高考数学模拟试卷
2024年高考数学精选模拟试卷及答案
2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。
陕西省西安市2024年数学(高考)统编版模拟(培优卷)模拟试卷
陕西省西安市2024年数学(高考)统编版模拟(培优卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题曲线在点处的切线方程为()A.B.C.D.第(2)题复数A.B.C.D.第(3)题已知命题p:“的否定是:”;命题q:“的一个充分不必要条件是”,则下面命题为真命题的是()A.B.C.D.第(4)题某校为庆祝建党一百周年,要安排一场共11个节目的文艺晚会,除第1个节目和最后一个节目已经确定外,3个音乐节目要求排在2,6,9的位置,3个舞蹈节目必须相邻,3个曲艺节目没有要求,共有不同的演出顺序()种A.144B.192C.216D.324第(5)题已知集合,,则集合等于()A.B.C.D.第(6)题已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则=A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}第(7)题已知全集,集合,,则集合中元素的个数为()A.1B.2C.3D.4第(8)题设集合,则的取值范围是A.B.C.或D.或二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知,则下列不等关系中正确的是()A.B.C.D.第(2)题下列说法正确的是()A .若,则B.若,,且,则的最大值是1C.若,,则D.函数的最小值为9第(3)题函数,则下列说法正确的是()A.若,则B.函数在上为增函数C .函数的图象关于点对称D .函数的图象可以由的图象向左平移个单位长度得到三、填空(本题包含3个小题,每小题5分,共15分。
请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题若双曲线的渐近线方程为,则其离心率为______.第(2)题某学校为落实“双减”政策,在课后服务时间开展了丰富多彩的兴趣拓展活动.现有甲、乙、丙、丁四人,乒乓球、篮球、足球、羽毛球、网球五项活动,由于受个人精力和时间限制,每人只能等可能的从中选择一项活动,则四人中恰有两人参加同一活动的概率为___________.第(3)题已知、,设P是椭圆与双曲线的交点之一,则___________.四、解答题(本题包含5小题,共77分。
(完整word版)高考数学模拟试题及答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
高考自创模拟数学试卷
一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(-2,3),则下列说法正确的是:A. a > 0,b < 0,c < 0B. a < 0,b > 0,c > 0C. a > 0,b > 0,c > 0D. a < 0,b < 0,c < 02. 在直角坐标系中,点A(2,3),B(-3,-4),C(5,-2)的斜率分别为k1、k2、k3,则下列说法正确的是:A. k1 > k2 > k3B. k1 < k2 < k3C. k1 = k2 = k3D. k1、k2、k3无法比较3. 若等差数列{an}的公差为d,且a1 = 3,a4 = 9,则d的值为:A. 3B. 6C. 9D. 124. 若复数z满足|z - 1| = 2,则复数z的实部a的取值范围是:A. -1 ≤ a ≤ 3B. -3 ≤ a ≤ 1C. a ≥ 1 或 a ≤ -3D. a ≤ 1 或 a ≥ -35. 若不等式|2x - 1| < 3的解集为A,不等式|x + 2| ≥ 4的解集为B,则A∩B 的结果是:A. {x | -3 ≤ x < 2}B. {x | -1 ≤ x < 2}C. {x | -2 ≤ x < 1}D. {x | -1 ≤ x ≤ 2}6. 若函数f(x) = x^3 - 3x + 2在区间[-2,2]上的最大值为M,最小值为m,则M - m的值为:A. 6B. 8C. 10D. 127. 若等比数列{bn}的公比为q,且b1 = 2,b3 = 8,则q的值为:A. 2B. 4C. 8D. 168. 若平面直角坐标系中,点P(1,2)到直线y = -2x + 5的距离为d,则d的值为:A. 1B. 2C. 3D. 49. 若函数f(x) = x^2 + 2x + 1在区间[-1,3]上的图像关于点(1,2)对称,则下列说法正确的是:A. f(0) = f(2)B. f(-1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)10. 若等差数列{an}的前n项和为Sn,且S5 = 25,S10 = 75,则a1的值为:A. 1B. 2C. 3D. 411. 若复数z = 3 + 4i的共轭复数为z',则|z - z'|的值为:A. 5B. 10C. 15D. 2012. 若函数f(x) = (x - 1)^2在区间[0,2]上的图像关于点(1,0)对称,则下列说法正确的是:A. f(0) = f(2)B. f(1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)二、填空题(本大题共4小题,每小题10分,共40分)13. 若函数f(x) = x^3 - 3x^2 + 2x - 1在x = 1处的切线斜率为k,则k的值为______。
2024年河北高考数学模拟试卷及答案
2024年河北高考数学模拟试卷及答案(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知抛物线C :212y x = ,则C 的准线方程为 A . 18x =B .1-8x =C .18y =D .1-8y = 2.已知复数121z i=+ ,复数22z i =,则21z z -=A .1BC ..10 3.已知命题:(0,)ln xp x e x ∀∈+∞>,,则 A .p 是假命题,:(-)ln xp x e x ⌝∃∈∞≤,0,B .p 是假命题, :(0+)ln xp x e x ⌝∃∈∞≤,,C .p 是真命题,:(-)ln xp x e x ⌝∃∈∞≤,0,D .p 是真命题,:(0+)ln xp x e x ⌝∃∈∞≤,,4.已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为 A .8πB .16πC .26πD .32π5.下列不等式成立的是A.66log 0.5log 0.7>B. 0.50.60.6log 0.5>C.65log 0.6log 0.5>D. 0.60.50.60.6>6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:由上表制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆˆy b x a =+,其相关系数为1r ;经过残差分析,点(167,90)对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是 A .121212ˆˆˆˆ,,b b a a r r <>< B .121212ˆˆˆˆ,,b b a a r r <<> C .121212ˆˆˆˆ,,b b a a r r ><> D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x '=仍是x 的函数,通常把导函数()y f x '=的导数叫做函数的二阶导数,记作()y f x ''=,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数一般地,n-1阶导数的导数叫做 n 阶导数,函数()y f x =的n 阶导数记为()n y fx =(),例如xy e =的n 阶导数()()n xx ee =.若()cos 2xf x xe x =+,则()500f =()A .49492+B .49C .50D .50502-8.已知函数()cos()f x x ωϕ=+的部分图象如下,12y =与其交于A ,B 两点. 若3AB π=,则ω=A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。
1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。
6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。
高考数学模拟试题含答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
高三数学模拟试卷新高考
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = x^3 - 3x在区间[-2, 2]上的图像为:A. 上升-下降-上升B. 下降-上升-下降C. 上升-下降-上升D. 下降-上升-下降答案:C2. 已知等差数列{an}的前n项和为Sn,若S5 = 35,S9 = 81,则数列的公差d为:A. 2B. 3C. 4D. 5答案:B3. 在极坐标系中,点P(2, π/3)的直角坐标为:A. (1, √3)B. (1, -√3)C. (-1, √3)D. (-1, -√3)答案:C4. 函数y = log2(3x - 1)的定义域为:A. (1/3, +∞)B. (1, +∞)C. (1/3, 1)D. (1, 1/3)答案:A5. 若复数z满足|z - 1| = |z + 1|,则z的取值范围为:A. z = 0B. z = 1C. z = -1D. z = 2答案:A6. 已知函数f(x) = x^2 + ax + b,若f(1) = 0,f(-1) = 0,则f(0)的值为:A. 0B. 1C. -1D. 2答案:A7. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则sinA的值为:A. 3/5B. 4/5C. 5/4D. 4/3答案:B8. 若等比数列{an}的首项a1 = 2,公比q = 1/2,则第10项a10为:A. 1/2B. 1/4C. 1/8D. 1/16答案:D9. 函数y = x^3 - 6x^2 + 9x的图像与x轴的交点个数为:A. 1B. 2C. 3D. 4答案:B10. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S6 = 36,则数列的首项a1为:A. 1B. 2C. 3D. 4答案:A二、填空题(本大题共5小题,每小题10分,共50分。
2025年高考数学模拟试卷
2025年高考数学模拟试卷一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合\(A =\{x | x^2 3x + 2 = 0\}\),\(B =\{1, 2\}\),则\(A \cap B =\)()A \(\{1\}\)B \(\{2\}\)C \(\{1, 2\}\)D \(\varnothing\)2、复数\(z =\frac{1 + i}{1 i}\)(\(i\)为虚数单位)的模为()A \(1\)B \(\sqrt{2}\)C \(2\)D \( 2\sqrt{2}\)3、已知向量\(\boldsymbol{a} =(1, 2)\),\(\boldsymbol{b} =(m, -1)\),若\(\boldsymbol{a} \perp \boldsymbol{b}\),则\(m =\)()A \(-2\)B \(2\)C \(\frac{1}{2}\)D \(\frac{1}{2}\)4、设\(x\),\(y\)满足约束条件\(\begin{cases} x + y \geq 1 \\ x y \geq -1 \\ 2x y \leq 2 \\\end{cases}\),则\(z = x + 2y\)的最大值为()A \(3\)B \(4\)C \(5\)D \(6\)5、从\(2\)名男同学和\(3\)名女同学中任选\(2\)人参加社区服务,则选中的\(2\)人都是女同学的概率为()A \(06\)B \(05\)C \(04\)D \(03\)6、函数\(f(x) =\sin^2 x +\sqrt{3} \sin x \cos x\)的最小正周期为()A \(\pi\)B \( 2\pi\)C \(\frac{\pi}{2}\)D \(\frac{\pi}{4}\)7、已知等比数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),若\(a_1 = 1\),\(S_6 = 63\),则公比\(q =\)()A \(2\)B \(-2\)C \(3\)D \(-3\)8、某几何体的三视图如图所示(单位:\(cm\)),则该几何体的体积为()A \( 8\pi\)\(cm^3\)B \( 16\pi\)\(cm^3\)C \( 24\pi\)\(cm^3\) D \( 32\pi\)\(cm^3\)9、已知双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)(\(a > 0\),\(b > 0\))的一条渐近线方程为\(y =\frac{4}{3}x\),则双曲线的离心率为()A \(\frac{5}{3}\)B \(\frac{5}{4}\)C \(\frac{\sqrt{7}}{3}\) D \(\frac{\sqrt{7}}{4}\)10、若函数\(f(x) =\ln x +\frac{1}{2}x^2 (m +\frac{1}{m})x\)在区间\((0, 2)\)内有且仅有一个极值点,则\(m\)的取值范围是()A \((0, \frac{1}{2}\cup 2, +\infty)\)B \((0, \frac{1}{2})\cup (2, +\infty)\)C \((0, 1\cup 2, +\infty)\)D \((0, 1)\cup (2, +\infty)\)11、已知抛物线\(y^2 = 2px\)(\(p > 0\))的焦点为\(F\),准线为\(l\),过点\(F\)的直线与抛物线交于\(A\),\(B\)两点,分别过\(A\),\(B\)作\(AA_1 \perp l\)于\(A_1\),\(BB_1 \perp l\)于\(B_1\),若\(|AF| = 3|BF|\),则\(\frac{|A_1B_1|}{|AB|}=\)()A \(\frac{4}{5}\)B \(\frac{5}{4}\)C \(\frac{3}{4}\) D \(\frac{4}{3}\)12、已知函数\(f(x) = x^3 3x^2 + 2\),对于任意\(x_1\),\(x_2 \in -1, 1 \),都有\(|f(x_1) f(x_2)|\leq M\)成立,则\(M\)的最小值为()A \(0\)B \(2\)C \(4\)D \(6\)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、曲线\(y = x^3 2x + 1\)在点\((1, 0)\)处的切线方程为_____14、\(\log_2 8 +\lg 001 +\ln \sqrt{e} =\)_____15、已知\(A( 1, 0)\),\(B(1, 0)\),\(C\)为圆\(x^2 + y^2 = 1\)上一点,且\(\overrightarrow{AC} \cdot \overrightarrow{BC} = 0\),则\(|\overrightarrow{CA} +\overrightarrow{CB}|=\)_____16、已知三棱锥\(P ABC\)的四个顶点均在球\(O\)的球面上,\(PA = PB = PC = 2\),且\(PA\),\(PB\),\(PC\)两两垂直,则球\(O\)的体积为_____三、解答题(本大题共 6 小题,共 70 分)17、(10 分)在\(\triangle ABC\)中,角\(A\),\(B\),\(C\)所对的边分别为\(a\),\(b\),\(c\),已知\(a= 3\),\(b = 2\sqrt{3}\),\(\cos B =\frac{\sqrt{6}}{3}\)(1)求\(sin A\)的值;(2)求\(c\)的值18、(12 分)已知等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),\(a_2 = 3\),\(S_4 = 16\)(1)求数列\(\{a_n\}\)的通项公式;(2)设\(b_n =\frac{1}{a_n a_{n + 1}}\),求数列\(\{b_n\}\)的前\(n\)项和\(T_n\)19、(12 分)如图,在四棱锥\(P ABCD\)中,底面\(ABCD\)为平行四边形,\(\angle DAB = 60^{\circ}\),\(AB = 2AD\),\(PD \perp\)底面\(ABCD\),\(PD =AD\)(1)证明:\(PA \perp BD\);(2)若二面角\(P BC D\)的大小为\(45^{\circ}\),求直线\(PB\)与平面\(PCD\)所成角的正弦值20、(12 分)某工厂为提高生产效率,开展技术创新活动,提出了两种生产方案为比较两种方案的效率,选取\(40\)名工人,将他们随机分成两组,每组\(20\)人,第一组工人用第一种生产方案,第二组工人用第二种生产方案根据工人完成生产任务的时间(单位:\(min\))绘制了如下茎叶图:第一种生产方案|\(5\)|\(6\)|\(7\)|\(8\)|\(9\)||||||||\(5\)\(6\)\(5\)\(5\)\(7\)\(9\)\(6\)\(8\)\(6\)\(6\)\(7\)\(7\)\(8\)\(9\)\(7\)\(7\)\(6\)\(8\)\(8\)\(8\)\(9\)|第二种生产方案|\(5\)|\(6\)|\(7\)|\(8\)|\(9\)||||||||\(4\)\(5\)\(5\)\(6\)\(6\)\(7\)\(8\)\(8\)\(8\)\(9\)\(9\)\(9\)\(9\)\(8\)\(8\)\(7\)\(7\)\(6\)\(5\)|(1)分别计算两种生产方案完成生产任务时间的中位数、平均数,并比较哪种生产方案的效率更高;(2)完成生产任务时间在\(65 min\)以下(含\(65 min\))视为完成任务优秀,完成任务优秀的工人中,用第一种生产方案的工人有\(8\)人,用第二种生产方案的工人有\(4\)人,能否有\(99\%\)的把握认为工人完成任务是否优秀与生产方案有关?附:\(K^2 =\frac{n(ad bc)^2}{(a + b)(c + d)(a + c)(b + d)}\)|\(P(K^2 \geq k)\)|\(0050\)|\(0010\)|\(0001\)|||||||\(k\)|\(3841\)|\(6635\)|\(10828\)|21、(12 分)已知椭圆\(C\):\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\))的离心率为\(\frac{\sqrt{2}}{2}\),且过点\((1, \frac{\sqrt{2}}{2})\)(1)求椭圆\(C\)的方程;(2)过点\((0, 1)\)的直线\(l\)与椭圆\(C\)交于\(M\),\(N\)两点,若\(\overrightarrow{OM} \cdot \overrightarrow{ON} =\frac{1}{3}\),求直线\(l\)的方程22、(12 分)已知函数\(f(x) = e^x ax 1\)(\(a\)为实数),\(g(x) =\ln x x\)(1)讨论函数\(f(x)\)的单调区间;(2)若存在\(x_0 > 0\),使得\(f(x_0) < g(x_0)\),求\(a\)的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学模拟试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前.考生务必将自己的姓名.准考证号填写在本试卷相应的位置。
3.全部答案写在答题卡上.写在试卷上无效。
4.本试卷满分150分.测试时间120分钟。
5.考试范围:高考全部内容。
第Ⅰ卷一.选择题:本大题共12小题.每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的。
(1) 负数的实数与虚部之和为A. B. C. D.(2)已知集合A={x z}|2x3˂0},B={x|sinx˂x},则A∩B=A.{2}B.{1,2}C.{0,1,2}D.{2,3}(3).某高中在新学期开学初,用系统抽样法从1600名学生中抽取20名学生进行问卷调查,将1600名学生从1开始进行编号,然后按编号顺序平均分成20组(180号,81160号,...,15211600号),若第4组与第5组抽出的号码之和为576,则第7组抽到的号码是A.248B.328C.488D.568(4).在平面直角坐标系xoy中,过双曲线c:=1的右焦点F作x轴的垂线l,则l与双曲线c的渐近线所围成的三角形的面积为A.2B.4C.6D.6(5).袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球得2分,若摸出黑球得1分,则3次摸球所得总分至少是4分的概率为A. B. C. D.(6).已知数到{}是等差数列,Sn为其前n项和,且a10=19,s10=100,记bn=,则数列{bn}的前100项之积为A. B.300 C.201 D.199(7).如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. B. C.D.16π+64(8).执行如图所示的流程图,输出的结果为n=2,i=1=i+1否 是A.2B.1C.0D.1(9).函数f(x )=|x|+(其中a ∈R)的图像不可能是开始n=cos结束i输出n(10).已知点P()是抛物线=4x上任意一点,Q是圆C:(+=1上任意一点,则|PQ|+的最小值为A.5B.4C.3D.2(11).如图所示,AB是圆O的直径,P是圆弧AB上的点,M,N是直径AB上关于O对称的两点,且|AB|=6|AM|=6,则·=A.5B.6C.8D.9(11题图)(12).已知f(x)=,若方程(x)+=3a|f(x)|有且仅有4个不等实根,则实数a 的取值范围为A.(0,)B.(,e)C.(0 ,e)D.(e ,+∞)第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个考生都必须作答,第22题~第23题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
(13).已知平面向量a=(1 ,2),b=(2,m),且|a+b|=|ab|,则|a+2b|=___________。
2x3y+6≥ 0(14).已知动点p(x ,y)满足约束条件x+y1≥ 03x+y3≤0则z=++4x+2y的最小值为__________(15).函数f(x)=(+1)在[0,]上的值域为___________。
(16).过双曲线=1(a>0,b>0)的左焦点向圆+=作一条切线,若该切线被双曲线的两条渐近线截得的线段的长为a,则双曲线的离心率为____________。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17).(本小题满分12分)已知公差不为零的等差数列{an}中,Sn为其中n项和,=1,,,成等比数列。
(Ⅰ)求数列{an}的通项公式:(Ⅱ)记=·,求数列{}的前几项和。
(18).如图所示,几何体ABCD中,四边形A B,AD均为边长为6的正方形,四边形ABCD为菱形,且∠BAD=120°,点E 在棱上,且E=2E ,过、D、E的平面交C于F。
(Ⅰ).作出过、D、E 的平面被该几何体ABCD截得的截面,并说明理由;(Ⅱ)求直线BF与平面E D所成角的正弦值。
19为了解公众对“延迟退休”的态度,某课外学习小组从某社区年龄在[15,75]的居民中随机抽取50人进行调查,他们的年龄的频率分布直方图如下年龄在[15,25)、[25,35)、[35,45)、[45,55)、[55,65)、[65,75]的被调查者中赞成人数分别为a,b,12, 5,2和1,其中a˂b,若前三组赞成的人数的平均数为8,方差为。
(Ⅰ)根据以上数据,填写下面2x2列联表,并回答是否有99%的把握认为年龄以55岁为分界点对“延迟退休”的态度有差异?年龄低于55岁的人数年龄不低于55岁的人数合计赞成不赞成合计(Ⅱ)若分别从年龄在[15,25)、[25,35)的被调查对象中各随机选取两人进行调查,记选中的4个人中不赞成“延迟退休”的人数为x,求随机变量x的分布列和数学期望。
参考数值:=其中n=a+b+c+dP()0.500.400.250.150.100.050.0250.0100.0050.0010.4550.708 1.323 2.072 2.706 3.481 5.024 6.6357.87910.82820.已知直线x2y+2=0经过椭圆c:+=1 (a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线l:x=分别交于M , N两点(Ⅰ)求椭圆的方程。
(Ⅱ)求线段MN的长度的最小值。
21.已知函数f(x)=(a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直(Ⅰ)试比较与的大小,并说明理由(Ⅱ)若函数g(x)=f(x)k有两个不同的零点,,证明:·>请考生从22.23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所选涂题号进行评分:多涂,多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。
(22).(本小题满分10分)[选修44:坐标系与参数方程]以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρθ=2sin(θ)。
(Ⅰ)求曲线C的直角坐标方程;x=1+t(Ⅱ)若直线l的参数方程为(t为参数)y=1+t设p(1,1),直线l与曲线C相交于A,B两点,求+的值.(23).(本小题满分10分)[选修45:不等式选讲]已知函数f(x)=|x|+|2x3|(Ⅰ)求不等式f(x)≤9的解集;(Ⅱ)若函数y=f(x)a的图像与x轴围成的四边形的面积不小于,求实数a的取值范围.理科数学(答案)1.B[解析]因为==,所以复数的实部为,虚部为,实部与虚部之和为,故选B。
2.A[解析]因为A={x z1}={x z11˂x˂3}={0,1,2}由sino=o>,sin1>sin=,sin2˂,可得O∉B,1∉B,2B,所以A B={2},故选A。
3.C[解析]各组抽到的编号按照从小到大的顺序排成一列,恰好构成公差为80的等差数列,设第4组与第5组抽出的号码分别为x,x+80,则x+x+80=576,x=248,所以第7组抽到的号码是248+(74)x80=488,故选C4.B[解析]双曲线C:==1的右焦点F=(2,0),则l:x=2,所以l与双曲线c的渐近线y=±x的交点分别为(2,±2),所以直线l与双曲线c的两条渐近线所围成的面积为x4x2=4,故选B。
5.D[解析]3次摸球所得总分少于4分的情况只有1种,即3次摸到的球都是黑球,所以P=1=,故选D。
6. C +9d=19[解析]设{an}的首项为a,公差为d,则10+d=100,所以d=2,=1,∴an=2n1,又bn==,所以n=...bn=·· ... ··=2n+1,∴T100=201 7.C[解析]该几何体可以看成由一个四棱锥和一个四分之一圆锥组成,四棱锥的底面面积为16,高为4,故其体积为:四分之一圆锥的体积为xx4xπx16=π,所以整个几何体的体积为,故选C8.C[解析]cos=1,cos=0,coso=1,cos=0,coso=1,....可见循环20次后,n=0 故选C9.C[解析]当a=0时,图像可以是B;当a>0时,图像可以是A;当a˂0时,图像可以是D,故答案为C10.C[解析]抛物线=4x的焦点F(1,0),准线l:x=1,圆C:+=1的圆心C (2,4)半径r=1,由抛物线定义知,点P到抛物线的准线x=1的距离d=|PF|,点P到y轴的距离为=d1,所以当C,P,F三点共线时,|PQ|+d取最小值,所以(|PQ|+)min=|FC|r1=511=3,故选C。
11.A法一:[解析]连接AP,BP,则=+,=+=,所以·=(+)·()=··+·=·+·=·= 1x61=5故选A法二:以O为原点,AB所在直线为x轴建立平面直角坐标系,可设P(3c0Sθ,3sinθ)由题意M(2,0),N(2,0),则=(23c0Sθ,3Sinθ),=(23COSθ,3Sinθ),·=9θ+9siθ=5法三:取特殊点P取A点,则·=512.B[解析]f'(x)=,则f(x)在(∞,0)和(0,1)上单调递增,在(1,+∞)上单调递增,又x→∞时f(x)→0,从y轴左边趋近于0时f(x)→∞,从y轴右边趋向于0时,f(x)→+∞。
f(1)=e,所以可以作出f(x)的大致图像,从而得到|f(x)|的图像(如图所示)。
原方程可化为(|f(x)|a)(|f(x)|2a)=0由直线y=a,y=2a,与|f(x)|的图像有4个交点,可得 o a˂e=>˂a˂e2a e二、填空题:本大题共4小题,每小题5分。
13.答案5[解析]因为|+|=||,所以⊥,所以m=1,所以+2=(3,4),所以|+2|=514.答案3[解析]不等式组2x3y+6≥0X+y1≥03x+y3≥0表示的平面区域如图△ABC(包括边界),解方程组A(,)因为++4x+2y=+5表示点(2,1)到区域内的点P(x,y)的距离的平方减去5,又点(2,1)到x+y1=0的距离为=2,因为(2,1)到A点的距离为>2,点(2,1)到B点的距离为>2,由图知点(2,1)到区域内的点P(x,y)的最小值为2,所以z的最小值为85=315答案[,1][解析]f(x)=sinx(sinx2+1)=sinx(sinxcosx)=sinxcosx=sin2x=sin(2x+)因为o,所以2x+,所以≤sin(2x+)≤1即+(x)在上的值域为[,1]16.答案2或[解析]情况一:切线与两条渐近线的交点位于第一、二象限,左焦点和切点之间的距离为=b,因此切线斜率为tanθ =,而斜率为负的渐近线的斜率为,它们互为负倒数,所以这两条直线垂直,两条渐近线和切线围成一个直角三角形,在三角形AOB中,易求得∠ AOB=60°,因此=tan60°=,易知=2.情况二:切线与两渐近线的交点位于第二、三象限,同理可得=三、解答题17.[解析](Ⅰ)设等差数列{an}的公差为d,则==+,=+d 、、、2分因为,成正比数列,所以=(+d),化简得d=2=2、、、5分所以数列{an}的通项公式为an=1+(n1)x2=2n1、、、、、、、、6分(Ⅱ)bn=(2n1)·所以Tn=+3·+5·+、、、+(2n3)·+(2n1)·①①式两端乘以4,得4Tn=1·+3·+5·+、、、+(2n3)·+(2n1)·②、、8分②①②得:3Tn=1·+2·+2·+、、、+2·(2n1)·=2+2x(2n1)·=+·(2n1)·、、、、、10分所以Tn==、、、、、12分18.[解析](Ⅰ)在平C内过点E作EF ∥C交C于F,则CF=2F则四边形EFD就是过、D、E的平面被该几何体ABCD截得的截面证明如下:由正方形及菱形的性质可知//AB//DC,所以四边形CD为平行四边形,从而 C //D所以 D //EF,因此、E、F、D四点共面、、、、、、、4分(Ⅱ)因为四边形A B , AD均为正方形,所以A⊥平面ABCD , A⊥AD,且A=AB=AD=6,以A为原点,直线AD为y轴,平面ABCD内过点A与AD垂直的直线为x 轴,直线A为轴,建立如图所示的空间直角坐标系,、6分可得A(0,0,0),B(3,3,0),C(3,3,0),D(0,6,0),(0,0,6_),(3,3,6),(0,6,6),=(0,6,6)因为=2,所以点E的坐标为(,5,4),所以=(2,8,4)设平面E D的一个法向量n=(x,y,z),由n·=0 得by6z=0 取z=1n·=0 x+3y=0可得n=(,1,1)设直线BF与平面E D所成的角为θ,则sinθ ===,所以BF与平面E所成的角正弦值为,、、、、、12分19.[解析](1)由频率分布直方图可知各组人数依次为5,10,15,10,5,5由题意得=8[]=解得a=4,b=8,所以各组赞成人数依次为4,8,12,5,2,1.2x2列表如下:年龄低于55岁的人数年龄不低于55岁的人数合计赞成 29 3 32不赞成 11 7 18合计 40 10 50=≈6.272<6.635∴没有99%的把握认为年龄以55岁为分界点对“延迟退休”的态度有差异、、、、、、6分(Ⅱ)随机变量x的所有可能取值为0,1,2,3,P(x=0)=x=x=P(x=1)=x+x=P(x=2)=x+x=P(x=3)=x=∴随机变量x的分布列为X 0 1 2 3P(x)∴E(x)=0x+1x+2x+3x=、、、、、、、、、12分20.[解析](Ⅰ)由题知A(2,0),D(0,1) 故a=2,b=1、、、、、、2分所以椭圆c的方程为+=1、、、、、、、、、、、、、、4分(Ⅱ)设直线AS的方程为y=k(x+2)(k),从而可知M点的坐标为()、、、、、、、、6分由y=k(x+2)+=1 得s(,)、、、、、、、、8分所以可得BS的方程为y=(x2),从而可知N点的坐标(,)、、、、、、、、11分∴|MN|=+≧,当且仅当k=时等号成立,故当k=时,线段MN的长度取得最小值、、、、、、、12分21.[解析](Ⅰ)解:依题意得f'(x)=,所以(1)==,又由切线方程可得(1)=1即=1,解得a=0,此时f(x)=,(x)=令(x)0,即11nx0,得0x e;令(x)0,即11nx0,得x e,所以f(x)的增区间为(o,e),减区间为(e,+∞)、、、、、、、、、、、、4分所以f()f()即1n1n,、、、、、、、6分(Ⅱ)证明:不妨设0,因为g()=g()=0所以化简得1n k=0 , 1n k=0可得1n+1n=k(), 1n1n=k()要证明,即证明1n2,也就是k()2、、、、、、、、8分因为k=,所以即证,即1n,令=t,则t 1即证1nt令h(t)=1nt (t1)由(t)==0故函数h(t)在(1,+∞)是增函数所以h(t)h(1)|=0,即1nt得证所以、、、、、、、、、、12分23.[解析](Ⅰ)f(x) = x+3 , 0x ≦3x3,x当x ≦ 0时,由3x+3 ≦ 9,解得2 ≦ x ≦ 0;当0x ≦时,由x+3 ≦ 9,解得0x ≦当x时,由3x3 ≦ 9,解得x ≦ 4所以不等式f(x)≦ 9的解集为{x12 ≦ x ≦ 4}、、、、、、、、、、、5分(Ⅱ)函数y=f(x)a的图像与x轴围成的四边形是如图所示的四边形ABCD,由于该图形的面积不小于,f(0)=3,故a3此时A(),B(,0),C(,0),D(0,3a),E(2,3a)△ADE的面积为x(20)x[(3a)()]=梯形BCDE的面积为x(a3)所以+x(a3)≥所以x(a3)≥9即≥36,解得a ≥6,即实数a的取值范围是[6,+∞)、、、、、、、、、10分22.[解析](Ⅰ)由曲线c的极坐标方程可得ρθ=2cosθ即θ=2ρcosθ化成直角坐标方程为、、、、、、、、4分(Ⅱ)联立直线1的参数方程与曲线c方程可得=2(1+)整理得910t25=0、、、、、、、、、、、、7分=,=∵=0,于是点P在AB之间∴+==||==x=、、、、、、、、、、、、、、、、、、、、10分3x+3,x ≦ 0高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)。