一次函数图象的应用二
一次函数图象的应用(二)演示文稿
l2 l1
P
t/分 分
(5)当A逃到离海岸12海里的公海时,B将无法对其进行 检查。照此速度,B能否在A逃入公海前将其拦截? 从图中可以看出,l1与l1交点P的纵坐标小于12, 这说明在A逃入公海前,我边防快艇B能够追上A。 上 述 想 问 一 s/海里 海里 题 想 吗 你 12 ? 能 10 用 P l2 其 8 他 6 l1 方 法 4 解 2 决
4. 请你根据另一幅图表,充分发挥你的想象,自编 请你根据另一幅图表,充分发挥你的想象, 一则新的“龟免赛跑”的寓言故事,要求如下: 一则新的“龟免赛跑”的寓言故事,要求如下: (1)用简洁明快的语言概括大意,不能超过 )用简洁明快的语言概括大意,不能超过200字; 字 (2)图表中能确定的数值,在故事叙述中不得少于 )图表中能确定的数值, 3个,且要分别涉及时间、路和速度这三个量。 个 且要分别涉及时间、路和速度这三个量。
6000 5000 4000 3000 2000 1000
l2
O
1
2
3
4
5
6
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元; (3)当销售量为 4吨 时,销售收入等于销售成本;
y/元 元
6000 5000 4000 3000 2000 1000
l1 l2
O
1
2
=45km,此时S ⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km。 当小聪到达“飞瀑” 所以小慧离“飞瀑”还有45-42.5=2.5(km) 所以小慧离“飞瀑”还有45-42.5=2.5( 45
一次函数的图象(二)”教案
“一次函数的图象(二)”教学设计胡小林教学目标:1、知识与技能能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质2、数学思考经历观察、操作、交流、归纳等数学活动过程,发展合情推理能力。
渗透“数形结合”的思想,培养形象思维能力。
3、解决问题在探索一次函数性质的过程中能多个角度进行考虑,敢于质疑,并能用语言清楚地表达自己的思维过程。
4、情感与态度通过“做数学”,体会数学活动充满着探索性、创造性,敢于发表自己的观点,并尊重与理解他人的见解,从交流中获益,增强学习自信心。
二、教材分析:函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。
有关函数的知识在人们的日常生活和生产中有着广泛的应用,如:讨论社会问题、经济问题、计算机的使用等。
因此早期对函数的丰富经历是非常重要的。
“一次函数的图象”第二课时,是在七年级下学期探索了变量之间的关系及本章学习了函数、一次函数的概念、经历了做函数图象的过程的基础上学习的,本节通过解剖“一次函数”这一“麻雀”,使学生了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。
渗透“数形结合“的思想,培养形象思维能力。
重点:一次函数的性质难点:根据一次函数的图象及关系式探索并理解其性质三、教学过程:四、教学反思:成功之处:(1)能根据学生的实际精心设计教学,估计各个环节学生可能出现的问题,提出解决问题的策略,提高了课堂的有效率。
(2)充分发挥学生的主体作用,以“问题串”的的形式进行引导,知识的获取由学生通过自主探索、合作交流的形式完成,课堂上师生互动合作,以挑战活动等形式,充分调动学生参与的积极性和学习兴趣。
(3)调整了课本第一组“议一议”(1)、(2)的顺序,学生刚作完图象,直接提问(2)是学生作图过程、思维过程的再现,比较合理。
有学生回答画图象时描一个点,过这个点和(0,0)点画一条直线即可。
问:“你怎么知道图象过(0,0)点?”答:“开始画时描了两个点,画完后发现图象都经过(0,0)点,因此再描一个点就够了”说明学生已经开始学会反思自己的学习过程。
八年级数学上册4.4一次函数的应用第二课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件
4.4
一次函数
一次函数应用
第2课时1/6源自• 1.能经过一次函数图象获取有用信息,并处理实际问
• 题;(重点)
• 2.了解一元一次方程与一次函数关系,会利用它们之间
• 关系处理一些实际问题。
2/6
•
观察右边图象,你能从图象
•
中得到哪些信息?你是怎样得到?
•
与同伴交流。
3/6
1.依据小组讨论结果,试着回答“问题导引”中问题。
所以这个函数的表达式为 y=- x+10.
把 y=1 代入 y=-x+10 中,可得 x=450.
5/6
1.一次函数图象直观地反应了两个变量之间关系,利用一次函数
横轴
纵轴
图象处理实际问题时,首先要明确_______、_______表示变量
实际意义。
2.利用一次函数y=kx+b图象,怎样确定kx+b=0解?
一次函数y=kx+b图象与x轴交点横坐标就是方程kx+b=0解。
6/6
能够从对应值、与x轴(或y轴)交点,改变趋势、函数表示式
等方面提取信息。
2.小明解答“例2”中第(4)问时,发觉了一个新方法,他先依据
图象与x轴、y轴交点坐标求出这个函数表示式,再把y=1代入
表示式中求出x值即可。按照他方法试一试,小组讨论你结果。
4/6
设这个函数的表达式为 y=kx+b,
把(0,10),(500,0)代入,可得 b=10,k=-,
浙教版八年级上册期末点对点攻关:一次函数应用(图像类)(二)
浙教版八年级上册期末点对点攻关:一次函数应用(图像类)(二)1.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示,则乙比甲晚到小时.2.自行车运动员甲准备参加一项国际自行车赛事,为此特地骑自行车从A地出发,匀速前往168千米外的B地进行拉练.出发2小时后,乙发现他忘了带某训练用品,于是马上骑摩托车从A地出发匀速去追甲送该用品.已知乙骑摩托车的速度比甲骑自行车的速度每小时多30千米,但摩托车行驶一小时后突遇故障,修理15分钟后,又上路追甲,但速度减小了,乙追上甲交接了训练用品(交接时间忽略不计),随后立即以修理后的速度原路返回,甲继续以原来的速度骑行直至B地.如图表示甲、乙两人之间的距离S (千米)与甲骑行的时间t(小时)之间的部分图象,则当甲达到B地时,乙距离A地千米.3.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间(单价:min)之间的关系如图所示.在第分钟时该容器内的水恰好为10L.4.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后8分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:升)与时间x(单位:分钟)之间的关系如图所示,则每分钟出水5.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.6.A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.7.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.8.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.9.“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑400米.当螃蟹领先乌龟225米时,螃蟹停下来休息并睡着了.当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹间的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离米.10.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了小时.11.甲、乙两人从距快递公司30千米的物流中心站同时出发,各自将货物运回公司,他们将货物运回公司立即卸货后,又各自以原速原路向中心站行驶,在整个过程中,甲、乙两个均保持各自的速度匀速行驶,且甲的速度比乙的速度快.甲、乙相距的路程y(千米)与甲离开中心站的时间x(分钟)之间的关系如图所示(卸货时间不计),则在甲返回到中心站时,乙距中心站的路程为千米.12.已知A地在C、B两地之间,甲乙两人分别从A、B两地同时出发,相向而行,经过一段时间后相遇,甲继续向B地前进,乙继续向A地前进;甲到达B地后立即返回,在C地甲追上乙.甲乙两人相距的路程y(米)与出发的时间x(分钟)之间的关系如图所示,则A、C两地相距米.13.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过秒,小亮回到B端.14.一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A 地后停止,在甲车出发的同时,乙车从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原速向C地行驶,若AB两地相距200千米,在两车行驶的过程中,甲、乙两车之间的距离(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过小时相遇.15.小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分享要用的U盘,便停下给妈妈打电话,妈妈接到电话后,带上U盘马上赶往学校,同时小芸沿原路返回.两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达学校比妈妈到家多用了5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离y与小芸打完电话后步行的时间x之间的函数关系如图所示,则妈妈从家出发分钟后与小芸相遇,相遇后妈妈回家的平均速度是每分钟米,小芸家离学校的距离为米.16.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为千米.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.甲到达目的地时,乙距目的地还有米.18.A,B两地相距480km,C地在AB之间,现有甲、乙两辆货车分别从A,B两地匀速同时出发,乙车达到C地后停止.甲、乙两车之间的距离y(km)与甲车行驶时间x (h)之间的关系如图所示,则当乙车到达C地时,甲车与C的距离为km.19.如图,甲和乙同时从学校放学,两人以各自速度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做作业,打开书包时发现错拿了乙的练习册.于是立即跑步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距米.20.小颖和小明骑自行车从滨江路上相距9500米的A、B两地同时出发,相向而行,行驶一段时间后小颖的自行车坏了,立刻停车并马上打电话通知小明,小明接到电话后立刻提速至原来的倍,碰到小颖后用了5分钟修好了小颖的自行车,修好车后小明立刻骑车以提速后的速度继续向终点A地前行,小颖则留在原地整理工具,2分钟以后小颖以原速向B走了3分钟后,发现小明的包在自己身上,马上掉头以原速的倍的速度返回A地,在整个行驶过程中,小颖和小明均保持匀速行驶(小明停车和打电话的时间忽略不计),两人相距的路程S(米)与小颖出发的时间t(分钟)之间的关系如图所示,则小明到达A地时,小颖与A地的距离为米.参考答案1.解:由图象可得,甲的速度为:10÷1=10km/h,这次越野赛的全程长是:2×10=20km,设当0.5≤x≤1.5时,y与x的函数解析式为y=kx+b,,得,∴当0.5≤x≤1.5时,y与x的函数解析式为y=4x+6,当x=1.5时,y=12,∴乙跑完全程用的时间为:1.5+(20﹣12)÷10=2.3h,∴乙比甲晚到:2.3﹣2=0.3h,故答案为:0.3.2.解:设甲的速度为a千米/分,则乙的速度为(a+30)千米/小时.由题意,乙车修复故障时两人相距为:2a+a﹣(a+30)+=24∴a=24,乙修复车辆后速度为=36千米/小时∵乙修复摩托车时两人相距24千米∴乙追上甲用时为小时甲距离B为168﹣(3++2)×24=42千米甲到B时乙距离A为:千米故答案为:633.解:由图象0﹣4分钟,水量每分钟增加5升,则增加到10升需2分钟.在4﹣12分钟,水的体积增加10升,则每分钟增加升.∵此时,进水和出水管同时打开∴出水管的出水速度是每分钟5﹣=升∴水的体积从30升降到10升用时为=分此时时间为第12+=故答案为:2或174.解:根据图象知道:每分钟出水[(12﹣4)×5﹣(30﹣20)]÷(12﹣4)=升;故答案为:升5.解:根据图象可得,甲车的速度为120÷3=40(千米/时).由题意,得,解得60≤v≤80.故答案为60≤v≤80.6.解:由题意可得,甲车的速度为:30÷=45千米/时,甲车从A地到B地用的时间为:240÷45=5(小时),乙车刚开始的速度为:[45×2﹣10]÷(2﹣)=60千米/时,∴乙车发生故障之后的速度为:60﹣10=50千米/时,设乙车发生故障时,乙车已经行驶了a小时,60a+50×()=240,解得,a=,∴乙车修好时,甲车行驶的时间为:=小时,∴乙车修好时,甲车距B地还有:45×(5)=90千米,故答案为:90.7.解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.8.解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5,故答案为:1.5.9.解:由图形可知:乌龟80分钟到达终点,∴乌龟的速度为:400÷80=5(米/秒),设螃蟹的速度为v米/秒,15v﹣15×5=225,v=20,螃蟹走完全程的时间:t==20,225÷5=45(分),∴点B(60,0),20+45=65,则螃蟹到达终点时,乌龟距终点的距离5(80﹣65)=75(米).故答案为:75.10.解:由题意可得,甲车到达C地用时4个小时,乙车的速度为:200÷(3.5﹣1)=80km/h,乙车到达A地用时为:(200+240)÷80+1=6.5(小时),当乙车到达A地时,甲车已在C地休息了:6.5﹣4=2.5(小时),故答案为:2.5.11.解:甲的速度为30÷30=1(千米/分钟),乙的速度为30÷45=(千米/分钟),甲返回到中心站的时间为30×2÷1=60(分钟),在甲返回到中心站时,乙行驶的总路程为×60=40(千米),∴在甲返回到中心站时,乙距中心站的路程为30×2﹣40=20(千米).故答案为:20.12.解:甲乙两人的速度和为450÷3=150(米/分钟),甲的速度为450÷5=90(米/分钟),乙的速度为150﹣90=60(米/分钟).设A、C两地相距m米,则B、C两地相距(m+450)米,根据题意得:=,解得:m=450.故答案为:450.13.解:小明提速前,小亮和小明的速度和为360÷45=8m/s,小明提速后,小亮和小明的速度和为270÷(72﹣45)=10m/s,小明提速前的速度为(10﹣8)÷(﹣1)=3m/s,小明提速后的速度为3×=5m/s,小亮的速度为8﹣3=5m/s,小明到达B端的时间为72+(360﹣270)÷5=90s,小亮回到B端的时间为72×2=144s,∵144﹣90=54s.∴当小明到达B端后,经过54秒,小亮回到B端.故答案为:54.14.解:由题意可得,乙车的速度为:(200+400)÷(7﹣1)=100千米/时,甲乙两车的速度之比是:(200﹣120):200=2:5,∴甲车的速度是:100÷5×2=40千米/时,乙车从B地到A地的时间为:200÷100=2小时,∴两车相遇的时间是:2+1+(200﹣40×3)÷(100+40)=3小时,故答案为:3.15.解:当x=8时,y=0,故妈妈从家出发8分钟后与小芸相遇,当x=0时,y=1400,∴相遇后18﹣8=10分钟小芸和妈妈的距离为1600米,1600÷(18﹣8)﹣100=60(米/分),∴相遇后妈妈回家的平均速度是每分钟60米;1600+(23﹣18)×100=2100(米),∴小芸家离学校的距离为2100米.故答案为:8;60;2100.16.解:设甲车从A地到B地的速度为x千米/时,乙车从B地到A地的速度是y千米/时,,解得,,∴甲车从A地到B地用的时间为:900÷100=9小时,甲车从B地到A地的速度为:900÷(16.5﹣9)=120千米/时,乙车从B地到甲地的时间为:900÷80=11.25小时,∴当乙车到达A地的时候,甲车与A地的距离为:900﹣120×(11.25﹣9)=630(千米),故答案为:630.17.解:∵300秒时,乙到达目的地,∵乙的速度为:=4(米/秒).设甲的速度为x米/秒,∵50秒时,甲追上乙,∴50x﹣50×4=100,解得x=6,∴甲走完全程所需的时间为:=(秒),∴甲到达目的地时,乙距目的地还有:1300﹣100﹣×4=(米).故答案为.18.解:甲车的速度为480÷12=40km/h,甲、乙两车的速度和为480÷4.8=100km/h,乙车的速度为100﹣40=60km/h,A、C两地间的距离为480﹣360=120km,乙车到达C地的时间为360÷60=6h,乙车到达C地时,甲车与C的距离为40×6﹣120=120km.故答案为:120.19.解:设学校离甲的家距离为a米,则学校离乙的家距离为(a+3900)米,由图象可知,20分时甲到家,70分时乙到家,∴v甲=米/分,v乙=米/分,由题意得:40分时,甲追上乙,由BC段可知:70分时,乙到家时,甲到学校,即甲30分钟所走路程,乙走了40分,则40×=30×,解得:a=2400,∴甲家到乙家的距离为:2a+3900=2×2400+3900=8700,故答案为:8700.20.解:小颖和小明初始速度和为:(9500﹣1800)÷14=550米/分钟,小明提速后的速度为:800÷2=400米/分钟,小明的初始速度为:400÷=300米/分钟,小颖的速度为:550﹣300=250米/分钟,小颖坏车的地方离A地的距离为:250×14=3500米,修好车后小明到达A地所需时间为3500÷400=8.75(分钟),小明到达A地时,小颖与A地的距离为:3500+3×250﹣(8.75﹣2﹣3)×250×=2937.5米,故答案为:2937.5.。
初中数学一次函数及其应用2含答案
一次函数及其应用2一.选择题(共33小题)1.一次函数图象与y轴交于点(0,3),图象经过第四象限,下列函数解析式中符合题意的是()A.y=2x﹣3B.y=2x+3C.y=﹣2x﹣3D.y=﹣2x+3 2.对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大3.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.4.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>O B.x>﹣1C.x<0D.x>25.把直线y=kx向上平移3个单位,经过点(1,5),则k值为()A.﹣1B.2C.3D.56.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+37.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)8.一次函数y=(m+2)x﹣m+1,若y随x的增大而减小,且该函数的图象与x轴交点在原点右侧,则m的取值范围是()A.m>﹣2B.m<﹣2C.﹣2<m<1D.m<19.若一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,则a的取值范围是()A.a≠3B.a>0C.a<3D.0<a<310.把一次函数y=2x+1的图象向下平移1个单位后得到一个新图象,则新图象所表示的函数的解析式是()A.y=2x﹣1B.y=2x+2C.y=2x D.y=2x﹣311.将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,则L1与L2的距离为()A.B.C.D.12.已知(﹣1,y1),(1,y2)是直线y=﹣x+3上的两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定13.A点(﹣1,m)和点(0.5,n)是直线y=(k﹣1)x+b(0<k<1)上的两个点,则m,n关系为()A.m>n B.m≥n C.m≤n D.m<n14.甲、乙两辆塑料汽车同时沿直线轨道AC起作同方向的匀速运动,甲乙同时分别A,B 出发,沿轨道到达C处,已知甲的速度始终是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为S1,S2,S1,S2与t的函数关系如图,当两车的距离小于10米时,信号会产生相互干扰,那么t是下列哪个值时两车的信号在产生相互干扰()A.B.C.D.15.甲乙两人在同一条笔直的公路上步行从A地去往B地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y(千米)与甲步行的时间t(小时)的函数关系图象如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A地21千米;④A、B两地距离为27千米.其中错误的个数为()A.1个B.2个C.3个D.4个16.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中,设小明出发第tmin时的速度为vm/min,离家的距离为sm,v与t之间的函数关系如图所示,下列说法错误的是()A.小明出发第2分钟时离家200mB.跑步过程中,小明离家的最远距离为780mC.当2<t≤5时,s与t之间的函数表达式为s=160t﹣120D.小明出发第5分钟时,开始按原路返回17.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x的关系如下表,则y与x的关系式是()x/g0204060……y/cm10111213……A.y=x B.y=0.1x+10C.y=0.05x+10D.y=0.2x+10 18.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等19.点(﹣2,6)在正比例函数y=kx图象上,下列各点在此函数图象上的为()A.(3,1)B.(﹣3,1)C.(1,3)D.(﹣1,3)20.直线不经过点()A.(﹣2,3)B.(0,0)C.(3,﹣2)D.(﹣3,2)21.已知一次函数y=3x+2上有两点M(x1,y1),N(x2,y2),若x1>x2,则y1、y2的关系是()A.y1>y2B.y1=y2C.y1<y2D.无法判断22.将直线y=2x经过平移可得到直线y=2(x+3)+4,平移方法正确的是()A.先向右平移3个单位,再向上平移4个单位B.先向右平移3个单位,再向下平移4个单位C.先向左平移3个单位,再向上平移4个单位D.先向左平移3个单位,再向下平移4个单位23.已知点(k,b)为第二象限内的点,则一次函数y=﹣kx+b的图象大致是()A.B.C.D.24.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限25.已知点A(5,y1)和点B(4,y2)都在直线y=﹣7x+b上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定26.一次函数y=mx+n的图象如图所示,则下面结论正确的是()A.m<0,n>0B.m>0,n<0C.m<0,n<0D.m>0,n>0 27.已知一次函数y=x+b不过第二象限,则b的取值范围是()A.b<0B.b>0C.b≤0D.b≥028.若a、b为实数,且,则直线y=ax+b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限29.将直线y=5x﹣1平移后,得到直线y=5x+7,则原直线()A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位30.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78B.76C.16D.1231.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④32.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量(m)38363432…下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=38﹣2t33.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量38363432…(m3)下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=40t二.填空题(共7小题)34.正比例函数y=kx(k≠0)经过点(2,1),那么y随着x的增大而_____.(填“增大”或“减小”)35.把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为_____.36.在一次函数y=kx﹣2x+2中,y随x的增大而增大,则k的取值范围为_____37.直线y=(3m﹣1)x﹣m,函数y随x的增大而增大,且图象经过一,三,四象限,则m的取值范围是_____.38.若(m,n)在函数y=3x﹣7的图象上,3m﹣n的值为_____.39.若y与x的函数关系式为y=2x﹣2,当x=2时,y的值为_____.40.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;t(小时)0123…y(升)100928476…由表格中y与t的关系可知,当汽车行驶_____小时,油箱的剩余油量为28升.三.解答题(共10小题)41.已知函数y=(m﹣2)是y关于x的正比例函数.(1)求m的值;(2)求出该正比例函数图象向右平移一个单位所得到的函数解析式.42.已知一次函数y=(2m+1)x+3﹣m(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过第一、二、三象限,求m的取值范围.43.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是_____km/h,往返长春和靖宇两地一共用时_____h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.44.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.45.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.46.如图①,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,整个容器容积是长方体C的容积的4倍(容器各面的厚度均忽略不计),现以速度v(单位:cm3/s)均匀地向容器内注水,直至注满为止.图②是注水全过程中容器内的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.(1)在注水过程中,注满A所用的时间为_____s,再注满B又用了_____s.(2)求A的高度h A及注水的速度V t.(3)求注满容器所需时间及容器的高度47.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过部分的种子的价格打8折.(1)填写下表购买种子数量/千克0.51 1.52 2.53 3.54…付款金额/元________________________(2)写出付款金额y(元)与购买数量x(千克)之间的函数关系式,并画出图象.48.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=_____分钟时甲乙两人相遇,乙的速度为_____米/分钟;(2)求点A的坐标.49.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是_____千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.50.如图所示OA、BA分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程S(米)与时间t(秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?一次函数及其应用2参考答案与试题解析一.选择题(共33小题)1.解:设一次函数表达式为:y=kx+b=kx+3,b=3,图象经过第四象限,则k<0,故选:D.2.解:A.当x>4时,y<0,符合题意;B.它的图象经过第一、二、四象限,不符合题意;C.它的图象必经过点(﹣1,4),不符合题意;D.y的值随x值的增大而减小,不符合题意;故选:A.3.解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴﹣b>0∴函数y=﹣bx+k的图象经过第一、二、三象限.故选:A.4.解:由图象可得,当y>0时,x的取值范围是x>﹣1,故选:B.5.解:直线y=kx(k≠0)的图象向上平移3个单位长度后的解析式为y=kx+3,将点(1,5)代入y=kx+3,得:5=k+3,∴k=2,∴平移后直线解析式为y=2x+3.故选:B.6.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+12,即y=﹣2x+3故选:D.7.解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.8.解:∵y随x的增大而减小,∴m+2<0,解得m<﹣2;又该函数的图象与x轴交点在原点右侧,所以图象过一、二、四象限,直线与y轴交点在正半轴,故﹣m+1>0.解得m<1.∴m的取值范围是m<﹣2.故选:B.9.解:∵一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,∴,解得:0<a<3.故选:D.10.解:由“上加下减”的原则可知,把一次函数y=2x+1的图象向下平移1个单位后所得直线的解析式为:y=2x+1﹣1,即y=2x.故选:C.11.解:∵将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,∴L2的解析式为:y=2x+2,∴L2:y=2x+2与y轴交于(0,2),如图,∵y=2x+2与x轴交于B(﹣1,0),与y轴交于A(0,2),y=2x﹣2与x轴交于F(1,0),与y轴交于E(0,﹣2),∴OB=OF,过O作OC⊥AB于C,反向延长OC交EF于D,∵AB∥EF,∴CD⊥EF,∴∠OCB=∠ODF=90°,∵∠BOC=∠DOF,∴△OBC≌△OFD,∴OC=OD,∵OA=2,OB=1,∴AB=,∴OC==,∴CD=,∴L1与L2的距离为,故选:D.12.解:∵k=﹣1<0,∴函数y随x增大而减小,∵﹣1<1,∴y1>y2.故选:A.13.解:∵0<k<1,∴直线y=(k﹣1)x+b中,k﹣1<0,∴y随x的增大而减小,∵﹣1<0.5,∴m>n.故选:A.14.解:乙的速度v2=120÷3=40(米/分),甲的速度v甲=40×1.5=60米/分.所以a==1分.设函数解析式为S1=kt+b,0≤t≤1时,把(0,60)和(1,0)代入得S1=﹣60t+60,1<t≤3时,把(1,0)和(3,120)代入得S1=60t﹣60;S2=40t,当0≤t<1时,S2+S1<10,即﹣60t+60+40t<10,解得t>2.5,因为0≤t<1,所以当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1<10,即40t﹣(60t﹣60)<10,所以t>2.5,当2.5<t≤3时,两遥控车的信号会产生相互干扰.∵,∴时两车的信号在产生相互干扰.故选:C.15.解:①由题意,得甲的速度为:12÷4=3千米/时;设乙的速度为a千米/时,由题意,得(7﹣4)a=3×7,解得:a=7.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(9﹣4)×7﹣9×3=8千米,故②正确;③当乙追上甲时,两人距A地距离为:7×3=21千米.故③正确;④A,B两地距离为:7×(9﹣4)=35千米,故④错误.综上所述:错误的只有④.故选:A.16.解:由图象可得,小明出发第2分钟时离家:100×2=200(m),故选项A正确;跑步过程中,小明离家的最远距离为:[100×2+160×(5﹣2)+80×(16﹣5)]÷2=780(m),故选项B正确;当2<t≤5时,s与t之间的函数表达式为s=100×2+(t﹣2)×160=160t﹣120,故选项C正确;小明出发5分钟时,离家的距离为:160×5﹣120=680<780,故此时小明没有达到离家的最远距离,没有按原路返回,还要继续向前走,故选项D错误;故选:D.17.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.18.解:由题意可得,甲队每天修路:160﹣140=20(米),故选项A正确;乙队第一天修路:35﹣20=15(米),故选项B正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误;故选:D.19.解:将点(﹣2,6)代入函数表达式:y=kx得:6=﹣2k,解得:k=﹣3,故函数的表达式为:y=﹣3x,当x=1时,y=﹣3,当x=3时,y=﹣9,当x=﹣3时,y=9,当x=﹣1时,y=3,故选:D.20.解:A、当x=﹣2时,y=﹣×(﹣2)=≠3,故直线不经过点(﹣2,3);B、当x=0时,y=﹣×0=0,故直线经过点(0,0);C、当x=3时,y=﹣×3=﹣2,故直线经过点(3,﹣2);D、当x=﹣3时,y=﹣×(﹣3)=2,故直线经过点(﹣3,2).故选:A.21.解:k=3>0,故函数y随x的增大而增大,∵若x1>x2,则y1>y2,故选:A.22.解:将直线y=2x先向左平移3个单位,再向上平移4个单位,得到直线的解析式为y =2(x+3)+4,故选:C.23.解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴﹣k>0.∴一次函数y=﹣kx+b的图象经过第一、二、三象限,观察选项,C选项符合题意.故选:C.24.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.25.解:∵﹣7<0,∴y随x的增大而减小,∵5>4,则y1<y2,故选:C.26.解:如图,∵该直线经过第二、四象限,∴m<0.又∵该直线与y轴交于正半轴,∴n>0.综上所述m<0,n>0.故选:A.27.解:一次函数y=x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=0;经过一三四象限时,b<0.故b≤0,故选:C.28.解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.29.解:∵将直线y=5x﹣1平移后,得到直线y=5x+7,而7﹣(﹣1)=8,∴原直线沿y轴向上平移了8个单位,故选:A.30.解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故选:A.31.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.32.解:由表格可得,y随t的增加而减小,故选项A错误,放水时间为15分钟时,水池中水量为:40﹣(40﹣38)÷1×15=10m3,故选项B错误,每分钟的放水量是40﹣38=2m3,故选项C正确,y与t之间的关系式为y=40﹣(40﹣38)÷1×t=40﹣2t,故选项D错误,故选:C.33.解:设y与t之间的函数关系式为y=kt+b,将(1,38)、(2,36)代入y=kt+b,,解得:,∴y与t之间的函数关系式为y=﹣2t+40,D选项错误;∵﹣2<0,∴y随t的增大而减小,A选项错误;当t=15时,y=﹣2×15+40=10,∴放水时间为15分钟时,水池中水量为10m3,B选项错误;∵k=﹣2,∴每分钟的放水量是2m3,C选项正确.故选:C.二.填空题(共7小题)34.解:∵点(2,1)在正比例函数y=kx(k≠0)的图象上,∴k=,故y=x,则y随x的增大而增大.故答案为:增大.35.解:把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2(x+3)﹣1+2=2x+7.故答案为:y=2x+7.36.解:∵一次函数y=kx﹣2x+2中,y随x的增大而增大,∴k﹣2>0,解得k>2.故答案为:k>2.37.解:根据题意可得:3m﹣1>0,﹣m<0,解得:m>,故答案为:m>,38.解:将点(m,n)坐标代入y=3x﹣7得:n=3m﹣7,即:3m﹣n=7,故答案为:7.39.解:把x=2代入y=2x﹣2,得y=2×2﹣2=2,故答案为2.40.解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.三.解答题(共10小题)41.解:(1)∵函数y=(m﹣2)是y关于x的正比例函数.∴m2﹣3=1,m﹣2≠0,解得:m=﹣2.(2)正比例函数y=﹣2x的图象向右平移一个单位后所得直线的解析式是:y=﹣2(x﹣1)=﹣2x+2,42.解:(1)由2m+1<0,可得m<﹣,∴当m<﹣时,y随着x的增大而减小;(2)由,可得﹣<m<3,∴当﹣<m<3时,函数图象经过第一、二、三象限.43.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1)×=135(km).246﹣135﹣66=45(km).答:这个服务区距离伊通的路程为45km.44.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)①当点M′落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(4,0),则t=2;②当点M′落在y轴上,同理可得:t=1,故t=1或2.45.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.46.解:(1)由图象可知注满A所用的时间为10s,注满B又用了18﹣10=9s;故答案为10,8;(2)由A注满时水的体积和容器容积相等,可得10v t=25h A,∴v t=2.5h A,B注满时水的体积和容器容积相等,可得8v t=10(12﹣h A),∴h A=4,∴v t=10,∴A的高度为4cm,注水的速度为10cm3/s;(3)由整个容器容积是长方体C的容积的4倍,有25h A+10(12﹣h A)+5h C=4×5h C,∴h C=12,∴容器的高度为4+8+12=24cm;注满C容器所需时间为5×12÷10=6s,∴注满整个容器所需时间为18+6=24s.47.解:(1)由题意可得,当购买种子0.5千克时,需要付款:0.5×5=2.5(元),当购买种子1千克时,需要付款:1×5=5(元),当购买种子1.5千克时,需要付款:1.5×5=7.5(元),当购买种子2千克时,需要付款:2×5=10(元),当购买种子2.5千克时,需要付款:2×5+(2.5﹣2)×5×0.8=12(元),当购买种子3千克时,需要付款:2×5+(3﹣2)×5×0.8=14(元),当购买种子3.5千克时,需要付款:2×5+(3.5﹣2)×5×0.8=16(元),当购买种子4千克时,需要付款:2×5+(4﹣2)×5×0.8=18(元),故答案为:2.5,5,7.5,10,12,14,16,18;(2)当0≤x≤2时,y=5x,当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,即y=,函数图象如右图所示.48.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟,甲、乙两人的速度和为2400÷24=100米/分钟,乙的速度为:米/分钟.故答案为24,60;(2)乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).49.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.50.解:(1)由图象可得,出发时,乙在甲前面12米处;(2)由图象可得,甲的速度为:12÷1.5=8(米/秒),则当甲行驶64米时,用的时间为:64÷8=8(秒),由图可知,当在第8秒时,两人相遇,故当0≤t<8时,甲走在乙的后面,当t=8秒时,他们相遇,当t>8时,甲走在乙的前面.。
一次函数的图像(2)
《4.3一次函数的图象(2)》教学设计宝氮子校王桂林教学内容分析:《4.3一次函数的图象(2)》是北师大版数学教材八年级上册中第四章“一次函数”的第四课时,主要是认识一次函数图象的性质、正比例函数图像及性质。
本节内容是在七年级学习了“变量之间的关系”和八年级上册第三章学习了“位置的确定”基础上学习和认识的,学生已经有了一定的变量、函数、平面直角坐标系、以及一次函数的概念等有关的知识基础。
同时,本节内容也是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础。
数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。
学情分析:学生已有学习“函数”、“一次函数图像的画法”的基础,具有一定的动手操作能力和观察分析能力。
本节课,学生在此基础上进一步认识一次函数图像的简单性质和正比例函数及函数图象的性质,并利用动手操作,体会k值、b值对函数图像的影响,进一步增强学生数学学习中“数”“形”结合的意识。
教学目标:知识技能:会用两点法画出一次函数的图像;能结合图像说出一次函数的性质;掌握一次函数的性质;数学思考:经历一次函数图象画法与性质的探索过程,体会“数”“形”结合的数学思想解决问题:体会数形结合的数学思想在问题解决中的作用,并能运用性质、图象及数形结合思想解决相关函数问题情感态度:在动手操作过程中,培养学生的合作意识和大胆猜想、乐于探究的良好品质;体验“数”与“形”的转化过程,感受函数图象的简洁美;激发学生学数学的兴趣。
教学重点:通过图象理解一次函数的性质教学难点:结合图像理解归纳一次函数的性质的过程教学方法:自主探究、合作交流动。
在导学过程中,坚持诱导式教学,以谈话法、小组合作学习为主。
充分调动学生学习积极性和主动性,突出学生的主体地位,通过自学、讨论、归纳、辨析等方法对学生进行学法指导,培养他们动手、动口、动脑的能力,达到“不但使学生学会,而且使学生会学”的目的。
八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案
第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。
本节课为第2课时。
其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。
使学生体会到数学学习过程中“数形结合”思想的重要性。
在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。
(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。
(2)初步体会方程与函数的关系,体会数形结合思想。
情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。
(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
难点:体会函数与方程的关系,发展“数形结合”的思想”。
三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。
在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。
但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。
四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。
一次函数的应用2,3,4
小结:该题考查了数形结合、 待定系数、方程组等多种数学思想 方法的综合运用.
练习: 某边防检查站距边境线3200米,边防战士小 张随即开始追赶,图中l1、l2分别表示可疑人和小张 的运动路程y(米)与小张追赶的时间x(分)之间 的函数关系,根据图象提供的信息,解答下列问题: (1)可疑人在小张开始追赶时已先跑了多少米? (2)小张能否在边境线内追上可疑人?通过计算验 证你的结论.
例2、声音在空气中传播的速度y(m/s) (简称音速)是气温x(℃)的一次函数,下表列 出了一组不同气温时的音速: (1)求y与x之间的函数关系式; (2)气温x=22℃时,某人看到烟花燃烧5s 后才能听到声响,那么此人与燃放的烟花所在地 约相距多远?
X(℃) 0 5 10 15 20
y(m/s) 331
169
178
187
2、某医药研究所开发了一种新药,在试验药效时发现,如果 成人按规定剂量服用,那么服药后2h时血液中含药量最高 达每毫升6(vg),接着逐渐衰减,10h时血液中含药量为 每毫升3(vg),每毫升血液中含药量y(vg)随时间x(h) 的变化如图所示, (1)分别求出x≤2与x≥2时,y与x之间的函数关系式。 (2)如果每毫升血液中含药量为4(ug)或4(ug)以上时对 于治疗疾病是有效的,那么服药以后,药物实际发挥疗效的 时间多长?
2.见书P162.
例2、在平面直角坐标系中画出了函数y=kx+b 的图象。 (1)根据图象,求k和b的值; (2)在图中画出函数y=-2x+2的图象; (3)求x的取值范围,使函数y=kx+b的函数 值大于函数y=-2x+2的函数值.
变式:已知函数y1=x+2,y2=-2x+2,x取何值时 (1)y1>y2 (2)y1=y2 (3)y1<y2
北师大版八年级上册期末点对点攻关:一次函数应用(图像类)(二)
北师大版八年级上册期末点对点攻关:一次函数应用(图像类)(二)1.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,由此图可知不挂物体时弹簧的长度为()A.7cm B.8cm C.9cm D.10cm2.如图,图象l甲,l乙分别表示甲,乙两名运动员在校运动会800米比赛中所跑的路程s (米)与时间t(分)之间的关系,则他们跑的速度关系是()A.甲跑的速度比乙跑的速度快B.乙跑的速度比甲跑的速度快C.甲,乙两人跑的速度一样快D.图中提供的信息不足,无法判断3.为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元,设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为()A.B.C.D.4.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.5.一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是()A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定6.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是()A.①②B.②③④C.②③D.①②③7.在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()A.B.C.D.8.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(米)与挖掘时间x(小时)之间的关系如图所示,请根据图象判断下列信息正确的有()①乙队开挖到30米,用了2小时.②开挖6小时甲队比乙队多挖了10米.③甲队在0≤x≤6的时段内,y与x的函数关系式为y=x.④当x=4时,甲乙两队在施工过程中所挖河渠的长度相等.A.1个B.2个C.3个D.4个9.一辆汽车和一辆摩托车分别从A,B两地去C地,它们离A地的路程随时间变化的图象如图所示.则当汽车到达C地时,摩托车距离C地的路程为()A.140km B.40km C.60km D.45km10.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y千米与行驶时间x小时之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地B.客车速度为60千米/时,出租车速度为100千米/时C.两车出发后3.75小时相遇D.两车相遇时客车距乙地还有225千米11.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图,那么到达乙地时油箱剩余油量是()升.A.10 B.15 C.20 D.2512.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇,若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图,则A、B两地之间的距离为()千米.A.150 B.300 C.350 D.45013.一条笔直的公路上有A、B、C三地,B、C两地相距150千米,甲、乙两辆汽车分别以B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A 地的距离y1、y2(千米)与行驶时间x(时)的关系如图.下列结论:①甲、乙速度相差15km/h;②甲、乙到达目的地的时间刚好间隔半小时;③当行驶时间t=2或小时时,两车距A地距离相等,其中正确的结论有()A.①B.②C.③D.①②③14.如图是一对变量x与y满足的函数图象,有下列3个不同的问题情境:①小明骑车以400米/分种的速度匀速骑了5分钟.在原地休息了5分钟.然后以500米/分钟的速度匀速骑回出发地.设时间为x分钟.离出发地的距离为y千米:②有一个容积为6升的开口空桶.小亮以1.2升/分种的速度匀越向这个空桶注水.注5分钟后停止.等4分钟后,再以2升/分钟的速度匀速倒空桶中的水.设时间为x分钟,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数的关系的问题情境的个数为()A.0 B.1 C.2 D.315.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原速返回A 地,乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,则下列说法中正确的个数为()①乙车的速度是60千米/时;②t的值为3③当乙车出发160分钟时,两车第一次相距120千米;④当乙车出发360分钟时,两车相距120千米.A.1个B.2个C.3个D.4个16.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1,出租车离甲地的距离为y2,客车行驶时间为x,若y1,y2与x的函数关系图象如图所示,下列四种说法:(1)y2关于x的函数关系式为y2=60x(x≥0).(2)行驶3.75小时,两车相遇.(3)出租车到达甲地时,两车相距最远.(4)出租车的速度是客车速度的1.5倍.其中一定正确的个数是()A.1个B.2个C.3个D.4个17.小明和小亮晨练跑步,小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮,两人并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮以大于小明的速度匀速跑.如图是两人间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,则下列说法中正确的个数是()①小明比赛前的速度为100米/分;②小亮比赛前的速度是120米/分;③比赛时小亮的速度一定是220米/分;④小明出发或分钟时,两人相距110米.A.1个B.2个C.3个D.4个18.有两段长度相等的路面铺设任务,分别交给甲、乙两个施工队同时进行施工,甲、乙两个施工队铺设路面的长度y(米)与施工时间x(时)之间的函数关系的部分图象如图所示,下列四种说法:①施工6小时,甲队比乙队多施工了10米;②施工4小时,甲、乙两队施工的长度相同;③施工5小时,甲乙两队共完成路面铺设任务95米;④如果甲队在施工6小时后继续保持原来施工速度,且又经过5个小时完成铺设任务,乙队在施工50米后,恢复其前30米时的施工速度,结果两队同时完成了铺设任务,其中正确的是()A.1个B.2个C.3个D.4个19.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是()A.甲组加工零件数量y与时间x的关系式为y甲=40xB.乙组加工零件总量m=280C.经过2小时恰好装满第1箱D.经过4小时恰好装满第2箱20.李大爷以每千克2.1元的价格批发了一批南瓜到镇上出售,为了方便,他带了一些零钱备用,他先按市场价售出一些后,由于滞销,然后他每千克降低1.6元将剩余部分全部售出.他手中持有的钱数y元(含备用零钱)与售出南瓜千克数x的关系如图所示,下列说法中正确的有()①李大爷自带的零钱是50元②降价前他每千克南瓜出售的价格是4.1元③这批南瓜一共有160千克④李大爷销售这批南瓜一共赚了194元A.1个B.2个C.3个D.4个参考答案1.解:由题意可得,解得,.故选:D.2.解:任取一时刻,路程越大,表明速度越快,或者根据图象的倾斜程度判断,倾斜程度越大表示速度变化越快,故A甲跑的速度比乙跑的速度快.故选:A.3.解:依题意得用水20立方米内是一次函数,20立方米外也是一次函数,但是20立方米外变化越来越明显,所以D正确.故选:D.4.解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选:B.5.解:由后段易求乙的工作效率是,再根据前段合做5小时完成,可求甲的工作效率是,大于乙的工作效率.故选A.6.解:如图,甲乙在x=2时相交,故售2件时两家售价一样.①对.买1件时乙的价格比甲的价格低.②对.买3件时甲的销售价比乙低,③对.买乙家的1件售价约为1元,④错.故选:D.7.解:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5).以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5.故选:B.8.解:①由函数图象可以得出乙队开挖到30米,用了2小时,故正确;②由函数图象可以得出开挖6小时甲队比乙队多挖了10米,故正确;③当0≤x≤6时,设甲队所挖河渠的长度y(米)与挖掘时间x(小时)之间的关系为y =kx,由题意,得60=6k,∴k=10,∴y=10x.故错误;④当2≤x≤6时,设乙队所挖河渠的长度y(米)与挖掘时间x(小时)之间的关系为y1=k1x+b,由题意,得,解得:,∴y1=5x+20.当x=4时,y1=40,y=40,∴y1=y,∴当x=4时,甲乙两队在施工过程中所挖河渠的长度相等,故正确.综上所述:正确的有①②④共3个.故选:C.9.解:设摩托车走的路程y与时间x之间的函数关系式为y=kx+b,由题意,得,解得:,则y=40x+20.当x=3时,y=40×3+20=140.摩托车距离C地的路程为:180﹣140=40km.故选:B.10.解:(1)∵客车行驶了10小时,出租车行驶了6小时,∴客车比出租车晚4小时到达目的地,故A正确;(2)∵客车行驶了10小时,出租车行驶了6小时,∴客车速度为60千米/时,出租车速度为100千米/时,故B正确;(3)∵设出租车行驶时间为x,距离目的地距离为y,则y=﹣100x+600,设客车行驶时间为x,距离目的地距离为y,则y=60x;当两车相遇时即60x=﹣100x+600时,x=3.75h,故C正确;∵3.75小时客车行驶了60×3.75=225千米,∴距离乙地600﹣225=375千米,故D错误;故选:D.11.解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+35.当x=240时,y=﹣×240+35=20升.故选:C.12.解:设甲乙两车的速度分别为x千米/时、y千米/时,由题意得,,解方程组得,所以,A、B两地之间的距离=90×5=450千米.故选:D.13.解:①由函数图象,得甲的速度为:60÷1=60km/h,乙的速度为:150÷2=75km/h,甲、乙速度相差为:75﹣60=15km/h,故①正确;②甲到达目的地的时间为:150÷60=2.5,乙到达目的地的时间为:2小时,甲、乙到达目的地的时间刚好间隔0.5小时.故②正确;③由题意,得2小时是甲离A地的距离为:60×2﹣60=60km,乙离A地的距离为:150﹣90=60km,∵60=60,∴行驶时间t=2小时时,两车距A地距离相等;小时时甲离A地的距离为:60×﹣60=6km,乙离A地的距离为:90﹣75×=6km.∵6=6,∴行驶时间t=小时时,两车距A地距离相等;∴当行驶时间t=2或小时时,两车距A地距离不相等,故③正确.故选:D.14.解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,故①与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为:1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,故②符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4;当点P在DA上运动时,S△ABP减小,这段时间为3,故③符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选:C.15.解:由图可知,乙车的速度为:60÷1=60千米/时,故①正确;由题意可得,t=,故②正确;由题意可得,乙车出发160分钟时,甲车出发160﹣60=100分钟,故此时两车相距的距离为:480﹣﹣=120千米,故③正确;当乙车出发360分钟时,甲车出发360﹣60=300分钟,故此时两车的距离为:(7﹣)×﹣(480﹣)=120千米,故④正确;故选:D.16.解:(1)当x=0时,y2=60×0=0,与图象不符,(1)不正确;(2)出租车的速度为:600÷6=100(km/h);客车的速度为:600÷10=60(km/h).两车相遇的时间为:600÷(100+60)==3.75(h),∴(2)正确;(3)由函数图象可知:当x=0时,两车距离最远,∴(3)不正确;(4)由(2)可知:出租车的速度是客车速度的100÷60=,∵≠1.5,∴(4)不正确.综上可知正确的结论只有一个.故选:A.17.解:①小明比赛前的速度:(540﹣440)÷1=100(米/分),①正确;②小亮比赛前的速度:440÷(3﹣1)﹣100=120(米/分),②正确;③比赛时小亮的速度:80÷(7﹣5)+180=220(米/分),③正确;④设两人间的距离y(米)与小明离开家的时间x(分钟)之间的函数关系式为y=kx+b,当1≤x≤3时,有,解得:,∴此时y=﹣220x+660;当x≥5时,有,解得:,∴此时y=40x﹣200.令y=110,即﹣220x+660=110或40x﹣200=110,解得:x=或x=,④正确.综上可知正确的说法有4个.故选:D.18.解:①施工6小时,甲队比乙队多施工了60﹣50=10米,正确;设甲队在0≤x≤6的时段内y与x之间的函数关系式y=k1x,由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y=5x+20,②由题意,得10x=5x+20,解得x=4.∴当x为4h时,甲、乙两队所挖的河渠长度相等,正确;③把x=5代入解析式y=10x=50,把x=5代入解析式y=5x+20=45,45+50=95,施工5小时,甲乙两队共完成路面铺设任务95米,正确;④由题意可得:甲一共施工11小时,则路面总长度为:110m,∵乙队在施工50米,需要6小时,还剩余60m,则还需要:60÷(30÷2)=4(小时),故乙队施工10小时,则结果两队不能同时完成铺设任务,故此选项错误.故选:C.19.解:∵图象经过原点及(6,240),设解析式为y=kx,则6k=240,解得k=40,∴甲组加工零件数量y与时间x的关系式为y甲=40x(0<x≤6),故(A)正确;∵乙2小时加工100件,∴乙的加工速度是每小时50件,∵乙组更换设备后,乙组的工作效率是原来的1.2倍,∴乙组的工作效率是每小时加工:50×1.2=60件,∴m=100+60×(6﹣3)=280,故(B)正确;乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=100+60(x﹣3)=60x﹣80,当0≤x≤2时,40x+50x=200,解得:x=(不合题意);当2<x≤3时,100+40x=200,解得:x=(符合题意);∴经过2小时恰好装满第1箱,故(C)正确;∵当3<x≤6时,40x+(60x﹣80)=200×2,解得x=4.8(符合题意);∴经过4.8小时恰好装满第2箱,故(D)错误.故选:D.20.解:由图象可得,李大爷自带的零钱是50元,故①正确,降价前他每干克南瓜出售的价格是(410﹣50)÷100=3.6元,故②错误,这批南瓜一共有:100+(530﹣410)÷(3.6﹣1.6)=160千克,故③正确,李大爷销售这批南瓜一共赚了:530﹣160×2.1﹣50=144(元),故④错误,故选:B.21/ 21。
人教版 八年级数学下册 第19章 专题练习:《一次函数图像综合:实际应用(行程、收费等)》(二)
人教版八年级数学下册第19章专题:《一次函数图像综合:实际应用(行程、收费等)》(二)1.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)求线段BC所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.2.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)甲队的工作速度;(2)分别求出乙队在0≤x≤2和2≤x≤6时段,y与x的函数解析式,并求出甲乙两队所挖河渠长度相等时x的值;(3)当两队所挖的河渠长度之差为5m时x的值.3.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?4.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?5.如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;货车的速度是千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)试求客车与货两车何时相距40千米?6.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.7.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人距离景点A的路程(米)关于时间t(分)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙距离景点C的路程不超过300米,则乙从景点B步行到景点C的速度至少为多少?8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.如图,l A、l B分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t(小时)的关系.已知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距千米,B出发后小时与A相遇;(2)求出A距甲地的路程S A(千米)与时间t(小时)的关系式,并求出B修好车后距甲地的路程S B(千米)与时间t(小时)的关系式.(写出计算过程)(3)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相遇?10.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品千克,乙组升级设备停工了小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a、b的值.参考答案1.解:(1)由图可得,a=1500÷150=10,b=10+5=15,m=(3000﹣1500)÷(22.5﹣15)=1500÷7.5=200,故答案为:10,15,200;(2)设线段BC所在的直线的解析式为y=kx+m,∵点B(15,1500),点C(22.5,3000)在直线y=kx+m上,∴,得即线段BC所在的直线的解析式为y=200x﹣1500;(3)∵小军的速度是120米/分,∴线段OD所在直线的解析式为y=120x,令120x=200x﹣1500,解得,x=18.75∴小军第二次与爸爸相遇时距图书馆的距离是3000﹣120×18.75=750(米),答:小军第二次与爸爸相遇时距图书馆的距离是750米.2.解:(1)甲队的工作速度为:60÷6=10(米/小时);(2)当0≤x≤2时,设y与x的函数解析式为y=kx,可得2k=30,解得k=15,即y=15x;当2≤x≤6时,设y与x的函数解析式为y=nx+m,可得,解得,即y=5x+20,∴;10x=5x+20,解得x=4,即甲乙两队所挖河渠长度相等时x的值为4;(3)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.3.解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.4.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.5.解:(1)由函数图象可得,A,B两地相距:480+120=600(km),货车的速度是:120÷3=40(km/h).故答案为:600;40;(2)y=40(x﹣3)=40x﹣120(x>3);(3)分两种情况:①相遇前:80x+40x=600﹣40解之得x=…(8分)②相遇后:80x+40x=600+40解之得x=综上所述:当行驶时间为小时或小时,两车相遇40千米.6.解:(1)图中表示会员卡支付的收费方式是②.故答案为:②(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.7.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后25分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地300米时,乙需要步行的距离为:5400﹣3000﹣300=2100(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:=70(米/分),答:乙从景点B步行到景点C的速度至少为70米/分.8.解:(1)由图象可得,甲店团体票是200元,个人票为(元);乙店人数小于或等于10人时,个人票为(元),乙店人数大于10人而又不超过20人时,价格为600元.∴y甲=25x+200,;(2)当0≤x≤10时,令25x+200=60x,得x=,当10≤x≤20时,令25x+200=600,得x=16,答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人时,小王公司应该选择在乙店吃小龙虾更省钱.9.解:(1)由图形可得B出发时与A相距10千米B出发后3小时与A相遇;故答案为:10,3;(2)设S A的解析式为;S A=k2t+b,由题意得:,解得:,则S A的解析式为;S A=t+10,设S B的解析式为S B=mt+n,由题意得:解得:,∴S B的解析式为S B=10t﹣7.5;(3)如图,设B不发生故障时的解析式为:y=k2t,根据题意得:7.5=0.5k2,解得:k2=15,则解析式为y=15t,由,解得:,∴当t=时,与A相遇10.解:(1)由图象可得,甲组每小时加工食品:210÷7=30(千克);乙组升级设备停工了:4﹣2=2(小时),故答案为:30;2;(2)(210﹣30×2)÷(7﹣4)=50(千克/时),答:设备升级完毕后,乙组每小时可以加工食品50千克;(3)根据题意得,50(b﹣4)=30(b﹣2)+60×2,解得b=13,∴a=30×2+50×(13﹣4)=510.。
《一次函数的图像》第二课时说课稿
《一次函数的图像》第二课时说课稿多宝山学校曹春雨一、教材分析:(一)地位与作用函数是初中数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型。
本节课是在学生明确一次函数图象是一条直线的基础上进行的,主要是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
与其它版本教材相比,新人教版更注重借助感性材料,让学生在具体操作中获得有关一次函数图象的变化规律,从而使学生对一次函数有了从“数”到“形”、从“形”到“数”两方面的理解,从而展开了一个“数形结合”的新天地。
作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
并为今后继续学习一次函数图象的应用以一次函数与二元一次方程的关系打下基础. 起着承上启下的作用。
(二)三位一体的教学目标知识与技能:在认识一次函数图象的基础上,掌握一次函数图象及其简单性质。
过程与方法:经历对一次函数图象变化规律的探究过程,在知识的探究过程中,增强学生数形结合的意识,渗透分类讨论的思想;培养学生的观察能力、识图能力以及语言表达能力。
情感与态度:在一次函数图象及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;在合作与交流活动中发展学生的合作意识和团队精神,获得成功的体验。
(三)教学重难点重点:结合一次函数的图象,探究一次函数的简单性质。
难点:一次函数图象变化规律及特点的探究过程及建立数形结合和分类讨论的思想。
二、教法与学法:教法:教学上采用探究发现和启发式教学方法,并结合电脑演示,激励学生积极参与,在知识的发生发展中渗透类比、化归的数学思想,学生通过观察、发现、猜想、验证、应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性与系统性。
学法:倡导自主探究的学习方法。
本课通过观察、思考、交流、应用等活动,灵活地运用旧知识去探求新问题,让学生处于开放的学习中。
使学生从“学会”和“会学”最后到“乐学”的目的。
三、教具与学具:教具:多媒体演示课件。
数学北师大版八年级上册4.4.2一次函数应用第二课时说课稿
4.3.2《一次函数的图象和性质》第二课时说课稿一、设计理念新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、教材分析本节课选自北师大版八年级上册的第四章第三节《一次函数的图象》第2课时。
本节课在学生已经掌握了一次函数的概念以及表达式的基础之上,通过探究活动,进行一次函数的图象及性质的研究,这是本节课的一个重点和难点问题,学生在学习的过程中体会“数形结合”思想的重要性,也为后续函数相关知识的学习和经验的积累起到重要的引领作用。
三、学情分析学生在生活和课本知识上对变量之间的关系已经有了初步的了解,在上节课已经经历了正比例函数的图象绘制和性质探究过程,并初步具备利用类比的方法进行探究一次函数性质的能力基础。
我校八年级的学生思维已经从具体思维向抽象思维发展,具有初步的数形结合思想,学生具有一定的探索意识,敢于表达自己的观点和想法,这都为开展本次数学学习活动打下了基础。
但我校学生存在动手能力差,计算能力弱等特点,因此在本节课的教学中,将重难点进行了分解。
四、教法与学法(一)教法分析数学教学是数学活动的教学,是师生之间、学生之间的交往互动与共同发展的过程。
针对八年级学生的认知水平与心理特征,本节课选择由浅入深提出问题、分析问题、解决问题的流程进行教学。
引导全体学生自主探索,合作交流。
充分体现教师是教学活动的组织者,引导者,合作者,学生才是学习的主体。
基本的教学程序是:“引导激发----动手实践----合作探究----学以致用”几部分组成。
(二)学法分析本节课在对学生进行学法指导上,主要是引导学生主动探索发现新的数学结论,进而培养学生数学学习的良好习惯,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。
4.4 一次函数的应用 第2课时 借助单个一次函数图象解决有关问题 北师大版八年级上册数学习题课件
10.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示, 如果汽车一直以前2小时的速度行驶,那么可以提前______h2到达B地.
11.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:
(1)方程kx+b=0的解; (2)式子k+b的值; (3)方程kx+b=-3的解.
A.3 B.4 C.5 D.6
3.某省由于持续高温和连日无雨,水库蓄水量普遍下降,如图所示是某水库蓄水量 V(万立方米)与干旱时间t(天)之间的关系图,请你根据此图填空.
(1)水库原蓄水量是__1_0_0_0__万立方米,干旱持续10天,蓄水量为___8_0_0__万立方米; (2)若水库的蓄水量小于400万立方米时,将发出严重干旱预报,则持续干旱__3_0___天 后,将发出严重干旱预报,按此规律,持续干旱___5_0=0的解是x=3,则函数y=kx+b的图象可能是( C )
9.国内航空规定,乘坐飞机经济舱的旅客所携带行李的质量x(kg)与其运费y(元)之间 是一次函数关系,其图象如图所示,那么旅客可免费携带的行李的最大质量为( A )
A.20 kg B.25 kg C.28 kg D.30 kg
(1)求盒内钱数y(元)与存钱月数x(月)之间的函数表达式(不要求写出x的取值范围); (2)在平面直角坐标系中作出该函数的图象; (3)观察图象回答:按上述方法,该同学经过几个月能存够200元?
解:(1)y=40+20x (2)函数图象如图所示 (3)观察图象可知,该同学经过8个月能存够200元
13.张师傅驾车运荔枝到某地出售,汽车出发前油箱内有油50升,行驶若干小时后, 途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(时)之间的关系如图所示.
一次函数的图像((2) 教案
一次函数的图像((2) 教案教学目标:1.理解k值对一次函数图像的位置关系的影响。
2.掌握一次函数图像的性质及其简单应用。
3.通过观察和分析图像,探究一次函数的性质。
4.培养学生的观察分析、自主探索和合作交流能力。
5.激发学生研究数学的兴趣,形成合作交流、独立思考的研究惯。
教学流程:一、课前回顾1.作一个函数的图像需要三个步骤:列表、描点、连线,这种画函数图像的方法叫做描点法。
2.正比例函数y=kx的图像是一条经过原点的直线。
我们发现,k越大,直线越靠近y轴。
图像必经过(0,0)和(1,k)这两个点。
二、情境引入探究1:既然正比例函数是特殊的一次函数,正比例函数的图像是直线,那么一次函数的图像也会是一条直线吗?它们图像之间有什么关系?一次函数又有什么性质呢?画出正比例函数y=-2x+1的图像。
列表:取自变量的值,求出对应的函数值,填入表格。
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连结起来,得到y=-2x+1的图像。
总结:1.正比例函数y=kx的图像是一条经过原点的直线。
同样地,一次函数y=kx+b的图像是一条直线,画一次函数图像时只需确定两个点,再过这两点画直线就可以了,一次函数y=kx+b也称直线y=kx+b。
2.如何画出一次函数的图像?以坐标轴上坐标特点来确定两点(0,b)和(-b/k。
0),或以确定特殊自变量1来定两点(1.k+b)和(0.b)。
练1:画出一次函数y=2x+1的图像。
先列表:取自变量的值,求出对应的函数值,填入表格。
再描点连线。
三、求下图中直线的函数表达式。
观察图像,发现该直线经过点(2,1)和(0,-3)。
用点斜式或两点式求出函数表达式为y=2x-3.总结:本节课主要探究了一次函数图像的性质及其简单应用,通过观察和分析图像,培养了学生的观察分析、自主探索和合作交流能力,同时激发了学生研究数学的兴趣,形成了合作交流、独立思考的研究惯。
一次函数图象的应用(二)演示文稿
谈本节课你有什么收获?
作业:习题6.7
4. 请你根据另一幅图表,充分发挥你的想象,自编 一则新的“龟免赛跑”的寓言故事,要求如下: (1)用简洁明快的语言概括大意,不能超过200字; (2)图表中能确定的数值,在故事叙述中不得少于 3个,且要分别涉及时间、路和速度这三个量。
在运用一次函数解决实际问题时,首先判断问 题中的两个变量之间是不是一次函数关系?当 确定是一次函数关系时,可求出函数解析式, 并运用一次函数的图象和性质进一步求得我们 所需要的结果。
P
t/分
(5)当A逃到离海岸12海里的公海时,B将无法对其进行 检查。照此速度,B能否在A逃入公海前将其拦截? 从图中可以看出,l1与l1交点P的纵坐标小于12, 这说明在A逃入公海前,我边防快艇B能够追上A。 上 述想 s/海里 问一 题想 12 吗你 10 ?能 P l2 用 8 其 6 l1 他 方 4 法 2 解 决 2 4 6 8 10 12 14 16 O
例2
我边防局接到情报,近海处有一可疑船只A正向公 海方向行驶。边防局迅速派出快艇B追赶(如下图),
海 岸
B
A
公 海
下图中l1 ,l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 根据图象回答下列问题: (1)哪条线表示B到海岸的距离与追赶时间之间的关系? 解:观察图象,得当t=0时,B距海岸0海里,即 S=0,故l1表 示B到海岸的距 s/海里 离与追赶时间之 l2 8 间的关系;
7 6 5 4 3 2 1 O 2 4 6 8 10
l1
t/分
(2)A,B哪个速度快?
从0增加到10时, l2的纵坐标增加了2,而l1的纵坐标 增加了5,即10分内,A行驶了2海里,B行驶了5海里, 所以B的速度快。
一次函数的图像与应用
一次函数的图像与应用一、引言一次函数是数学中常见且重要的一类函数类型。
它的图像呈现出一条直线的特点,具有简洁的数学表达形式和广泛的应用。
本文将分析一次函数的图像特征,并探讨其在实际问题中的应用。
二、一次函数的定义与表达形式一次函数又称为线性函数,其定义域和值域通常为实数集。
一次函数的一般表达形式为:f(x) = ax + b其中,a和b为常数,且a≠0。
函数图像为一条直线,斜率为a,截距为b。
三、一次函数的图像特征1. 斜率的意义一次函数的斜率代表了图像上每单位水平位移对应的垂直位移,即函数的变化率。
当斜率为正值时,图像呈现上升趋势;当斜率为负值时,图像呈现下降趋势;当斜率为零时,图像为水平线。
2. 截距的意义一次函数的截距代表了函数图像与y轴的交点,即当x=0时的函数值。
它反映了一次函数图像在垂直方向上的位置。
3. 变量对函数图像的影响一次函数的图像特征由斜率a和截距b决定。
增大a的绝对值会使图像更陡峭或更平缓,而改变b的值则会上下平移整个图像。
四、一次函数的应用1. 直线运动模型一次函数在直线运动模型中有着广泛的应用。
假设一个物体以固定速度运动,则其位移与时间的关系可以用一次函数表示。
斜率代表了物体的运动速度,截距则代表了物体在起点的位置。
2. 成本与收益分析在商业领域中,一次函数可以用来分析成本与收益之间的关系。
设某产品的生产成本与销售量之间呈现线性变化关系,则一次函数可以描述成本与销售量之间的关系。
商家可以通过分析这个函数来确定最大利润的销售量。
3. 折旧与资产价值在会计领域中,一次函数被用于计算资产的折旧和价值变化。
资产价值随着时间的推移而减少,这种变化可以用一次函数来描述。
斜率表示每年的折旧额,截距代表了初始价值。
4. 温度变化模型一次函数在气象学中也有重要的应用。
温度随着时间的变化通常呈现线性关系。
通过查找一次函数的斜率和截距,我们可以预测未来一段时间内的温度变化趋势。
五、总结一次函数作为一种常见的数学模型,具有简洁的形式和广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂小结
1、两直线交点的意义:
(1)几何意义:两直线交点是它们的公共点;
(2)代数意义:两直线交点的坐标同时满足两个 解析式。
2、利用图象比较函数值的方法:
(1)先找交点坐标,交点处y1=y2; (2)再看交点左右两侧,图象位于上方的直线函 数值较大。
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (4)如果一直追下去,那么B能否追上A?
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (5)当A逃到离海岸12海里的公海时,B将无法对 其进行检查,照此速度,B能否在A逃入公海前 将其拦截?
y/元
6000 5000 4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (2)当销售量为6吨时,销售收入= 元,销售 成本= 元;
y/元
由此你能得到什么结 论?
6000 5000 4000 3000 2000
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知归纳
利用图象比较函数值的方法: (1)先找交点坐标,交点处y1=y2; (2)再看交点左右两侧,图象位于上方的直线函 数值较大。
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (5) l1对应的函数表达式是 , l2对应的函数表达式是 。
(1)从函数图象的形状判断函数类型; (2)从x轴、y轴的实际意义去理解图象上点的坐标 的实际意义。
情景引入 如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,如果将两函数图象合在 同一直角坐标系中,结果会怎么样?
y/元
6000 5000
y/元
l1
6000 5000 4000 3000 2000
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
巩固练习 1、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: x=3时,销售收入= ,销售成本= , 赢利(收入−成本)= 。
北师大版八年级(上)
6.5 一次函数图象的应用(2)
诊断练习 1、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售收入= 元; (2)当销售收入为6000元时,销售量= 吨。
y/元
6000 5000 4000 3000 2000 1000
l1
O
巩固练习 2、如图表示甲骑自行车、乙骑摩托车沿相同路线 由A到B地行驶过程中路程与时间的函数图象,两 地相距80千米。 (1)谁出发较早?早多长时间?谁较早到达B地? 早多长时间? y/千米 乙 甲 (2)两人在途中的速度分别是 多少? (3)指出在什么时段内两人均 行驶在途中(不包括两端点)? 甲行驶在乙前面;甲与乙相 遇;甲行驶在乙后面。
y/元
6000 5000
l1 l2
4000
3000 2000 1000
O
1
2
3
4
5
6
7
8
x/吨
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (1)哪条线表示B到海岸的距离与追赶时间之间的 关系?
6000 5000 4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (3)当销售量等于 时,销售收入等于销售 成本;
y/元
由此你能得到什么结 6000 论? 5000
80 70 60 50 40 30 20 10
O
1
2
3
4
5
6
7
8
x/时
巩固练习
3、某电机厂要印制产品宣传材料,甲印刷厂提 出:每份材料收1元印制费,另收1500元制版费; 乙厂提出:每份材料收2.5元印制费,不收制版 费。 (1)分别写出两厂的收费y(元)与印制数量x(份)之 间的关系式; (2)在同一直角坐标系内作出它们的图象; (3)根据图象回答下列问题: 印制800份宣传材料时,选择哪家印刷厂比较合 算?电视机厂拟拿出3000元用于印制宣传材料, 找哪家印刷厂印制宣传材料能多一些?
y/元
l2
6000 5000 4000 3000 2000 1000
l1
4000 你能获得什么信息? 3000 2000 1000
O
1
2
3
4
5
6
7
8
x/吨
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售收入= 元,销售 成本= 元;
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (2)A、B哪个速度快?
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (3)15分内B能否追上A?
4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知归纳
两直线交点的意义: (1)几何意义:两直线交点是它们的公共点; (2)代数意义:两直线交点的坐标同时满足两个 解析式。
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (4)当销售量 时,该公司赢利(收入大于 成本);当销售量 时,该公司亏损(收入 y/元 l1 小于成本);
1
2
3
4
5
6
7
8
x/吨
诊断练习 2、如图,l2反映了该公司产品的销售成本与销 售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售成本= 元; (2)当销售成本为5000元时,销售量= 吨。
y/元
6000 5000 4000 3000 2000 1000
l2
O
1
2
3
4
5
6
7
8
x/吨
复习旧知 图象分析方法: