一次函数图象的应用二

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (4)如果一直追下去,那么B能否追上A?
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (5)当A逃到离海岸12海里的公海时,B将无法对 其进行检查,照此速度,B能否在A逃入公海前 将其拦截?
6000 5000 4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (3)当销售量等于 时,销售收入等于销售 成本;
y/元
由此你能得到什么结 6000 论? 5000
(1)从函数图象的形状判断函数类型; (2)从x轴、y轴的实际意义去理解图象上点的坐标 的实际意义。
情景引入 如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,如果将两函数图象合在 同一直角坐标系中,结果会怎么样?
y/元
6000 5000
80 70 60 50 40 30 20 10
O
1
2
3
4
5
6
7
8
x/时
巩固练习
3、某电机厂要印制产品宣传材料,甲印刷厂提 出:每份材料收1元印制费,另收1500元制版费; 乙厂提出:每份材料收2.5元印制费,不收制版 费。 (1)分别写出两厂的收费y(元)与印制数量x(份)之 间的关系式; (2)在同一直角坐标系内作出它们的图象; (3)根据图象回答下列问题: 印制800份宣传材料时,选择哪家印刷厂比较合 算?电视机厂拟拿出3000元用于印制宣传材料, 找哪家印刷厂印制宣传材料能多一些?
y/元
l1
6000 5000 4000 3000 2000
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
巩固练习 1、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: x=3时,销售收入= ,销售成本= , 赢利(收入−成本)= 。
课堂小结
1、两直线交点的意义:
(1)几何意义:两直线交点是它们的公共点;
(2)代数意义:两直线交点的坐标同时满足两个 解析式。
2、利用图象比较函数值的方法:
(1)先找交点坐标,交点处y1=y2; (2)再看交点左右两侧,图象位于上方的直线函 数值较大。
北师大版八年级(上)
6.5 一次函数图象的应用(2)
诊断练习 1、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售收入= 元; (2)当销售收入为6000元时,销售量= 吨。
y/元
6000 5000 4000 3000 2000 1000
l1
O
y/元
l2
6000 5000 4000 3000 2000 1000
l1
4000 你能获得什么信息? 3000 2000 1000
O
1
2
3
4
5
6
7
8
x/吨
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售收入= 元,销售 成本= 元;
y/元
6000 5000
l1 l2
4000
3000 2000 1000
O
1
2
3
4
5
6
7
8
x/吨
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (1)哪条线表示B到海岸的距离与追赶时间之间的 关系?
y/元
6000 5000 4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (2)当销售量为6吨时,销售收入= 元,销售 成本= 元;
y/元
1
2
3
4
5
6
7
8
x/吨
诊断练习 2、如图,l2反映了该公司产品的销售成本与销 售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售成本= 元; (2)当销售成本为5000元时,销售量= 吨。
y/元
6000 5000 4000 3000 2000 1000
l2
O
1
2wenku.baidu.com
3
4
5
6
7
8
x/吨
复习旧知 图象分析方法:
巩固练习 2、如图表示甲骑自行车、乙骑摩托车沿相同路线 由A到B地行驶过程中路程与时间的函数图象,两 地相距80千米。 (1)谁出发较早?早多长时间?谁较早到达B地? 早多长时间? y/千米 乙 甲 (2)两人在途中的速度分别是 多少? (3)指出在什么时段内两人均 行驶在途中(不包括两端点)? 甲行驶在乙前面;甲与乙相 遇;甲行驶在乙后面。
由此你能得到什么结 论?
6000 5000 4000 3000 2000
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知归纳
利用图象比较函数值的方法: (1)先找交点坐标,交点处y1=y2; (2)再看交点左右两侧,图象位于上方的直线函 数值较大。
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (5) l1对应的函数表达式是 , l2对应的函数表达式是 。
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (2)A、B哪个速度快?
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (3)15分内B能否追上A?
4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知归纳
两直线交点的意义: (1)几何意义:两直线交点是它们的公共点; (2)代数意义:两直线交点的坐标同时满足两个 解析式。
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (4)当销售量 时,该公司赢利(收入大于 成本);当销售量 时,该公司亏损(收入 y/元 l1 小于成本);
相关文档
最新文档