人教版 八年级上册第12章全等三角形检测卷 含答案
人教版数学八年级上册第十二章《全等三角形》测试卷(含答案)
人教版数学八年级上册第十二章《全等三角形》测试卷(含答案)一、单选题1.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A. 5B. 6C. 7D. 不能确定2.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A. 1B. 2C.D. 43.如图,用尺规作图作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A. SASB. AASC. ASAD. SSS4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A. ∠B=∠CB. AD=AEC. ∠ADC=∠AEBD. DC=BE5.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A. 1︰1︰1B. 1︰2︰3C. 2︰3︰4D. 3︰4︰56.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A. 76°B. 62°C. 42°D. 76°、62°或42°都可以7.如图,在5×5格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )A. 5个B. 6 个C. 7个D. 8 个8.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若CD=3,点Q是线段AB上的一个动点,则DQ的最小值()A. 5B. 4C. 3D. 29.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时,△ABP和△DCE全等.A. 1B. 1或3C. 1或7D. 3或710.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1, √3),则点C 的坐标为()A. (﹣1,)B. (﹣,1)C. (﹣,1)D. (﹣,2)二、填空题11.如图,AC,BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB ≅△DOC,你补充的条件是________。
人教版八年级上册数学 第十二章 全等三角形 单元测试卷(含答案)
人教版八年级上册数学第十二章全等三角形单元测试卷一、选择题(30分)1.下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等2.现已知线段a,b(a<b),∠MON=90°,求作Rt∠ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下.小惠:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点A为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.小雷:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点O为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误3.下列说法中,正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.两边及其中一边上的高分别相等的两个三角形全等C.有一直角边和一锐角分别相等的两个直角三角形全等D.面积相等的两个三角形全等4.在两个三角形中给出条件:①两角一边对应相等;②两边一角对应相等;③两角夹边对应相等;④两边夹角对应相等;⑤三边对应相等;⑥三角形对应相等.其中能判断出三角形全等的是( )A.①②③⑤B.①③④⑤C.①④⑤⑥D.②③④⑤5.有下列说法:①形状相同的图形是全等形;②全等形的大小相同,形状也相同;③全等三角形的面积相等;④面积相等的两个三角形全等;⑤若∠ABC∠∠A1B1C1,∠A1B1C1∠∠A2B2C2,则∠ABC∠∠A2B2C2.其中正确的说法有()A.2个B.3个C.4个D.5个6.下列结论错误的是()A.全等三角形对应边上的高相等B.全等三角形对应边上的中线相等C.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D.两个直角三角形中,两个锐角相等,则这两个三角形全等7.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.48.在下列条件中,不能判定两直角三角形全等的是()A.斜边和一锐角对应相等B.斜边上的中线和一直角边对应相等C.两边分别相等D.直角的平分线和一直角边对应相等9.边长都为整数的△ABC△△DEF△AB与DE是对应边△AB△2△BC△4.若△DEF的周长为偶数△则DF的长为( )A.3B.4C.5D.3或4或510.已知△ABC∠∠DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35D.45°二、填空题(15分)11.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.12.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是_____________(填序号)13.若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点坐标为_________. 14.在△ABC中,∠C=90°△BC=4cm△∠BAC的平分线交BC于D,且BD∶DC=5∶3,则D到AB的距离为__________△15.已知一个多边形的内角和与它的一个外角的和是797,则这个多边形的这个外角的度数是________.三、解答题(75分)16.(1)如图(1),已知:在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m, CE∠直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在∠ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且∠ABF和∠ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断∠DEF 的形状.。
人教版八年级数学上册单元检测卷:第十二章 全等三角形(word版,含答案)
第十二章检测卷一、填空题(本大题共4小题,每小题5分,满分20分)1.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.2.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,OB与A′B′交于点C,则∠A′CO的度数是________.3.如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是________.4.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F.若BC恰好平分∠ABF,AE =2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论是________(填序号).二、选择题(本大题共10小题,每小题4分,满分40分)5.下列各组的两个图形属于全等图形的是()6.如图,已知△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD的度数为()A.85°B.65°C.40°D.30°7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.CE=BFC.∠A=∠D D.AB=BC8.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD 与CD 的大小关系是()A.BD >CD B.BD <CDC.BD =CD D.不能确定9.如图,AB ∥CD ,AP 、CP 分别平分∠BAC 、∠ACD ,PE ⊥AC 于点E ,PN ⊥DC 于点N ,交AB 于点M .若PE =3,则MN 的长为()A.3B.6C.9D.无法确定10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.90°B.150°C.180°D.210°11.如图,已知EA ⊥AB ,BC ∥EA ,ED =AC ,AD =BC ,则下列式子不一定成立的是()A.∠EAF =∠ADF B.DE ⊥ACC.AE =AB D.EF =FC12.如图,在方格纸中以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有()A.1个B.2个C.3个D.4个13.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于点E .若BC =7,则AE 的长为()A.4B.5C.6D.714.如图,在△ABC 和△DEB 中,点C 在边BD 上,AC 交BE 于点F .若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于()A.∠EDB B.∠BEDC.12∠AFB D.2∠ABF三、(本大题共2小题,每小题8分,满分16分)15.如图,已知△ABE ≌△ACD .(1)如果BE =6,DE =2,求BC 的长;(2)如果∠BAC =75°,∠BAD =30°,求∠DAE 的度数.16.如图,已知CE ⊥AB ,DF ⊥AB ,AC =BD ,CE =DF .求证:AC ∥BD .四、(本大题共2小题,每小题8分,满分16分)17.如图,两车从路段AB的两端同时出发,沿平行路线以相同的速度行驶,相同时间后分别到达C、D两地,CE⊥AB,DF⊥AB,C、D两地到路段AB的距离相等吗?为什么?18.如图,已知∠DAB=∠CBE=90°,点E是线段AB的中点,CE平分∠DCB且与DA的延长线相交于点F,连接DE.求证:DE平分∠FDC.五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB+BC+AC=12,过点O作OD⊥BC于点D,且OD=2,求△ABC的面积.20.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)试猜想BD与AC的位置关系,并说明理由.六、(本题满分12分)21.阅读下面材料:学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”,可以判定Rt△ABC≌Rt△DEF;第二种情况:当∠B是锐角时,如图②,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,则△ABC和△DEF的关系是________;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图③,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.过点C作AB边的垂线,交AB的延长线于点M,过点F作DE边的垂线,交DE的延长线于点N,根据“AAS”,可以知道△CBM≌△FEN,请补全图形,进而证出△ABC≌△DEF.七、(本题满分12分)22.如图,在△ABC中,∠B=∠C,AB=8,BC=6,点D为AB的中点,点P在线段BC上以每秒2个单位长度的速度由点B向点C运动,同时点Q在线段CA上以每秒a个单位长度的速度由点C向点A运动.设运动时间为t 秒(0≤t≤3).(1)用含t的代数式表示线段PC的长;(2)若点P、Q的运动速度相等,当t=1时,△BPD与△CQP是否全等?请说明理由.(3)若点P、Q的运动速度不相等,则当△BPD与△CQP全等时,求a的值.八、(本题满分14分)23.(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系;(2)小聪延长CD至点G,使DG=BE,连接AG,得到△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论;(3)如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足______________关系时,仍有EF=BE+FD,说明理由.参考答案1.4 2.82° 3.50°4.①②③④5-14:.D .D .A .C .B .C .D .C .D .C 15.解:(1)∵△ABE ≌△ACD ,∴BE =CD ,∠BAE =∠CAD .又∵BE =6,DE =2,∴EC =DC -DE =BE -DE =4,∴BC =BE +EC =10.(4分)(2)∵∠CAD =∠BAC -∠BAD =75°-30°=45°,∴∠BAE =∠CAD =45°,∴∠DAE =∠BAE -∠BAD =45°-30°=15°.(8分)16.证明:∵CE ⊥AB ,DF ⊥AB ,∴∠AEC =∠BFD =90°.(2分)在Rt△ACE 和Rt△BDF 中,=BD ,=DF ,∴Rt△ACE ≌Rt△BDF (HL),(5分)∴∠A =∠B ,∴AC ∥BD .(8分)17.解:C 、D 两地到路段AB 的距离相等.(2分)理由如下:由题意可知AC =BD .∵CE ⊥AB ,DF ⊥AB ,∴∠AEC=∠BFD =90°.∵AC ∥BD ,∴∠A =∠B .(5分)在△AEC 和△BFD AEC =∠BFD ,A =∠B ,=BD ,∴△AEC ≌△BFD (AAS),∴CE=DF ,∴C 、D 两地到路段AB 的距离相等.(8分)18.证明:过点E 作EH ⊥CD .(2分)∵CE 平分∠DCB ,∠CBE =90°,∴BE =EH .∵点E 是线段AB 的中点,∴AE =BE ,∴AE =EH .(5分)又∵∠DAB =90°,∴DE 平分∠FDC .(8分)19.解:如图,作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC 、∠ACB 的平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2,(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2×(AB +BC +AC )=12×2×12=12.(10分)20.(1)证明:由作图步骤可得AB =AD ,BC =DC .在△ABC 与△ADC =AD ,=DC ,=AC ,∴△ABC ≌△ADC (SSS).(4分)(2)解:BD ⊥AC .(5分)理由如下:由(1)知△ABC ≌△ADC ,∴∠BAC =∠DAC .(6分)在△ABE 与△ADE 中,=AD ,BAE =∠DAE ,=AE ,∴△ABE ≌△ADE (SAS),∴∠AEB =∠AED .(8分)又∵∠AEB +∠AED =180°,∴∠AEB =90°,∴BD ⊥AC .(10分)21.解:第二种情况:C(3分)解析:由题意可知满足条件的点D 有两个(如图②),所以△ABC 和△DEF 不一定全等.故选C.第三种情况:补全图形如图③所示.(6分)证明:∵∠ABC =∠DEF ,∴∠CBM =∠FEN .∵CM ⊥AB ,FN ⊥DE ,∴∠CMB =∠FNE =90°.在△CBM 和△FEN 中,CMB =∠FNE ,CBM =∠FEN ,=EF ,∴△CBM ≌△FEN (AAS),∴CM =FN .在Rt△AMC 和Rt△DNF =FN ,=DF ,∴Rt△AMC ≌Rt△DNF (HL),∴∠A =∠D .在△ABC 和△DEF A =∠D ,ABC =∠DEF ,=EF ,∴△ABC ≌△DEF (AAS).(12分)22.解:(1)PC =BC -PB =6-2t .(3分)(2)△BPD 与△CQP 全等.(4分)理由如下:∵t =1,∴PB =CQ =2,∴PC =BC -PB =6-2=4.∵AB =8,点D 为AB 的中点,∴BD =AD =4,∴PC =BD .在△BPD 与△CQP =CQ ,B =∠C ,=CP ,∴△BPD ≌△CQP (SAS).(8分)(3)∵点P 、Q 的运动速度不相等,∴BP ≠CQ .又∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC ,BD =CQ ,∴2t =6-2t ,at =4,解得t =32,a =83.(12分)23.(1)解:EF =BE +DF .(3分)(2)证明:∵四边形ABCD 为正方形,∴AB =AD ,∠B =∠ADC =∠BAD =90°,∴∠ADG =180°-∠ADC =90°=∠B .在△ABE 和△ADG =AD ,B =∠ADG ,=DG ,∴△ABE ≌△ADG ,∴∠BAE =∠DAG .∵∠EAF =45°,∴∠DAF +∠BAE =∠BAD -∠EAF =90°-45°=45°,∴∠DAF +∠DAG =45°,即∠GAF =45°,∴∠GAF =∠EAF .(6分)在△GAF 和△EAF =AE ,GAF =∠EAF ,=AF ,∴△AFG ≌△AFE (SAS),∴GF =EF .∵GF =DG +FD =BE +FD ,∴EF =BE +FD .(9分)(3)解:∠BAD =2∠EAF (11分)理由如下:如图,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠ABC +∠ABM =180°,∴∠D =∠ABM .在△ABM 和△ADF =AD ,ABM =∠D ,=DF ,∴△ABM ≌△ADF (SAS),∴AF =AM ,∠DAF =∠BAM .∵∠BAD =2∠EAF ,∴∠DAF +∠BAE =∠EAF ,∴∠BAE +∠BAM =∠EAM =∠EAF .在△FAE 和△MAE 中,=AE ,EAF =∠EAM ,=AM ,∴△FAE ≌△MAE (SAS),∴EF =EM .∵EM =BE +BM =BE +DF ,∴EF =BE +DF .(14分)。
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案
人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版数学八年级上册第十二章《全等三角形》测试题含答案
人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
人教版八年级数学上册第十二章 全等三角形 单元测试卷(含答案)
人教版八年级数学上册第十二章全等三角形单元测试卷(含答案)一、单选题(共10题;共30分)1. ( 3分) 如图,点B、E、C、F在一条直线上,△ABC≌△DEF则下列结论正确的是()A. AB∥DE,且AC不平行于DF.B. BE=EC=CFC. AC∥DF.且AB不平行于DED. AB∥DE,AC∥DF.2. ( 3分) 如图(1),若△ABC与△DEF全等,请根据图中提供的信息,得出x的值为()A. 20B. 18C. 60D. 503. ( 3分) 如图,将长方形纸片沿对角线折叠,重叠部分为△BDE,则图中全等三角形共有()A. 0对B. 1对C. 2对D. 3对4. ( 3分) 如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°5. ( 3分) 如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A. ∠B=∠CB. BE=CDC. BD=CED. ∠ADC=∠AEB6. ( 3分) 如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P 旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 17. ( 3分) 下列各组中的两个图形属于全等图形的是()A. B. C. D.8. ( 3分) 下列说法正确的是()A. 周长相等的两个三角形全等B. 面积相等的两个三角形全等C. 三个角对应相等的两个三角形全等D. 三条边对应相等的两个三角形全等9. ( 3分) 下列数据能唯一确定三角形的形状和大小的是()A. AB=4,BC=5,∠C=60°B. AB=6,∠C=60°,∠B=70°C. AB=4,BC=5,CA=10D. ∠C=60°,∠B=70°,∠A=50°10. ( 3分) 如图,乐乐书上的三角形墨迹污染了一部分,很快他就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是()A. SSSB. ASAC. AASD. SAS二、填空题(共8题;共24分)11. ( 3分) 如图所示,AC=DF,BD=EC,AC∥DF,∠ACB=80°,∠B=30°,则∠F= 1 .12. ( 3分) 如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是________.(不添加任何字母和辅助线)13. ( 3分) 如图,△ACE ≅△DBF,如果DA=12,CB=6,那么线段AB的长是________.14. ( 3分) 三个全等三角形按如图的形式摆放,则∠1+∠2+∠3=________度.15. ( 3分) 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.若CD=3,AB=8则△ABD的面积是________。
人教版数学八年级上册第十二章《全等三角形》测试题(含答案)
第十二章《全等三角形》测试题一、单选题1.如图所示,△ABC≌△EFD,那么()A.AB=EF,AC=DE,BC=DF B.AB=DF,AC=DE,BC=EFC.AB=DE,AC=EF,BC=DF D.AB=EF,AC=DF,BC=DE2.如图,△ACB≌△A′CB′,∠A′CB=30∘,∠ACB′=110∘,则∠ACA′的度数是()A.30∘B.40°C.20∘D.45°3.在Rt△ABC与Rt△A'B'C'中,∠C=∠C'=90°,∠A=∠B' ,AB=A'B',则下面结论正确的是( )A.AB=A'C' B.BC=B'C' C.AC=B'C' D.∠A=∠A'.4.如图,要测量池塘两岸相对的两点,A B的距离,可在池塘外取AB的垂线BF上的 ,再画出BF的垂线DE,使E与,A C在一条直线上,这时测点,C D,使BC CD得DE的长就是AB的长,依据是()A.SSS B.SAS C.ASA D.AAS5.如图,Rt△ABC≌Rt△DEF,∠E=55°,则∠A的度数为()A.25°B.35°C.45°D.55°6.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A.5 B.6 C.7 D.不能确定7.直线AB上有一点O,射线OD和射线OC在AB同侧,∠AOD=60°,∠BOC=30°,则∠AOD与∠BOC的平分线的夹角的度数是()A.75°B.90°C.135°D.以上都不对8.如图,△ABC≌△DEF,下列结论不正确的是( )A.AB=DE B.BE=CF C.BC=EF D.AC=DE9.如图,点E, F在直线AC上,DF=BE,∠AFD=∠CEB,下列条件中不能判断△ADF≌△CBE的是( )A.∠D=∠B B.AD=CB C.AE=CF D.AD// BC 10.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,若CD=4,则D 到斜边的距离为()。
人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案
人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,在ABC 中90C ∠=︒.用直尺和圆规在边BC 上确定一点P ,使点P 到AC ,AB 的距离相等,则符合要求的作图痕迹是( )A .B .C .D .2.如图所示,已知ABC 的周长是20,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC ⊥于D ,若2OD =,则ABC 的面积是( )A .20B .12C .10D .83.如图//EF AD ,AD//BC ,CE 平分BCF ∠ 120DAC ∠= 20ACF ∠=则FEC ∠的度数为( )A .10B .20C .30D .604.如图,把两根钢条的中点连在一起,可以测量工件内槽的宽度,在图中,要测量工件内槽宽AB ,则需要测量的量是( )A .OA 的长度B .OB 的长度C .AB 的长度D .A B ''的长度5.课间,小明和小聪在操场上忽然争论起来,他们都说自己比对方长得高.这时,数学老师走过来,笑着对他们说:“你们不要争啦,其实你们一样高,瞧瞧地上你俩的影子一样长.”原来数学老师运用全等知识从他们的影长相等得到了他们的身高相同.你知道数学老师运用全等三角形的判定方法是哪一个吗?( )A .SSSB .SASC .HLD .ASA6.如图,在Rt ABC △中90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若8CD =,AB=15,则ABD △的面积是( )A .120B .60C .45D .307.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①ABD △和ACD 面积相等;①BAD CAD ∠=∠;①BDF CDE ≌;①BF CE ∥;①CE AE =.其中正确的有( )A .①①①B .①①①C .①①①D .①①①①8.如图,在四边形ABCD 中,对角线 AC 平分,BAD AB AD ∠>,下列结论中正确的是()A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<-D .AB AD - 与 CB CD -的大小关系不确定9.如图,AE=AC ,若要判断△ABC ①△ADE ,则不能添加..的条件为( )A .DC=BEB .AD=ABC .DE=BCD .①C=①E10.在ABC 和DEF 中,90A D ∠=∠=︒,则下列条件中不能判定ABC DEF ≌△△的是()A .AB DE = AC DF = B .AC EF = BC DF =C .AB DE = BC EF =D .C F ∠=∠ BC EF =二、填空题11.如图,在四边形ABCD 中,AB =BC ,①ABC =①CDA =90°,BE①AD 于点E ,且四边形ABCD 的面积为12,则BE 的长为 .12.如图所示,在坐标平面中()0,4A ,C 为x 轴负半轴上一点,CO=3,AC=5,若点P 为y 轴上一动点,以PC 为腰作等腰三角形PCQ △,已知22CPQ ACO α∠=∠=(α为定值),连接OQ ,则OQ 的最小值为 .13.如图,ABC 中2BAC C ∠=∠,BD 为ABC ∠的平分线7.6BC =, 4.4AB =则AD = .14.如图,已知AB=BD ,①A=①D 若直接应用“SAS”判定△ABC①①DBE ,则需要添加的一个条件 是 .15.如图,①ABC 是一个等腰直角三角形,①BAC =90°,BC 分别与AF 、AG 相交于点D 、E .不添加辅助线,使①ACE 与①ABD 全等,你所添加的条件是 .(填一个即可)16.如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动 分钟后CAP PBQ ≌△△.17.如图1,在ABC 中,D 是AB 边上的一点,小新用尺规作图,做法如下:如图2,①以B 为圆心,任意长为半径作弧,交BA 于F 、交BC 于G ;①以D 为圆心,BF 为半径作弧,交DA 于M ;①以M 为圆心,FG 为半径作弧,两弧相交于N ;①过点D 作射线DN 交AC 于点E .若①ADE =62︒,①C =68︒,则①A 的度数是 度.18.如图,CA=CB ,CD=CE 40ACB DCE ∠=∠=︒,AD 、BE 交于点H ,连接CH .①AD BE =;①40DHE ∠=︒①CH 平分ACE ∠.①CH 平分AHE ∠.其中正确的有 (把正确的序号填入横线处).19.如图,已知AC与BF相交于点E,AB//CF,点E为BF中点,若CF=6,AD=4,则BD .20.如图,在①ABC中,①ABC=2①C,AP和BQ分别为①BAC和①ABC的角平分线,若①ABQ的周长为18,BP=4,则AB的长为三、解答题21.已知,如图,Rt△ABC中,①ACB=90°,AC=BC.点D为AB边上一点,且不与A、B两点重合,AE①AB,AE=BD.连接DE、DC,求证:CE=CD.22.如图1,在平面直角坐标系中,ABC 的顶点()3,0A -、()0,3B 和()1,0C ,E 是线段OB 上一点,且AE BC =.(1)求点E 的坐标;(2)延长AE 交BC 于 D .①如图2,判断AE 和BC 的位置关系并说明理由;①连接OD ,如图3 , 求证:DO 平分ADC ∠.23.如图,AB=AC ,DE=DF ,DE①AB ,垂足为点E ,DF ①AC ,垂足为点F .求证:DB=DC .24.如图,在①ABC中,①C=90°,AD平分①CAB,交CB于点D,过点D作DE①AB于点E,若①B=30°,CD=1,求AB的长.≌,A,F,C,D四点在同一条直线上.25.如图,已知ABF DEC;(1)求证:AC DF(2)判断BF与EC的位置关系,并证明.参考答案1.B2.A3.B4.D5.D6.B7.B8.A9.C10.B11.2312.12513.3.214.AC=DE15.CD =BE (答案不唯一) 16.417.5018.①①①19.220.721.略.22.(1)(0,1)E (2)①AE BC ;①略 23.略24.325.(1)略;(2)BF EC ∥。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。
八年级数学上册《第十二章全等三角形》单元检测卷附答案-人教版
八年级数学上册《第十二章全等三角形》单元检测卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如图,AC 与BD 相交于点O ,AB CD =和A D ∠∠=,不添加辅助线,判定ABO ≌DCO 的依据是( )A .SSSB .SASC .HLD .AAS2.边长都为整数的△ABC 和△DEF 全等,AB 与DE 是对应边,AB =2,BC =4,若△DEF 的周长为奇数,则DF 的值为( )A .3B .4C .3或5D .3或4或53.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8BOC 90m ∠︒=,.爸爸在C 处接住小丽时,小丽距离地面的高度是( )A .1mB .1.6mC .1.8mD .1.4m4.如图所示,在 ABC 中 90C ∠=︒ ,点D 在 AB 上 BC BD = , DE AB ⊥ 交 AC 于点E , ABC 的周长为12, ADE 的周长为6,则 BC 长为( )A .3B .4C .5D .65.如图,在ACD 中9068CAD AC AD ∠=︒==,,,AB CD 且E 是CD 上一点,BE 与AD 相交于点F ,当AB CE CD +=时,图中阴影部分的面积为( )A .24B .36C .48D .606.如图,ABC ≌ADE ,BC 的延长线交DE 于点F3011010B AED DAC ∠=︒∠=︒∠=︒,, 则DFB ∠=( )A .55︒B .50︒C .65︒D .60︒7.如图,已知 ABC 的周长是16,MB 和MC 分别平分∠ABC 和∠ACB ,过点M 作BC 的垂线交BC 于点D ,且MD =4,则 ABC 的面积是( )A .64B .48C .32D .428.如图,已知线段40AB =米,MA AB ⊥于点A ,20MA =米射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1米,Q 点从B 点向D 运动,每秒走3米,P 、Q 同时从B 出发,则出发x 秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等,则x 的值为( )A .20B .20或10C .10D .6或10二、填空题:(本题共5小题,每小题3分,共15分.) 9.在平面直角坐标系中,已知点A ,B 的坐标分别是 (2,0) , (4,2) 若在x 轴下方有一点P ,使以O ,A ,P 为顶点的三角形与 OAB 全等,则满足条件的P 点的坐标是 .10.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF=40°,PB=PF ,则∠APF= °.11.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD 于点E ,DE =2,BC =5,则△BCE 的面积为 .12.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥垂足为D ,交AC 与点E ,A ABE ∠=∠若7AC =,4BC =则BD 的长为 .13.如图,点A ,E ,F ,C 在一条直线上,若将△DEC 的边EC 沿AC 方向平移,平移过程中始终满足下列条件:AE =CF ,DE ⊥AC 于点E ,BF ⊥AC 于点F ,且AB =CD .则当点E ,F 不重合时,BD 与EF 的关系是 .三、解答题:(本题共5题,共45分)14.如图,已知AC 平分BAF ∠,CE AB ⊥于点E ,CF AF ⊥于点F ,且BC DC =.求证:CFD CEB ≌.15.如图AB AC = , AB AC ⊥ 和AD AE ⊥ ,且 D AEC ∠=∠ ,求证: AD AE = .16.如图,AD 为△ABC 的中线,分别过点C 、B 作AD 的垂线,垂足分别为E 、F .求证:BF=CE .17.如图所示,在△ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 交BD 的延长线于点E ,CE =1,延长CE 、BA 交于点F .(1)求证:△ADB ≌△AFC ;(2)求BD 的长度.18.如图 AB AC = , AE AD = 和 CAB EAD α∠=∠= .(1)求证: AEC ADB ≅ ;(2)若 90α=︒ ,试判断 BD 与 CE 的数量及位置关系并证明;(3)若 CAB EAD α∠=∠= ,求 CFA ∠ 的度数.参考答案:1.D 2.D 3.D 4.A 5.A 6.B 7.C 8.C9.(2,2)-- 或 (4,2)-10.8011.512.3213.互相平分14.证明:∵AC 平分BAD ∠,CE AB ⊥于E ,CF AD ⊥于F ∴CE CF =在Rt CEB 和Rt CFD 中{CE =CF CB =CD∴()Rt Rt HL CFD CEB ≌.15.证明:∵AB ⊥AC ,AD ⊥AE∴∠BAE+∠CAE =90°,∠BAE+∠BAD =90°∴∠CAE =∠BAD又AB =AC , D AEC ∠=∠∴△ABD ≌△ACE(AAS)∴AD AE = .16.证明:∵CE ⊥AF ,BF ⊥AF∴∠CED=∠BFD=90°又∵AD 是边BC 上的中线∴BD=DC ;在Rt △BDF 和Rt △CDE 中∴△BDF ≌△CDE (AAS )∴BF=CE (全等三角形的对应边相等).17.(1)证明:如图∵∠BAC =90°∴∠2+∠F =90°,∠ACF+∠F =90°∴∠ACF =∠2在△ACF 和△ABD 中{∠CAF =∠BAD =90∘AC =AB∠ACF =∠2∴△ACF ≌△ABD(2)解:∵△ACF≌△ABD∴BD=CF∵BE⊥CF∴∠BEC=∠BEF=90°∵∠1+∠BCE=90°,∠2+∠F=90°∴∠BCF=∠F∴BC=BF,CE=EF=1∴BD=CF=2.18.(1)证明:∵∠CAB=∠EAD ∴∠CAB+∠BAE=∠EAD+∠BAE∴∠CAE=∠BAD∵AB=AC,AE=AD在△AEC和△ADB中{AB=AC∠CAE=∠BADAE=AD∴△AEC≌△ADB(SAS)(2)解:CE=BD且CE⊥BD,证明如下:将直线CE与AB的交点记为点O由(1)可知△AEC≌△ADB∴ CE=BD,∠ACE=∠ABD∵∠BOF=∠AOC,∠α =90°∴∠BFO=∠CAB=∠α =90°∴ CE⊥BD.(3)解:过A分别做AM⊥CE,AN⊥BD由(1)知△AEC≌△ADB∴两个三角形面积相等故AM·CE=AN·BD∴AM=AN∴AF平分∠DFC由(2)可知∠BFC=∠BAC= α∴∠DFC=180°- α∴∠CFA= 12∠DFC= 902α︒-。
人教版八年级上册数学第12章《全等三角形》测试题【含答案】
一、选择题(每小题3分,共24分)1.如图1,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD及△APE全等的理由是()A.SSS B.SASC.SSA D.AAS2.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图2),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③ D.④3.有下列条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.其中能判定两直角三角形全等的有()A.1个B.2个C.3个D.4个4.用直尺和圆规作一个角等于已知角的示意图如图3,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SASC.ASA D.AAS5.如图4,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对6.如图5,点P是AB上任意一点,∠ABC=∠ABD,补充下列条件中的一个,不能得出△APC≌△APD的是()A.BC=BD B.AC=ADC.∠ACB=∠ADB D.∠CAB=∠DAB7.如图6,△ABC≌△EFD,则()A.AB=DE,AC=EF,BC=DFB.AB=DF,AC=DE,BC=EFC.AB=EF,AC=DE,BC=DFD.AB=EF,AC=DF,BC=DE8.如图7,用“AAS”直接判定△ACD≌△ABE,需要添加的条件是()A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B二、填空题(每小题4分,共32分)9.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是__________厘米.10.如图8,已知AB=CD,∠ABD=∠CDB,则图中共有__________对全等三角形.11.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件__________,便可得Rt△ABC≌Rt△DEF.12. 如图9,如果△ABC≌△DEF,△DEF的周长是32 cm,DE=12 cm,EF=13 cm,则AC=__________.13.如图10,在△ABC中,∠C=90°,CB=4,延长CB至点D,使BD=AC,作∠BDE=90°,∠DBE=∠A,两角的另一边相交于点E,则DE的长为__________.14.如图11,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=__________.15.如图12,点D在AB上,点E在AC上,CD及BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=__________.16.如图13,已知△ABC,且点A(0,1),点C(4,3),如果要使△ABD及△ABC全等,则点D 的坐标是__________.三、解答题(共64分)17.(10分)如图14,已知AB=AE,∠1=∠2,∠B=∠E,BC及ED相等吗说明理由.18.(10分)如图15,若BE=CD,∠1=∠2,则BD及CE相等吗为什么19.(10分)如图16,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.△BEC及△CDA全等吗请说明理由.20.(10分)如图17,CF⊥AB于点F,BE⊥AC于点E,且CF,BE交于点D,BD=CD.求证:AD平分∠BAC.21.(12分)如图18,已知△ABC≌△ADE,BC及DE相交于点F,连接CD,EB.请你找出图中其他的全等三角形,并说明理由.22.(12分)如图19,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并说明理由.第十二章全等三角形测试题一、1.D 2.A 3.D 4.A 5.C 6.B 7.C 8.B二、9.3 10.311.答案不唯一,如AC=DF等12.7 cm 13.4 14.60° 15.20°16.(4,-1)或(-1,3)或(-1,-1)三、17.解:BC=ED.理由:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.在△BAC及△EAD中,∠B=∠E,AB=AE,∠BAC=∠EAD,所以△BAC≌△EAD.所以BC=ED.18.解:相等.理由:因为∠1=∠2,所以180°-∠1=180°-∠2,即∠ADC=∠AEB.又BE=CD,∠A=∠A,所以△ABE≌△ACD.所以AB=AC,AE=AD.所以AB-AD=AC-AE,即BD=CE.19.解:△BEC≌△CDA.理由:因为BE⊥CE,AD⊥CE,所以∠BEC=∠CDA=90°.因为∠BCE+∠CBE=90°,∠BCE+∠ACD=90°,所以∠CBE=∠ACD.在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,CB=AC,所以△BEC≌△CDA. 20.解:因为CF⊥AB,BE⊥AC,所以∠CED=∠BFD=90°.又∠CDE=∠BDF, CD=BD,所以△ECD≌△FBD.所以DE=DF.又DF⊥AB,DE⊥AC,所以AD平分∠BAC.21.解:△ACD≌△AEB,△DCF≌△BEF.理由:因为△ABC≌△ADE,所以AC=AE,AB=AD,∠CAB=∠EAD.所以∠CAB-∠BAD=∠EAD-∠BAD,即∠CAD=∠EAB.所以△ACD≌△AEB(SAS).所以∠ACD=∠AEB,CD=EB.因为△ABC≌△ADE,所以∠ACB=∠AED.所以∠ACB-∠ACD=∠AED-∠AEB,即∠DCF=∠BEF.又∠DFC=∠BFE,所以△DCF≌△BEF(AAS).22.解:OE⊥AB.理由:在△ABC和△BAD中,AC=BD,∠BAC=∠ABD,AB=BA,所以△ABC≌△BAD.所以∠CBA=∠DAB,∠C=∠D.在△AOC和△BOD中,∠AOC=∠BOD,∠C=∠D,AC=BD,所以△AOC≌△BOD.所以OA=OB.在△AOE和△BOE中,OA=OB,∠OAE=∠OBE,AE=BE,所以△AOE≌△BOE.所以∠OEA=∠OEB=90°,即OE⊥AB.。
人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)
第十二章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=( C )A.3 B.4 C.7 D.8,第1题图),第2题图),第3题图)2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于( B ) A.120°B.125°C.130°D.135°3.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( B )A.SAS B.ASA C.AAS D.SSS4.(2015·六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是( D )A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD,第4题图),第5题图),第6题图)5.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( C )A.AB=ED B.AC=EF C.AC∥EF D.BF=DC6.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为( D )A.60°B.62°C.64°D.66°7.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( A )A.4个B.3个C.2个D.1个,第7题图),第8题图),第9题图) ,第10题图)8.如图,△ABC 的三边AB ,BC ,CA 的长分别为20,30,40,O 是△ABC 三条角平分线的交点,则S △ABO ∶S △BCO ∶S △CAO 等于( C )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶59.如图,在平面直角坐标系中,以点O 为圆心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =110.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =AB.其中正确的有( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.已知△ABC ≌△DEF ,且△ABC 的周长为12 cm ,面积为6 cm 2,则△DEF 的周长为__12__cm ,面积为__6__cm 2.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:__AE =AF 或∠EDA =∠FDA 或∠AED =∠AFD __.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B ,D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__13__.14.如图,Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =5 cm ,则AE =__3__cm .15.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,CE ,BD 相交于O ,则图中全等的直角三角形有__4__对.16.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__135__度.,第16题图) ,第17题图),第18题图)17.如图,已知相交直线AB和CD及另一直线MN,如果要在MN上找出与AB,CD 距离相等的点,则这样的点至少有__1__个,最多有__2__个.18.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC =BC,若∠BAC=80°,则∠BOD的度数为__100°__.三、解答题(共66分)19.(7分)(2015·昆明)如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.解:由AAS证△ABC≌△DEF可得20.(8分)如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD =CF;③量出DE的长为a m,FG的长为b m.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?解:合理.理由:由SSS可证△BED≌△CGF,∴∠B=∠C21.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC,求证:BD=DF.解:先由角平分线的性质得CD=DE,再由SAS证△CDF≌△EDB,得BD=DF22.(10分)如图,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,BE=CF.求证:(1)∠1=∠2;(2)CM=BN.解:(1)由ASA 证△AEB ≌△AFC ,∴∠BAE =∠CAF ,∴∠1+∠3=∠2+∠3,∴∠1=∠2(2)∵△AEB ≌△AFC ,∴AE =AF ,AB =AC.由ASA 可证△AEM ≌△AFN ,∴AM =AN ,∴AC -AM =AB -AN ,即CM =BN23.(10分)如图①,点A ,E ,F ,C 在一条直线上,AE =CF ,过点E ,F 分别作ED ⊥AC ,FB ⊥AC ,AB =CD.(1)若BD 与EF 交于点G ,试证明BD 平分EF ; (2)若将△DEC 沿AC 方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.解:(1)先由HL 证Rt △ABF ≌Rt △CDE ,∴BF =DE ,再由AAS 证△GFB ≌△GED ,∴EG =FG ,即BD 平分EF(2)仍然成立,证法同(1)24.(11分)如图,在△ABC 中,∠B =∠C ,AB =10 cm ,BC =8 cm ,D 为AB 的中点,点P 在线段上以3 cm /s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上以相同速度由点C 向点A 运动,一个点到达终点后另一个点也停止运动.当△BPD 与△CQP 全等时,求点P 运动的时间.解:∵D 为AB 的中点,AB =10 cm ,∴BD =AD =5 cm.设点P 运动的时间是x s ,若BD 与CQ 是对应边,则BD =CQ ,∴5=3x ,解得x =53,此时BP =3×53=5 (cm ),CP =8-5=3 (cm ),BP ≠CP ,故舍去;若BD 与CP 是对应边,则BD =CP ,∴5=8-3x ,解得x =1,符合题意.综上,点P 运动的时间是1 s25.(12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.解:(1)BD=CE,BD⊥CE.证明:延长BD交CE于M,易证△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠BME=∠MBC+∠BCM=∠MBC+∠ACB+∠ACE=∠MBC+∠ABD+∠ACB=∠ABC+∠ACB=90°,∴BD⊥CE(2)仍有BD=CE,BD⊥CE,证法同(1)。
人教版八年级上册数学第12章全等三角形测试卷含答案
数学YOURSCHOOLNAME版人教版初中数学FEDCBA全等三角形 单元测试班级_________ 姓名__________ 学号________一.填空题(每小题5分,共40分)1. 已知ΔABC ≌ΔDEF ,A 与D ,B 与E 分别是对应顶点,∠A=52°,∠B=67°,BC =15cm ,则∠F= °,FE = cm 2. 已知:如图,∠ABC=∠DEF ,AB=DE ,要说明ΔABC≌ΔDEF(1) 若以“SAS ”为依据,还要添加的条件为 (2) 若以“ASA ”为依据,还要添加的条件为 (3) 若以“AAS ”为依据,还要添加的条件为 3.如图4,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的F ED BAEODCBA中点,则图中共有全等三角形4.如图5,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC于E ,且OE=2,则两平行线间AB 、CD 的距离等于 5.如图,把△ABC 绕C 点顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,则∠AB ′D= °6.如图,AB=CD ,AD=CB ,E 、F 是DB 上两点,且BE=DF ,若∠AEB=100°,∠ADB=30°,则∠BCF=7.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是 ,中线AD 的取值范围是 8.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__ ____ ___ 二.选择题(每小题4分,共24分)9. 在△ABC 与△A ′B ′C ′中,已知∠A =44°15′,∠B =67°12′,∠C ′=68°33′,∠A ′=44°15′,第3题图 第4题图 第5题图 第6题图PDBAOCBA且AC =A ′C ′,则这两个三角形( )A .一定不全等B .一定全等C .不一定全等D .以上都不对10.已知ΔABC 中,AB=10,BC=15,CA=20,点O 是ΔABC 内角平分线的交点,则ΔABO 、 ΔBCO 、 ΔCAO 的面积比是( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5 11.如图,已知点E 在△ABC 的外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( )A .△ABD ≌△AFDB .△AFE ≌△ADC C .△AEF ≌△DFCD .△ABC ≌△ADE12.如图,AB > AC ,点P 为ΔABC 的角平分线AD 上一点,则下列说法正第10题图第11题图第12题图确的是()A. AB – AC > PB – PC B. AB – AC < PB – PC C. AB – AC = PB – PC D.无法确定13.下列说法不正确的是()A.有两个角和一条边对应相等的两个三角形全等B.有一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角对应相等的两个三角形全等D.有两条直角边对应相等的两个直角三角形全等14.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数,2008应排在A、B、C、D、E中的位置。
人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)
第十二章 全等三角形一、单选题1.下列各选项中的两个图形属于全等形的是( )A .B .C .D . 2.下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等3.△ABC≌≌ECD≌≌A≌48°≌≌D≌62°,点B≌C≌D 在同一条直线上,则图中∠B 的度数是( )A .38°B .48°C .62°D .70°4.如图,在ABC 中,D E 、分别是AC BC 、上的点,若ADB EDB EDC △≌△≌△,则C 的度数是( )A .15B .20C .25D .305.如图,BE=CF ,AB∥DE ,添加下列哪个条件不能证明∥ABC∥∥DEF 的是( )A .AB=DEB .∥A=DC .AC=DFD .AC∥DF6.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则∠BED 的度数为( )A .100°B .120°C .135°D .150°7.如图,在△ABC 中,AC =5,BC =12,AB =13,AD 是角平分线,DE ⊥AB ,垂足为E ,则△BDE 的周长为( )A .17B .18C .20D .258.如图,在OA ,OB 上分别截取OD ,OE ,使OD OE =,再分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线OC ,OC 就是AOB ∠的角平分线.这是因为连CD ,CE ,可得到COD COE ∆∆≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ∆∆≌的条件是( )A .SASB .AASC .ASAD .SSS9.如图≌在≌ABC 中≌AB ≌AC ≌D 是BC 的中点≌AC 的垂直平分线交AC ≌AD ≌AB 于点E ≌O ≌F ≌则图中全等三角形的对数是≌ ≌A .1对B .2对C .3对D .4对10.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .1二、填空题11.如图,图中由实线围成的图形与①是全等形的有______.(填番号)12.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).13.如图所示,已知ABC 的周长是10,OB OC 、分别平分ABC ∠和,ACB OD BC ∠⊥于,D 且1,OD =则ABC 的面积是_______________________.14.如图,ABC ∆和DCE ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,42EBD ∠=︒,则AEB ∠=___________度.三、解答题15.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.16.如图,已知点B≌E≌C≌F在一条直线上,AB=DF≌AC=DE≌∠A=∠D≌1≌求证:AC∥DE≌≌2≌若BF=13≌EC=5,求BC的长.17.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.18.在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)如图1所示位置时判断ADC与CEB是否全等,并说明理由;(2)如图2所示位置时判断ADC与CEB是否全等,并说明理由.答案1.A2.C3.D4.D5.C6.C7.C8.D9.D10.B11.②③12.∠A=∠D或∠ABC=∠DCB或BD=AC 13.514.13215.(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA =BD .∴CA -CB=BD -CB .即AB =CD .∵AD =9 cm, BC=5 cm ,∴AB +CD=9-5=4 cm .∴AB =CD=2 cm .16.解:(1)在≌ABC 和≌DFE 中 AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DFE (SAS ),≌≌ACE=≌DEF ,≌AC≌DE ;(2)≌≌ABC≌≌DFE ,≌BC=EF ,≌CB ﹣EC=EF ﹣EC ,≌EB=CF ,≌BF=13,EC=5,≌EB=4,≌CB=4+5=9.17.(1)证明:∵∠BAC =DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =BE +CE =BD +BE ;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE . 证明:∵∠BAC =∠DAE ,∴∠BAC +∠EAB =∠DAE +∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE .18.(1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E , ∴∠DAC+∠DCA =∠BCE+∠DCA ,∴∠DAC =∠BCE ,在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△DAC ≌△ECB (AAS );(2)如图2,全等,理由:∵∠ACB=90°,AD⊥MN,∴∠DAC+∠ACD=∠ACD+∠BCE,∴∠DAC=∠BCE,在△ACD与△CBE中,∵DAC ECBADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版2020年八年级上册第12章全等三角形检测卷满分:120分钟姓名:___________班级:___________座号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.在下列每组图形中,是全等形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.全等三角形的面积一定相等D.面积相等的两个三角形全等3.△ABC≌△DEF,下列结论中不正确的是()A.AB=DE B.BE=CF C.BC=EF D.AC=DE4.如图,已知△ABC≌△ADC,∠B=30°,∠BAC=23°,则∠ACD的度数为()A.120°B.125°C.127°D.104°5.如图,∠BDA=∠BDC,现添加以下哪个条件不能判定△ABD≌△CBD的是()A.∠A=∠C B.∠ABD=∠CBD C.AB=CB D.AD=CD6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=5,则点P到AB的距离是()A.3B.4C.5D.67.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'8.如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形()A.1对B.2对C.3对D.4对9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=5,AB=12,则△ABD的面积是()A.15B.30C.45D.6010.如图,在△ABC中,AD平分∠BAC,∠B=2∠ADB,AB=4,CD=7,则AC的长为()A.3B.11C.15D.9二.填空题(共6小题,满分24分,每小题4分)11.在△ABC中给定下面几组条件:①BC=4cm,AC=5cm,∠ACB=30°;②BC=4cm,AC=3cm,∠ABC=30°;③BC=4cm,AC=5cm,∠ABC=90°;④BC=4cm,AC=5cm,∠ABC=120°.若根据每组条件画图,则△ABC能够唯一确定的是(填序号).12.如图,AB⊥AC于点A,BD⊥CD于点D,若要用“HL”判定Rt△ABC≌Rt△DCB,还需添加的一个条件是(只填一个).13.如图,若BD⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.14.如图,要测量水池宽AB,可从点A出发在地面上画一条线段AC,使AC⊥AB,再从点C观测,在BA的延长线上测得一点D,使∠ACD=∠ACB,这时量得AD=120m,则水池宽AB的长度是m.15.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=.16.三个全等三角形按如图的形式摆放,若∠1=88°,则∠2+∠3=°.三.解答题(共8小题,满分66分)17.(6分)如图,点P是∠MON中一点,P A⊥OM于点A,PB⊥ON于点B,连接AB,∠P AB=∠PBA.求证:OP平分∠MON.18.(6分)已知:如图,点B、F、C、E在一条直线上,∠A=∠D,AC=DF且AC∥DF 求证:△ABC≌△DEF.19.(6分)如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.20.(8分)如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)若BD=10,EF=2,求BF的长.21.(8分)如图,在△ABC中,点D是边BC的中点,连结AD并延长到点E,使DE=AD,连结CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.22.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.23.(12分)如图,△ABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)BH=AC;(3)如果BC=14,AH=2,AC=10,求HE的长度.24.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、不是全等形,故此选项错误;B、不是全等形,故此选项错误;C、是全等形,故此选项正确;D、不是全等形,故此选项错误;故选:C.2.解:A、两个等边三角形一定全等,说法错误;B、形状相同的两个三角形全等,说法错误;C、全等三角形的面积一定相等,说法正确;D、面积相等的两个三角形全等,说法错误;故选:C.3.解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BE=CF,故A,B,C正确,故选:D.4.解:∵∠B=30°,∠BAC=23°,∴∠ACB=180°﹣30°﹣23°=127°,∵△ABC≌△ADC,∴∠ACD=∠ACB=127°,故选:C.5.解:∵∠BDA=∠BDC,BD=BD,∴当添加∠A=∠C时,可根据“AAS”判断△ABD≌△CBD;当添加∠ABD=∠CBD时,可根据“ASA”判断△ABD≌△CBD;当添加AD=CD时,可根据“SAS”判断△ABD≌△CBD.故选:C.6.解:如图,过点P作PF⊥AB于F,∵AD是∠BAC的平分线,PE⊥AC,∴PF=PE=5,即点P到AB的距离是5.故选:C.7.解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',可得:CD=C'D',A、下滑过程中,CC'与DD'不一定相等,说法错误;B、下滑过程中,当△OCD与△OD'C'全等时,CC'=DD',说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC'=DD',说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD'C'全等时,一定存在某个位置使得CC'=DD',说法正确;故选:D.8.解:∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS),△ABD≌△DCA(SSS),∴∠BAC=∠CDB,∵AB=CD,∠AEB=∠DEC,∴△ABE≌△DCE(AAS).故选:C.9.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.10.解:在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,∠ADB=∠ADE,BD=DE,又∠B=2∠ADB,∴∠AED=2∠ADB,而∠BDE=∠ADB+∠ADE=2∠ADB,∴∠BDE=∠AED,∴∠CED=∠EDC,∴CD=CE,∴AC=AE+CE=AB+CD=4+7=11.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:①BC=4cm,AC=5cm,∠ACB=30°,满足“SAS”,所以根据这组条件画图,△ABC唯一;②BC=4cm,AC=3cm,∠ABC=30°,根据这组条件画图,△ABC可能为锐角三角形,也可为钝角三角形;③BC=4cm,AC=5cm,∠ABC=90°;满足“HL”,所以根据这组条件画图,△ABC唯一;④BC=4cm,AC=5cm,∠ABC=120°,根据这组条件画图,△ABC唯一.故答案为①③④.12.解:AB=DC,理由是:∵AB⊥AC,BD⊥CD,∴∠A=∠D=90°,∵在Rt△ABC和Rt△DCB中∴Rt△ABC≌Rt△DCB(HL),故答案为:AB=DC.13.解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°.14.解:∵AC⊥BD,∴∠CAD=∠CAB=90°,∵CA=CA,∠ACD=∠ACB,∴△ACD≌△ACB(ASA),∴AB=AD=120m,故答案为120.15.解:∵两个三角形全等,∴x=6,y=5,∴x﹣y=6﹣5=1,故答案为:1.16.解:由图形可得:∠1+∠4+∠5+∠3+∠6+∠9+∠2+∠8+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠8=180°,∵∠5+∠7+∠6=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°,∴∠2+∠3=180°﹣88°=92°.故答案为:92.三.解答题(共8小题,满分66分)17.证明:∵∠P AB=∠PBA,∴P A=PB,∵P A⊥OM于点A,PB⊥ON于点B,∴OP平分∠MON.18.证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,∴△ABC≌△DEF(ASA).19.解:如图,点P为所作.20.解:(1)∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠DCF+∠D=70°;(2)∵△ABF≌△CDE,∴BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∵BD=10,EF=2,∴BE=(10﹣2)÷2=4,∴BF=BE+EF=6.21.证明:(1)∵D是BC中点,∴BD=CD,在△ABD与△CED中,∴△ABD≌△ECD(SAS);(2)在△ABC中,D是边BC的中点,∴S△ABD=S△ADC,∵△ABD≌△ECD,∴S△ABD=S△ECD,∵S△ABD=5,∴S△ACE=S△ACD+S△ECD=5+5=10,答:△ACE的面积为10.22.(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;(2)解:在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.23.解:(1)∵AD,BE是△ABC的高∴∠ADC=∠BEC=90°,∴∠DBH+∠C=90°,∠DAC+∠C=90°∴∠DBH=∠DAC;(2)由(1)题已得∠DBH=∠DAC,∵在△BDH和△ADC中,,∴△BDH≌△ADC(ASA),∴BH=AC;(3)由(2)题已证△BDH≌△ADC,∴HD=DC(设长度为x)设AD=BD=y,∵BC=14,AH=2,AC=10∴x+y=14,y﹣x=2.解得x=6,y=8,∵×AC×BE=×BC×AD,∴10×BE=14×8,解得BE=11.2,∴HE=BE﹣BH=11.2﹣10=1.2.24.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△ABM≌△DBM,则AB=BD,显然不可能,故①错误.故答案为②.。