噪声系数的三种测量方法及对比

合集下载

噪声系数的测量方法

噪声系数的测量方法

噪声系数的测量方法噪声系数是指放大器输入信号与输出信号之间的信噪比的比值。

在电子系统中,噪声系数是衡量放大器噪声性能的重要指标。

下面将介绍几种常用的测量噪声系数的方法。

1.级联噪声法:级联噪声法是最常用的测量噪声系数的方法之一、它利用级联放大器的总噪声系数计算出前面的放大器的噪声系数。

具体的步骤如下:a.在待测放大器之前设置一个已知的参考放大器,并测量此参考放大器的噪声系数。

b.将待测放大器与参考放大器级联,并测量级联放大器的总输入输出电压和噪声功率。

c.利用总放大器的输入输出电压和已知的参考放大器的噪声系数计算出内嵌放大器的噪声系数。

2.可变增益噪声法:可变增益噪声法是另一种测量噪声系数的常用方法。

它通过调整放大器的增益,使其与一个已知参考噪声源声压相等,从而测量出待测放大器的噪声系数。

具体的步骤如下:a.在待测放大器的输入端接入一个参考噪声源,并调整其声压使其与待测放大器的输出噪声相等。

b.测量参考噪声源的声压和待测放大器的输入输出电压。

c.利用已知的参考噪声源的噪声功率和声压计算出待测放大器的噪声功率和噪声系数。

3.热噪声法:热噪声法是一种常用的测量噪声系数的方法,特别适用于宽频带和高频段的放大器。

热噪声法利用了热噪声在环境温度下的特性,通过直接测量输出噪声电压和环境温度来计算噪声系数。

具体的步骤如下:a.测量放大器的输出噪声电压并记录。

b.测量环境温度并记录。

c.利用热噪声公式计算出放大器的噪声功率。

d.利用输入信号和已知的电阻值计算出放大器的输入信号功率。

e.利用已知的输入信号功率和噪声功率计算出放大器的噪声系数。

除了上述传统的测量方法之外,还有一些新的测量噪声系数的方法正在不断涌现,如矢量分析器法、差分噪声法、噪声大师法等。

这些方法在特定的应用场景下有着更高的测量精度和更广的测量范围。

总结起来,测量噪声系数的常用方法有级联噪声法、可变增益噪声法、热噪声法等。

根据不同的应用场景和要求,选择合适的方法来测量噪声系数,有助于评估放大器的噪声性能,进而提高信号传输的质量。

噪声系数测量手册1:噪声系数定义及测试方法

噪声系数测量手册1:噪声系数定义及测试方法

噪声系数测量手册Part 1. 噪声系数定义及测试方法安捷伦科技:顾宏亮一.噪声系数定义最常见的噪声系数定义是:输入信噪比/ 输出信噪比。

它是衡量设备本身噪声品质的重要参数,它反映的是信号经过系统后信噪比恶化的程度。

噪声系数是一个大于1的数,也就是说信号经过系统后信噪比是恶化了。

噪声系数是射频电路的关键指标之一,它决定了接收机的灵敏度,影响着模拟通信系统的信噪比和数字通信系统的误码率。

无线通信和卫星通信的快速发展对器件、子系统和系统的噪声性能要求越来越高。

输入信噪比SNR input=P i/N i输出信噪比SNR output=P o/N o噪声系数F =SNR input/SNR output通常用dB来表示NF= 10Log(F)假设放大器是理想的线性网络,内部不产生任何噪声。

那么对于该放大器来说,输出的功率Po以及输出的噪声No 分别等于Pi * Gain以及Ni*Gain。

这样噪声系数=(Pi/Ni)/(Po/No)=1。

但是现实中,任何放大器的噪声功率输出不仅仅有输入端噪声的放大输出,还有内部自身的噪声(Na)输出,下图为线性双端口网络的图示。

双端口网络噪声系数分析框图Vs: 信号源电动势Rs: 信号源内阻Ri: 双端口网络输入阻抗R L: 负载阻抗Ni: 输入噪声功率Pi: 输入信号功率No: 输出噪声功率Po: 输出信号功率Vn: 该信号源内阻Rs的等效噪声电压Ro: 双端口网络输出阻抗输出噪声功率: N o = N i * Gain + N a ; P o=P i * Gain噪声系数= (P i * N o)/(N i* P o) = (N i * Gain + N a) /(N i * Gain)= 1 + Na/(N i * Gain) > 1根据IEEE的噪声系数定义:The noise factor, at a specified input frequency, is defined as the ratio of (1) the total noise power per unit bandwidth available at the output port when noise temperature of the input termination is standard (290 K) to (2) that portion of (1) engendered at the input frequency by the input termination.”a.输入噪声被定义成负载在温度为290K下产生的噪声。

噪声系数计算方法分析噪声系数计算方法分析

噪声系数计算方法分析噪声系数计算方法分析

噪声系数的计算方法摘要:介绍了测量噪声系数的几种典型测量,重点分析了目前实际工程和研究中最常用的噪声系数测量方法—Y系数法,并对测量误差的主要来源进行了分析,阐述了噪声发生器性能和环境温度变化对测量结果的影响。

关键词:噪声系数;测量误差;Y因子MethodsofNoiseFigureMeasuringAbstract:Inthispaper,itintroducedmethodsofnoisefiguremeasuring.Manyemphasesare putonanalyzingY-factormethodwhichisthemostwidely-usednoisefiguremeasu ringmethodnowadaysinpracticalengineeringandstudy.Andanalyzethemainsou rceofmeasurementerror,explaintheeffectsof noisegenerator’sperformance andthechangeofenvironmenttemperatureinmeasurementresults.Keywords:noisefigure;measurementerror;Y-factor1.前言噪声系数测量方法基本上取决于两种输入功率条件下,被测输出功率的测量,实际上是计算两个噪声功率的相对比值。

在怎样改变输入功率方面,人们采用过热负载与冷负载、气体放电噪声源、限温二极管、信号发生器和现今使用的固态噪声源。

测量方法上也有多种,在先进的噪声系数测量仪器出现以前,工程师们就想到了很多简易的噪声系数测量方法,其特点是所需要的设备少,操作简单,但测量精度不高,应用范围比较窄,虽然如此,过去被广泛使用的简易测量方法在今天在部分领域仍然有一定的应用价值。

2噪声系数的典型方法噪声系数是表征线性二端口网络或二端口变换器系统噪声特性的一个重要参数。

噪声测试方法

噪声测试方法

噪声测试方法噪声测试是指对某一系统或设备在正常工作状态下产生的噪声进行测试和评估的过程。

噪声测试方法的选择对于确保测试结果的准确性和可靠性至关重要。

本文将介绍几种常见的噪声测试方法,以供参考。

首先,最常见的噪声测试方法之一是使用声压级计进行测试。

声压级计是一种专门用于测量声音强度的仪器,可以准确地测量噪声的声压级。

在进行测试时,需要将声压级计放置在距离噪声源适当的位置,并记录下相应的数据。

通过对这些数据进行分析,可以得出噪声水平的准确评估。

其次,频谱分析也是一种常用的噪声测试方法。

频谱分析可以帮助我们了解不同频率下的噪声水平,从而更好地理解噪声的特性。

在进行测试时,可以使用频谱分析仪器对噪声进行频谱分析,并绘制出相应的频谱图。

通过对频谱图的分析,可以得出噪声的频谱特性,为后续的噪声控制提供重要参考。

另外,噪声源定位也是一种重要的噪声测试方法。

通过对噪声源的定位,可以帮助我们更好地了解噪声的来源和传播路径,为噪声控制提供重要依据。

在进行测试时,可以使用声学相机等设备对噪声进行定位,并确定噪声源的位置。

通过对噪声源的定位,可以有针对性地采取相应的控制措施,从而降低噪声水平。

最后,还有一种常见的噪声测试方法是使用噪声暴露计进行测试。

噪声暴露计是一种专门用于测量人员在工作环境中暴露在噪声中的时间和强度的仪器,可以帮助我们评估工作环境中的噪声暴露水平。

在进行测试时,可以将噪声暴露计佩戴在工作人员身上,记录下其在工作环境中的噪声暴露情况。

通过对这些数据的分析,可以评估工作环境中的噪声暴露水平,并采取相应的控制措施,保护工作人员的听力健康。

综上所述,噪声测试方法的选择对于确保测试结果的准确性和可靠性至关重要。

不同的测试方法可以帮助我们了解噪声的特性、来源和传播路径,为噪声控制提供重要依据。

在进行噪声测试时,需要根据具体的测试需求和环境特点选择合适的测试方法,并结合实际情况进行综合分析,以确保测试结果的准确性和可靠性。

噪声系数的计算及测量方法

噪声系数的计算及测量方法

噪声系数的计算及测量方法(一)时间:2012-10-25 14:32:49 来源:作者:噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。

许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明.现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。

讨论了确定运算放大器噪声系数的适用方法。

我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。

计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。

公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。

该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。

在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。

噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K)噪声系数计算方法研究噪声的目的在于如何减少它对信号的影响。

因此,离开信号谈噪声是无意义的。

从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。

即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。

否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。

因此信噪比是描述信号抗噪声质量的一个物理量。

1 噪声系数的定义要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为设Pi为信号源的输入信号功率,Pni为信号源内阻RS产生的噪声功率,Po和Pno 分别为信号和信号源内阻在负载上所产生的输出功率和输出噪声功率,Pna表示线性电路内部附加噪声功率在输出端的输出。

噪声系数的测量方法

噪声系数的测量方法
增 益 测 量法 。
为热态 ,此时输出大的噪声功率 ; DC驱动 电源关闭时相 当于
噪声源关断 , 称为冷态 , 此时 输 出 常温 下 的噪 声 功率 。噪 声 源 的 热温 与冷 温 的 差 值 称 为 噪 声 源 的超 噪 比 ( E x c e s s No s i e
2 Y 因子 测 量 法
Ab s t r a c t :I n t hi s pa pe r , me t hod s — of me a s u r i ng no i s e i f gu r e a r e i nt r od uc e d. Em p ha s e s re a p ut O i l a n a l y z i ng Y —f a c t or me t hod ,whi c h i s
冲 电源 驱 动 电 压 , 当 DC驱 动 电 压供 电时 相 当 于噪 声源 开 , 称
手段上可以归结为 2 类 :基于噪声系数 分析 仪的测量和基于
频谱分析仪的测量 。 噪 声 仪 测 量 方 法从 本质 上 讲 是 Y因 子 法 ;
而用频谱分析仪测量噪声系数 的测量原理是 利用噪声 系数与
会小于输 入端的信噪比 ,所 以噪声 系数表征 了微波 网络使信
噪 比 降低 的程 度 。
Y因子是指当被测件 ( D UT) 的输 入端处于 2 个不同的资 用噪声功 率时 , 在 DUT的输 出端得到的 2 个相应的资用噪声 功率之比。 噪声源是 Y因子法测量必不可少 的设备 , 噪声源是 能产生 2种不 同噪 声功率 的噪声发生器 ,一般需要 用 DC脉
Me t h o d s o f Me a s u r i n g No i s e Fi g u r e

噪声系数的计算及测量方法

噪声系数的计算及测量方法

噪声系数的计算及测量方法(一)时间:2012-10-25 14:32:49 来源:作者:噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。

许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明.现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。

讨论了确定运算放大器噪声系数的适用方法。

我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。

计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。

公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。

该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。

在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。

噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K)噪声系数计算方法研究噪声的目的在于如何减少它对信号的影响。

因此,离开信号谈噪声是无意义的。

从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。

即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。

否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。

因此信噪比是描述信号抗噪声质量的一个物理量。

1 噪声系数的定义要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为设Pi为信号源的输入信号功率,Pni为信号源内阻RS产生的噪声功率,Po和Pno 分别为信号和信号源内阻在负载上所产生的输出功率和输出噪声功率,Pna表示线性电路内部附加噪声功率在输出端的输出。

微波测量第五章 噪声系数测量

微波测量第五章 噪声系数测量
第四章 噪声系数测试
1
噪声系数测试
第一节 基本概念 第二节 手动测量 两倍功率方法噪声系数测量 Y因子法噪声系数测量 第三节 自动噪声系数测量 第四节 影响噪声系数测试精度的一些因素 补充内容: 级联电路的噪声系数计算
2
第一节 基本概念
噪声特性是元件和系统的最重要参数之 一,是元件和系统性能水平的重要体现. 为了更好的理解噪声的重要性,我们首先 举一个较形象了例子:在海边用望远镜观察 海上的船只.
29
14
Y因子法噪声系数测量方框图
15
第三节 自动噪声系数测量
自动噪声系数测量需要用噪声源和自动噪 声测试仪完成
16
17
18
例:放大器 测试
19
例:变频器 测试
20
第四节 影响噪声系数测试精度的一些因素
21
22
环境温度: 获得外部噪声的值,标准的温度(T0)被设 定为290K,制造商所给出的超噪比与它相关, 所以,温度的变化会导致噪声系数测量误差
11
4.2.1两倍功率方法噪声系数测量
主要思想: 根据噪声系数计算公式,如果N2=2N1,则 方程变为NF= ENR.
12
两倍功率方法噪声系数测量方框图
13
4.2.2 Y因子法噪声系数测量
设Y= N2/ N1, 则有NF= = ENR- 10lg (Y-1) 从方程可以看出,不需要测出N2和N1的绝 对值,而只需测出他们比值即Y,就可以确定 NF,这就是这个方法名称的原因.
9
另外,噪声温度也可以用于表述器件或系统 的噪声性能,下面的公式表述了噪声系数与 噪声温度的关系: NF=10lg (1+TN/290) TN即称为噪声温度,单位是K.

不同仪器对噪声系数测量的方法

不同仪器对噪声系数测量的方法
1 噪声 系数 概 述
图1了射 频系统 噪声性 能的重要信 息 , 它通 常 被 定 义 为 网 络 的输 入 信 噪 比 S / N与输 出信噪 比 S / N 的 比值
F= = / NI

式( 1 ) 假设 网络的功率增益 为 G, 内部噪声功率 为 N , 那 式( 2 ) 表明, 噪声系数是功 率增益 G
么( 1 ) 可 以简化为
的函数 , 测量时应保持功率增益不 变。 2 三 种 仪器 分 别 对 噪 声 系 数 的测 试 方 法 2 . 1 噪声系数分析仪测量噪声 系数 测量框 图为 图 1 。 噪声系数常用的测试方法有噪声源法和信 号源法 。 但 由于实际 应 用时不能严格地工作在线性 区域 ,因此信号源法测试误差较大 , 所 以 工作 中大 多 采 用 噪 声 源 法 。 噪声系数分析仪是一 台高灵敏 度 、 低 噪声 接收机 , 是一 台采用 频率变换后再在 中频上处理信号 的超外差接收机。 使用噪声系数分 析仪在 大多数情况下测量噪声系数是最直接也 是最准确 的。 噪声系 图 3 数分析仪能够 同时显示增益和噪声系数来进行测量 。 噪声 系数分析 室温 )时环境噪声 的功率谱密度 , B W 是分辨率带宽 , G a i n 是 系统 仪测试噪声系数的核心是 Y因子法。噪声系数分析仪是 一台接收 ( 机, 可 以用来测试输入 的噪声功率 。噪声系数分析仪需要控制一个 的增益 , N F 是 D U T的噪声 系数 。 公式 中每个变量均为对数 , 故简化 噪 声 源 的加 电和 不 加 电这 两 种 状 态 对 被 测 件 ( D U T ) 进行测试 , 这 两 公式 , 可以直接测量输 出噪声的功率谱密度 ( d B m / H z ) 。 N F = P N O U T + 1 7 4 d B m / H z — G a i n ) 式( 4 ) 次功率 的比值就是 Y因子。使用噪声系数分析仪对被测 件进行噪 声系数测试 时 , 先要对 噪声 系数 分析仪进行校准 , 从而消 除或 减少 频谱 分析仪测 量噪声系数 的最 大局 限性来 自频谱 分析仪 的噪 小噪声 系数 的被测件 , 其输 出端的 P o u t 会很小 , 低 仪表接收机 自身带入 的影响。 在测试具有混频功能的被测件时还可 底。因为低增 益、 于频谱分析仪 的噪底 , 这样信号会被 淹没在噪声之 中 , 导致无 法测 以通过设置测试仪表对( 本振 ) 信 号的频率进行控制。 如A g i l e n t 公司 的 N 8 9 7 5 A噪声 系数分析仪 ,产生 2 8 V D C脉冲 量。一般使用频谱分析仪( 增益法 ) 准确测量 噪声 系数 , 要满足待测 信号驱动噪声源 ( 3 4 6 A / B) 。先将噪声 源 3 4 6 A / B的超噪 比输入噪声 系统的输 出噪声密度要比频谱分析仪 的噪底高 2 0 d B以上 。为获得 B W ( 分辨 率带宽 ) 与 系数分 析仪 中 ,再将噪声源和 噪声 系数 分析仪连接在一 起进行校 稳定和准确 的噪声密度读数 ,选择最优 的 R B W( 视频 带宽 ) 即R B W/ V B W= 0 . 3 , 为使频 谱 , 尤其是 基底 噪声看 准, 等校准完毕后确认整个频段被校平再将 噪声源产生噪声驱动待 V 测器件 ( D U T ) , 使用噪声系数分析仪测量待测件 的输 出。噪声系数 起来比较干净 。 视频带宽越小 , 频谱分析仪显示 的基底噪声越小。 只 分析 仪通过将 噪声 源的输 入噪声 和信 噪 比可 计算 D U T的噪 声系 要频谱分析仪 的噪声底的指标好 ,这种方法适 用于任何频率 范围。 数。 对于系统增益非 常高 、 噪声 系数 非常高的场合 , 这种方法也 非常准 确。 2 . 2 用频谱分析仪测量噪声系数 测量框图为图 2 。 例如( 频谱法测试 混频 电路 的噪声系数 ) a. 将测试 系统按 照电路 图进行连接 ,并将 电源电压 V 图中的接收机是测试 中的待测件。 首先 利用点频信号发生器发 C C调 到 3 V; 射点频信号 , 在频谱分析仪上读取 功率值来测试 接收机 的增益 。然 3. b . 设置 R F信 号源 的频率为 F R F X MH z , 输出功率 为 一 9 0 d B m; 后关掉信号发生器 , 直接通过频谱 分析 仪读 出接 收机输 出端 的噪声 c. 功 率谱密度值 。通过这两个值就可 以算出噪声 因子 。 设置 L O信 号源 的频率 为 F L O Y MH z , 输 出功率 为 2 d B m( 以 ; 由噪声系数 的定义 可知 N F = P N O U T -( - 1 7 4 d B m/ Hz - + 2 0 1 g ( B W) 加到芯片本振端 口的实际功率计算 ) d . 从频谱仪上找到 I F的信号 ; + G a i n ) 式( 3 ) e . 设置频谱仪 的参考 电平为 一 4 0 d B m,带宽为 ( 下转 8 2页) 式中: P N O U T是已测的总输 出噪声 功率 , 一 1 7 4 d B m / Hz 是2 9 0 K

噪声测量方法范文

噪声测量方法范文

噪声测量方法范文一、测量仪器在噪声测量中,使用的仪器设备有噪声计和声级计。

噪声计是用来对噪声进行频率分析和评估的仪器,可以得到不同频率下噪声的分贝级别。

声级计也是一种测量噪声的仪器,它是一种经过校准的噪声计,可以提供实时的A计权和C计权结果。

二、测量位置的选择三、测量参数的选择在进行噪声测量时,需要选择合适的测量参数进行测量。

常见的测量参数有声级(L)、频率(f)和时间(t)。

声级是一个用来定量表示噪声强度的参数,通常用分贝(dB)来表示。

频率是指噪声的震动的频率,一般用赫兹(Hz)表示。

时间是指噪声的持续时间,一般用秒(s)或分钟(min)表示。

四、测量方法1.恒定位置测量法:在该方法中,测量人员选择固定的位置进行噪声测量,通常采用室外开放空地进行测量。

测量人员在同一位置进行重复测量,得到的结果可以用于比较和评估噪声水平的变化。

2.环境点测量法:在该方法中,测量人员选择多个具有代表性的位置进行测量。

通常,这些位置包括噪声源周围的接近点、噪声传播路径上的中点和噪声远离的点。

通过对这些位置的测量,可以了解噪声的传播规律和空间分布情况。

3.移动点测量法:在该方法中,测量人员利用测量仪器的移动功能,选择不同位置进行连续的测量。

通过对多个位置的测量,可以了解噪声的时空变化规律,并得到具有代表性的噪声水平。

4.持续测量法:在该方法中,测量人员将仪器设置为连续测量模式,全天候地记录噪声水平。

通过对长时间的测量数据进行分析,可以得到噪声的时间分布和周期性规律。

五、数据处理与分析噪声测量得到的数据需要进行处理和分析,以得出准确的测量结果。

数据处理的主要工作包括噪声源的特征提取、信号处理和结果统计。

在进行统计分析时,需要考虑到噪声的频率、时间和空间分布特征,并与相关环境标准进行对比。

总结起来,噪声测量方法主要包括选择合适的测量仪器、选择适当的测量位置、选择合适的测量参数、选择合适的测量方法和进行数据处理与分析等步骤。

噪声系数的原理和测试方法

噪声系数的原理和测试方法

噪声系数测试方法针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。

图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。

采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。

下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。

图1:MAXIM公司TD-SCDMA手机射频接收电路。

利用频谱仪直接测试利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。

测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出:上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。

噪声系数测量方法

噪声系数测量方法

噪声系数测量的三种方法摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。

这三种方法的比较以表格的形式给出。

前言在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。

本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。

噪声指数和噪声系数噪声系数(NF)有时也指噪声因数(F)。

两者简单的关系为:NF = 10 * log10 (F)定义噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为:式1从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。

下表为典型的射频系统噪声系数:Category MAXIMProductsNoise Figure*Applications Operating Frequency System GainLNA MAX2640Cellular, ISM400MHz ~ 1500MHzLNA MAX2645HG: WLL~ HG: LG: WLL~ LG:Mixer MAX2684LMDS, WLL~ 1dBMixer MAX998212dB Cellular, GSM825MHz ~ 915MHzReceiverSystemMAX2700~ 19dB PCS, WLL~ < 80dB* HG = 高增益模式,LG = 低增益模式噪声系数的测量方法随应用的不同而不同。

从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。

因此测量方法必须仔细选择。

本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。

使用噪声系数测试仪噪声系数测试/分析仪在图1种给出。

图1.噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。

接收机噪声系数测试方法

接收机噪声系数测试方法

接收机噪声系数测试方法接收机的噪声系数是衡量其信号接收能力的重要指标之一、噪声系数表示接收机输入信号与输出信号之间的信噪比损失。

噪声系数越小,接收机的信噪比损失越小,其性能越好。

为了保证接收机的正常工作,需要定期对其噪声系数进行测试。

接收机的噪声系数测试可通过外参考源法或内参考源法来进行。

一、外参考源法:使用外部噪声源作为参考源来测试接收机的噪声系数。

一般情况下,可以使用陶瓷电阻、热电偶和大气热噪声等作为外参考源。

1.陶瓷电阻法:陶瓷电阻法是一种常用的测试方法,其原理是使用陶瓷电阻作为产生噪声的源,通过测量输出信号的功率和输入信号的功率来计算噪声系数。

测试步骤如下:1)将陶瓷电阻与接收机的输入端相连接;2)打开接收机,通过调节陶瓷电阻的阻值,使得接收机输出的信号功率达到最大;3)测量陶瓷电阻的阻值、接收机输出信号的功率和输入信号的功率;4)根据功率的大小计算噪声系数。

2.热电偶法:热电偶法是利用热电偶作为外参考源,通过测量输出信号的功率和热电偶的温度来计算噪声系数。

测试步骤如下:1)将热电偶与接收机的输入端相连接;2)打开接收机,通过调节热电偶的温度,使得接收机输出的信号功率达到最大;3)测量热电偶的温度、接收机输出信号的功率和输入信号的功率;4)根据功率和温度的大小计算噪声系数。

3.大气热噪声法:大气热噪声法是利用地球大气的热噪声作为外参考源,通过测量输出信号的功率和大气热噪声的温度来计算噪声系数。

测试步骤如下:1)将天线与接收机的输入端相连接;2)选取一个没有无线电源干扰的地点进行测量;3)打开接收机,测量接收机输出信号的功率和大气热噪声的温度;4)根据功率和温度的大小计算噪声系数。

使用外参考源法进行噪声系数测试的优点是测试结果准确,可靠性高。

但同时需要提前准备好相应的外参考源。

二、内参考源法:使用接收机自身内部的参考源来进行噪声系数测试,常用的内参考源包括内部噪声源、参考输入端口和本地参考振荡器等。

噪声系数测量方法

噪声系数测量方法

噪声系数测量方法
噪声系数是衡量信号与噪声之间的关系的一个重要参数,对于电子设
备的设计和性能评估非常关键。

测量噪声系数的方法有很多种,下面将介
绍几种常用的测量方法。

1.前后噪声对比法:
这是一种最常见的测量噪声系数的方法。

该方法基于一个简单的原理:在测量系统的输入端加上一个噪声发生器,将测量系统的输出与加入噪声
的输入进行对比。

根据对比结果可以计算出噪声系数。

2.两温度法:
该方法基于系统的噪声和两个不同温度的噪声源之间的关系。

首先将
测量系统连接到一个标准噪声源,将噪声标准化到一个已知的温度(通常
为290K),得到一个已知噪声源的噪声系数。

然后将测量系统连接到一
个更热的噪声源(比如一个高温电阻器),再次测量噪声系数。

最终可以
通过这两个噪声系数的比值计算出测量系统的噪声系数。

3.热噪声法:
4.经验法:
这是一种基于经验公式或计算模型来估计噪声系数的方法。

该方法适
用于对于特定类型的电子设备,已经有了较为准确的计算模型,可以通过
模型计算出噪声系数。

需要注意的是,不同的测量方法适用于不同的噪声特性和测量对象。

在进行噪声系数测量时需要考虑设备的工作频率范围、输入输出阻抗匹配
等因素,并选择适当的测量方法。

同时,测量误差也是不可避免的,因此需要在测量过程中采取一些校准和补偿措施来提高测量精度。

噪声指数测量

噪声指数测量

1. 噪声指数介绍灵敏度、bit error radio (BER )、噪声指数(NF )是评价接收系统处理弱信号能力的三个参数指标。

其中BER 主要用于数字系统,噪声指数和系统带宽可以推出系统的灵敏度指标,因此噪声指数测量是评价接收系统的主要指标。

噪声指数不但可以评价整个系统,而且可以评价单个元件(放大器、混频器等)。

测量噪声指数是最小化接收系统的噪声问题,因为一但噪声混入信号,接收系统不再能区分出来在信号频率范围内的噪声。

噪声指数总是和双端口网络相对应的。

混频器也被当作双端口网络(本振为第三端口),但是本振的噪声特性也影响整个系统的噪声指数。

噪声指数不能评价单端口网络,比如终端、天线、振荡器等。

噪声指数应与增益分开考虑,后续的放大器不改变信噪比。

噪声系数F 定义001()i i i i a a o o i a i i S N S N N N kT BGF S N GS N GN GN kT BG+===+=+其中:G 为系统增益,Na 为系统噪声,To 为温度(290k ),B 为系统噪声带宽。

噪声指数NF =10logF噪声指数的含义:被测系统引入的噪声是290K 温度下热噪声的多少倍。

因此也可用噪声温度来评价被测系统。

噪声温度与噪声指数、噪声系数的关系如下。

(1)Te To F =- To =290K2. 噪声源噪声源提供两个确定的噪声电平,一般以等效噪声温度来表示。

大多数主流噪声源由一个特殊的二极管工作在反偏直流状态,由雪崩击穿,产生噪声。

噪声源的主要参数为ENR ,即超噪比。

10log()h cT T ENR T -= 其中,Th 为热噪声温度,Tc 为冷噪声温度,T0为标准参考温度290K 。

噪声源的主要指标是超噪比和频率范围。

实际应用中,噪声源的超噪比是频率相关的,以表格的形式提供。

3.噪声指数的测量方法:Y参数方法主要测量原理:将被测原件和测量仪表看作一个两级系统。

首先用噪声源标定测量仪表的噪声指数,然后用噪声源标定整个两级系统的噪声指数,利用两级系统的噪声指数公式,反算出被测量器件的噪声指数。

噪声测定方法

噪声测定方法

噪声测定方法引言:噪声是我们日常生活和工作中经常遇到的问题之一。

噪声对我们的健康和生活质量产生了不可忽视的影响。

为了有效地控制和减少噪声,我们需要了解噪声的特性和测定方法。

本文将介绍噪声的定义、分类以及常用的噪声测定方法。

一、噪声的定义和分类噪声是指一切使人感到不适或干扰正常生活的声音。

根据噪声源的来源和性质,噪声可以分为以下几类:1.环境噪声:主要由城市交通、工业设备、建筑施工等产生的噪声。

环境噪声对人们的安静休息和聆听环境中重要信息产生负面影响。

2.社会噪声:主要由人类活动产生的噪声,如人声、机械噪声、音乐等。

社会噪声对人们的睡眠和集中注意力产生干扰。

3.工作噪声:主要由工业生产和机械设备产生的噪声。

工作噪声对工人的听力健康和工作效率产生直接影响。

4.交通噪声:主要由交通工具的使用和行驶产生的噪声。

交通噪声对人们的心理和身体健康产生负面影响。

二、1.经验法:这是最简单和常见的噪声测定方法。

通过主观感觉和经验判断来评估噪声的强度和影响程度。

这种方法可以用于噪声源的初步评估,但缺乏客观性和准确性。

2.噪声仪器法:这是一种常用的噪声测定方法,用于在工作环境中对噪声进行测量和评估。

常见的噪声仪器包括噪声计和声级计。

噪声计可测量噪声的强度和频率分布,而声级计可根据频率特性对噪声进行加权以反映人类听觉的灵敏度。

3.频谱分析法:这是一种基于频域分析的噪声测定方法。

通过将噪声信号转化为频域信号,可以分析不同频率对噪声的贡献程度。

频谱分析法常用于复杂噪声环境的测量和分析。

4.主观评价法:这是一种通过实验和调查来评估噪声对人类听觉和心理的影响的噪声测定方法。

通过主观评价表、问卷调查和听力实验等方法,可以获得噪声对人们听觉和心理的主观响应。

结论:噪声是一种常见的环境问题,对人们的健康和生活产生负面影响。

为了有效地控制和减少噪声,需要采用准确可靠的测定方法来评估噪声的强度和影响程度。

经验法、噪声仪器法、频谱分析法和主观评价法是常用的噪声测定方法。

噪声系数测量方法

噪声系数测量方法

噪声系数测量方法噪音系数(Noise Coefficient)是衡量噪声传输性能的一个参数,通常用来评估信号与噪声之间的比例。

在通信系统中,噪音系数是评估系统噪声引入程度的重要指标,一般用于评估接收端信噪比的好坏。

噪音系数的测量方法可以分为两类:直接测量法和间接测量法。

一、直接测量法1.热噪声法:该方法利用热噪声的大小与电阻的关系进行测量。

通过将输入电阻与输出电阻相等的简单电路(如电阻、电容、电容-电阻等组合)与待测系统串联,测量电路两端的噪声电压和电流。

根据热噪声计算公式和电路参数计算噪音系数。

2.互相关法:该方法利用信号与噪声的互相关进行测量。

首先,将一个固定频率的标准信号与待测噪声信号输入待测系统,通过互相关算法计算噪声信号与标准信号的相关系数。

根据相关系数与输入和输出信号的功率计算噪音系数。

3.声音法:该方法利用声音在传输过程中受到噪声的影响程度进行测量。

通过将声音传输系统与一个已知信号源相连,测量信号源与被测系统产生的声音之间的功率比值以及噪声功率,根据声音传输系统的增益和噪声功率计算噪音系数。

二、间接测量法1.带宽测量法:该方法利用系统的信号带宽和噪声带宽来计算噪音系数。

首先,通过测量信号源输入系统后输出的信号功率,再通过测量信号源在系统中的发射功率,以及测量系统的噪声功率和噪声带宽,计算系统的噪音系数。

2.信噪比测量法:该方法利用信号与噪声的信噪比进行测量。

首先,将待测系统与一个已知信号源相连,测量输入信号与输出信号的功率比值;然后,测量系统的噪声功率。

根据信号功率比值和噪声功率计算噪音系数。

3.互信息测量法:该方法利用信号与噪声之间的互信息进行测量。

通过测量输入信号和输出信号的互信息,以及测量系统的噪声功率,计算噪音系数。

以上是常用的噪音系数测量方法,每种方法都有其适用的场景和测量条件,在具体应用中需要根据实际情况选择合适的方法。

噪声系数的原理和测试方法

噪声系数的原理和测试方法

噪声系数的原理和测试方法噪声系数是指在信号传输或电路中,输入信号与输出信号之间的噪声功率比值。

在电子设备中,噪声是不可避免的,它会对信号质量和信息传输造成影响。

因此,通过衡量噪声系数可以评估电路或系统的噪声性能。

噪声系数与信噪比有密切关系,信噪比是信号与噪声功率之比。

噪声系数定义为系统输出信号的信噪比与输入信号的信噪比之比。

假设输入信噪比为SNR_in,输出信噪比为SNR_out,则噪声系数可以表示为:Noise Figure (NF) = 10 * log10 (SNR_out / SNR_in)一般来说,噪声系数越小越好,因为这意味着系统的噪声影响较小。

典型的噪声系数为1-10dB。

噪声系数测试方法:1.Y-法:该方法使用噪声源和两个输入阻抗相等的负载,在输入和输出之间测量电压和电流。

通过测量不同频率下输入和输出的电压和电流,可以计算噪声系数。

2.T-法:该方法使用一根传输线来连接两个负载。

在输入和输出之间测量噪声功率和信号功率,并通过计算噪声系数来评估系统的噪声性能。

3.电压比法:该方法使用两个电压噪声源,一个连接到输入端口,一个连接到输出端口。

通过测量输入和输出的电压噪声,并通过计算得出噪声系数。

4.天线法:该方法主要用于无线通信系统中。

通过将接收天线与信号源连接,测量天线输出端口的噪声功率和信号功率,并计算噪声系数。

无论使用哪种测试方法,都需要确保测试环境尽可能减少外界噪声的干扰,并使用高精度的测试仪器进行测量。

在实际应用中,噪声系数的测试常常是对整个系统的测量。

在设计电路或系统时,可以选择低噪声元件、减少电路增益以降低噪声等措施来改善系统的噪声性能。

总之,噪声系数是衡量电路或系统噪声性能的重要参数。

通过使用合适的测试方法,可以准确测量和评估系统的噪声系数,进而进行噪声优化和性能改进。

噪声系数的测量方法研究

噪声系数的测量方法研究

0引言噪声系数是微波电子设备在研制与生产过程中的一项重要测量参数,表征接收机及其组件在有热噪声时处理微弱信号的能力的一个关键参数,噪声系数的计量测试更是噪声计量测试的重要内容。

某个线性两端口网络确定输入端和输出端,当输入端的源阻抗处于290K(室温)时,我们可以将噪声因子(F)定义为:网络输入端信号噪声功率比与其输出端信号噪声功率比的比值。

F=S i /N i S o /N o =S i /N i S i G (N i G+N a )=N i G+N a N i G =N oN i G(1)式(1)中,S i 是输入信号功率,S o 是输出信号功率,N i是输入端噪声功率,N o 是输出端噪声功率,G 是网络增益,N a 是网络本身的噪声功率。

式(1)表示了由于网络噪声,使网络输入端的信噪比经传输后恶化的倍数,即网络对输出端总噪声功率贡献的大小。

将噪声系数(NF)定义为噪声因子的对数表达形式:NF =10log 10F(2)找到可重复的且高精度的噪声系数测量方法非常重要,本文主要讨论其中三种方法:噪声测试仪法、增益法、以及Y 系数法,并用实验验证Y 系数法的准确度。

1噪声测试仪法测量噪声系数最直接的方法是噪声测试仪法,多数情况下也是最准确的。

噪声测试仪能够同时显示噪声系数和增益。

其测试原理图如图1所示。

作者简介院李家怡(1985-),女,硕士研究生,工程师,主要研究方向为噪声系数仪计量技术;匡环(1986-),男,硕士研究生,工程师,主要研究方向为噪声系数仪计量技术。

噪声系数的测量方法研究A Study on Measuring Methods of Noise Factor李家怡,匡环,孟春蕾(中国电子科技集团公司第二十七研究所,河南郑州450047)Li Jia-yi,Kuang Huan,Meng Chun-lei (The 27th Research Institute of China Electronics Technology Group Corporation,Henan Zhengzhou 450047)摘要:噪声系数是评估电子设备的重要指标之一,噪声系数的高低决定了接收机的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


图2 只要频谱分析仪允许, 增益法可适用于任 何频率范围内。最大的限制来自于频谱分析仪的 噪声基底。在公式中可以看到, 当噪声系数较低 ( 小 于 10dB) 时 ,( POUTD- 增 益 ) 接 近 于 - 170dBm/Hz, 通常 LNA 的增益约为 20dB。这样我 们需要测量- 150dBm/Hz 的噪声功率谱密度, 这 个值低于大多数频谱仪的噪声基底。这样系统增
这就是 Y 因数法, 名字来源于上面的式子。 结束语: 文章讨论了测量射频器件噪声系数 的三种方法。每种方法都有其优缺点, 适用于特 定的应用。下表是三种方法优缺点的总结。理论 上, 同一个射频器件的测量结果应该一样, 但是 由于射频设备的限制( 可用性、精度、频率范围、 噪声基底等) , 必须选择最佳的方法以获得正确 的结果。
关键词: 噪声系数; 测量方法; 对比
1 概述 噪声系数( NF) 有时也指噪声因数( F) 。两者 简单的关系为: NF=10*log10( F) 噪声系数( 噪声因数) 包含了射频系统噪声 性能的重要信息, 标准的定义为: 噪声因数( F) =
输出端总噪声功率 外部噪声在输出端呈现的噪声功率
从这个定义可以推导出很多常用的噪声系 数( 噪声因数) 公式。噪声系数的测量方法随应用 的不同而不同。一些应用具有高增益和低噪声系 数( 低噪声放大器( LNA) 在高增益模式下) , 一些 则具有低增益和高噪声系数 ( 混频器和 LNA 在 低增益模式下) , 一些则具有非常高的增益和宽 范围的噪声系数( 接收机系统) 。因此测量方法必 须仔细选择。下面将讨论噪声系数测试仪法和其 他两个方法: 增益法和 Y 因数法。
益非常高, 因
表1
而大多数频谱
仪均可准确测
量噪声系数。
类似地, 如果
DUT 的 噪 声
系数非常高
( 比如高于
30dB) , 这个方法也非常准确。 4 Y 因数法
参考文献 [1]戈 稳.雷 达 接 收 机 技 术[M].北 京 : 电 子 工 业 出
Y 因数法是另外一种常用的测量噪声系数 版社.
的方法。为了使用 Y 因数法, 需要 ENR( 超噪比)
源。ENR 定义为噪声发生器的输出功率与器件
责任编辑: 田波
- 34-
上本身具有标准的噪声系数参数。令: Y=( S0+N0) /N0
其中 N0 为不启动噪声发生器时, 从指示器 上读出的指示; S0+N0 为启动噪声发生器时, 从指 示器上读出的指示。
开启或者关闭噪声源, 测量人员可使用频谱
分析仪测量输出噪声功率谱密度的变化。由噪声
系数的定义, 计算噪声系数的公式为: 噪声系数
尔文, △F=噪 声 带 宽( Hz) , 在 室 温( 290△K) 时 ,
噪声功率谱密度 PNAD- 174dBm/Hz。 因 而 我 们 有 公 式 : NF=PNOUT-( - 174dBm/Hz+
20*log1(0 BW) +增 益) 在 公 式 中 , PNOUT 是 已 测 的总共输出噪声功率, - 174dBm/Hz 是 290°K 时
环境噪声的功率谱密度。BW 是感兴趣的频率带
宽。Gain 是系统的增益。NF 是 DUT 的噪声系数。
公式中的每个变量均为对数。为简化公式, 我们
可 以 直 接 测 量 输 出 噪 声 功 率 谱 密 度( dBm/Hz) ,
图3
这时公式变为: NF=PNOUTD+174dBm/Hz- Gain
ENR 头 能 够 工 作 在 非 常 宽 的 频 段 ( 例 如
统输入的干扰, 与需要的有用信号不同。第二个 噪声折合到输入端的功率之比。这和前面噪声系
是由于射频系统载波的随机扰动带来的器件的 数测试仪部分提到的噪声源是同一个东西。装置
内部噪声( LNA, 混频器和接收机等) 。器件的可 图见图 3:
利用的噪声功率为: PNl=kT△F。这里的 k=波尔兹 曼常量( 1.38*10-23 焦耳/△K) ,T=温 度 , 单 位 为 开
2 使用噪声系数测试仪 噪声系数测试/分析仪在图 1 中给出。
图1 噪 声 系 数 测 试 仪 , 如 Agilent 公 司 的 N8973A 噪声系数分析仪, 产生 28VDC 脉冲信 号 驱 动 噪 声 源( HP346A/B) , 该 噪 声 源 产 生 噪 声 驱动待测器件( DUT) 。使用噪声系数分析仪测量 待测器件的输出。由于分析仪已知噪声源的输入 噪 声 和 信 噪 比, DUT 的 噪 声 系 数 可 以 在 内 部 计 算和在屏幕上显示。对于某些应用( 混频器和接 收机) , 可能需要本振( LO) 信号, 如图 1 所示。 使用噪声系数测试仪是测量噪声系数的最 直接方法。在大多数情况下也是最准确地。测量 人员可在特定的频率范围内测量噪声系数, 分析 仪能够同时显示增益和噪声系数帮助测量。分析 仪具有频率限制。例如, Agilent N8973A 可工作 频率为 10MHz 至 3GHz。当测量很高的噪声系数 时, 例如噪声系数超过 10dB, 测量结果非常不准 确。而且仪器非常昂贵。 3 增益法 除了直接使用噪声系数测试仪外还可以采 用其他方法测量噪声系数。这些方法需要更多测 量和计算, 但是在某种条件下, 这些方法更加方 便和准确。其中一个常用的方法叫做“增益法”, 它是基于前面给出的噪声因数的定义。在这个定 义中, 噪声由两个因素产生。一个是到达射频系

NF) =10*log1(0
10 ( ENR/10) 10 ( Y/10) - 1

。在这个式子中, ENR
为已知。通常 ENR 头的 NF 值会列出。ENR 噪声
头提供两个噪声温度的噪声源: 热温度时 T=TH
( 直流电压加电时) 和冷温度 T=290°K。ENR 噪声

的定



ENR=
TH- 290 290
为 了 使 用 增 益 法 测 量 噪 声 系 数 , DUT 的 增 HP346A/B 为 10MHz 至 18GHz) , 在特定的频率
益需要预先确定的。DUT 的输入需要端接特性 阻抗( 射频应用为 50Ω, 视频/电缆应用为 75Ω) 。 输出噪声功率谱密度可使用频谱分析仪测量。增 益法测量的装置见图 2。
科苑论谈
噪声系数的三种测量方法及对比
解冰 董磊 ( 西安卫星测控中心, 陕西 渭南 714000)
摘 要: 在无线通信系统中, 噪声系数( NF) 或者相对应的噪声贡献。详细阐述这个重要的参数及 其不同的测量方法之间的比较。对测量雷达接收机的噪声系数有一定的指导作用。
相关文档
最新文档