高等数学部分参考答案-深圳大学

合集下载

高等数学试题详解及答案

高等数学试题详解及答案

高等数学试题详解及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. πD. -1答案:B3. 函数F(x)=∫(0 to x) t^2 dt的不定积分是:A. (1/3)x^3 + CB. (1/2)x^2 + CC. x^3 + CD. x^2 + C答案:A4. 无穷小量α与无穷小量β,若α是β的高阶无穷小,则:A. α/β→0B. α/β→∞C. α/β→1D. α/β→常数答案:A5. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. -2B. 0C. 2D. 1答案:C二、填空题(每题3分,共15分)1. 若函数f(x)的二阶导数为f''(x)=6x,那么f'(x)=______。

答案:3x^2 + C2. 函数y=e^x的反函数是______。

答案:ln(x)3. 定积分∫(0 to 1) x dx的值是______。

答案:1/24. 函数y=ln(x)的导数是______。

答案:1/x5. 曲线y=x^2在点(1,1)处的法线方程是______。

答案:y=-x+2三、解答题(每题10分,共30分)1. 求函数f(x)=x^3-3x^2+2x的极值点。

答案:首先求导数f'(x)=3x^2-6x+2,令f'(x)=0,解得x=1或x=2/3。

通过二阶导数f''(x)=6x-6,可以判断x=1为极大值点,x=2/3为极小值点。

2. 计算定积分∫(0 to π/2) sin(x) dx。

答案:根据积分公式,∫sin(x) dx = -cos(x) + C,所以∫(0 toπ/2) sin(x) dx = [-cos(x)](0 to π/2) = -cos(π/2) + cos(0)= 1。

高等数学-题库带答案

高等数学-题库带答案

高等数学-题库带答案1、通过(0,0,0)(1,0,1)和(2,1,0)三点的平面方程是().答案:x-2y-z=0;2、答案:(1)不相同;(2)不相同;(3)不相同;(4)相同.3、答案:4、答案:5、答案:6、答案:4. (1)偶函数;(2)非奇非偶;(3)奇函数。

7、答案:8、答案:9、答案:10、答案:11、答案:12、答案:13、答案:14、答案:15、答案:16、答案:17、答案:18、答案:19、答案:20、答案:21、答案:22、答案:23、答案:24、答案:25、答案:26、答案:27、答案:28、答案:29、答案:30、答案:31、答案:32、答案:33、答案:34、答案:2. 235、答案:36、答案:37、答案:38、答案:39、答案:只做(1)(2)(4)(5)40、答案:41、答案:42、答案:43、答案:44、答案:45、答案:46、一个正立方体的水桶,棱长为10 m,如果棱长增加0.1 m,求水桶体积增加的精确值和近似值.答案:47、答案:48、答案:49、答案:50、答案:51、答案:52、答案:53、答案:54、答案:55、答案:(1)不正确;(2)正确.56、答案:57、答案:58、答案:59、答案:60、答案:61、答案:62、答案:63、答案:64、答案:65、答案:66、答案:67、答案:68、答案:69、答案:70、答案:71、答案:72、答案:73、此题删除答案:74、答案:75、答案:76、答案:77、答案:78、答案:79、答案:80、答案:81、答案:82、答案:83、答案:84、答案:85、答案:86、答案:87、答案:88、答案:89、答案:90、答案:91、答案:92、答案:93、答案:94、答案:95、答案:96、答案:97、答案:98、答案:99、答案:100、答案:101、答案:102、答案:103、答案:104、答案:105、答案:106、答案:107、答案:108、答案:109、答案:110、答案:111、答案:112、答案:113、答案:114、答案:115、答案:116、答案:117、答案:118、答案:119、答案:120、答案:121、答案:122、答案:123、答案:124、答案:125、答案:126、答案:2.(1)发散;(2)收敛;(3)发散;(4)发散;(5)收敛;(6)发散.127、答案:128、答案:129、答案:130、答案:131、答案:2. 2132、答案:133、答案:134、答案:(1)线性相关;(2)线性无关;(3)线性无关.135、答案:136、答案:答案:138、答案:答案:140、答案:141、答案:142、答案:143、答案:144、答案:145、答案:146、答案:147、答案:148、答案:。

高等数学A3教材答案

高等数学A3教材答案

高等数学A3教材答案1. 微分学1.1 函数与极限1.1.1 第一节题目1:a) 证明函数 f(x) = x^2 在 x = 2 处连续。

b) 求函数g(x) = √(2 - x) 的定义域。

解答1:a) 对于函数 f(x) = x^2,在 x = 2 处连续的定义是:当x → 2 时,f(x) → f(2)。

由于 f(2) = (2)^2 = 4,因此我们需要证明当x → 2 时,f(x) → 4。

设ε > 0,我们需要找到一个δ > 0,对于所有满足 0 < |x - 2| < δ 的x,有 |f(x) - 4| < ε。

考虑 |f(x) - 4| = |x^2 - 4| = |(x - 2)(x + 2)| = |x - 2| |x + 2|。

由于我们希望对于所有满足 0 < |x - 2| < δ 的 x,有 |f(x) - 4| < ε,因此我们可以将问题转化为寻找合适的δ 和 M,满足 |x + 2| < M,当 0 <|x - 2| < δ 时,有 |x - 2| < ε / M。

选择 M = 4,则当 |x - 2| < ε / 4 时,有 |x - 2| |x + 2| < ε。

因此,我们可以取δ = ε / 4,这样就满足了当x → 2 时,f(x) → 4,即函数 f(x) = x^2 在 x = 2 处连续。

b) 对于函数g(x) = √(2 - x),要求出其定义域,需要考虑根号内的值大于或等于零。

因此,我们可以得到不等式 2 - x ≥ 0。

解这个不等式,得到x ≤ 2。

所以,函数g(x) = √(2 - x) 的定义域为 (-∞, 2]。

1.1.2 第二节题目2:讨论函数 f(x) = (x^2 - 4) / (x - 2) 的连续性。

解答2:为了讨论函数 f(x) = (x^2 - 4) / (x - 2) 的连续性,我们需要考虑两个方面:函数是否在 x = 2 处定义,以及函数在 x = 2 处的极限是否存在。

深圳大学的概率论与数理统计试题(含答案)

深圳大学的概率论与数理统计试题(含答案)

深圳⼤学的概率论与数理统计试题(含答案)期末考试试卷参考解答及评分标准开/闭卷闭卷A/B 卷 A2219002801-课程编号 2219002811课程名称概率论与数理统计 _______________ 学分 J ________第⼀部分基本题⼀、选择题(共6⼩题,每⼩题5分,满分30分。

在每⼩题给出的四个选项中,只有⼀个是符合题⽬要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选错0分) 2?假设事件A 与事件B 互为对⽴,则事件A B( ) (A)是不可能事件(B)是可能事件(C) 发⽣的概率为1 (D)是必然事件答:选A ,这是因为对⽴事件的积事件是不可能事件。

3. 已知随机变量X,Y 相互独⽴,且都服从标准正态分布,则 X 2 + Y 2服从()(A)⾃由度为1的2分布 (B)⾃由度为2的2分布(C)⾃由度为1的F 分布(D)⾃由度为2的F 分布答:选B ,因为n 个相互独⽴的服从标准正态分布的随机变量的平⽅和服从⾃由度为 2分布。

4. 已知随机变量X,Y 相互独⽴,X~N(2,4),Y~N(-2,1),则( (A) X+Y~P ⑷ (B) X+Y~U(2,4) (C) X+Y~N(0,5)答:选C ,因为相互独⽴的正态变量相加仍然服从正态分布,D(X+Y)=D(X)+D(Y)=4+1=5,所以有 X+Y~N(0,5)。

5. 样本(X 1,X 2,X 3)取⾃总体 X ,E(X)= < D(X)=-2,则有( )答:选B ,因为样本均值是总体期望的⽆偏估计,其它三项都不成⽴。

6.随机变量X 服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( )(A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。

⼆、填空题(共6⼩题,每⼩题5分,满分30分。

把答案填在题中横线上)1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发⽣ (C)事件B 发⽣但事件A 不发⽣答:选D ,(B) 事件A 发⽣但事件B 不发⽣ (D)事件A 与事件B ⾄少有⼀件发⽣ )(D) X+Y~N(0,3) ⽽ E(X+Y)=E(X)+E(Y)=2-2=0,(A) X 1+X 2+X 3是」的⽆偏估计Y + V + V(B)X1 X2是邛勺⽆偏估计3(C) X ;是⼆2的⽆偏估计(D).宁严2 是■-2的⽆偏估计1.已知P(A)=0.6, P(B|A)=0.3,贝U P(A Q B)= __________答:填 0.18,由乘法公式 P(A B)=P(A)P(B|A)=0.6 0.3=0.18。

高等数学第七章课后习题解答

高等数学第七章课后习题解答

习题1.在空间直角坐标系中,指出下列各点位置的特点.()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-;()2,3,1--M 到x 轴的距离为()132322=-+;()2,3,1--M 到y 轴的距离为()()52122=-+-;()2,3,1--M 到z 轴的距离为()103122=+-.3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3;()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.【解】 ()5,3,4-A 到坐标原点距离为()25534222=+-+;()5,3,4-A 到x 轴的距离为()345322=+-;()5,3,4-A 到y 轴的距离为415422=+; ()5,3,4-A 到z 轴的距离为()53422=-+.6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即()()()()=-+-+--22270230y ()()()()22270130--+-+-y解得 23=y .所以,所求之点为.0,23,0⎪⎭⎫ ⎝⎛C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()103321017222=-+-+-==AB c ;AC 边长()()()()3312311222=-+-+--=b ; BC 边长()()()()1173110371222=-+-+--=a .由余弦定理知cos ∠BAC ()010321171032222222<⨯⨯-+=-+=bc a c b ,所以,∠BAC 为钝角.8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等.【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即()()()()=-+--+-2225011y x ()()()222443-+-+-z y x()()()222164-+-+-=z y x解得 5,16-==y x .所以,所求之点为().0,5,16-D习题1.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示DA CD BC AB ,,,.【解】记平行四边形ABCD 的对角线的交点为O .()b a b a BD AC OD OC DC AB -=-=-=-==2121212121; 同理可求出,()b a a b OC BO BC +=+=+=212121;()a b AB CD -=-=21;()b a BC DA +-=-=21.2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()n m n m n m 733232-=+--=.3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示EF DE CD BC ,,,.【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO 及ABCO 均为平行四边形.由向量加法的平行四边形法则知,b a AF AB AO BC +=+==; b AF CD ==;a BA BA AO DE -=-===;().b a BC EF +-=-=5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,0==y x a a .(3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】(1)c {}{}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.(2()()26134222=-+-+=.故,⎭⎬⎫⎩⎨⎧--==261,263,2640c c ,所以,向量c 的方向余弦为.261cos ,263cos ,264cos -=-==γβα(3).向量c 的单位向量为⎭⎬⎫⎩⎨⎧--±261,263,264.8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以2632nm =-=-,解得 .1,4-==n m9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有λ=--=+=-1279182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x .又已知34=,故有 ()()()341298222=++λλλ. ③③式化简得4115628922=⇒=λλ,解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x因此AM {}24,18,16-=,()17,17,18-=M .10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值.【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得()()9447222=++-+z ,化简得082=+z z ,解之,得 0=z 或.8-=z11.已知点()1,2,41M 和点()2,0,32M ,计算向量21M M 的模、方向余弦和方向角. 【解】{}{}1,2,112,20,4321--=---=M M ;()()2121222=+-+-=.因为{}⎭⎬⎫⎩⎨⎧--=--==21,22,211,2,12121021M M M M .所以21M M 的方向余弦是.21cos ,22cos ,21cos =-=-=γβα 方向角为.3cos ,43,32πγπβπα===12.求与下列向量a 同方向的单位向量0a . (1){}1,4,2-=a ;(2)k j i a ++-=32. 【解】(1()21142222=+-+=,所以{}⎭⎬⎫⎩⎨⎧-=-==211,214,2121,4,22110a a .(2()14132222=++-=,所以.141,143,1421410⎭⎬⎫⎩⎨⎧-==a a 习题1.设向量k j i a 23--=,k j i b -+=2.求:(1)b a .;(2)b a ⨯;(3)()()b a 32⨯-;(4)()b a 2⨯;(5)向量b a ,的夹角. 【解】(1)()()()3122113.=-⨯-+⨯-+⨯=b a ;(2)k j i j b a 7521++=-=⨯;(3)()()()1836.63.2-=⨯-=-=-b a b a ;(4)()()k j i b a b a 1421022++=⨯=⨯;(5)()()14213222=-+-+=()6121222=-++=,故21236143.,cos =⨯==⎪⎪⎭⎫ ⎝⎛∧b a b a ,所以向量b a ,的夹角为.2123arccos ,=⎪⎪⎭⎫ ⎝⎛∧b a2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得()0.=++c b a a ;()0.=++c b a b ; ()0.=++c b a c .即0..=++c a b a ; ②0..=+c b a b ; ③0..=++b c a c ; ④ 将②、③、④相加得()03...2=+++a c c b b a所以,.23...-=++a c c b b a3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ∆的面积. 【解】(1)AB AC⨯{}16,12,151612153405=++=--=k j i kj .25161215222=++=. 所以,同时与AB 及AC 垂直的单位向量为{}⎭⎬⎫⎩⎨⎧±=±=⨯±2516,2512,25116,12,15251AC AB .(2)ABC ∆的面积225==. 4.设{}2,5,3-=a ,{}4,1,2=b ,则当实数λ与μ有什么关系时,能使b a μλ+与z 轴垂直?【解】{}μλμλμλμλ42,5,23+-++=+b a .要使b a μλ+与z 轴垂直,只须b a μλ+与{}1,0,0=k 垂直,于是有()042.=+-=+μλμλk b a ,即 .2μλ=5.设质量为100kg 的物体从点()8,1,31M 沿直线移动到点()2,4,1M ,计算重力所做的功.【解】{}6,3,21--==M M s ,{}{}980,0,01008.9,0,0=⨯-=F .所以,{}{}58806,3,2.980,0,0.=---==s F W (焦耳).6.已知{}3,2,1-=a ,{}1,4,2-=b ,{}0,2,4=c ,b a ⨯是否与c 平行?【解】{}0,5,1005104221--=+--=--=⨯k j i j i b a ;因为c b a 52-=⨯,所以,b a ⨯与c 平行.7.求一个单位向量使其同时垂直向量{}0,1,1=a 和{}1,1,0=b .【解】{}1,1,111-=+-==⨯k j i j b a .()3111222=+-+=. 所以同时垂直向量a 和b 向量的单位向量为 {}1,1,131-±=⨯±b .习题1.求过点()1,0,3-且与平面012573=-+-z y x 平行的平面方程.【解】已经平面的法向量为{}5,7,3-=n .据题意知,所求平面的法向量可也取作n .所以据平面的点法式方程,所求平面即为 ()()()()0150733=--+---z y x . 化简得 04573=-+-z y x .2.求过点()6,9,20-M 且与连接坐标原点O 及0M 的线段0OM 垂直的平面方程. 【解】据题意知,所求平面的法向量可也取作{}6,9,20-==OM n .所以据平面的点法式方程,所求平面即为 ()()()()0669922=----+-z y x . 化简得 0121692=--+z y x .3.求过点()1,1,1-、()2,2,2--和()2,1,1-三点的平面方程. 【解】据平面的三点式方程,所求平面为()()()0121111121212111=---------------z y x . 即 ()()()0161913=++-+--z y x . 化简得 023=--z y x .4.求平面0522:=++-z y x π与坐标面xoy 、yoz 及zox 的夹角的余弦. 【解】平面π的法向量为{}1,2,2-=n ;xoy 面的法向量为{}1,0,0=k . 由公式,平面π与xoy31=;同理, 平面π与yoz32=; 平面π与zox32-=.5.求点()1,2,1平面01022:=-++z y x π的距离. 【解】12211012221222=++-⨯+⨯+=d .6.求两平行平面0:11=+++D Cz By Ax π与0:22=+++D Cz By Ax π之间的距离.【解】在1π上任取一点()1111,,z y x M ,则1M 到2π的距离d 就是所求1π与2π之间的距离.由点到平面的距离公式得 2222111CB A D Cz By Ax d +++++=. ①又11π∈M ,故有 0:11111=+++D Cz By Ax π,即1D Cz By Ax -=++. ②将②代入①,立得 22212CB A D D d ++-=.7.一平面通过()1,1,11M 和()11,02-M 两点,且垂直于平面0=++z y x .求该平面方程.【解】已知平面0=++z y x 的法向量为{}1,1,1=n ,{}2,0,121--=M M .据题意,可取所求平面的法向量为{}1,1,2211120121--=--=--=⨯k j i kj in M M . 所以,所求平面方程为()()()011.11.2=-----z y x ,即 02=--z y x .8.求满足下列条件的平面方程:(1)过点()2,1,3--和z 轴;(2)过点()2,0,4-及()7,1,5且平行于x 轴;(3)过点()3,5,2-,且平行于zox 面;(4)过点()1,0,1-且同时平行于向量k j i a ++=2,j i b -=.【解】(1)根据题意,可设所求平面的一般式方程为0:=+By Ax π. ①又将点()2,1,3--的坐标代入①,得03=+-B A ,即 A B 3=.因此,所求平面π为.03=+Ay Ax ②注意到0≠A (否则π的法向量为零向量),所以②两边除以A ,得到 03:=+y x π.(2)根据题意,可设所求平面的一般式方程为0:=++D Cz By π. ①又将点()2,0,4-及()7,1,5的坐标分别代入①,得⎩⎨⎧=++=+-.07,02D C B D C ,故 ⎩⎨⎧-==.9,2C B C D .因此,所求平面π为.029=++-C Cz Cy ②注意到0≠C (否则π的法向量为零向量),所以②两边除以C ,得到 029:=++-z y π.(3)根据题意,可设所求平面的一般式方程为0:=+D By π. ①又将点()3,5,2-的坐标代入①,得05=+-D B ,即 B D 5=.因此,所求平面π为.05=+B By ②注意到0≠B (否则π的法向量为零向量),所以②两边除以B ,得到 05:=+y π.(4)根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.将点()1,0,1-的坐标代入①,得0=+-D C A . ② 又因为π同时平行于向量k j i a ++=2,j i b -=,故n 同时垂直于向量k j i a ++=2,j i b -=,于是有.02=++C B A ③ .0=-B A ④ ②、③、④联立得到A D A C AB 4,3,-=-==因此①成为043:=--+A Az Ay Ax π . ⑤ 注意到0≠A (否则π的法向量为零向量),所以⑤两边除以A ,得到 043:=--+z y x π.9.平面在y 、z 轴上的截距分别为30,10,且与{}3,1,2=r 平行,求该平面方程.【解】根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.因为π在y 、z 轴上的截距分别为30,10,故π过点()0,30,0及(),10,0,0.将此两点坐标代入①得030=+D B . ②及 010=+D C . ③又已知π与{}3,1,2=r 平行,故n 垂直于向量r ,于是有032=++C B A . ④②、③、④联立得到B A BC BD 5,3,30-==-=.因此①成为03035:=-++-B Bz By Bx π. ⑤注意到0≠B (否则π的法向量为零向量),所以⑤两边除以B ,得到 03035:=-++-z y x π.10.指出下列各平面的特殊位置,并画出各平面.(1)013=-x ;(2)012=-+z y ;(3)02=+z x ;(4)135=-+z y x .【解】(1)因方程中z y ,前面的系数为零,故平面013=-x 平行于yoz 面;(2)因方程中x 前面的系数为零,故平面012=-+z y 平行于x 轴;(3)因方程中没有常数项,且y 前面的系数为零,故平面02=+z x 通过y 轴;012=-+z y 02=+z x ;(4)135=-+z y x 可化为113151=-++z y x ,故135=-+z y x 是在x 轴、y 轴、z 轴上的截距分别为51、31和1-的平面. 习题1.用点向式方程及参数式方程表示直线⎩⎨⎧=++=+-.42,1:z y x z y x L 【解】任取方程组的一组解⎪⎩⎪⎨⎧===.1,1,1z y x 则有,L 过点()1,,1,10M .可取直线的方向为{}3,1,232121121-=++-=-=⨯k j i j in n . 所以,所求直线L 的点向式方程为 311121-=-=--z y x . 进一步,L 的参数式方程为⎪⎩⎪⎨⎧+=+=-=.31,1,21t z t y t x2.求过()1,2,31-P 、()2,0,12-P 两点的直线方程.【解】可取直线的方向为 {}1,2,421-==P P s . 故所求直线为.112243-=+=--z y x 3.求过点()3,1,4-且平行于直线51123-==-z y x 的直线方程.【解】根据题意知,可取所求直线的方向为{}5,1,2=s .故所求直线为 .531124-=+=-z y x 4.求过()1,32-且垂直于平面0132=+++z y x 的直线方程.【解】可取直线的方向为 {}1,3,2=s .故所求直线为.113322-=+=-z y x 5.求过点()2,1,00M 且与直线21111z y x =--=-垂直相交的直线方程. 【解】 过点()2,1,0且与直线21111z y x =--=-垂直的平面π为 ()()()02210.1:=-+---z y x π.即 032:=-+-z y x π . ① 化直线21111z y x =--=-为参数式得 ⎪⎩⎪⎨⎧=-=+=.2,1,1t z t y t x ②将②代入①,有()()()032211=-+--+t t t . ③ 解得 21=t . 故直线21111z y x =--=-与平面π的交点为⎪⎭⎫ ⎝⎛1,21,231M . 因此所求直线的方向为 ⎭⎬⎫⎩⎨⎧--==1,21,2310M M s ∥{}2,1,3-. 故所求直线为.221130-=-=--z y x6. 过点()0,2,10-M 向平面012=+-+z y x 作垂线,求垂足坐标.【解】 过点()0,2,10-M 且与平面012=+-+z y x 垂直的直线L 为 .102211:--=-=+z y x L ① 化直线L 为参数式得⎪⎩⎪⎨⎧-=+=+-=.,22,1t z t y t x ②将②代入平面012=+-+z y x 方程中,得()()()012221=+--+++-t t t . ③解得 32-=t . 故垂足坐标为⎪⎭⎫ ⎝⎛-32,32,351M . 7.求直线⎩⎨⎧=-+-=-+-,0123,09335:1z y x z y x L 与⎩⎨⎧=-++=+-+.01383,02322:2z y x z y x L 的夹角θ. 【解】1L 的方向为{}1,4,34323351-=-+=--=k j i j is ; 2L 的方向为{}10,5,101051083222-=+-==k j i j is ∥{}2,1,2-. 因为()()0211423.21=⨯-+-⨯+⨯=s s ,所以1L 与2L 垂直,从而2πθ=.8.求直线21121:+=-=-z y x L 与平面02:=+-z y x π的夹角θ. 【解】1L 的方向为{}2,1,2-=s ,平面π的法向量为{}2,1,1-=n . ()()7221112.=⨯+-⨯-+⨯=n s .()3212222=+-+=. ()6211222=+-+=.故637sin ⨯==θ,所以,637arcsin ⨯=θ.9.求过点()2,0,10-M 且垂直于平面032:=+-z y x π的直线方程.【解】根据题意知,所求直线L 的方向向量即为平面π之法向量,即 {}3,12-=s . 所以,由点向式方程知,所求直线为321021:+=--=-z y x L . 10.设平面π过直线130211:1--=-=-z y x L ,且平行于直线11122:2z y x L =-=+,求平面π的方程.【解】显然面π过点()3,,2,10M . 可取面π的法向量为{}1,3,13120121-=+-==⨯=k j i j is s n . 所以,平面π的方程为 ()()()03.12.31.1=-+---z y x .化简得023:=++-z y x π.11.求过点()1,2,10P 和直线⎩⎨⎧=--=-.032,6:z y x z x L 的平面π的方程. 【解】直线L 的参数方程为⎪⎩⎪⎨⎧-=+-==.6,9,:x z x y x x L显然L 过点()6,9,01-P ,且L 的方向为{}1,11-=s .根据题意,可取平面π的法向量为{}6,6,0660117110--=--=--=⨯=k j i j is P P n ∥{}1,1,0. 所以,平面π的方程为 ()()()01.12.11.0=-+-+-z y x .化简得03:=-+z y π.习题1.指出下列方程在平面解析几何与空间解析几何中分别表示何种几何图形.(1)1=-y x ;(2)x y 22=;(3)122=-y x ;(4)1222=+y x . 【解】(1)1=-y x 在平面解析几何中表示一条直线,在空间解析几何中表示一张平行于z 轴的平面;(2)x y 22=在平面解析几何中表示一条抛物线,在空间解析几何中表示一张抛物柱面;(3)122=-y x 在平面解析几何中表示一条双曲线,在空间解析几何中表示一张双曲柱面;(4)1222=+y x 在平面解析几何中表示一条椭圆曲线,在空间解析几何中表示一张椭圆柱面.2.写出下列曲线绕指定坐标轴旋转一周而得到的旋转曲面的方程.(1)zox 面上的抛物线x z 52=绕x 轴旋转一周;(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周;(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周.【解】(1)zox 面上的抛物线x z 52=绕x 轴旋转一周得到的曲面是 ()x z y 5222=+±,即 x z y 522=+.(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周得到的曲面是 ()36942222=-+±y z x ,即36494222=+-z y x .(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周而得到的曲面是 ()013222=+-+±z y x ,即()()222134-=+z y x . 3.说明下列旋转曲面是怎样形成的.(1)1994222=++z y x ;(2)14222=+-z y x ;(3)1222=--z y x ; 【解】(1)1994222=++z y x 由曲线⎪⎩⎪⎨⎧==+,0,19422z y x 绕x 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==+,0,19422y z x 绕x 轴旋转一周而形成. (2)14222=+-z y x 由曲线⎪⎩⎪⎨⎧==-,0,1422z y x 绕y 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==-,0,1422x y z 绕y 轴旋转一周而形成. (3)1222=--z y x 由曲线⎩⎨⎧==-,0,122z y x 绕x 轴旋转一周而形成;或由曲线⎩⎨⎧==-,0,122y z x 绕x 轴旋转一周而形成. 4.指出下列各方程所表示的曲面.(1)14416916222=++z y x ;(2)144944222=+-z y x ;(3)z y x 729422=-;(4)16922=+z y ;(5)22z y x --=;(6)224y z x =+;(7)36249222=++z y x ;(8)444222=-+x y z .【解】(1)原方程可化为()1169222=++y z x . 所以,原方程表示的是旋转椭球面.(2)原方程可化为 1163838222=+-z y x . 所以,原方程表示的是双叶双曲面.(3)原方程可化为81822y x z -= 所以,原方程表示的是双曲抛物面,即马鞍面.(4)原方程可化为 11691622=+z y . 所以,原方程表示的是椭圆柱面.(5)原方程可化为()22z y x +-=.所以,原方程表示的是旋转抛物面.(6)原方程可化为4122z y x -=.所以,原方程表示的是双曲抛物面,即马鞍面. (7)原方程可化为11894222=++z y x . 所以,原方程表示的是椭球面. (8)原方程可化为1141222=-+x z y . 所以,原方程表示的是单叶双曲面.习题1.求球心在()3,2,1,半径为3的球面与平面5=z 的交线方程(写出一般式方程和参数式方程),并求出该曲线绕z 轴旋转一周而成的旋转曲面的方程. 【解】(一)球心在()23,1,半径为3的球面方程为 ()()()9321222=-+-+-z y x .故球面与平面5=z 的交线的一般式方程为()()()⎩⎨⎧==-+-+-Γ.5,9321:222z z y x即()()⎩⎨⎧==-+-Γ.5,521:22z y x化为参数式方程为[]π2,0.5,sin 52,cos 51:∈⎪⎪⎩⎪⎪⎨⎧=+=+=Γt z t y t x .(二)利用公式()()()()()[][]()πθβαθθ2,0,,.,sin ,cos 2222∈∈⎪⎪⎩⎪⎪⎨⎧=+=+=t t z z t y t x y t y t x x .Γ绕z 轴旋转一周而成的旋转曲面的方程为 [][]()πθπθθ2,0,2,0.5,sin sin 54cos 5210,cos sin 54cos 5210∈∈⎪⎪⎩⎪⎪⎨⎧=++=++=t z t t y t t x .2.分别求出母线平行于x 轴、y 轴且通过曲线()()⎪⎩⎪⎨⎧=+-=++Γ2,01,162:222222z y x z y x 的柱面方程. 【解】(一)(1)、(2)联立消去x ,得 16322=-z y .所以,母线平行于x 轴且通过曲线Γ的柱面为16322=-z y . (二)(1)、(2)联立消去y ,得 162322=+z x .所以,母线平行于x 轴且通过曲线Γ的柱面为162322=+z x . 3.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】(一)(1)、(2)联立消去z 得 22243R y x =+. 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得 R z 21=. 所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧== (三)(1)、(2)联立消去x 得 R z 21=. 所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧== 5.画出下列各曲面所围立体的图形. (1)0,22==z x y 及1224=++zy x ; (2)0,,222==+=z y x y x z 及1=x . 【解】略.6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 7.写出圆锥面22:y x z S +=的参数方程.【解】().20,0.,sin ,cos πθθθ≤≤+∞<<⎪⎩⎪⎨⎧===r r z r y r x习题1.设向量值函数()k t j t i t t r ++=sin cos ,求()t r t 4lim π→. 【解】()t r t 4lim π→k j i k t j t i t t t t 42222lim sin lim cos lim 444ππππ++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=→→→. 2.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-='t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±='r 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为 ()()(){}|1,,='''=t t z t y t x s {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x s '''={}{}20023,2,13,2,1|0t t t t t t ===.由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为 ()()(){}|,,='''=t t z t y t x s {}{}3,2,13,sin cos 2,cos |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为 322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .6.已知(){}t t t t r 2,1,12-+=表示空间一质点在时刻t 的位置,求质点在时刻t 的速度和加速度向量,并求质点在指定时刻1=t 的速率和运动方向. 【解】(一)时刻t 的速度向量为()()()()(){}2,2,12,1,12t t t t t r t v =⎭⎬⎫⎩⎨⎧''-'+='=; 时刻t 的加速度向量为()()()()(){}{}0,2,02,2,1='''=''=t t r t a .(二)1=t 的速度为(){}2,2,11=v )32211222=++=. 1=t 的速度为(){}2,2,11=v()⎭⎬⎫⎩⎨⎧=32,32,311.复习题71.填空题(1)设b a ,为非零向量,若0.=b a ,则必有a ⊥b .(2)设b a ,为非零向量,若0=⨯b a ,则必有a ∥b .(3)若直线l 的方向向量s 与平面π的法向量n 互相平行,则直线l 与平面π必 垂直.(4)点()1,5,3P 到平面07623=+++z y x 的距离732. (5)若动()z y x M ,,到定点()5,0,0的距离等于它到x 轴的距离,则该动点的轨迹方程为25102-=-z x .(6)直线⎪⎩⎪⎨⎧+=--=+=.31,1,2t z t y t x 与平面0765=-+-z y x 的位置关系是相交但不垂直.【解】直线l 的方向向量为{}3,1,1-=s .平面的法向量为{}6,5,1-=n .因为024.≠=n s ,且s 与n s .的坐标分量不成比例, 所以直线l 与平面π相交. 2.判断题.(1)若c a b a ..=,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (2)若c a b a ⨯=⨯,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (3)若c a b a ..= ① 且c a b a ⨯=⨯ ② ,则必有c b =.(⨯)【解】取0=a ,j b =,k c =,即知上述命题是错误的 .【书后答案有误】. 【注意:如果假定c b a ,,均为非零向量,则上述命题是正确的,其理由如下: 由①式得 ()0.=-c b a ,说明a 与c b -垂直;由②式得 ()0=-⨯c b a ,说明a 与c b -平行. 因为a 为非零向量,故c b -必为零向量,从而c b =. (4)设b a ,为非零向量,则必有a b b a ..=.(√) (5)设b a ,为非零向量,则必有a b b a ⨯=⨯..(⨯)3.已知直线⎩⎨⎧=+--=+++.03102,0123:z y x z y x l 平面024:=+-z y x π,则直线l 与平面π的位置关系为(B )A. 平行于平面π C. 在平面π上B. 垂直于平面π D. 与平面π斜交.【解】在直线l 上任取一点⎪⎭⎫⎝⎛-0,71,7100M .直线l 的方向向量为k j i j i n n s 71428123121-+-=-=⨯=∥{}1,2,4-. 平面的法向量为{}1,2,4-=n .因为s ∥n ,所以直线l 与平面π垂直.4.设c b a u 2+-=,c b a v ---=3,试用c b a ,,表示v u 32-. 【解】v u 32-()c b a 22+-=()c b a ----33c b a 775++=.5.设点C 为线段AB 上一点,且AC CB 2=,O 为AB 外一点,记OA a =,OB b =,OC c =,试用b a ,来表示c .【解】由题意知,a b OA OB AB -=-=,a b AB AC 313131-==. 所以,a b a a b OA AC AO AC c 32313131+=+⎪⎭⎫ ⎝⎛-=+=-=.6.已知k j i a +-=32,k j i b 3+-=,j i c 2-=.计算: (1)()()b c a c b a ..-; (2)()()c b b a +⨯+. 【解】(1)()()8311312.=⨯+-⨯-+⨯=b a ; ()()8302312.=⨯+-⨯-+⨯=c a .所以,()()()()k j k j b c b c b c a c b a 24838888..--=--=-=-=-.(2)k j i j ib a +--=--=⨯581132;k j i j ic a -+=--=⨯22132;k j i j ic b -+=--=⨯362111. 所以,()()c b b b c a b a c b b a ⨯+⨯+⨯+⨯=+⨯+()k j i +--=58 ()k j i -++2 ()k j i -++36 k j --=. 【或者这样做:k j i b a 443+-=+,k j i c b 332+-=+. 所以()()c b b a +⨯+.3243k j j i--=--=】 7.已知{}2,1,2=a ,{}10,1,4-=b ,a b c λ-=,且a ⊥c ,求实数λ. 【解】{}λλλλ210,1,24----=-=a b c .因为a ⊥c ,所以 ()()()λλλ210211242.0-⨯+--⨯+-⨯==c a ,即0927=-λ .解之得 .3=λ8.设{}1,2,3-=a ,{}2,1,1-=b ,求:(1)()()b a 72⨯;(2)i a ⨯. 【解】(1)k j i j i b a 5731123--=-=⨯{}5,7,3--=. 所以,()()b a 72⨯()b a ⨯=14{}{}70,98,425,7,314--=--=.(2){}2,1,020001123--=--=-=⨯k j i kji i a . 9.3=,1=6π=,计算:(1)b a +与b a -之间的夹角;(2)以b a 2+与b a 3-为邻边的平行四边形的面积.【解】232313,.cos .=⨯⨯=⎪⎪⎭⎫ ⎝⎛=∧b a b a . ① (1+()71232322=+⨯+===;-()11232322=+⨯-===; ()()().213 (2)2=-=-=-+b b a a b a b a设b a +与b a -之间的夹角为θ,则有()(72172cos =⨯==b a b a θ,所以72arccos =θ.(2+()1314234322=⨯+⨯+===;-()319236322=⨯+⨯-===; ()()().2916233.6..3.222-=⨯--=--=-+b b b a a a b a b a设b a 2+与b a 3-之间的夹角为θ,则有()(392931329cos -=⨯-==θ,故 2613539291cos 1sin 22=⎪⎪⎭⎫⎝⎛-=-=θθ. 所以由三角形的面积公式知,以b a 2+与b a 3-为邻边的平行四边形的面积为.32526135313sin 2=⨯⨯=⎥⎦⎤⨯-+=θS10.已知点()0,0,1A 及()1,2,0B ,试在z 轴上求一点C ,使ABC ∆的面积最小. 【解】过点()0,0,1A 及()1,2,0B 直线l 的方向即为{}1,2,1-==AB s .l 的方程为 1211:zy x l ==--. 设点()z C,0,0,则{}2,1,22101---=--=⨯z z ji s AC . 点C 距l 的距离为()()()6212222-+-+-==z z d 65245152+⎪⎭⎫ ⎝⎛-=z明显地,当51=z 时,d 取到最小值55254=.所以,ABC ∆的面积最小值为 53055262155221=⨯⨯==∆S ABC . 所求点.51,0,0⎪⎭⎫ ⎝⎛C11.求过点()2,1,3--且与平面01235=-+-z y x 平行的平面方程. 【解】可取所求平面的法向量与已知平面相同,即为{}3,5,1-=n . 所以,所求平面方程为()()()0231.53.1=+++--z y x ,即 .0235=-+-z y x12.求过点()1,2,1且垂直于平面0=+y x 和05=+z y 的平面方程. 【解】可取所求平面的法向量为k j i j in n n 5501121+-==⨯=. 所以,所求平面方程为()()()0152.11.1=-+---z y x ,即 .045=-+-z y x 13.求满足下列条件的平面方程.(1)过点()2,1,1--M 和()1,1,3N 且垂直于平面0532:=-+-z y x π; (2)过点()3,3,2-M 且平行于xoy 面. 【解】(1)可取所求平面的法向量为k j i j is MN n 63122122--=-=⨯=∥{}2,1,4--. 所以,所求平面方程为()()()02.21.11.4=+-+--z y x ,即 .0924=---z y x(2)根据题意,可设所求平面的一般式方程为 .0=+D Cz将点()3,3,2-M 的坐标代入平面方程得.03=+D C 即 ()03≠-=C C D . 所以,所求平面为 .03=-C Cz 化简得.03=-z14.求过点()3,0,2-且与直线⎩⎨⎧=+-+=-+-.01253,0742:z y x z y x l 垂直的平面方程.【解】直线l 的方向为k j i j in n s 111416532121++-=-=⨯=. 所以,所求平面方程为()()()03.110142.16=++-+--z y x ,即 .065111416=+++-z y x15.求过点()1,3,20-M 和直线⎩⎨⎧=+-=--.062,0165:z y y x l 的平面方程.【解】化直线l 的为参数式方程⎪⎩⎪⎨⎧+==+=.62,,165:y z y y y x l .因此直线l 过点()6,0,161M .可取所求平面的法向量为{}1,3,131531410--=--==⨯=k j i j is M M n . 所以,所求平面方程为()()()01.13.32.1=--+--z y x ,即 .0103=---z y x 【书后答案有误】. 16.求过点()1,1,1M 且与直线42135:-=+=-zy x l 平行的直线方程. 【解】根据题意知,可取所求直线的方向为{}4,2,3-=s .所以,所求直线为412131--=-=-z y x . 17.求过点()4,2,00M 且与两平面12:1=+z x π和23:2=-z y π都平行的直线方程.【解】根据题意知,可取所求直线的方向为{}1,3,232100121-=++-==⨯=k j i j in n s . 所以,所求直线为143220-=-=--z y x . 18.求下列旋转曲面方程.(1)⎩⎨⎧==.0,22x y z 绕y 轴旋转一周; (2)⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周. 【解】(1)由公式,知⎩⎨⎧==.0,22x y z 绕y 轴旋转一周生成曲面 ()y zx 2222=+±,即 222z xy += ,为椭圆抛物面.(2)由公式,知⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周生成曲面 ()142222=++±z yx ,即 14222=++z y x ,为椭球面. 19.指出下列各方程所表示的是何种曲面.(1)11694222=++z y x ; (2)94322y x z +=; (3)64416222=-+z y x ; (4)3694222-=+-z y x . 【解】(1)表示椭球面; (2)表示椭圆抛物面;(3)可化为164164222=-+z y x ,故(3)表示单叶双曲面; (4)可化为14369222-=-+z y x ,故(4)表示双叶双曲面. 20.求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=Γ.,1,1:2t z t t y t t x ① 对应于1=t 处的切线方程.【解】将1=t 代入① ,得切点坐标为⎪⎭⎫⎝⎛1,2,21.又切向量为()|12,1,1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛+=t tt t t t s ()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+==2,1,412,1,11|122t t t t ∥{}8,4,1-. 所以,曲线Γ对应于1=t 处的切线方程为8142121-=--=-z y x .。

高等数学c2教材课后答案

高等数学c2教材课后答案

高等数学c2教材课后答案第一章:数学归纳法1. 证明数学归纳法的基本原理对于任意一个命题,如果满足以下两个条件,则可以通过数学归纳法来证明:- 基本情形:命题在某个特定的情况下成立。

- 归纳步骤:如果命题在第n个情况下成立,那么可以推断它在第n+1个情况下也成立。

2. 利用数学归纳法证明等式的成立利用数学归纳法证明等式的成立主要分为以下几个步骤:- 验证基本情形,在某个特定的情况下等式是否成立。

- 假设在第n个情况下等式成立,即假设等式在第n步成立。

- 证明等式在第n+1个情况下也成立。

- 根据数学归纳法原理,可以得出等式在所有情况下都成立。

第二章:数列与数列极限1. 数列的定义与性质数列是按一定的顺序排列起来的一组数的集合。

数列的性质包括有界性、单调性等。

- 有界性:数列有上界和下界,当数列的所有项都满足某个限定条件时,称为有界数列。

- 单调性:数列可以是递增的(严格递增或非严格递增)或递减的。

- 有限数列和无限数列:数列的项数可以是有限的或无限的。

2. 数列极限的概念与性质数列极限是数列趋于无穷大或无穷小时的稳定值。

数列极限的性质包括唯一性、有界性、保序性等。

- 唯一性:数列的极限如果存在,那么极限是唯一的。

- 有界性:如果数列收敛,则数列是有界的,即存在上界和下界。

- 保序性:如果数列的极限存在,则数列的每一项与极限的大小关系是相同的。

第三章:函数与极限1. 函数的极限函数的极限是指当自变量趋于某个特定值时,函数值的稳定值。

函数极限的性质主要包括唯一性、有界性、局部有界性等。

- 唯一性:函数的极限如果存在,那么极限是唯一的。

- 有界性:如果一个函数在某个区间上有界,那么它在该区间上的极限也是有界的。

- 局部有界性:如果函数在某个点的邻域内有界,那么该点是函数的极限点。

2. 函数的连续性函数的连续性是指函数在某个区间上没有跳跃和间断的特性。

函数的连续性的性质包括分段连续性、间断点的分类等。

- 分段连续性:函数在某个区间上可以被分段定义,每个分段上函数是连续的。

深圳大学期末考试参考答案及评分标准

深圳大学期末考试参考答案及评分标准

第 5 页 共 9 页
5、试用力矩分配法求解图示结构,并画出弯矩图。各杆 EI 相同,忽略轴向变形。 (15 分)
F q
C l
D
E
ql 2 2 ql 2 2 3ql 2 10
ql 2 40
q A
EI = 常数
l
B
l 题5图 l
9ql 2 40 3ql 2 20
M图
解: (1)判断。此结构只有 D 节点一个关键角位移,适用弯矩分配法 (2)求转动刚度、传递系数和分配系数 令 i = EI l , S DC = 3i , CDC = 0 ; S DB = 4i , CDB = 1 2 ; S DE = 3i , CDE = 0 ; S DF = 0 。
4i
Z2 = 1
ql 2 2
2i
4i
2i M 2图 所以 M P图
r11 = 3i + 3i + 4i = 10i , r12 = r21 = 2i , R1P = r22 = 4i + 4i = 8i , R2P = 0
位移法方程为
ql 2 2
ql 2 =0 10iZ1 + 2iZ 2 + 2 2iZ + 8iZ = 0 1 2
M 图
《结构力学(1) 》试卷 A 卷
第 3 页 共 9 页
4、试用位移法求解图示结构,并画出弯矩图。各杆刚度如图,忽略轴向变形。 (15 分)
F q EI
Z
1
Z
l
2
Z1 = 1 3i
2i
A
EI
B
3EI
EI
C
EI E
l
l 3i 4i
D
l 基本结构 解: (1)基本结构

(完整word版)大一下册高数习题册答案第9章

(完整word版)大一下册高数习题册答案第9章
(A)偏导数不连续,则全微分必不存在
(C)全微分存在,则偏导数必连续
2、求下列函数的全微分:
(B)偏导数连续,则全微分必存在
(D)全微分存在,而偏导数不一定存在
1)z
y
dz ex
2)z
3)u
sin (xy2)
y_
xz解:
解:dz
y
du x
z
*
x
2 2cos(xy ) (y dx
「•1
xdy)
2xydy)
答案:极小值f(1,3)10 18l n3
3.函数f (x, y) 2x2ax xy22y在点(1,1)处取得极值,求常数a (-5)
4、求函数z
解:
x2y21在条件x y 30下的条件极值
F(x, y, ) x2y21 (x y 3)
Fx0“22、+11
(,),极小值为-
Fy03 32
5、欲造一个无盖的长方体容器,已知底部造价为3元/平方,侧面造价均为1元/
\2x
y)
3yl n(x
z
2y-
y
y),
nz
2
y ,2xy),其中f具有二阶连续偏导数,求
2yf2
2xf2
2
—2x( fn ( 2y) f122x) x y
4(x2y2)f124xyf22
2
z
2
X
2
z
2
y
2f22y(f21(
2y) f222x)
5、
解:
6、
解:
7、设Z
其中
证明:
2
z
2
y
得:
2fi
4x f118xyf12

深圳大学10年高数C(2)试卷A

深圳大学10年高数C(2)试卷A

深圳大学期末考试试卷开/闭卷 闭卷A/B 卷 A 课程编号 2219001501-20 课程名称高等数学C(2)学分 4命题人(签字) 审题人(签字) 2010 年 6 月 日一、单项选择题(本题共6小题,每小题3分,满分18分)1.设 ()y f x = 是定义在 (),-∞+∞ 上的连续函数,则⎰=xdt t tf dx d02)(( )A. 2()x f x ⋅ ;B. 2()x f x -⋅ ;C. 22()x f x ⋅ ;D. 22()x f x -⋅ 。

2.下列反常积分中,收敛的是 ( )A. 0x x e dx +∞-⋅⎰ ;B. 0x x e dx +∞⋅⎰ ; C. 1201dx x ⎰ ; D. 11e dx x nx ⋅⎰ 。

3.设 22(,)43f x y x xy y =-+ ,则0(1,1)(1,1)y f y f im y∆→+∆-=∆ ( )A. 0 ;B. 1 ;C. 2 ;D. 34.设 :0D x ≥ ,2214x y ≤+≤ , 则 Ddxdy =⎰⎰ ( ) A. 2π ; B. π ; C. 32π ; D. 2π 。

5.下列说法中,正确的是 ( )A.若 21pn n ∞-=∑收敛,则3<p ;B.若 21n n a ∞=∑ 收敛,则 1n n a ∞=∑ 收敛;C.若 11()nn a ∞=∑收敛,则1a ≤;D.若正项级数1n n a ∞=∑与1n n b ∞=∑都收敛,则1n n n a b ∞=⋅∑收敛。

6.微分方程20y y y '''+-= 的通解y = ( )A. 212x xc e c e -⋅+⋅ ; B. 212x xc e c e -⋅+⋅ ; C. 212x xc e c e --⋅+⋅ ; D. 212x xc e c e ⋅+⋅ 。

二、填空题(本题共6小题,每小题3分,满分18分)1. 设函数 ()y f x = 在 [],a b 上连续,则 ()f x 在 [],a b 上的平均值是 ;2. 设 2(,)sinyf x y y nx x x y+=⋅+⋅- ,则 (2,2)x f '-= ; 3. 设 :D )0(,222>≤+R R y x ,且 22()8Dx y dxdy π+=⎰⎰ ,则R = ;4. 幂级数 121(1)(2)3n nn nn x -∞=-+⋅∑ 的收敛半径 R = ; 5. 二阶常系数线性微分方程065=+'-''y y y 的通解是________________;6. 微分方程 2cos ydx xdy = 满足初始条件 4x y e π== 的特解是 y = 。

深圳大学高等数学A2补充题答案及自测题答案

深圳大学高等数学A2补充题答案及自测题答案
深圳大学
高等数学 A2 补充题答案及 自测题答案
1
§7—1 1.在空间直角坐标系中,指出下列各点在哪个卦限? 第 IV 卦限 第 VIII 卦限 第 V 卦限
A(1, −2,3) C (2, −3, −4)
B(2,3, −4)
D (−2, −3,1) 第 III 卦限.
2. 证明:对角线互相平分的四边形必是平行四边形. 证明:如图所示 D ∵ AM = MC
所以 ( 2a x + b x )( ka x + b x ) + ( 2a y + b y )( ka y + b y ) + ( 2a z + bz )( ka z + bz ) = 0
求得
k = −2 .
� � (2) 根据题意, 6 =| m × n | ,得 k = −1 ,或 k = 5 . � � � � � � � � � � (方法二) (1) ∵ m ⊥ n ,∴ m ⋅ n = 0 ⇒ ( 2a + b ) ⋅ ( ka + b ) = 0 ⇒ 2k | a | 2 + | b | 2 = 0 2k + 4 = 0 ⇒ k = −2 . � � � � � � (2) ∵ S = 6 ,∴ | m × n |= 6 ⇒ | ( 2a + b ) × ( ka + b ) |= 6 ⇒ � � � � � � � � | 2(a × b ) − k (a × b ) |= 6 ⇒ | 2 − k | ⋅ | a × b |= 6 ⇒ | 2 − k | ⋅ | a | ⋅ | b |= 6 ⇒ | 2 − k |= 3 ⇒ k = −1或k = 5 . §7—3 1.一动点与两定点 (2,3,1) 和 (4,5, 6) 等距离,求这动点的轨迹方程. 解:设动点坐标为 ( x , y , z ) ,根据题意,有 ( x − 2) 2 + ( y − 3) 2 + ( z − 1) 2 = ( x − 4) 2 + ( y − 5) 2 + ( z − 6) 2 等式两边平方,然后化简得 4 x + 4 y + 10 z − 63 = 0 . 2.求以点 O(1,3, −2) 为球心,且通过坐标原点的球面方程. 解 : 设 球 面 上 点 的 坐 标 为 ( x, y, z ) , 根 据 已 知 条 件 , 得 ( x − 1) 2 + ( y − 3) 2 + ( z + 2) 2 = (0 − 1) 2 + (0 − 3) 2 + (0 + 2) 2 整理得 ⇒

高等数学d教材答案

高等数学d教材答案

高等数学d教材答案第一章:极限与连续1.1 极限的概念与性质1.1.1 有界数列的性质与极限1.1.2 单调有界数列的性质与极限1.1.3 数列极限的唯一性和保号性1.2 数列极限的计算方法1.2.1 夹逼定理与夹逼准则1.2.2 无穷小量的性质与极限计算1.2.3 无穷大量的性质与极限计算1.3 函数极限的概念与性质1.3.1 函数极限的定义1.3.2 函数极限的性质1.3.3 函数极限的运算法则1.4 极限存在准则1.4.1 单调有界函数的极限存在准则1.4.2 保号函数的极限存在准则1.4.3 复合函数的极限存在准则第二章:导数与微分2.1 导数的概念与性质2.1.1 导数的定义与几何意义2.1.2 导数的性质与运算法则2.1.3 反函数与导数的关系2.2 可导与连续的关系2.2.1 可导函数与连续函数的关系2.2.2 连续函数的导数性质2.3 微分的概念与性质2.3.1 微分的定义与性质2.3.2 微分中值定理与应用2.4 高阶导数与高阶微分2.4.1 高阶导数的定义与性质2.4.2 高阶微分的定义与性质第三章:一元函数的微分学3.1 高阶导数的计算3.1.1 多项式函数的高阶导数3.1.2 三角函数的高阶导数3.1.3 指数函数与对数函数的高阶导数3.2 函数的Taylor展开与应用3.2.1 函数的Taylor展开式3.2.2 Taylor展开在近似计算中的应用3.3 函数的单调性与凹凸性3.3.1 函数的单调性判定3.3.2 函数的凹凸性判定3.3.3 函数的拐点与极值点3.4 函数的最值与最值问题3.4.1 函数的最值存在性3.4.2 有限闭区间上函数最值的判定第四章:定积分4.1 定积分的概念与性质4.1.1 定积分的定义与性质4.1.2 定积分的几何意义与物理应用4.2 定积分的计算方法4.2.1 定积分的基本性质与性质4.2.2 定积分的换元法与分部积分法4.2.3 定积分的中值定理与均值定理4.3 反常积分的概念与性质4.3.1 反常积分的定义与性质4.3.2 反常积分的收敛性判别4.4 定积分在几何学和物理学中的应用4.4.1 平面曲线的长度与曲率4.4.2 平面图形的面积与旋转体的体积第五章:定积分的应用5.1 定积分计算在几何学中的应用5.1.1 平面曲线的面积5.1.2 曲线长度和曲率5.1.3 平面图形的质量与质心5.2 定积分计算在物理学中的应用5.2.1 动力学问题中的定积分计算5.2.2 静力学问题中的定积分计算5.2.3 热力学问题中的定积分计算5.3 定积分计算在经济学中的应用5.3.1 常见经济问题的定积分计算5.3.2 经济增长与收益的定积分计算第六章:多元函数的微分学6.1 偏导数的概念与性质6.1.1 偏导数的定义与性质6.1.2 隐函数与偏导数的关系6.2 多元函数的全微分与全导数6.2.1 多元函数的全微分6.2.2 多元函数的全导数6.3 多元函数的高阶偏导数6.3.1 多元函数的高阶偏导数的定义6.3.2 高阶偏导数的对称性与混合偏导数的次序6.4 多元复合函数的求导法则6.4.1 复合函数求导的链式法则6.4.2 隐函数求导的隐函数定理第七章:多元函数的积分学7.1 二重积分的概念与性质7.1.1 二重积分的定义与性质7.1.2 二重积分的计算方法与性质7.2 二重积分的应用7.2.1 平面图形的面积计算7.2.2 二重积分在物理学中的应用7.3 三重积分的概念与性质7.3.1 三重积分的定义与性质7.3.2 三重积分的计算方法与性质7.4 三重积分的应用7.4.1 空间图形的体积计算7.4.2 三重积分在物理学中的应用第八章:常微分方程8.1 常微分方程的基本概念8.1.1 常微分方程的定义与解的概念8.1.2 初值问题与解的存在唯一性8.1.3 隐式解与隐式解的导数8.2 一阶常微分方程8.2.1 一阶线性常微分方程8.2.2 可分离变量的一阶微分方程8.2.3 齐次方程的一阶微分方程8.2.4 Bernoulli方程与Riccati方程8.3 高阶常微分方程8.3.1 高阶线性常微分方程的基本理论8.3.2 齐次方程的解的性质与求法8.3.3 常系数线性常微分方程的解的性质与求法8.4 常微分方程的应用8.4.1 生物学问题中的常微分方程模型8.4.2 物理学问题中的常微分方程模型8.4.3 工程学问题中的常微分方程模型以上是《高等数学D教材》的答案内容总览,希望能对你学习高等数学D教材有所帮助。

深圳大学高等数学A2补充题答案及自测题答案

深圳大学高等数学A2补充题答案及自测题答案

AC1.在空间直角坐标系中,指出下列各点在哪个卦限? (1,2,3)A - 第IV 卦限 (2,3,B - 第V 卦限 (2,3,4)C -- 第VIII 卦限 (2,3,1)D --第III 卦限. 2. 证明:对角线互相平分的四边形必是平行四边形. 证明:如图所示 MC AM = MD BM ==+=+=∴AD 与BC 平行且相等,结论得证.3.已知两点1M 和2(3,0,2)M ,计算向量12M M 的模,方向余弦和方向角以及平行于向量12M M 的单位向量. 解: k j 2i 21+--=M M2)21()02()34(222=-+-+-=方向余弦:21cos -=α,22cos -=β,21cos =γ. 方向角:32πα=,43πβ=,3πγ=. 平行于向量21M M 的单位向量是k 21j 22i 21±. 4.设=3+5+8m i j k ,=2n i 47-j-k ,=5+p i j 4-k ,求=4+3a m n -p 在x 轴上的投影及在y 轴上的分向量. 解:因为p n 3m 4a -+=k15j 7i 13)k 4j i 5()k 7j 4i 2(3)k 8j 5i 3(4++=-+---+++=所以在x 轴上的投影为13a =x . 在y 轴上的分向量为j 7.1.已知1(1,1,2)M -,2(3,3,1)M 和3(3,1,3)M ,求同时与12M M ,23M M 垂直的单位向量.解:k j 4i 221-+=M M ,k 2j 232+-=M M ,设所求向量为),,(c b a b =,因为21M M b ⊥ ,所以 042=-+c b a因为32M M b ⊥,所以 022=+-c b , 因为1||=b ,所以1222=++c b a求得173±=a ,172=b ,172=c故所求单位向量为)172,172,173(±=be方法二:所求向量)4,4,6(2201422221--±=--±=⨯±=kj iM M M M b故)172,172,173(161636)4,4,6(||±=++--±==b b e b2.设{}=3,5,-2a ,{}=2,1,4b ,问λ与μ有怎样的关系能使+λμa b 与z 轴垂直.解:)k 4j i 2()k 2j 5i 3(b i +++-+=+μλμλk )42(j )5(i )23(μλμλμλ+-++++=因为与z 轴垂直,所以μλμλ2042=⇒=+-.3.设=2+m a b ,=k +n a b ,其中=1a ,=2b ,且⊥a b . (1) k 为何值时,⊥m n ;(2) k 为何值时,m 与n 为邻边的平行四边形面积为6?解:(方法一) 设},,{z y x a a a a =,},,{z y x b b b b = ,由题意已知1222=++z y x a a a ,4222=++z y x b b b ,0=++z z y y x x b a b a b a}2,2,2{z z y y x x b a b a b a m +++= ,},,{z z y y x x b ka b ka b ka n +++=(1) 已知n m⊥,所以0))(2())(2())(2(=++++++++z z z z y y y y x x x x b ka b a b ka b a b ka b a求得 2-=k .(2) 根据题意,||6n m⨯=,得1-=k ,或5=k .(方法二) (1) n m ⊥ ,0 =⋅∴n m ⇒0)()2(=+⋅+b a k b a ⇒0||||222=+b a k⇒042=+k ⇒2-=k .(2) 6 =S ,6|| =⨯∴n m ⇒6|)()2(|=+⨯+b a k b a⇒6|)()(2|=⨯-⨯b a k b a ⇒6|||2|=⨯⋅-b a k⇒6|||||2|=⋅⋅-b a k ⇒3|2|=-k ⇒51=-=k k 或.§7—31.一动点与两定点(2,3,1)和(4,5,6)等距离,求这动点的轨迹方程. 解:设动点坐标为),,(z y x ,根据题意,有222222)6()5()4()1()3()2(-+-+-=-+-+-z y x z y x等式两边平方,然后化简得 0631044=-++z y x . 2.求以点(1,3,2)O -为球心,且通过坐标原点的球面方程.解:设球面上点的坐标为),,(z y x ,根据已知条件,得222222)20()30()10()2()3()1(++-+-=++-+-z y x整理得 0462222=+--++z y x z y x . 3.画出下列方程所表示的曲面: (1) 22244x y z ++=; 解:椭球抛物面 (2) 22240x y z +-=; 解:圆锥面(3) 22349z x y =+.解:旋转抛物面§7—41.画出下列曲线在第一卦限内的图形:(1) 12x y =⎧⎨=⎩;解:(2) 0z x y ⎧⎪=⎨-=⎪⎩解:(3) 222222x y a x z a⎧+=⎨+=⎩.解:2.方程组221493x y y ⎧+=⎪⎨⎪=⎩在平面解析几何与空间解析几何中各表示什么? 解:在平面解析几何中,表示椭圆22149x y +=与直线3y =(其实是过点(0,3)的一条切线)的交点;空间解析几何中,表示椭圆柱面22149x y +=与其切平面3y =的交线(直线).3.求由上半球面z =220x y ax +-=及平面0z =所围成的立体,在xOy 面和xOz 面上的投影.解:想象该立体的形状,知向xoy 面上的投影柱面的方程为ax y x =+22,即为圆柱面222)2()2(ay a x =+-,故该立体在xoy 面上的投影为圆面: ⎪⎩⎪⎨⎧=≤+-0)2()2(222z a y a x .消去y :222y x a z --=,在xoz 面上的投影是⎪⎩⎪⎨⎧==+0222y az x柱面022=-+ax y x 在xoz 面上的投影是⎪⎩⎪⎨⎧==-002y ax x故在xoz 面上的投影是⎩⎨⎧=≥≥≤+0,0 ,222y x z a z x .§7—51.求通过点(3,0,1)-且与平面375120x y z -+-=平行的平面方程. 解:设所求平面方程为0573=++-D z y x ,因为过点)1,0,3(-,所以0)1(*50*73*3=+-+-D ,得4-=D ,故所求平面方程为04573=-+-z y x2.求过点0(2,9,6)M -且与连接坐标原点及点0M 的线段0OM 垂直的平面方程. 解:由条件 }6,9,2{0-=OM 与平面垂直,所以}6,9,2{-=n,所求平面方程为0)6(6)9(9)2(2=+--+-z y x , 即0121692=--+z y x .3.求平面2250x y z -++=与各坐标面的夹角余弦. 解:与xoy 平面的夹角余弦为319|1*10*)2(0*2|cos 1=+-+=θ 与xoz 平面的夹角余弦为329|0*11*)2(0*2|cos 2=+-+=θ与yoz 平面的夹角余弦为329|0*10*)2(1*2|cos 3=+-+=θ§7—61.求过点(4,1,3)-且平行于直线3125x z y --==的直线方程. 解:设所求直线为l ,直线5123-==-z y x 的方向向量为)5,1,2(,则直线l 的方向向量为)5,,2(t t t , 故所求直线方程为53124-=+=-z y x . 2.求过两点1(3,2,1)M -和2(1,0,2)M -的直线方程.解:所有直线L 过点1M ,2M 两点,则L M M //21,故可取21M M s =,即}1,2,4{}12,20,31{21-=-+--==M M s所以所求直线方程为:121202313--=++=---z y x ,即112243-=+=--z y x .3.求点(1,2,0)-在平面210x y z +-+=上的投影.解:过点)0,2,1(-且垂直于平面的直线方程为⎪⎩⎪⎨⎧-=+=+-=t z t y tx 0221,代入平面方程中,01)()22(2)1(=+--+++-t t t ,得32-=t ,代入直线的参数方程,得35-=x ,32=y ,32=z ,即投影点为)32,32,35(-.第八章 多元函数微分法及其应用§8-11.求函数22(,,)arcsin x y f x y z z+=的定义域.解:要使函数有意义,须0z ≠,且221.x y z+≤ 即, 22,0x y z z +≤≠ 或 22,0.z x y z ≤-≠- 2.求极限:2001cos()lim.()x y x y x y →→-++ 解:(方法一) 22200002sin 1cos()112lim lim .()422x x y y x yx y x y x y →→→→+-+==++⎛⎫ ⎪⎝⎭(方法二) 2121lim cos 1lim 22020==-=→→=+t t tt t t ty x 原式. §8-21.设2,y z u x +=求一阶偏导数. 解:22221();ln ;2ln .y z y z y z u u uy z x x x zx x x y z+-++∂∂∂=+==∂∂∂ 2.设2ln(sin )z x y =+,求偏导数,z z x y ∂∂∂∂及2.z x y∂∂∂解:2222222cos 22cos ;;.sin sin sin (sin )z x z y z x x yx x y y x y x y y x y x y ⎛⎫∂∂∂∂====- ⎪∂+∂+∂∂∂++⎝⎭ §8-3设xz u y =,求du . 解:1ln ;;ln .xz xz xz u u uzy y xzy xy y x y z-∂∂∂===∂∂∂1ln ln .xz xz xz u u udu dx dy dz zy ydx xzy dy xy ydz x y z-∂∂∂∴=++=++∂∂∂ §8-41. 设(,)x z f x y =,求2,,z z zx y x y∂∂∂∂∂∂∂.解:令,.xu x v y==则''''12121;z du v f f f f x dx x y ∂∂=⋅+⋅=+∂∂''222;z v xf f y y y∂∂=⋅=-∂∂ ''2''''''''121221222222231111.f f z z x x f f f f f f x y y x y y y y y y y y y⎛⎫∂∂∂∂∂∂⎛⎫==+=-+=--- ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭2. 设22x y z e +=,其中cos y x =,求dzdx. 解:令22,.u x v y ==则222222222-2s i n x y x y x y x y d z u v d y e e x e y ex d x xy d x++++∂∂=⋅+⋅⋅=∂∂22cos (2-sin2).x xex x +=§8-51.设ln x zz y=,求22,z z x x ∂∂∂∂.解:设(,,)ln .xz F x y z z y =-则211,,.x y z x zF F F z y z+===-由隐函数存在定理,得22223;()1.()()x z F z zx F x zz z x z z z z z z x x x x x x x z x z x z ∂=-=∂+∂∂⎛⎫+-+ ⎪∂∂∂∂-∂∂⎛⎫⎛⎫⎝⎭==== ⎪ ⎪∂∂∂∂+++⎝⎭⎝⎭2.设(,)F u v 可微,0F F ab u v∂∂+≠∂∂,证明由22(,)0F x az y bz --=所确定的函数(,)z z x y =满足方程2z zaybx xy x y∂∂+=∂∂. (方法一) 证明:设22,.u x az v y bz =-=-则2;2;.x u y v z u v F xF F yF F aF bF ===-- 由于0F F ab u v∂∂+≠∂∂,于是,由隐函数存在定理,得 22;.y x u v z u v z u vF F xF yF z zx F aF bF y F aF bF ∂∂=-==-=∂+∂+从而,222.u vu vxy aF xy bF z z aybx xy x y aF bF ⋅+⋅∂∂+==∂∂+ 证毕.(方法二) 证明:方程22(,)0F x az y bz --=两边分别对x ,y 求导:(注意),(y x z z =)对x 求导:0)()2(21=∂∂-+∂∂-x z b F x z a x F ⇒2112bF aF xF x z+=∂∂ 对y 求导:0)2()(21=∂∂-+∂∂-y zb y F y z a F ⇒2122bF aF yF y z +=∂∂ 从而满足方程2z zaybx xy x y∂∂+=∂∂. §8-61.求曲线2244x y z y ⎧-=⎪⎨⎪=⎩在点(2,4,5)处的切线方程,并问该切线与x 轴的正向所成的角度是多少?解:(方法一) 设22(,,),(,,) 4.4x y F x y z z G x y z y -=-=- 于是,曲线在点(2,4,5)处的切向量为z y x z x y 000000y x x y F F F - -1 1 -,,,,(1,0,1).2222 G G G 1 00 00 1y x z y z x F F F t G G G ⎛⎫⎛⎫- ⎪ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭ ∴切线方程为:245.101x y z ---== 即:30.4x z y -+=⎧⎨=⎩另外,x 轴上的单位向量为(1,0,0)i =.由两向量夹角余弦公式得:cos 2i t i t θ⋅===⋅.∴切线与x 轴的正向所成的角度是.4πθ== (方法二) 设切向量)5,4,2(},,1{x z x y t ∂∂∂∂=⇒}1,0,1{}2,0,1{)5,4,2(==xt 所以切线方程为 :245.101x y z ---== 即:30.4x z y -+=⎧⎨=⎩ 另外设该切线与x 轴正向所成角为α,则αtan =∂∂x z ⇒2tan x=α代入点)5,4,2(1tan =⇒α,所以4πα=.2.证明曲面3xyz a =的切平面与坐标面所围成的四面体的体积为一个常数.证明:设3(,,).F x y z xyz a =- 则;;.x y z F yz F xz F xy ===于是,曲面3xyz a =在它上面任意一点000(,,)x y z 处的切平面方程为:000000000()()()0.y z x x x z y y x y z z -+-+-= 即 000000003.xy z yx z zx y x y z ++= 易知,该切平面在,,x y z 轴上的截距分别为:0003,3,3.x y z则,切平面与坐标面所围成的四面体的体积为 30000001199333.3222V x y z x y z a =⋅⋅⋅⋅== 证毕.§8-71. 求22(,,)2f x y z y yz x =+-在点(1,2,1)处的方向导数的最大值. 解:由已知,有2;22;2.x y z f x f y z f y =-=+=(1,2,1)(1,2,1)(2,22,2)(2,6,4).gradf x y z y ∴=-+=-而,22(,,)2f x y z y yz x =+-在点(1,2,1)处的方向导数在沿(,,)f x y z 在该点的梯度方向取得最大值,最大值即为梯度的模.∴最大值为(1,2,1)gradf ==2.求222ln()u x y z =++在点(1,2,1)-处沿从点(5,1,2)到点(9,4,14)的方向的方向导数.解:向量(9,4,14)(5,1,2)(4,3,12)-=的方向即是l 的方向.于是,与l 同向的单位向量4312(,,).131313l e = 222(1,2,1)(1,2,1)222(1,2,1)(1,2,1)222(1,2,1)(1,2,1)(1,2,1)21;322 ;321 .31423112231331331339u xx x y z u yy x y z u zz x y z u l -------∂==∂++∂==∂++∂==-∂++∂∴=⋅+⋅-⋅=-⋅∂§8-81.将正数a 分成三个正数,,x y z 之和,使得2u xyz =最大. 解:即是求2u xyz =在条件x y z a ++=下的最大值.构造拉格朗日函数:2(,,,)().L x y z xyz x y z a λλ=+++-求解方程组220020x y z L yz L xz L xyz x y z a λλλ⎧=+=⎪=+=⎪⎨=+=⎪⎪++=⎩得:,,.442a a a x y z ===这是2u xyz =在条件x y z a ++=下的唯一可能极值点,而2u xyz =的最大值一定存在.故,,,442a a a x y z ===就是满足条件的a 的分解,此时,4.64a u =2.求函数ln ln 3ln u x y z =++在22225(0,0,0)x y z r x y z ++=>>>上的最大值.解:构造拉格朗日函数2222(,,,)ln ln 3ln (5).L x y z x y z x y z r λλ=+++++-求解下列方程组22221201203205x yz L x x L y y L z z x y z rλλλ⎧=+=⎪⎪⎪=+=⎪⎨⎪=+=⎪⎪⎪++=⎩得:,,.x r y r z r ==这是唯一可能的极值点,而最大值一定存在.故,ln ln 3ln u x y z =++在22225(0,0,0)x y z r x y z ++=>>>上的最大值在,,x r y r z ===时取得,最大值为5ln .第九章 重积分§9-11.估计积分的22()DI x y dxdy =+⎰⎰值,其中22: 1.D x y +≤解:在区域D 上,有220 1.x y ≤+≤区域D 的面积21.S ππ=⋅= 由估值定理得:001.I πππ=⋅≤≤⋅= 2.比较积分2()Dx y dxdy -⎰⎰与3()Dx y dxdy -⎰⎰的大小,其中D 由0,x =0,1y x y ==+所围.解:区域D 可以表示为:01,10.x x y ≤≤-≤≤则在区域D 上有: 1.x y -≤从而,32()()x y x y -≤-在D 上成立.32 ()().DDx y dxdy x y dxdy ∴-≤-⎰⎰⎰⎰3.2224,:,0,0,Ddxdy D x y R x y π=+≤≥≥⎰⎰则________.R =解:区域D 是半径为R ,圆心在原点的四分之一圆域.由已知,D 的面积为:4.Ddxdy π=⎰⎰4.∴=§9-2 1.110sin _________.yxdy dx x=⎰⎰ 解:积分区域{}(,)01,1.D x y y y x =≤≤≤≤把D 视作X-型区域,则{}(,)01,0.D x y x y x =≤≤≤≤于是,[]1111100000sin sin sin cos 1cos1.x yx x x dy dx dx dy xdx x x x x==⋅=-=-⎰⎰⎰⎰⎰ 2.{}22,(,)1,0,0,_____.DI xdxdy D x y x y x y I ==+≤≥≥=⎰⎰则1111(); (); (); ()A dx xdy B dx C dx D ⎰⎰⎰⎰解:将D 视为X-型区域:{(,)01,0.D x y x y =≤≤≤≤100. ().I dx C ∴=⎰故,选3.cos 20(cos ,sin )______.d f r r rdr πθθθθ=⎰⎰110000111() (,); () (,);() (,); () (,)A dy f x y dxB dx f x y dyC dy f x y dxD dx f x y dy ⎰⎰⎰⎰⎰解:由已知,在极坐标系中,积分区域D:0,0cos .2r πθθ≤≤≤≤则在直角坐标系中,积分区域D:01,0x y ≤≤≤≤1(,).().dx f x y dy B ⎰于是,原式=故,选4.求D⎰⎰,D 由,1,1y x x y ==-=所围. 解:积分区域D 可视作X-型区域:11, 1.x x y -≤≤≤≤()13111222111311212311(1).32x Dx dx x y dxx dx ---⎡⎤∴==-+-⎢⎥⎣⎦=--=⎰⎰⎰⎰⎰⎰ 5.计算{}22,(,)0,2.DI D x y y x x y x ==≤≤+≤解:在极坐标系中,积分区域D 可以表示为:0,02cos .4πθρθ≤≤≤≤那么,2cos 232444000088cos (1sin )sin 339I d d d d πππθθρρθθθθ===-=⎰⎰⎰⎰ §9-31.计算xyzdV Ω⎰⎰⎰,其中Ω为2221x y z ++=及三个坐标面所围成的在第一卦限内的闭区域.解:令sin cos ,sin sin ,cos .x r y r z r ϕθϕθϕ===则Ω可以表示为:0,0,0 1.22r ππθϕ≤≤≤≤≤≤于是,有122201352200sin cos sin sin cos sin 1111 =sin cos sin cos .24648xyzdV d d r r r r dr d d r dr ππππθϕϕθϕθϕϕθθθϕϕϕΩ=⋅⋅⋅⋅⋅=⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰2.zdxdydz Ω⎰⎰⎰,Ω由221()22z x y z =+=与所围.解:将Ω投影在z 轴上得投影区间[0,2].取[0,2]z ∀∈,过(0,0,)z 作平行 于xoy 面的平面,该平面与Ω的交面记为,z D 则{}22(,,)2.z D x y z x y z =+≤ 于是,220016()2.3z D zdxdydz zdxdy dz z zdz ππΩ==⋅⋅=⎰⎰⎰⎰⎰⎰⎰ 3.xdxdydz Ω⎰⎰⎰,Ω由z z ==所围的第一卦限部分.解:令cos ,sin .x r y r θθ==将Ω投影在xoy 面上得投影区域:(,)0,0.22xy D r r πθθ⎧⎪=≤≤≤≤⎨⎪⎪⎩⎭过(,)xy r D θ∀∈作平行于z 轴的直线,该直线从)z r =即z=进入Ω内,由z z ==即从Ω穿出. 则Ω可以表示为:0,022r r z πθ≤≤≤≤≤≤ 于是,有22200sin 22400cos cos )111 =sin cos .16163216rr xdxdydz d rdz d r drd πππϕθθθθπϕϕϕΩ==⋅=⋅--=-⎰⎰⎰⎰⎰=⎰令第十章 曲线积分与曲面积分§10-11.设L为下半圆周y =22()________.L x y ds +=⎰ 解:(方法一)L的参数方程为:cos ,2.sin x y θπθπθ=⎧≤≤⎨=⎩则.ds d θθ==于是,222().L x y ds d ππθπ+==⎰⎰ (方法二) ππ=⋅⋅==+⎰⎰≤=+12211)()0(1:2222ds dsy x Ly y x L L. 2.xyzds Γ⎰,其中Γ为2cos 2sin ,0.4x ty t t z t π=⎧⎪=≤≤⎨⎪=⎩解:由已知,得.ds ==于是,444044002cos 2sin sin 2cos 2 cos 2cos 22xyzds t t t t tdt td tt t tdt πππππΓ=⋅⋅=⋅=⎤=-=⎥⎦⎰⎰⎰§10-21.(2)L a y dx xdy -+⎰,其中L 为摆线(sin ),(1cos )x a t t y a t =-=-上对应于t 从0到2π的一段弧. 解:由已知,(sin ):,02.(1cos )x a t t L t y a t π=-⎧⎨=-⎩从变到那么,[]20222(2)(2cos )(1cos )(sin )sin sin 2.La y dx xdy a a a t a t a t t a t dt a t tdt a πππ-+=-+⋅-+-⋅==-⎰⎰⎰§10-31.设L 为1x y +=的反时针方向,则2(2)()_.y x Lxy e dy y y e dx -+-+=⎰()0; ()2; ()4; ()1.A B C D解:记L 所围的区域为D ,易知D.由已知,2,2.x y P y y e Q xy e =-+=- 则,221 1.Q P y y x y∂∂-=-+=∂∂ 由格林公式,得2(2)()1 2.y x LDxy e dy y y e dx dxdy -+-+==⎰⎰⎰故,选(B).2.22L xdy ydxx y-+⎰,L 经上半椭圆221(0)4x y y +=≥从(2,0)(2,0)A B -→.(方法一) 解:选适当的0r >,构造上半圆周222(0)x y r y +=≥,设它与x 轴的两个交点为(,0),(,0),C r D r -其方向为从D 到C.则L BD DC CA +++构成分段光滑封闭曲线,记其所围成的区域为Ω.由已知,22222222222222,. 0.()()y x Q P y x y x P Q x y x y x y x y x y -∂∂--==-=-=++∂∂++则,由格林公式,得220.L BD DC CA xdy ydxQ P dxdy x y x y +++Ω⎛⎫-∂∂=--= ⎪+∂∂⎝⎭⎰⎰⎰ 则,22222222.LBD DC CA xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y ⎛⎫---- ⎪++++⎝⎭⎰⎰⎰⎰ =-++ 而,cos :,2:,0:,--2.0sin 0x x x r x x BD x r DC CA x r y y r y θθπθ===⎧⎧⎧→→→⎨⎨⎨===⎩⎩⎩从;从;从 于是,2222222000; 0; .r BD CA DC xdy ydx xdy ydx xdy ydxdx d x y x y x yπθπ---=====+++⎰⎰⎰⎰⎰ 故,.π原式=-(方法二) 解:x y Q P = ,∴该曲线积分与路径无关,选择路径上半圆4:22=+y x l .πθθθθππ-==+=+-=+-⎰⎰⎰⎰d d y x ydxxdy y x ydx xdy lL0022222214sin 4cos 4. 3.22321(1)L y x ydx dy x x ++-⎰,L 沿2241x y y +-=的反时针方向从(1,0)(2,1)A B →.解:构造辅助折线BCA ,其中点C(1,1). 则L BCA +为一分段光滑的封闭曲线,记其所围成的区域为D.由已知,2232331(1)22,. 0.y x y Q P y yP Q x x x y x x ++∂∂==-=-=∂∂则-由格林公式得:22321(1)0.L BCA y x ydx dy x x +++-=⎰ 于是,22321(1)L y x y dx dy x x ++-⎰=22321(1)BCA y x y dx dy x x++--⎰. 对于22132321(1)23:,2 1. .14BC x x y x y BC x dx dy dx y x x x =⎧++∴-==-⎨=⎩⎰⎰从变到 对于22032111(1):,10. (2) 1.x y x y CA y dx dy y dy y y x x =⎧++∴-=-=⎨=⎩⎰⎰从变到 31(1).44-+=-故,原式=-4.设L 为222x y a +=的反时针方向,则22()()__.Lx y dx x y dyx y +--=+⎰解:取适当的0r >,构造222:l x y r +=,为顺时针方向.记L 与l 围成的区域为D. 由已知,2222(),. 0.x y x y Q PP Q x y x y x y+--∂∂==-=++∂∂则 由格林公式得:22()()0.L lx y dx x y dyx y++--=+⎰ 于是,222220()()()()(1)2.Ll x y dx x y dy x y dx x y dyd x y x y πθπ+--+--=-=-=-++⎰⎰⎰方法二:π2)2()()()()(2222-=-=--+=+--+⎰⎰⎰⎰dxdy a a dy y x dx y x y x dy y x dx y x DL L . §10-4222222.0(0).dS z z H x y R H x y z ∑∑==+=>++⎰⎰其中是介于平面及之间的圆柱面 解:记右半柱面为1:y ∑==1∑在xoz 面上的投影区域为:{}(,),0.xz D x z R x R z H =-≤≤≤≤记左半柱面为2:y ∑==2∑在xoz 面上的投影区域为也是xz D .那么,1222222222222222212()122arctan .xz D RHdS dS dS x y z x y z x y z x R x z HR dz R z Rπ∑∑∑-=+=+++++++-+=⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰§10-51.2222,.zdxdy x y z a ∑∑++=⎰⎰为的外侧解:记上半球面为1:z ∑=取上侧.记下半球面为2:z ∑=取下侧.它们在xoy 面上的投影区域均为:{}222(,).xy D x y x y a =+≤12320422.3xyD a zdxdy zdxdy zdxdy d d ππθρ∑∑∑+==⎰⎰⎰⎰⎰⎰⎰⎰于是,==2.(),0(0).x y dxdy z z z h h ∑-∑==>⎰⎰为圆锥面与之间的下侧解:∑在xoy 面上的投影区域均为:{}222(,).xy D x y x y h =+≤22()()(cos sin )0.xyhD x y dxdy x y dxdy d d πθρθθρ∑--=--=⎰⎰⎰⎰⎰⎰于是,=-§10-61.2(2)-2,z x dydz zdxdy ∑+⎰⎰其中∑为221()2z x y =+介于0z =与2z =之间部分的下侧.解:构造辅助平面2212(4)z x y ∑=+≤:,取上侧.则1∑+∑构成分片光滑的封闭曲面,记其所围成的空间区域为Ω. 由已知,22, 0, 2.P z x Q R z =+==-于是,0.P Q R x y z∂∂∂++=∂∂∂ 由高斯公式,得 :12(2)-200.z x dydz zdxdy dv ∑+∑Ω+==⎰⎰⎰⎰⎰于是,1122(2)-2(2)-224416.zx dydz zdxdy z x dydz zdxdy zdxdy ππ∑∑∑+=-+==⋅=⎰⎰⎰⎰⎰⎰2.333x dydz y dzdx z dxdy ∑++⎰⎰,其中∑为2222(0)x y z a a ++=>的外侧.解:记∑所围成的空间区域为Ω. 由已知,333, , .P x Q y R z ===于是,2223().P Q R x y z x y z∂∂∂++=++∂∂∂ 由高斯公式,得33322252403()12 3sin .5ax dydz y dzdx z dxdy xy z dxdydzad d d πππθϕϕρρ∑Ω++=++==⎰⎰⎰⎰⎰⎰⎰⎰§11-1 1.判定级数∑∞=15n nn的收敛性. 解:n n n s 552512+++=, 1325525151++++=n n n s 12551515151+-+++=-n n n n n s s 1155115151++---=n n n⎥⎦⎤⎢⎣⎡--=++115)5151(4545n n n n s 165lim =∞→n n s ,故该级数收敛. 2.判定级数∑∞=-1717n n n 的收敛性.解:01717lim lim ≠=-=∞→∞→n n n n n u通项不以0为极限,从而该级数发散. §11-21.判定级数∑∞=151tan3n n n 的收敛性. 解:因为 15351tan3lim=∞→nn n n n ,而级数∑∞=153n n n收敛,根据比较审敛法的极限形式知此级数收敛.2.判断级数∑∞=++1311n n n 的收敛性.解:33111nn n <++,而级数∑∞=131n n收敛,根据比较审敛法知此级数收敛.3.判断级数)0( ,111>+∑∞=a an n的收敛性. 解:当1=a 时,级数发散.当1>a 时,n n a a 111<+,而级数∑∞=11n na 收敛,根据比较审敛法知此级数收敛.当1<a 时,111lim=+∞→nn a ,原级数发散. 所以当1>a 时收敛,1≤a 时发散.4.判断级数∑∞=16!n n n 的收敛性.解:因为0)1(lim !)!1()1(lim lim66661=⋅+=++=∞→∞→+∞→n n n n n n n u u n n nn n ,所以根据比值审敛法知此级数收敛.5.判断级数nn n n n ∑∞=⎪⎭⎫⎝⎛1sin π的收敛性.解:因为0)(lim )(sin lim lim ≠∞===∞→∞→∞→n n n n n n n n nn n n u ππ,所以通项不以0为极限,从而级数发散.6.判断级数∑∞=⎪⎭⎫⎝⎛+1312n n n n n 的收敛性.解:因为133)1(lim 3)1(limlim 2<=+=+=∞→∞→∞→e n n n n u nn nn n n n n n ,所以根据根值审敛法知此级数收敛.7.判断级数是条件收敛还是绝对收敛 (1)∑∞=--221ln 1)1(n n n ; 解:因为∑∞=22ln 1n n 发散,而∑∞=--221ln 1)1(n n n 为交错级数,其收敛,所以此级数是条件收敛.(2) ()22cos4ln n n n n π∞=∑. 解:因为22)(ln 1|)(ln 4cos|n n n n n ≤π,而级数∑∞=22)(ln 1n n n 收敛,所以此级数是绝对收敛. 8.设级数∑∑∞=∞=11,n n n n b a 都收敛,且n n n b c a ≤≤,证明级数∑∞=1n n c 也收敛.证明:因为n n n b c a ≤≤,所以0≥-≥-n n n n a c a b .又因为∑∑∞=∞=11,n n n n b a 收敛,所以∑∞=-1)(n n n a b 收敛,根据比较审敛法知级数∑∞=-1)(n n na c收敛,从而∑∞=1n n c 也收敛.§11-31.求幂级数()∑∞=--1131n n nn nx 的收敛半径与收敛域. 解:因为31|31)1()1(31)1(|lim ||lim 111=-+-==-+∞→+∞→nn a a nn n nn nn n ρ,所以收敛半径31==ρR . 对于端点3=x ,级数为交错级数()∑∞=--1111n n n收敛; 对于端点3-=x ,级数∑∞=-1)1(n n 发散.因此,收敛域是]3,3(-. 2.求幂级数∑∞=-+112)1(n n x n n 的和函数. 解:先收敛域.由12)1(2)2)(1(lim ||lim 1=+++==∞→+∞→n n n n a a n nn n ρ,得收敛半径11==ρR .在端点1=x 处,幂级数成为∑∞=+12)1(n n n 发散;在端点1-=x 处,幂级数成为∑∞=-+-112)1()1(n n n n 发散.因此收敛域为)1,1(-=I . 设和函数为)(x s ,即∑∞=-+=112)1()(n n x n n x s ,)1,1(-∈x . 0)0(=s逐项积分,得∑∑⎰⎰∑⎰∞=-∞=∞=-+=+=+=11100110212)1(2)1()(n n n n x x n n xx n dx x n n dx x n n dx x s 再逐项积分,得)1(222121101x x x dx x n n n x n n -==+∑⎰∑∞=+∞=. 则32)1(1))1(2()(x x x x s -=''-=,)1,1(-∈x . §11-41.将()21x e +展成x 的幂级数. 解:∑∞=++=++=+022!22121)1(n nn xxxx n e e e )(+∞<<-∞x2.将函数xx f +=51)(展成()1-x 的幂级数. 解:∑∞=--=-+⋅=-+=+06)1()1(61)61(1161)1(6151n nnn x x x x )66(<<-x §11-71.将函数()ππ≤≤-=x x x f 2)(展开为傅里叶级数,并求级数∑∞=--121)1(n n n 的和. 解:2)(x x f =在[]ππ,-上满足收敛定理的条件且为偶函数,故22032d 1ππππ==⎰-x x a⎰⎰==-πππππ022cos 2cos 1nxdx x nxdx x a n⎰-=ππππ002s i n 2|]s i n [2x d xx n x x 24)1(c o s 4nn nx n n -=⋅=ππ ()[]πππ, ,cos 4131222-∈-+=∑∞=x nx n x n n有()[]∑-∈-+-=--πππ , ,cos 11242122x nx n x n令0=x ,有 12)1(2121π=-∑∞=-n n n 2.将函数()πππ≤≤-=x - ,24)(xx f 展开为傅里叶级数. 解:24)(xx f -=π,在[]ππ ,-上满足收敛定理,所以2d 241-0πππππ=⎪⎭⎫ ⎝⎛-=⎰x x a()nx nx x b x nx x a nn n 1d sin 2410d cos 241--=⎪⎭⎫⎝⎛-==⎪⎭⎫⎝⎛-=⎰⎰-ππππππππ故 ()()ππππ, ,sin 14241-∈-+=-∑∞=x nx n x n n3.将函数()π≤≤=x e x f x 0 ,)(展为以π2为周期的余弦级数.解:对函数)(x f 作偶延拓,⎩⎨⎧≤≤<≤-=-ππx e x e x F xx 0 ,0,)( 则)(x F 是满足收敛定理的偶函数,故()()[]()1112d cos 212d 202000+--==-===⎰⎰n e x nx e a e x e a b nxn xn ππππππππ在[]π ,0∈x 内,)()(x f x F =,故有()[][]ππππ,0 ,cos 11121)(12∈+--+-=∑∞=x nx n ee xf n n x4.将函数()()ππ<<-=x x x x f 0 ,)(展为以π2为周期的正弦级数.解:对函数)(x f 作奇延拓()()⎩⎨⎧≤<-+<<-=0 ,0,)(x πx x x x x x F πππ 则)(x F 是满足收敛定理的奇函数,知, ,2 ,1 ,0 ;00 ===n a a n()()[]. ,2 ,1 ,114d sin 23=---===⎰n n x nx x x b nn ππππ故在()π ,0∈x 内,)()(x f x F =,即()()()ππ,0 ,12sin 1218)(13∈--=∑∞=x x n n x f n§11-8将函数()22 ,)(2<<--=x x x x f 展为以4为周期的傅里叶级数.解:()38d 2122-20=-=⎰x x x a ()().,2 ,1 ,116d 2x n cos 2122222 =-=-=⎰-n n x x x a nn ππ()()n n n x x n x x b 14d 2sin 21222-=-=⎰-ππ故()()2 ,2 ,2sin 42cos 161341n 222-∈⎥⎦⎤⎢⎣⎡+-+=-∑∞=x x n n x n n x x n ππππ.§12—1 1.写出微分方程=y y e x '-的积分曲线的所有拐点满足的方程.解:因为x e y y -=',所以1-'=''y e y y ,即1)(--=''x e e y y y . 由拐点的定义知,拐点满足0=''y ,即01)(=--x e e y y 所以所求方程为01)(=--x e e y y . 即 2ln )4ln(2-++=x x y .2.求出双曲线222x y ax -=所满足的微分方程.解:求导,得a y y x 222='- (1)由ax y x 222=-,得xy x a 222-=,代入(1)式,得22222y x y xy x -='-即所求微分方程为 222y x y xy +='.§12—2利用分离变量方法解下列方程: 1.22()()0xyx dy x y y dx ++-=,(1)1y =.解:分离变量后得 dx xx dy y y 2211-=+,两端积分⎰⎰-=+dx xx dy y y 2211, 得 C x x y y +-=+2||ln ||ln 222, 将1)1(=y 代入,得1=C .方程的解为:1||ln )(2122=++xyy x . 2.12y x y'=+.解:若把所给方程变形为y x dydx+=2即为一阶线性方程,则按一阶线性方程的解法可求得通解.也可用变量代换来解所给方程:令u y x =+2,则x u y 2-=,2-=dxdu dx dy ,代入原方程,得 u dx du 12=-,u u dx du 12+= 分离变量得dx u udu=+12, 两端积分得 1|12|ln 4121C x u u +=+-.以y x u +=2代入上式,得 1|124|ln 4121C x y x y x +=++-+即 y Ce y x 2124=++,其中142C y e C -±=. §12—3利用齐次方程方法解:22()x xy y xy y '+=+.解:原方程可写成111)(2+++-=yx xy y x dxdy因此是齐次方程.令u x y =,则 ux y =,dxdu x u dx dy +=, 于是原方程变为 1111)1(2+++-=+uu udxduxu ,即 uu dx du x +-=112, 分离变量,得 x dxudu u =-+21)1(, 两端积分,得 C x u u +=--||ln )1(arcsin 212.以xy代上式中的u ,便得所给方程的通解为 C x xy x y =---||ln 1arcsin 22.§12—4利用线性方程或伯努利方程解法解 1.3yy x y '=+.解:将方程化为21y x ydy dx =-. 这是一个非齐次线性方程.先求对应的齐次方程的通解.01=-x y dy dx ,ydyx dx =,Cy x =. 用常数变易法,把C 换成u ,即令 uy x =, (1)那么u y u dydx+'=, 代入所给非齐次方程,得 y u ='两端积分,得 C y u +=22. 再把上式代入(1)式,得 y C y x )2(2+=.2.242x y xy xe-'+=解:以y 除方程的两端,得2242121x xe xy dxdyy--=+, 即 22422121x xe xy dxdy-=+, 令21y z =,则上述方程成为22x xe xz dxdz-=+. 这是一个线性方程,它的通解为 22221x e Cez x x --+=. 以21y 代z ,得所求方程的通解为 222)21(2x C ey x +=-.§12—6利用降阶法解高阶微分方程 01=--''+'''x y y x . 解:令p y ='',则dx dp p y ='=''',原方程化为 xp x p 111+=+',此一阶线性方程的通解为 x C x p 1)2)1((2++= 故 32123||ln 212C x C x x C x x y ++++=. §12—71.下列函数组是线性相关还是无关?为什么? (1)x e ,1x e +;解:因为e ee x x 11==+为常数,故函数组是线性相关.(2) 1,sin x ,cos2x .解:线性无关.2.验证:5112x y e =是非齐次方程532x y y y e '''-+=的解及x e y =1,x e y 22=,x e y 233=是对应的齐次方程的解.并写出非齐次方程532x y y y e '''-+=的通解. 解:x e y 5125=',xe y 51225='',将y y y ''',,代入方程的左边,得 右边==+-x x x x e e e e 5555121212531225. x e y ='1,x e y =''1,代入方程,得 023=+-x x x e e e . x e y 222=',xey 224='',代入方程,得 0264222=+-x x x e e e . x e y 236=',x ey 2312='',代入方程,得 061812222=+-x x x e e e 非齐次方程的通解为 xx x e e C e C y 5221121++=. §12—81.(5)(4)(3)690y y y -+=,求它的通解.解:所给微分方程的特征方程为 096345=+-r r r ,其根31=r (重根),02=r (三重根)因此所给微分方程的通解为 )(5432321x C C e x C x C C y x ++++=2.求微分方程430y y y '''-+=的积分曲线,设它在点0(0,2)M 与直线2240x y -+=相切. 解:所给微分纺车功能的特征方程为 0342=+-r r其根31=r ,12=r ,因此所给微分方程的通解为x x e C e C y 231+=. 此方程过点)2,0(0M ,即212C C +=,且1)0(='y ,即2131C C += 求得211-=C ,252=C .所求积分曲线为x x e e y 25213+-=. §12—91.求x e x x y y y 32)(23+=+'-''的通解.解:与所给方程对应的齐次方程为023=+'-''y y y ,它的特性方程为 0232=+-r r ,得21=r ,12=r .由于这里3=λ不是特征方程的根,所以应设特解为x e b x b x b y 32120*)(++=,把它代入所给方程,得x x b b b x b b x b +=+++++22011020223)26(2比较两端x 同次幂的系数,得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧=++=+=1121022312612210201100b b b b b b b b b 因此求得一个特解为x e x x y 32*)121(+-=,从而所求的通解为x x x e x x e C e C y 32221)121(+-++=2.求44(sin 2cos2)y y x x ''+=+,满足()()2y y πππ'==之特解. 解:与所给方程对应的齐次方程为04=+''y y ,它的特征方程为042=+r .由于这里i i 2=+ωλ是特征方程的根,所以应设特解为 )2c o s 2s i n (*x b x a x y +=.把它代入所给方程,得 x x x b x a 2cos 42sin 42sin 42cos 4+=-, 比较两端同类项的系数,得1=a ,1-=b .于是求得一个一个特解为 )2cos 2(sin *x x x y -=,从而所求的通解为)2cos 2(sin 2sin 2cos 21x x x x C x C y -++=.将πππ2)()(='=y y 代入y 及y ',得π31=C ,212=C . 故所求特解为 )2cos 2(sin 2sin 212cos 3x x x x x y -++=π.自测题一一. 填空题1. 设矢量,a b 的模分别是22a =,2b =, 则()22a b a b ⨯+⋅= . 2. 过点(1,2,-1)与矢量1{1,2,3}s =--及2{0,1,1}s =--平行的平面方程是 . 3. 设1y z x +=, (其中0,1x x >≠), 则dz = .4. 函数(,)f x y 在点()00,x y 可微是(,)f x y 在点()00,x y 可偏导的 条件.5. 若13y =, 223y x =+, 233x y x e =++都是微分方程: ''()'()()y p x y q x y f x ++=的解(其中()0f x ≠,()p x ,()q x ,()f x 都是已知的连续函数), 则此微分方程的通解为 .6. 微分方程''4'290y y y ++=的通解是 .二. 选择题1. 设矢量,,a b c 满足关系式a b a c ⨯=⨯, 则( )(A) 必有0a = (B) 必有0b c -=(C) 当0a ≠时, 必有b c = (D) 必有()a b c λ=-, (λ为常数) 2. 方程22480y z z +-+=表示( )(A) 单叶双曲面 (B) 双叶双曲面 (C) 锥面 (D) 旋转抛物面3. 函数2222224,0(,)00xy x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩若若在原点(0,0)间断的原因为(,)f x y ( )(A) 在原点无定义(B) 在原点极限存在, 但在原点无定义 (C) 在原点极限不存在(D) 在原点极限存在, 但极限值不等于原点的函数值 4. 函数22z x xy y =-+在点(1,1)处沿{}11,44L =的方向导数为( ) (A) 最大(B) 最小(C) 1 (D) 05. 微分方程''2'x y y y xe -++=的特解*y 应有的形式为( ) (其中,a b 为待定常数). (A) ()x ax b e -+(B) 2()x ax bx e -+(C) 32()x ax bx e -+(D) x ae -6. 函数sin y c x =-(其中c 是任意常数)是微分方程22sin d yx dx =的( ) (A) 通解(B) 特解(C) 解, 但既不是通解, 也不是特解 (D) 不是解三. 解答题1.设2(,)(1)f x y x y =+-⋅求'(1,1)x f .2.已知,,a b c 为单位向量, 且满足0a b c ++=, 计算a b b c c a ⋅+⋅+⋅.3.设,x z x f xy y ⎛⎫= ⎪⎝⎭, 其中f 具有二阶连续偏导数, 求2z x y ∂∂∂.4.设函数(,)z z x y =由方程222z x y z y f y ⎛⎫++= ⎪⎝⎭确定, 其中f 具有一阶连续的导数,求z z y x x y∂∂-∂∂5.求过点(1,0,1)M -, 且与直线0:20x y L x y z +=⎧⎨-+-=⎩垂直的平面方程.6.求曲面228xy +=在点0(2,2,1)M 处的切平面和法线方程.7.设''()'()()y p x y q x y f x ++=的三个特解是x , x e , 2x e , 求此微分方程满足条件(0)1y =,'(0)3y =的特解.8.设()f x 是连续函数, 且满足方程20()()()xx f x e x t f t dt =--⎰, 求()f x .9.=.10.在椭球面22221x y z ++=上求距离平面26x y z +-=的最近点和最近距离, 最远点和最远距离.自测题一参考答案四. 填空题 1. 2 2. (1)(2)(1)0x y z --+--+= 3. [](1)ln y x y dx x xdy ++ 4. 充分5.2123x y C x C e =++6. ()212cos5sin5x y e C x C x -=+五. 选择题 1 D 2 D 3 C 4 A 5 C 6 C六. 解答下列各题.1.设2(,)(1)f x y x y =+-⋅, 求'(1,1)x f . 解:2(,1)f x x =,'(,1)2x f x x ∴=, '(1,1)2x f ∴=2. 已知,,a b c 为单位向量, 且满足0a b c ++=, 计算a b b c c a ⋅+⋅+⋅. 解:0a b c ++=,()0a a b c ∴⋅++=, 10a b a c ∴+⋅+⋅=;同理, ()0b a b c ⋅++=, 10a b b c ∴+⋅+⋅=;()0c a b c ⋅++=, 10a c b c ∴+⋅+⋅=故有 ()320a b b c c a +⋅+⋅+⋅=, 即32a b b c c a ⋅+⋅+⋅=-3. 设,x z x f xy y ⎛⎫= ⎪⎝⎭, 其中f 具有二阶连续偏导数, 求2z x y ∂∂∂. 解:''''12121z x f x f y f f xyf f x y y ∂⎡⎤=+⋅+⋅=++⎢⎥∂⎣⎦, 2''''''''''''12111122212222222''2''''1211222322z x x x x x f x f xf xy f x f f f x f x y y yy y y x x xf f x yf f y y∂⎛⎫⎡⎛⎫⎤⎛⎫⎡⎛⎫⎤=⋅+⋅-++⋅+⋅-+-+⋅+⋅- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂⎝⎭⎣⎝⎭⎦⎝⎭⎣⎝⎭⎦=-+-4. 设函数(,)z z x y =由方程222z x y z y f y ⎛⎫++= ⎪⎝⎭确定, 其中f 具有一阶连续的导数,求z z yx x y∂∂-∂∂. 解:'22z x x f z ∂=∂-,''22z y f f zy yf z -+∂=∂-,''2xz xf fz z y y x x y f z-∂∂∴-=∂∂-。

深圳大学-高等数学专题-例题线面积分

深圳大学-高等数学专题-例题线面积分

所以
I
c a
1 b
1
b2
f
(bx)
dx
d b
c y2
1
y2
fБайду номын сангаас
(cy)dy
c a
c
bf (bx)dx
d cf (cy)dy c c c a
bc
f (t)dt
cd
f (t)dt
ba
b
d b d b ab
bc
c a cd
f (t)dt
d b ab
当 ab
cd
cd
L 是上半平面( y 0)内的有向分段光滑曲线,其起点
为 (a,b),终点为(c, d ) ,记
I 1[1 y 2 f (xy)]dx x [ y2 f (xy) 1]dy
Ly
y2
(1) 证明曲线积分 I 与路径无关;
(2) 当ab cd 时,求 I 的值.
【分析】本题主要考查第二类曲线积分与路径无关
2x2
y2
2
2
d
y2
C(x)
解得 从而
(y)
2x2 y4
y2 2x2
y4
C(x)
P(x, y)
( y)
2x2 y4
y2 2x2
y4
C(x)

P(x, 0)
(0)
2x2

C(x)
(0)
2x2
P(x,
y)
y2 2x2
y4
(0)
2x2
又由
P(x,
y)
( y)
2x2 y4
段 L1,
原式 ex sin y b x y dx ex cos y ax dy

2022年深大附高一上册数学期末真题(含答案)

2022年深大附高一上册数学期末真题(含答案)

一.选择题:本题共8小题,每小题5分,共40深大附中2022-2023年度第一学期期末考试试题时间:120分钟高一数学分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}03A x x =≤≤,{}14B x x =<<,则A B = ( ).A .{}13x x <≤B .{}04x x ≤<C .{}13x x ≤≤D .{}04x x <<2. 若实数a b c R ∈,,且a b >,则下列不等式恒成立的是( ).A .22a b >B .ac bc >C .1ab> D .a c b c −>−3. “θ为第一或第四象限角”是“cos 0θ>”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 若某扇形的弧长为2π,圆心角为4π,则该扇形的半径是( ).A .1B .2C .3D .45. 已知 1.010.99a =,0.991.01b =, 1.01log 0.99c =,那么a b c ,,的大小关系是( ).A .a b c <<B .b c a <<C .c b a <<D .c a b <<6. 若一系列函数的解析式和值域不同,但定义域不相同,则称这些函数为“同值函数”.例如函数[]212y x x =∈,,与函数[]221y x x =∈−−,,即为“同值函数”,给出下面四个函数,其中能够被用来构造“同值函数”的是 ( ). A .12xy=B .3y x =C .2log y x =D .1y x =−7. 已知()22log log 00101a b a a b b +=>≠>≠且,且,则函数()1xf x a=与()log b g x x =的图象可能是( ).A .B .C .D .8. 已知函数()sin 26f x x π=+,对于任意的)1a ∈ ,方程()()0f x x m α=<≤恰有一个实数根,则m 的取值范围为( ). A .73124ππ,B .526ππ,C .526ππ ,D .73124ππ,二.选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9. 用二分法求方程()0f x =在[]01,上的近似解时,经计算,()0.6250f <,()0.750f >,()0.68750f <,即可得出方程的近似解为( )(精确度0.1). A .0.625B .0.75C .0.6875D .0.6510. 已知函数()2sin 214f x x π =−+,下列选项中正确的是( ).A .()f x 的最小值为2−B .()f x 在04π,上单调递增 C .()f x 图象关于点08π,中心对称D .()f x 在42ππ,上值域为13 + , 11. 下列四个选项中,正确的选项有( ).A .若a b c d >>,,则ac bd >B .1x x+最小值为2 C .“不等式22530x x −−<成立”的一个必要不充分条件是142x −<<D .已知00x y >>,且3622x y+=,若247x y m m +>−恒成立,则m 的取值范围为()()34−∞+∞ ,,12. 已知函数()y f x =的图象关于y 轴对称,且对于()()y f x x R =∈,当()120x x ∈−∞,,时,()()12120f x f x x x −<−恒成立,若()()2221f ax f x <+对任意的x R ∈恒成立,则实数a 的取值范围可以是下面选项中的( ). A.()1−B .112−,C.0D.)+∞三.填空题:本题共4小题,每小题5分,共20分. 13. 若幂函数y x α=的图象经过点)3,则实数a =____________.14. 若关于x 的一元二次不等式230kx x k −+≤的解集为R ,求实数k 的取值范围____________.15. 已知α的终边上有一点()13P ,,则()()sin sin 23cos 2cos 2παπαπαπα−++ −+−+的值为____________.16. 已知函数()111x f x e =−+,若不等式()212x f ax f x+−−>对()12x ∀∈,恒成立,则实数a 的取值范围是____________.四.解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17. 设函数()()()2230f x ax b x a +−+≠.⑴ 若不等式()0f x >的解集为()11−,,求a b ,的值; ⑵ 若()12f =,00a b >>,,求14a b+的最小值和相应的a b ,的值.18. 已知函数()()2log 4223x x f x =−⋅+. ⑴ 求方程()1f x =的根; ⑵ 求()f x 在[]02,上的值域.19. 函数()3sin 26f x x π=+的部分图像如图所示.⑴ 写出()f x 的最小正周期及图中00x y 、的值; ⑵ 求()f x 在区间122ππ,上的最大值和最小值.20. 设函数()tan 23x f x π=−.⑴ 求函数()f x 的定义域和单调区间;⑵ 求不等式()f x ≤的解集.21. 2022年冬天新冠疫情卷土重来,我国大量城市和地区遭受了奥密克戎新冠病毒的袭击,为了控制疫情,某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:小时)变化的关系如下:当04x ≤≤时,1618yx=−−,当410x <≤时,152y x =−.若多次喷洒,则某一时刻空气中消毒剂的浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.⑴ 若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?⑵ 若第一次喷洒2个单位的消毒剂,6小时后再喷洒()14a a ≤≤个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求a 的最小值.(精确到0.1,参考数据:1.4=)22. 已知函数()()()222log log 3f x x a x a R =++∈.⑴ 若1a =,求函数()f x 在区间142,上的值域;⑵ 若函数()()f x f x a =+在[]18,上有零点,求实数a 的取值范围.深大附中2022-2023学年第一学期期末考试高一年级 数学试题参考答案1. 【答案】B 解析:由A ={x |0≤x ≤3},B ={x |1<x <4},则A ∪B ={x |0≤x <4}.2.【答案】D 详解:由题意可得,实数,,R a b c ∈且a b >,若1,1a b ==-,则22a b =,故A 错误;若1,1,1a b c ==-=-,则ac bc <,故B 错误;若1,1a b ==-,则1ab<,故C 错误;已知a b >,R c ∈,则a c b c ->-恒成立,故D 正确;故选:D.3.【答案】A 解析: 当θ为第一或第四象限角时,cos 0θ>,所以“θ为第一或第四象限角”是“cos 0θ>”的充分条件,当cos 0θ>时,θ为第一或第四象限角或x 轴正半轴上的角,所以“θ为第一或第四象限角”不是“cos 0θ>”的必要条件,所以“θ为第一或第四象限角”是“cos 0θ>”的充分不必要条件.故选:A4.【答案】B 解析:设该扇形半径为r ,又∵圆心角4πα=,弧长2l π=,∴扇形弧长公式l rα=可得,=24r ππ⨯,解得,2r .故选:B.5.【答案】D 详解:因为101.0100.990.99<<=,即01a <<,0.99011.01 1.01b >==,1.01 1.01log 0.99log 10c =<=,所以c<a<b .故选:D6.【答案】D 详解:对于A,函数12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以值域确定时定义域也确定且唯一,所以不能构造“同值函数”,故A 错误;对于B ,函数3y x =在定义域上单调递增,所以值域确定时定义域也确定且唯一,所以不能构造“同值函数”,故B 错误;对于C ,函数2log y x=在定义域上单调递增,所以值域确定时定义域也确定且唯一,所以不能构造“同值函数”,故C 错误;对于D ,当定义域分别为[][]0,1,1,2时,值域都为[]0,1,故D 正确. 7.【答案】B 详解:22log log 0a b +=,即为2log 0ab =,即有ab =1;当a >1时,0<b <1,函数()1()x f x a =与()log b g x x =均为减函数,四个图像均不满足,当0<a <1时,b >1,函数数()1()x f x a=与()log b g x x =均为增函数,排除ACD ,在同一坐标系中的图像只能是B ,8.【答案】D 解析:方程f (x )=a (0<x ≤m )恰有一个实数根,等价于函数y =f (x )的图象与直线y =a 有且仅有1个交点.当0<x ≤m 得:2x +π6∈(π6,2m +π6],结合函数y =f (x )的图象可知,2m +π6∈[4π3,5π3),解得:m ∈[7π12,3π4). 故选:D9.【答案】BC 详解:因为(0.625)0f <,(0.75)0f >,(0.6875)0f <,所以()()0.68750.750f f ⋅<,()0f x =在()0.6875,0.75上有解,又0.750.68750.1-<,所以方程()0f x =的近似解(精确度为0.1)可以为0.75,0.6875,故选:BC10.【答案】BD 解析:当2x −π4=2kπ−π2,k ∈Z ,即x =kπ−π8,k ∈Z 时,f(x)=2sin (2x −π4)+1取得最小值,最小值为−2+1=−1,A 错误;当x ∈(0,π4)时,2x −π4∈(−π4,π4),故y =sin (2x −π4)在x ∈(0,π4)上单调递增,则f(x)=2sin (2x −π4)+1在x ∈(0,π4)上单调递增,故B 正确;当x =π8时,f(π8)=2sin (2×π8−π4)+1=1,故f(x)的图象关于点(π8,1)中心对称,C 错误;x ∈[π4,π2]时,2x −π4∈[π4,3π4],当2x −π4=π4或3π4,即x =π4或π2时,f(x)=2sin (2x −π4)+1取得最小值,最小值为2×√22+1=√2+1,当2x −π4=π2,即x =3π8时,f(x)=2sin (2x −π4)+1取得最大值,最大值为2×1+1=3,故值域为[√2+1,3],D 正确. 故选:BD11.【答案】CD 详解:对于A :若11>-,22>-,()()1212⨯=-⨯-,故A 不正确;对于B :不能保证x >0,故B 不正确;对于C ,由题意()()212530213032x x x x x --<⇔+-<⇔-<<,由132x x ⎧⎫-<<⎨⎬⎩⎭ 142x x ⎧⎫-<<⎨⎬⎩⎭,所以142x -<<是不等式成立的必要不充分条件,故C 正确;对于D :因为(136132414(4)12121222222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当32x =,6y =时,取等号,由题意得2127m m >-,解得4m >或3m <,故D 正确;故选:CD.12.【答案】ABC 详解:由已知可得,函数()y f x =为偶函数,又对于()()y f x x =∈R ,当12,(,0)x x ∞∈-时,()()12120f x f x x x -<-恒成立,即()x x ∀∈-∞12,,0,若12x x <,都有()()12f x f x >成立,则()y f x =在(),0∞-上单调递减,又函数()y f x =为偶函数,则()y f x =在()0,∞+上单调递增.又()()()22221f ax fax f x=<+对任意的x ∈R 恒成立,则可得2221ax x <+.当0x =时,不等式为01<显然成立;当0x ≠时,原不等式可化为21212x a x+<⨯恒成立,只需要式子的最小值满足即可.因为21211112222x x x x ⎛⎫+⨯=+≥⨯= ⎪ ⎪⎝⎭,当且仅当12x x =,即2x =±时,等号成立.所以,a <a 综上所述,实数a的范围是a <13. 【答案】4 详解:因为幂函数a y x =的图象经过点),所以3a=,所以433a=,所以4a =,故答案为:4.14.【答案】32k ≤- 详解:由题意,关于x 的一元二次不等式230-+≤kx x k 的解集为R当0k =时,30x -≤,不恒成立;当0k ≠时20940k k <⎧⎨∆=-≤⎩,解得32k ≤-故实数k 的取值范围是32k ≤- 15.【答案】25详解:因为α的终边上有一点(1,3)P,所以sin ,cos αα====所以sin sin()cos sin sin cos 223sin 2cos sin 2cos 5cos 2cos()210παπαααααπαααααπα⎛⎫-++ ⎪--⎝⎭====--+⎛⎫-+-+ ⎪⎝⎭ 16. 【答案】5,2⎡⎫+∞⎪⎢⎣⎭详解:由题意知e x y =单调递增,故1()1e 1x f x =-+在R 上单调递增,又11e 1()()1121e 1e 1e 1x x x x f x f x -+-=-+-+=-=+++,故不等式2()12x f ax f x ⎛⎫+--> ⎪⎝⎭对(1,2)x ∀∈恒成立,即22()122x x f ax f x f x ⎛⎫⎛⎫>---= +⎪ ⎪⎝⎭⎝⎭对(1,2)x ∀∈恒成立,所以22x ax x >+,即12a x >+对(1,2)x ∀∈恒成立,当(1,2)x ∀∈时,2211522x <+=+,故52a ≥,即实数a 的取值范围是5,2⎡⎫+∞⎪⎢⎣⎭,故答案为:5,2⎡⎫+∞⎪⎢⎣⎭17.【答案】(1)32a b =-⎧⎨=⎩;(2)最小值是9,13a =,23b =;【详解】(1)由已知可知,()2230ax b x +-+=的两根是-1,1.所以21103(1)11b aa-⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩,解得32a b =-⎧⎨=⎩. (2)(1)2321f a b a b =+-+=⇒+=,14144()559b a a b a b a b a b ⎛⎫+=++=++≥= ⎪⎝⎭, 当4b a a b =时等号成立,因为1a b +=,0a >,0b >,解得13a =,23b =时等号成立, 所以14a b +的最小值是9,13a =,23b =.18.【答案】(1)()2log 42231x x -⋅+=,42232x x ∴-⋅+=,令()20,x t =∈+∞,2210t t ∴-+=2101210x t t x ∴-=∴=∴=∴=()(2)[][][][]2220,221,4232,11log 1,log 11x x t m t t y m ∈∴=∈∴=-+∈∴=∈19.【答案】(1)周期为π,x 0=7π6,y 0=3 (2)最大值是3,最小值是−32 【解析】(1)T =2π|ω|=2π2=π,令2x +π6=π2+2kπ,k ∈Z ,解得:x =π6+kπ,k ∈Z ,由图可知,当k =1时,x 0=7π6,此时函数取得最大值y 0=3;(2)当x ∈[π12,π2]时,2x +π6∈[π3,7π6],此时sin (2x +π6)∈[−12,1] 所以函数f(x)=3sin(2x +π6)的最大值是3,最小值是−3220.【解析】(1)由题意得:x2−π3≠kπ+π2(k ∈Z ),解得:x ≠2kπ+5π3(k ∈Z ),∴f (x )的定义域为{x |x ≠2kπ+5π3,k ∈Z};令−π2+kπ<x2−π3<π2+kπ(k ∈Z ),解得:−π3+2kπ<x <5π3+2kπ(k ∈Z ),∴f (x )的单调递增区间为(−π3+2kπ,5π3+2kπ)(k ∈Z ),无单调递减区间.(2)由f (x )≤√3得:−π2+kπ<x2−π3≤π3+kπ(k ∈Z ),解得:−π3+2kπ<x ≤4π3+2kπ(k ∈Z ),则f (x )≤√3的解集为(−π3+2kπ,4π3+2kπ](k ∈Z ).21. 【详解】(1)解:因为一次喷洒4个单位的净化剂,所以其浓度为()644,0448202,410x f x y xx x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,64448x-≥-,解得0x ≥,此时04x ≤≤, 当410x <≤时,2024x -≥,解得8x ≤,此时48x <≤,综上08x ≤≤,所以若一次喷洒4个单位的消毒剂,则有效杀灭时间可达8小时;(2)设从第一次喷洒起,经()610x x ≤≤小时后,其浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭1616101441414a a x a x a x x =-+-=-+----, 因为[][]144,8,1,4x a -∈∈,所以161444414a x a a a x -+--≥-=--,当且仅当161414ax x-=-,即14x=-4a-, 由44a-≥,解得244a -≤,所以a 的最小值为24 1.6-.。

深圳高三数学试题及答案

深圳高三数学试题及答案

深圳高三数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+3,求f(0)的值。

A. 3B. 1C. -1D. 0答案:A2. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。

A. 1B. 3C. -1D. -3答案:B3. 函数y=sin(x)的周期是:A. πB. 2πC. π/2D. 4π答案:B4. 已知等差数列{an}的首项a1=2,公差d=3,求第10项a10的值。

A. 29B. 32C. 35D. 50答案:B5. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a=2,b=1,求双曲线的焦点坐标。

A. (±√5, 0)B. (±2√5, 0)C. (±√3, 0)D. (±3, 0)答案:A6. 已知圆的方程为(x-3)^2 + (y+1)^2 = 9,求圆心坐标。

A. (3, -1)B. (-3, 1)C. (-3, -1)D. (3, 1)答案:A7. 已知直线l的方程为y=2x+3,求直线l的斜率。

A. 2B. -2C. 3D. -3答案:A8. 求下列不等式组的解集:\[\begin{cases}x+y \leq 4 \\x-y \geq 0\end{cases}\]A. {(x, y) | x ≥ 0, y ≤ 4}B. {(x, y) | x ≤ 4, y ≥ 0}C. {(x, y) | x ≥ 0, y ≤ 4}D. {(x, y) | x ≤ 4, y ≥ 0}答案:C9. 已知抛物线方程为y=x^2-6x+8,求抛物线的顶点坐标。

A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)答案:A10. 已知等比数列{bn}的首项b1=2,公比q=2,求第5项b5的值。

A. 32B. 16C. 64D. 128答案:A二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)的表达式。

高等数学 深圳大学 期末考试 答案

高等数学 深圳大学 期末考试 答案

高等数学B (1)22试卷解答及评分标1. A 3分 4. X=-1 3分 2. D 3分 5. sin cos x x x + 3分 3. D 3分 6. ()x F e c + 二、计算下列各题:(每题6分,共48分)1.n →∞2. xx x 21)1(lim -→求函数极限n =分) 1112200lim(1)lim (1)xxx x x x --→→⎡⎤-=-⎢⎥⎣⎦(3分)=0n = (6分) =12e - (6分) 3. 00(ln )lim ln lim 1()x x x x x x ++→→'=' (2分) 4. )x 1(ln y 2+= 求dy=021lim 1x x x+→- (4分) dx y dy '= (2分) =0lim ()0x x +→-= (6分) =dx x 12x2+ (6分) 5. 2()(),()f x f x y f x e y '=+设可导求 的导数 6. 3 sin()0,'.x xy y y π+-=求2()[()][f x y f x e '''=+](3分) 3: + sin()0 x xy y x π-=解两边同时对求导 =()2()()()f x f x f x e f x ''⋅+⋅ (6分 ) 23cos()0x y xy y y ππ''++-⋅= (4分)23'cos()x yy y xππ+=- (6分)7. 211xdx x ++⎰; 8. arctan d .x x ⎰ 22111x dx dx x x =+++⎰⎰ (2分) =arctan arctan x x xd x -⎰ (3分) =()2211arctan 121x d x x +++⎰ (4分) =21arctan ln(1)2x x x c -++ (6分) =()21arctan ln 12x x c +++ (6分)三解:11lim ()lim()1x x f x x a a --→→=+=+ (2分) 11lim ()lim[1sin(1)]1x x f x x +-→→=+-= (4分) ()f x 要使连续,须使11lim ()lim ()1(0)x x f x f x f +-→→=== (6分) 所以 1+a =1,即 a =0 (7分)四. 证:设 x 1e )x (f x --= (1分) 则 1e )x (f x -=' (3分) 当 0x > 时,0)x (f >' (5分)所以 00(f )x (f =>)即 当0x >时,x 1e x +> (7分)五、:解 函数的定义域为(,)-∞+∞ 1分;231293(1)(3),y x x x x '=-+=-- 12'0,1,3y x x ===令得 (3分)''6126(2)y x x =-=-, ''0,2,y x ==令得 (5分)(8分)当x=1时有极大值,f(1)=2; 当x=3 时函数有极小值, f(3)=-2,当x=2时,有拐点(2,0) (10分)六、2: (1) ()25,()25,(20)52Q R Q PQ Q R Q Q R ''==-=-=解 (4分) 2(2) ()()()25200102Q L Q R Q C Q Q Q =-=--- (6分) ()150,15L Q Q Q '=-==令得 (8分) (15)10,20,L Q ''=-<=所以当时总利润最大 ( 10分) 一. 附加题(每题10分,共30分) 1. 已知()f x 的一个原函数为xxsin ,求(2)xf x dx '⎰ 解1(2)(2)2x f x d xx d f x '=⎰⎰ (2分) 11(2)(2)22xf x f x dx =-⎰ (3分)11(2)(2)24xf x F x C =-+ (5分) 2sin cos sin ()()x x x xf x x x -'== (7分)22cos 2sin 2(2)4x x xf x x -= (8分)2cos 2sin 2sin 2(2)88x x x xxf x dx C x x-'=-+⎰ (10分) 2. 在位于第一象限中的圆弧422=+y x 上找一点,使该点的切线与圆弧及两坐标轴所围成的图像面积最小,并求最小面积。

深圳大学高等数学期末考试试卷(含答案)

深圳大学高等数学期末考试试卷(含答案)

深圳大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.设,则.
A、正确
B、不正确
【答案】A
2.设,则=().
A、
B、
C、
D、
【答案】D
3.微分方程满足的特解是().
A、
B、
C、
D、
【答案】C
4.函数的单调增加区间是().
A、
B、
C、
D、
【答案】B
5.设,则微分.
A、正确
B、不正确
【答案】B
二、二选择题
6.设函数,则().
A、
B、
C、
D、
【答案】A
7.函数的单调减少区间是().A、
B、
C、
D、
【答案】D
8.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
9.定积分.
A、正确
B、不正确
【答案】B
10.不定积分.
A、正确
B、不正确
【答案】A
11.微分方程的通解是().
A、
B、
C、
D、
【答案】A
一、一选择题
12.是微分方程.
A、正确
B、不正确
【答案】A
13.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
14.设函数,则().
A、
B、
C、
D、
【答案】B
15.设,则=().
A、
B、
C、
D、
【答案】D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档