的两束相干光的光程差为:σk =2e k +λ2(λ2为附加光程)可知:R =√r k 2+(R −e k )2由相干光程差分析可得由射光产生明暗环的条件分别是:{r k=√(2k −1)R λ2(k =0,1,2,…明环条件)r k =√kλR (k =0,1,2,…暗环条件) 但是因为A 与C 的接触点可能不是理想点,导致靠近接触点的明暗条纹无法辨别清楚,直接用r 来算不准确,故这里改进算式,用环的直径D 的差来计算R :R =D m 2−D n24(m −n )λ四、内容与步骤(1)调节目镜使十字叉丝清晰。

(2)调节45度反射镜。

(3)由下向上缓慢地调焦。

(4)定性观察,防止一侧观察不到干涉条纹。

(5)定量测量,注意鼓轮单方向转动。

(6)测量条纹直经:D i =|x i 左−x i 右|(7)测量图示: ①测量第19~30环暗环的直径。

大学物理实验等厚干涉

大学物理实验等厚干涉

大学物理实验等厚干涉一、引言干涉是物理学中非常重要的一个现象,它在波动光学中发挥着非常重要的作用。

干涉实验通过调控光线的相位差以及空间分布来制造干涉现象,进而得出许多有意义的结果。

例如,干涉实验可以用来测量光的波长、确定物体的表面形状、研究光的性质等等。

本次实验中,我们将学习一种叫做等厚干涉的技术,并通过实验来验证等厚干涉的原理。

二、等厚干涉原理等厚干涉法是一种基于相位差补偿的干涉技术,它利用了两层介质中光传播速度不同的性质。

当光线穿过垂直于两层表面的小区域时,由于介质的折射率不同,光线的传播速度也就不同,从而引起相位差。

如果这个相位差等于光的波长的整数倍,那么两束光就会相长干涉,反之就会相消干涉。

等厚干涉是通常用来检测透明平板玻璃厚度和薄膜厚度的技术,也可以用来测量非均匀介质中的折射率变化。

三、实验步骤1. 准备实验仪器:等厚干涉仪、白光灯、平面透镜、透明样品等。

2. 调节白光灯,使其发出均匀的白光。

3. 将样品放到等厚干涉仪台上,并加上透镜,调整透镜位置,使望远镜可以看到样品。

4. 打开干涉仪,用望远镜观察样品。

通过调整仪器上的螺旋调节器,调整入射光线和反射光线的相位,使样品中的两束光的相位差等于波长的整数倍。

5. 观察干涉条纹,记录下干涉条纹移动的方向、干涉条纹间距等信息。

6. 更换样品,重新进行干涉实验,记录数据并比较不同样品的结果。

四、实验注意事项1. 实验室中应该保持干涉仪的温度稳定,防止温度变化干扰实验结果。

2. 微调螺钉的调节量应该小,以避免过多干涉中断条纹并使准确度降低。

3. 观察过程中应该定睛两点,以减少眼睛疲劳并保证数据的准确性。

4. 干涉仪的各个部分应该保持适当的清洁和维护,以确保实验的准确性和精确性。

五、实验结果分析我们在实验中使用平板玻璃和凸透镜作为样品,分别进行了等厚干涉实验。

我们测得了不同位置的干涉条纹,记录下了移动的方向和幅度。

通过绘制样品厚度与干涉条纹间距之间的关系,我们验证了等厚干涉的原理,并计算出了玻璃折射率的值。

大学物理实验报告_等厚

大学物理实验报告_等厚

实验名称:等厚干涉实验目的:1. 了解等厚干涉现象的原理。

2. 学会使用牛顿环装置观察等厚干涉条纹。

3. 通过测量干涉条纹的间距,计算光的波长。

实验仪器:1. 牛顿环装置2. 平行光管3. 精密水准仪3. 秒表4. 刻度尺5. 记录纸实验原理:等厚干涉是指当一束单色光垂直照射到两块平行的透明介质表面时,由于两表面的微小不平行性,光在两表面之间发生多次反射和折射,从而形成干涉条纹。

当光程差为光波长的整数倍时,产生亮条纹;光程差为光波长的奇数倍时,产生暗条纹。

牛顿环装置是一种典型的等厚干涉装置,它由一个平凸透镜和一个平板玻璃组成。

当平凸透镜与平板玻璃紧密接触时,在两者之间形成一系列同心圆环状干涉条纹,称为牛顿环。

实验步骤:1. 将牛顿环装置放置在精密水准仪上,调整至水平。

2. 使用平行光管发出单色光,调整光束方向,使其垂直照射到牛顿环装置上。

3. 观察并记录牛顿环装置上的干涉条纹。

4. 使用刻度尺测量干涉条纹的间距,记录数据。

5. 重复步骤3和4,至少测量三次,取平均值。

数据处理:1. 根据实验数据,计算干涉条纹的间距d。

2. 根据牛顿环的干涉公式,计算光的波长λ。

实验结果:1. 干涉条纹间距d的平均值为:d = 0.015 cm。

2. 光的波长λ为:λ = 0.588 μm。

误差分析:1. 仪器精度:刻度尺的精度为0.1 mm,对测量结果有一定影响。

2. 人为误差:在观察和记录干涉条纹时,可能会存在主观判断误差。

3. 环境因素:温度和湿度变化可能会影响牛顿环装置的稳定性,从而影响测量结果。

结论:本实验通过观察牛顿环装置的等厚干涉条纹,成功地测量了光的波长。

实验结果表明,光的波长λ为0.588 μm,与理论值相符。

在实验过程中,我们掌握了等厚干涉的原理,学会了使用牛顿环装置观察干涉条纹,并进行了数据处理和误差分析。

通过本次实验,我们提高了实验操作技能,加深了对光学知识的理解。

大学物理实验--等厚干涉

大学物理实验--等厚干涉

⼤学物理实验--等厚⼲涉实验名称:等厚⼲涉⼀.实验⽬的:1. 理解⽜顿环和劈尖⼲涉条纹的成因与等候⼲涉的含义:2. 学会⽤等候⼲涉法测量薄膜厚度和透镜曲率半径,并熟练运⽤逐差法处理实验数据3. 学习正确使⽤读数显微镜的⽅法。

⼆. 实验仪器测量显微镜、⽜顿环、钠光灯、劈尖装置和待测细丝。

三.实验原理当⼀束单⾊光⼊射到透明薄膜上时,通过薄膜上下表⾯依次反射⽽产⽣两束相⼲光。

如果这两束反射光相遇时的光程差仅取决于薄膜厚度,则同⼀级⼲涉条纹对应的薄膜厚度相等,这就是所谓的等厚⼲涉。

本实验研究⽜顿环和劈尖所产⽣的等厚⼲涉。

1. 等厚⼲涉如图3-17-1所⽰,玻璃板A 和玻璃板B ⼆者叠放起来,中间加有⼀层空⽓(即形成了空⽓劈尖)。

设光线1垂直⼊射到厚度为d 的空⽓薄膜上。

⼊射光线在A 板下表⾯和B 板上表⾯分别产⽣反射光线2和2′,⼆者在A 板上⽅相遇,由于两束光线都是由光线1分出来的(分振幅法),故频率相同、相位差恒定(与该处空⽓厚度d 有关)、振动⽅向相同,因⽽会产⽣⼲涉。

我们现在考虑光线2和2′的光程差与空⽓薄膜厚度的关系。

显然光线2′⽐光线2多传播了⼀段距离2d 。

此外,由于反射光线2′是由光密媒质(玻璃)向光疏媒质(空⽓)反射,会产⽣半波损失。

故总的光程差还应加上半个波长2/λ,即2/2λ+=?d 。

根据⼲涉条件,当光程差为波长的整数倍时相互加强,出现亮纹;为半波长的奇数倍时互相减弱,出现暗纹。

因此有:=+=?22λd+?2)12(22λλK K 出现暗纹,,,出现亮纹 210,3,2,1==K K 光程差?取决于产⽣反射光的薄膜厚度。

同⼀条⼲涉条纹所对应的空⽓厚度相同,故称为等厚⼲涉。

2. ⽜顿环当⼀块曲率半径很⼤的平凸透镜的凸⾯放在⼀块光学平板玻璃上,在透镜的凸⾯和平板玻璃间形成⼀个上表⾯是球⾯,下表⾯是平⾯的空⽓薄层,其厚度从中⼼接触点到边缘逐渐增加。

离接触点等距离的地⽅,厚度相同,等厚膜的轨迹是以接触点为中⼼的圆。

大学物理实验报告 等厚

大学物理实验报告 等厚

大学物理实验报告等厚
大学物理实验报告:等厚
实验目的:本实验旨在通过测量等厚薄膜的干涉条纹,探究薄膜的厚度与干涉条纹的关系,进一步了解光的干涉现象。

实验原理:当一束光线射到薄膜上时,部分光线被薄膜表面反射,而另一部分光线穿透薄膜后再次反射。

这两束光线在空间中相遇形成干涉条纹。

当薄膜的厚度发生微小变化时,干涉条纹也会发生相应的变化。

实验装置:本实验使用的装置包括一束白光源、一块平行玻璃板和一块待测的等厚薄膜。

通过调整光源和观察屏的位置,使得干涉条纹清晰可见。

实验步骤:
1. 将白光源置于合适位置,使光线射到平行玻璃板上。

2. 将待测薄膜放置在玻璃板上,调整位置使其与光线垂直入射。

3. 观察屏上的干涉条纹,记录下清晰的条纹图案。

4. 逐渐改变薄膜的厚度,再次观察干涉条纹的变化,并记录数据。

实验数据处理:通过测量不同厚度下的干涉条纹间距,可以得到薄膜的厚度与干涉条纹的关系。

进一步分析数据,得出薄膜的折射率等相关物理量。

实验结论:本实验通过测量等厚薄膜的干涉条纹,验证了薄膜厚度与干涉条纹的关系。

实验结果表明,薄膜的厚度对干涉条纹的间距有明显影响,进一步加深了对光的干涉现象的理解。

结语:通过本次实验,我们不仅学习了光的干涉现象,还掌握了测量薄膜厚度的方法。

这些知识和技能对我们深入学习光学和物理学理论具有重要意义。

同时,实验中的数据处理和结论得出也提高了我们的实验能力和科学素养。

希望
通过这样的实验,我们能够更好地理解和应用光学知识,为今后的学习和研究打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得分教师签名批改日期深圳大学实验报告课程名称:大学物理实验(一)实验名称:实验等厚干涉学院:物理科学与技术学院专业:课程编号:组号:16 指导教师:报告人:学号:实验地点科技楼509实验时间:2011 年06 月20 日星期一实验报告提交时间:年月日1、实验目的_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2、实验原理_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________3、实验仪器仪器名称组号型号量程△仪4、试验内容与步骤_____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________5、数据记录 λ=环的级数 m24 23 22 21 20 19 18 17 16 15环的位置右侧/mm 左侧/mm环的直径mDmm 2mD2m m环的级数 n 14 13 12 11 10 9 8 7 6 5 环的位置右侧/mm 左侧/mm环的直径nDmm 2nD2m m22n m D D -2m mλ)(422n m D D R nm --=mR ∆m_______________±=R六 思考题1。

相关文档
最新文档