圆锥曲线焦点弦长公式(极坐标参数方程)

合集下载

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。

圆锥曲线焦点弦长公式(极坐标参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)

锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高老命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有老察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手! ?定理已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴), 焦点为F,设倾斜角为G的直线/经过F,且与圆锥曲线交于A、B两点,记圆锥曲线的离心率为e,通径长为H,则(1)当焦点在X轴上时,弦AB的长IABI= —;11 - COS^ a I(2)当焦点在丫轴上叭弦AB的长而推论:(I)B点在X轴上,当ASB在椭圆、抛物线或双曲线的一支上时,IABI= —上一十l-f COSJ a 当AX B不在双曲线的一支上时,IABI= — ;当圆锥曲线是抛物线时,<?" COS fc iZ-IHIABI=一 .SiIr a⑵焦点在y轴上,当入B在椭圆、抛物线或双曲线的一支上时9∖AB∖=一竺十1一0°sin" a当A、B不在双曲线的一支上时,IABI= — ;当圆锥曲线是抛物线时, L SHr α-lIABl=cos* a典题妙解F面以部分高老题为例说明上述结论在解题中的妙用.例1 (06文第21题)已知椭圆+ * = 抛物线。

-加)2=2Z (P >0), 旦G、G的公共弦AB过椭圆Cl的右焦点.(I)当AB丄X轴时,求p, m的值,并判断抛物线C?的焦点是否在亶线AB上;4(II)若P =-且抛物线G的焦点在直线AB上,求m的值及直线AB的方程・L V*例2 (07全国I文第22题)已知椭圆y + -= 1的左.右焦点分别为耳,过件的直线交椭圆于B. D两点,过耳的直线交椭圆于A・C两点,旦AC丄BD f垂足为P・■ ■⑴ 设P点的坐标为(心,儿),证明:牛+ *^v1.⑵求四边形ABCD的面积的最小值.例3 (08全国I理第21题文第22题)双曲线的中心为原点6 焦点在X上,两条渐近线厶于入B两点.已知IMI、分别为厶、I2,经过右焦点F垂直于片的直线分别交厶、IABk IoRl成等荃数列,且丽与臥同向.(I )求双曲线的离心率;(II)设AB被双曲线所截得的线段的长为4,求双曲线的方程.金指点睛21.已知斜率为1的直线/过椭圆⅛+ A∙2 = 1的上焦点F交椭圆于A. B两点,则4IABl= ___________ .22・过双曲线X--—= 1的左焦点F作倾斜角为7的吉线/交双曲线于AX B两点,则30IABl= __________ .3.已知椭圆x1+2y2-2 = 0,过左焦点F作宜线/交A、B两点,O为坐标原点,求AAOB的最大面积.4.已知抛物线Γ=4∕ΛV (/; >0),弦AB过焦点F,设IABl=加,AAOB的面积为S,求证:存为定值•5. (05全国Il文第22题)F、Q、MX N四点都在椭圆,+冷=1上,F为椭圓在y轴正半轴上的焦点•已知丽与甩共线,丽与丽共线■且亦・MF = O四边形PQMN的面积的最大值和最小值.6. (07文第22题)如图,倾斜角为α的直线经过抛物线y2 = 8.v的焦点F,且与抛物线交于A、B两点.(I )求抛物线的焦点F的坐标及准线/的方程;(Il)若Q为锐角,作线段AB的垂直平分线m交.v轴于点P,证^lFPl-IFPICoS2σ 为定值,并求此定值.iVf ,.专业7•点M与点F(0,2)的距离比它到直线/: y + 3 = 0的距离小1.(1)求点M的轨迹方程;⑵ 经过点F且互相垂直的两条亶线与轨迹相交于Aj B; CX D.求四边形ACBD的最小面积・8.已知双曲线的左右焦点F I、F2与椭圆y+y2 =1的焦点相同,且以抛物线V2= -2Λ∙的准线为其中一条准线.(1)求双曲线的方程;(2)若经过焦点F2且互相垂直的两条直线与双曲线相交于A、B; C、D.求四边形ACBD 的面积的最小值•参考答案:Y e- Oik- C 证明:设双曲线方程为庐"。

《圆锥曲线公式汇总》

《圆锥曲线公式汇总》

《圆锥曲线公式汇总》《圆锥曲线公式汇总》一、椭圆1.标准方程:a2x2+b2y2=1 (焦点在x轴上,a>b>0;焦点在y轴上,b>a>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2−b2)3.离心率:e=ac (0<e<1)4.焦点到曲线上任意一点的距离之和:PF1+PF2=2a5.焦点到曲线上任意一点的距离之差:∣PF1−PF2∣=2a2−b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于长轴的弦长):a2b29.短轴端点到焦点的距离:a10.焦点三角形的面积:S=b2tan(2θ) (θ为焦点三角形的顶角)二、双曲线1.标准方程:a2x2−b2y2=1 (焦点在x轴上,a>0,b>0);a2y2−b2x2=1 (焦点在y轴上,a>0,b>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2+b2)3.离心率:e=ac (e>1)4.焦点到曲线上任意一点的距离之差的绝对值:∣PF1−PF2∣=2a5.焦点到曲线上任意一点的距离之和:PF1+PF2=2a2+b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于实轴的弦长):a2b29.实轴端点到焦点的距离:c−a10.焦点三角形的面积:S=tan(2θ)b2 (θ为焦点三角形的顶角)三、抛物线1.标准方程:y2=4px (焦点在x轴上,p为焦准距);x2=4py (焦点在y轴上,p为焦准距)2.焦点坐标:F(2p,0) (焦点在x轴上);F(0,2p) (焦点在y轴上)3.准线方程:x=−2p (焦点在x轴上);y=−2p (焦点在y轴上)4.曲线上任意一点到焦点的距离等于到准线的距离:PF=d (d为准线到原点的距离)。

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep-=.其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.引论(1)若 1+cos epe ρθ=则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin epe ρθ=当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin epe ρθ=当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线当 e >1时!方程表示极点在下焦点的双曲线(2)圆锥曲线弦长问题若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=.2、双曲线中,(注释:双曲线问题比较特殊,很多参考书上均有误解。

)若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ.3、抛物线中,θθπθ2sin 2)cos(1cos 1pp p MN =--+-=例1过双曲线22x y -145=的右焦点,引倾斜角为3π的直线,交双曲线与A 、B 两点,求AB ||解:根据题意,建立以双曲线右焦点为极点的极坐标系 即得 所以 又由得 注释:求椭圆和抛物线过焦点的弦长时,无需对 v 加绝对值,但求双曲线的弦长时,一定要加绝对值,这是避免讨论做好的方法。

专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用

专题16  圆锥曲线焦点弦  微点3  圆锥曲线焦点弦长公式及其应用
15.过双曲线 的右焦点F作倾斜角为 的直线,交双曲线于P、Q两点,则 的值为__________.
16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦

圆锥曲线有关焦点弦的几个公式及应用

圆锥曲线有关焦点弦的几个公式及应用

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。

圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。

焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。

例2已知椭圆的离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

例5已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。

若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。

圆锥曲线的极坐标方程与参数方程解析

圆锥曲线的极坐标方程与参数方程解析

圆锥曲线的极坐标方程与参数方程解析极坐标方程与参数方程是圆锥曲线的两种常用表示形式。

在研究圆锥曲线时,利用这两种方程形式可以更加直观地描述曲线的特征与性质。

本文将详细介绍圆锥曲线的极坐标方程和参数方程的解析过程,并通过具体的例子来进一步说明。

一、圆锥曲线的极坐标方程圆锥曲线的极坐标方程可以用极坐标系中的极径r和极角θ来表示。

对于圆锥曲线而言,其极坐标方程的一般形式如下:r = f(θ)其中,函数f(θ)代表了曲线的性质与形状,具体形式根据不同的圆锥曲线类型而异。

以下是几种常见的圆锥曲线的极坐标方程及其解析过程:(一)圆的极坐标方程圆是一种特殊的圆锥曲线,其极坐标方程可以表示为:r = a其中,a代表圆的半径。

(二)椭圆的极坐标方程椭圆的极坐标方程形式如下:r = a(1 - ε²) / (1 - εcosθ)其中,a代表椭圆的半长轴长度,ε代表椭圆的离心率。

(三)双曲线的极坐标方程双曲线的极坐标方程可以写为:r = a(1 + εcosθ) / (1 - εcosθ)其中,a代表双曲线的焦距,ε代表双曲线的离心率。

(四)抛物线的极坐标方程抛物线的极坐标方程可以表示为:r = a / (1 + cosθ)其中,a代表抛物线的焦点到准线的距离。

通过以上例子可以看出,圆锥曲线的极坐标方程形式多样,每一种形式代表了不同的曲线类型和特征。

研究圆锥曲线时,可以根据需要选择不同的极坐标方程进行分析。

二、圆锥曲线的参数方程除了极坐标方程外,参数方程也是描述圆锥曲线常用的一种形式。

在参数方程中,圆锥曲线的坐标可以通过参数t的取值得到。

一般来说,圆锥曲线的参数方程具有以下形式:x = f(t)y = g(t)其中,函数f(t)和g(t)分别表示曲线的x坐标与y坐标,具体形式根据不同的圆锥曲线类型而定。

以下是几种常见圆锥曲线的参数方程及其解析过程:(一)圆的参数方程圆的参数方程可以表示为:x = acos(t)y = asin(t)其中,a代表圆的半径,t取值范围通常为0到2π。

圆锥曲线焦点弦长公式及其应用

圆锥曲线焦点弦长公式及其应用

一 一


_ .
CCOSOf-(./ (。∞sa+ f COS 口一 a
(1)(2)知 ,焦 点 在 z轴 _L的 双 附i线 的 焦 点 弦长 J AB;
焦点存 轴上的椭圆的焦点弦长:
。 一
2。


‘一 二l 'f 一11一Pz sin aj

.。, . 角 为



中学 整蹲可僻, 一 . 0 2fc。s。.
I 1

,,
效 同理”一—一 ‘(— CO—Sd .
理 则 弦 K I AB I一 + ”一
丫匕 2
ab
『二

土 一— __一
掌 (2)如图 2, A、B在舣 饼 曲线的 两支 时,连接 F A. \
。. , 、 、 皓 h , 声 、 I
: j, 求p 1 E长 ,{0A)B,11IJ.兀 甜
作垂解线:A如 3,过A、B分别向准线
A ,BB ·A 、B 为 垂 足-没 A,
A/
标为专+”zc。s ,B点的横坐标为等 /{ 【FAl n,l BI一 l,则 A 点的横 坐 .
圆 锥 曲线 焦 点 弦 长 公 式 及 其 应 用
■ 王 智 红
焦 点 弦 是 过 阋 锥 曲线 焦 点 的 一 类 特 殊 弦 ,利 用 圆 锥 曲线
的 定 义 和 余 弦 定 理 可 以推 导 出 圆 锥 曲线 统 一 焦 点 弦 长 公 式 .
整 理 如 下 ,并 说 明其 应 用 ,供 同学 们参 考.
一”rosa,南抛物线定义可僻
o F

圆锥曲线中的应记的二级结论

圆锥曲线中的应记的二级结论

(11)SABO
p2
2sin
,
yA
M
O •F
x
B
几何特征: (1)AN BN; (2)PF QF; (3)NF AB; (4) AN是PAF的平分线, BN同理; (5)AN是抛物线的切线, BN同理; (6)A,O,Q三点共线, B,O, P三点共线;
直线和圆锥曲线的位置关系中,应该求出坐标的点:
于准线于N , 直线AB的倾斜角为,A(x1, y1), B(x2, y2 ),
代数特征:
(7)x1x2, y1 y2及OA OB均为定值;
(8)
|
AB
|
x1
x2
p
2p
sin 2
;
(9) | AF | p ,| BF | p ;
1 cos
1 cos
(10) 1 1 2 ; | AF | | BF | p
1.两直线的交点; 2.曲线C与坐标轴的交点; 3.直线与圆锥曲线的特殊的交点
b2
BF1 a c cos
=
a2
2ab2 c2 cos2
(长减、短加; 为直线AB与焦点所在对称轴的夹角)
抛物线C:x2 2 py
焦半径 : AF p ,
1 cos
BF = p
1+ cos
焦点弦 :
AB
2p
1 cos2
2p
= sin2
四.和圆中三个垂直关 系对应椭圆中的类似 性质: (1)椭圆的“垂径” 定理:
B2 4AC A2
(1 k 2 ) =
A
(2)同理:椭x 圆m方y 程n
AB
(1 m2 ) A
三.焦半径和焦点弦:
简证 : AF1F2中, 设AF1 m

圆锥曲线焦点弦

圆锥曲线焦点弦

圆锥曲线专题03焦点弦问题焦点弦是经过椭圆,双曲线或者抛物线焦点的弦,这里我们以椭圆为例,如下图。

组成焦点弦的因素有3个:线段MN 的长度,直线MN 的倾斜角以及点F 分线段MN 的比例关系,所以在研究焦点弦问题当中我们重点从以上三个因素进行考虑。

一、焦点弦长的求法法一:利用弦长公式|AB |==若要使用弦长公式,我们需要设出AB 所在直线的方程,然后联立椭圆,利用韦达定理求出,A B 两点之间横坐标或纵坐标的和与积的关系即可,这也是我们在圆锥曲线中求弦长最常用的方法。

法二:利用直线的参数方程在参数方程中我们也学过求弦长的方法,此法和弦长公式差不多,但是在解决选做题参数方程的题目中经常用到,该发在参数方程专题中将重点讲解。

设A 点参数为1t ,B 点参数为2t ,则12|AB |||t t =-方法三:焦点弦长公式已知圆锥曲线C 的离心率为e,焦点为F,焦准距(焦点到准线的距离)为p,过点F 的弦MN 与曲线C的焦点所在的轴的夹角为,(0,90]θθ︒∈,则有222|MN ||1e cos |ep θ=-,在抛物线内22|MN |sin pθ=证明过程如下:设11(x ,y )N ,根据第二定义可知211'()a NF eNN e x a ex c==-=-在RT DNF ∆中,1cos x OD OF DF c NF θ==-=-,代入上式得:(cos )NF a e c NF θ=--,解得cos 1ec aNF e θ-=-同理可得2222222||cos 1cos ab ep MF a c e θθ==--例1:已知椭圆22221x y a b+=的右焦点为F,经过F 且倾斜角为60︒的直线与椭圆相交于不同的两点A,B ,已知2AF FB = .(1)求离心率;(2)若15|AB |=4,求椭圆方程.【解析】(1)求离心率套公式即可1cos 1e λθλ-=+,代入求得23e =套用公式22215|AB |||1cos 4ep e θ==-解得252a p c c =-=又因为23e =,故可解出3,a b ==,椭圆方程为22195x y +=例2:已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则|AB ||DE |+的最小值为________.例3:过抛物线2:4C y x =的焦点的直线交C 于点M(M 在x 轴上方),l 为C的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为_________.二、在焦点弦中,,e θλ三要素之间的关系上面求得焦点弦长公式与离心率e 有关,因此下面我们探究一下求离心率,倾斜角以及点分线段的比例之间的关系。

圆锥曲线的极坐标方程

圆锥曲线的极坐标方程

圆锥曲线的极坐标方程
圆锥曲线的极坐标方程是一种用极坐标表示的曲线形式。

它是由一条椭圆和一条圆组成,它们之间有一个共同点,就是这一点处曲线可以分成左右两部分,而这一点也是圆锥曲线的焦点。

圆锥曲线的极坐标方程可以用如下的公式表示:
r = a*secθ
其中,a 为椭圆的长轴,θ 为极坐标里的角度,r 为曲线上每一点的半径。

圆锥曲线的极坐标方程的特点是,它的图形可以从椭圆和圆的并集看出来,它的性质可以从极坐标中的变量及其依赖关系看出来。

圆锥曲线的极坐标方程是数学中一类相对简单的曲线形式,它在计算中有着重要的作用,比如可以用它来表示二次抛物线、双曲线、等等。

圆锥曲线的极坐标方程是一种通用的曲线形式,它在计算中有着广泛的应用,比如在空间几何中,可以用它来表示某一个曲面,而在天文学中,则可以用它来表示某一个星系的形状等。

圆锥曲线的极坐标方程的优点是,它能够将一个数学问题转化成一种更加容易理解的形式,并且它的计算比较简单,从而大大简化了计算的过程。

总的来说,圆锥曲线的极坐标方程是一种比较常用的曲线形式,它在数学计算中有着重要的应用,而且因为它的简单性,所以比较容易理解和计算。

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌一、圆锥曲线的极坐标方程椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K,以FK 的 向延长线为极轴建立极坐标系.椭圆、 曲线、抛物线统一的极坐标方程为 θρcos 1e ep −=. 其中p 是定点F 到定直线的距离,p>0 .当0 e 1时,方程表示椭圆当e>1时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允许ρ 0,方程就表示整个 曲线当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线的右支、抛物线) 任一点,则 PQ e PF =, )cos (p PF e PF +=θ,其中FH p =,=θ x 轴,FP 焦半径θcos 1e ep PF −=. 当P 在 曲线的左支 时,θcos 1e ep PF +−=. 推论 若圆锥曲线的弦MN 过焦点F,则有epNF MF 211=+.、圆锥曲线的焦点弦长若圆锥曲线的弦MN 过焦点F, 1、椭圆中,cb c c a p 22=−=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−=. 2、 曲线中,若M、N 在 曲线同一支 ,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−= 若M、N 在 曲线 同支 ,2222cos 2cos 1cos 1a c ab e ep e ep MN −=−−+−=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =−−+−=. 四、直角坐标系中的焦半径公式设P x,y 是圆锥曲线 的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF −=22、若1F 、2F 分别是 曲线的左、右焦点,当点P 在 曲线右支 时,a ex PF +=1,a ex PF −=2 当点P 在 曲线左支 时,ex a PF −−=1,ex a PF −=23、若F 是抛物线的焦点,2p x PF +=.。

高中数学圆锥曲线弦长公式

高中数学圆锥曲线弦长公式

安全生产三同时是什么安全生产三同时是指安全生产三个同时,即生产安全、生态环保和节能减排三方面同时推进的工作原则。

它是在实践中总结出来的,旨在保护员工安全、保护环境、节约资源,实现可持续发展的目标。

下面将从安全生产、生态环保和节能减排三个方面详细介绍安全生产三同时的含义和重要性。

一、安全生产是安全生产三同时的重要组成部分。

安全生产是企业生产经营的首要任务,也是保障员工人身安全和财产安全的基本要求。

安全生产涉及到员工的生命安全和健康,对企业的可持续发展也具有重要意义。

在推进安全生产的过程中,需要完善安全管理体系,加强安全培训和教育,建立安全生产责任制,提高员工的安全意识和紧急处理能力,改善工作环境,确保安全设施的完好运行等。

只有安全生产得到有效保障,企业才能够稳步发展,员工才能够安心工作。

二、生态环保是安全生产三同时的重要内容。

生态环境是人类生存的基础,保护和改善生态环境是人类的共同责任。

在推进生态环保的过程中,需要加强环境监测和评估,严格执行环境法规和标准,加强对污染源的监管和治理,推广清洁生产和循环经济,推动绿色发展,改善生态环境质量。

企业应该积极履行环境保护义务,减少污染排放,推动资源的有效利用,保护自然生态系统的平衡,建设美丽中国。

三、节能减排是安全生产三同时的重要任务。

能源是人类生产和生活不可或缺的资源,但也是有限的资源。

能源消耗的过程中会产生大量的二氧化碳等温室气体,对气候和环境造成不利影响。

为了减少对地球的影响,实现可持续发展,需要实施节能减排政策。

在生产经营活动中,企业需要采用节能技术和设备,提高能源利用效率,降低能源消耗。

同时,还需要减少排放的废气、废水和固体废弃物,提高环境保护水平。

只有通过节能减排,才能实现可持续发展的目标。

安全生产三同时的实施涉及到政府、企业和个人的共同努力。

政府应制定相关政策和法规,加强监管和执法力度,提供优惠政策和经济支持,推动企业安全生产、生态环保和节能减排工作的开展。

圆锥曲线的弦长公式与其推导过程

圆锥曲线的弦长公式与其推导过程

圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线y kx b 代入曲线方程,化为关于 x 的一元二次方程,设出交点坐标A x 1, y 1 ,B x 2, y 2 , 利用韦达定理及弦长公式(1 k 2 )[( x 1 x 2 )2 4 x 1x 2 ] 求出弦长,这种整体代换、 设而不求的思想方法对于求直线与曲线相交弦长是十分有效的, 然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐, 若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷 .一、椭圆的焦点弦长若椭圆方程为x 2y 2 1(a b 0) ,半焦距为 c>0,焦点 F 1 ( c,0),F 2 (c,0) ,设过 F 1a 2b 2的直线 l 的倾斜角为 , l 交椭圆于两点 A x 1, y 1 , B x 2 , y 2 , 求弦长 AB .解:连结 F 2 A, F 2 B ,设 F 1 A x, F 1B y ,由椭圆定义得 F 2 A2a x, F 2 B 2a y ,由余弦定理得 x 2(2c)22x 2c cos( 2ax)2 ,整理可得 xb 2 ,同理可求a c cosb 2,则 ABx yb 2b 22ab2;得 ycosc cos a c cosa 2 c 2 cos 2a ca同理可求得焦点在 y 轴上的过焦点弦长为AB2ab 2( a 为长半轴, b 为短a2c 2 sin2半轴, c 为半焦距) .2ab 2(焦点在 x 轴上 ),结论:椭圆过焦点弦长公式:AB a 2c 2 cos 22ab2(焦点在 y 轴上 ).a2c2sin2二、双曲线的焦点弦长设双曲线x2y2 1 a 0,b 0 , 其中两焦点坐标为F1(c,0), F2 (c,0),过 F1的直线l的a2b2倾斜角为,交双曲线于两点 A x1 , y1 , B x2, y2 , 求弦长 |AB|.解:( 1)当arctan barctanb)a a时,(如图 2直线 l 与双曲线的两个交点A、B在同一支上,连F2A, F2B,设F1A x, F1B y, ,由双曲线定义可得 F2 A x2a, F2 B y2a,由余弦定理可得x2(2c)22x2c cos( x2a)2 , y2(2c) 2 2 y 2c cos() ( y 2a)2整理可得 x b 2, y b2,则可求得弦长a c cosa c cosAB x y b 2b22ab 2;c cos a c cos a2 c 2 cos2a( 2)当b或b时,如图,0arctan arctana a直线 l 与双曲线交点A x1, y1,B x2, y2在两支上,连2A,F2B,设,,F F1 A x F1B y则 F 2 A x 2a, F 2 B y 2a ,由余弦定理可得x 2 (2c)2 2x 2c cos( x 2a)2 , y 2 (2c)22 y 2c cos( y 2a) 2 ,整理可得,xb 2, yb 2,则c cosa c cosaAB y xb 2b 22ab 2a 2 .c cosa c cosac 2 cos2因此焦点在 x 轴的焦点弦长为a 22ab2(arctan barctan b),ABc 2 cos 2 aa2ab 22 (0 arctan b或b).22a arctanc cosaa同理可得焦点在 y 轴上的焦点弦长公式a22ab 2(0arctan b或arctan b),AB c 2 sin 2a a2ab 2b arctan b2sin 2a 2 (arctan ).caa 其中 a 为实半轴,b 为虚半轴,c 为半焦距,为 AB 的倾斜角 .三、 抛物线的焦点弦长若抛物线 y 22 px( p 0) 与过焦点 F ( p,0) 的直线 l 相交于两点 A x 1, y 1 , B x 2 , y 2 ,若l 的倾斜角为 ,求弦长 (图 2 |AB|. )4解:过 A 、B 两点分别向 x 轴作垂线 AA 1、BB 1,A 1、 B 1 为垂足, 设 FAx, FB y ,则点 A 的横坐标为px cos ,点 B 横坐标为py cos,由抛物线定22义知pp x,pp y,即xppx cos y cos1 , y1 ,2 222coscos则 xpp 2 p2 p,y1cos1 cos 2sin 21 cos同理y 22(0) 的焦点弦长为AB2 p, px p sin 22 px2 2 py( p0) 的焦点弦长为AB,,所以抛物线的焦点弦长为cos22 p焦点在轴上,AB sin2(x)2 p(焦点在轴上).cos2y由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握.圆锥曲线的弦长公式一、椭圆:设直线与椭圆交于P 1(x1 ,y1),P 2(x2 ,y2),且 P1P2斜率为 K,则1 212|(1K 2 )或|P1P2|=|y1-y2|(1 1/K 2 ){K=(y2-y1)/(x2-x1)}|P P|=|x -x= (1k2 )[( x x2)24x x2]11二、双曲线:设直线与双曲线交于P 1(x1 ,y1),P 2(x2,y2 ),且 P1P2斜率为 K,则|P1P2 |=|x 1-x2 |(1 K 2 ) 或|P1P2|=|y1-y2|(11/K 2 ) {K=(y2-y1)/(x2-x1)} =(1 k2 )[( x1x2 )24x1x2 ]三、抛物线:(1)焦点弦:已知抛物线 y2=2px,A(x 1 ,y1),B(x 2,y2 ),AB为抛物线的焦点弦,则|AB|=x 1+x2 +p 或|AB|=2p/(sin2){为弦 AB 的倾斜角 }或 ABk2(k为弦 AB所在直线的斜率) 2Pk 21(2)设直线与抛物线交于 P1( x1,y1 ),P2(x2,y2 ),且 P1 P2斜率为 K,则|P12 1 2|(1K2)或|P1212|(1 1/K 2)2121)}P|=|x -x P|=|y-y{K=(y-y )/(x-x = (1 k2)[( x1x2 )24x1x2 ]。

焦点弦长公式通用

焦点弦长公式通用

焦点弦长公式通用好的,以下是为您生成的一篇关于“焦点弦长公式通用”的文章:在我们的数学世界里,焦点弦长公式就像是一把神奇的钥匙,能打开很多难题的大门。

咱先来说说啥是焦点弦。

简单讲,就是经过圆锥曲线焦点的弦。

那焦点弦长公式呢,就是用来计算这条弦长度的工具。

就拿椭圆来说吧,假设椭圆方程是 $\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$ ,焦点在 $x$ 轴上,焦点坐标是 $F_1(-c,0)$ ,$F_2(c,0)$ 。

如果有一条直线经过焦点 $F_1$ ,和椭圆相交于 $A$ 、$B$ 两点,那这时候焦点弦长公式就能派上用场啦。

我记得之前给学生们讲这个知识点的时候,有个叫小李的同学,怎么都理解不了。

我就给他举了个例子,假设这条直线的倾斜角是$\theta$ ,那我们可以先把直线方程写出来,然后联立椭圆方程,通过韦达定理就能算出弦长啦。

咱再说说抛物线,比如 $y^2 = 2px$ ,焦点是 $(\frac{p}{2},0)$ 。

要是有直线经过这个焦点和抛物线相交,那焦点弦长又有不同的算法。

有一次在课堂上,我让同学们自己推导抛物线的焦点弦长公式,大家都热火朝天地算起来。

有个小王同学特别积极,很快就得出了结果,还主动给其他同学讲解,那股认真劲儿,真让人高兴。

在双曲线中,焦点弦长公式也有它的独特之处。

就拿焦点在 $x$ 轴上的双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 来说,计算焦点弦长的时候,同样要考虑直线的倾斜角等因素。

我曾经在课后给一个基础不太好的同学单独辅导这个知识点,从最基础的概念开始,一点点引导他理解。

当他终于弄明白的时候,脸上露出的那种恍然大悟的表情,让我觉得当老师真是太有成就感了。

总之,焦点弦长公式虽然看起来有点复杂,但只要我们掌握了其中的规律,多做几道题练练手,就会发现它其实并没有那么难。

就像我们在生活中遇到的困难一样,只要我们用心去面对,总能找到解决的办法。

圆锥曲线的弦长公式

圆锥曲线的弦长公式

圆锥曲线是一种由圆锥曲线构成的曲线,它是由一个圆锥曲线的两个曲线段组成的,其中一个曲线段是圆锥曲线,另一个曲线段是圆弧曲线。

圆锥曲线的弦长公式是用来计算圆锥曲线的弦长的一种公式,它可以帮助我们更好地理解圆锥曲线的特性。

圆锥曲线的弦长公式是:s=2π√(a²+b²+ab)÷3,其中a和b分别是圆锥曲线的两个曲线段的半径,π是圆周率,s是圆锥曲线的弦长。

首先,圆锥曲线的弦长公式是基于圆锥曲线的特性来推导出来的,它的推导过程很复杂。

它是由圆锥曲线的两个曲线段组成的,一个曲线段是圆锥曲线,另一个曲线段是圆弧曲线,而圆锥曲线的弦长是由圆锥曲线的两个曲线段的半径和圆周率组成的。

其次,圆锥曲线的弦长公式可以用来计算圆锥曲线的弦长,这对于理解圆锥曲线的特性很重要。

圆锥曲线的弦长公式可以帮助我们计算出圆锥曲线的弦长,从而更好地理解圆锥曲线的特性。

最后,圆锥曲线的弦长公式也可以用来计算圆锥曲线的体积。

圆锥曲线的体积是由圆锥曲线的两个曲线段的体积之和组成的,而每个曲线段的体积又是由圆锥曲线的弦长公式计算出来的。

因此,圆锥曲线的弦长公式也可以用来计算圆锥曲线的体积。

总之,圆锥曲线的弦长公式是一种用来计算圆锥曲线的弦长的公式,它可以帮助我们更好地理解圆锥曲线的特性,也可以用来计算圆锥曲线的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MN
|=
1

H e2 cos
2
θ
=
4.
b

= 4.
1− ( 5)2 × 1
25
解得 b = 3 ,从而 a = 6 .
x2 y2 ∴所求的椭圆方程为 − = 1 .
36 9
金指点睛
1. 已 知 斜 率 为 1 的 直 线 l 过 椭 圆 y 2 + x 2 = 1 的 上 焦 点 F 交 椭 圆 于 A 、 B 两 点 , 则 4
当直线 AB 的斜率存在时,设直线的倾斜角为α ,则其方程为 y = tan α ⋅ (x − p) ,即
tan α ⋅ x − y + p tan α = 0 , 原 点 O 到 直 线 AB 的 距 离
圆锥曲线焦点弦长公式(极坐标参数方程)
圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴 题的第 22 题,理科和各省市一般为第 21 题或者第 20 题,几乎每一年都有考察。由于题目 的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。本文介绍的焦点弦长 公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用 这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?
d=
=
= sinα .
tan 2 α + 1
| secα |
| AB |=
H
=
2
22
22
=
=
.
1 − e2 cos2 α 1 − ( 2 )2 ⋅ cos2 α 2 − cos2 α 1 + sin 2 α
2
∴ △AOB
的面积 S
=
1× 2
|
AB
|
×d
=
2 sinα 1 + sin 2 α
.
∵0<α <π ,
2
又∵AB 过椭圆 C1 的右焦点,通径 H
=
2b 2 a
= 3 ,离心率 e =
1
.
2
∴ | AB |=
H
= 12 .
| 1 − e2 cos2 α | 4 − cos2 α
8
12

(3 1 −
cos 2
= α)
4

cos 2
α
.
解之得: cos2 α = 1 ,tanα = ± 6 . 7
∵ 抛物线
的最大面积.
6
3. 解: x2 + y 2 = 1, a =
2,b = 1, c = 1 ,左焦点 F (−1,0) ,离心率 e = c =
2
,通径
2
a2
2b 2 H = = 2.
a
当直线 l 的斜率不存在时, l ⊥ x 轴,这时| AB |= H = 2b2 = 2 ,高| OF |= c = 1, a
)2 −
− 4b2
a 2 sin 2 α − b 2 cos2 α a 2 sin 2 α − b2 cos2 α
2ab 2 =
| a 2 sin 2 α − b2 cos2 α |
2b 2 =
a | 1 − e2 cos2 α |
2b 2
=
a
| 1 − e2 cos2 α |
H
=
.
| 1 − e2 cos2 α |
1
推论:
(1)焦点在 x 轴上,当 A、B 在椭圆、抛物线或双曲线的一支上时, |
AB
|=
H 1 − e2 cos2 α

H
当 A、 B 不 在 双曲 线 的 一支 上 时 , | AB |=
;当圆锥曲线是抛物线时,
e2 cos2 α −1
| AB |= H . sin 2 α
(2)焦点在 y 轴上,当 A、B 在椭圆、抛物线或双曲线的一支上时,| AB |=
| OB | 成等差数列,且 BF 与 FA 同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设 AB 被双曲线所截得的线段的长为 4,求双曲线的方程.
例 3,解:(Ⅰ)设双曲线的方程为 x 2 − y 2 = 1( a >0, b >0). a2 b2
l2
y
l1
A
∵ | OA | 、 | AB | 、 | OB | 成 等 差 数 列 , 设 | AB |= m , 公 差 为 d , 则 | OA |= m − d ,M
∴ cosθ = −sinα . 而 sin 2 α =
tan 2 α
=
(1)2 2
= 1.
1 + tan 2 α 1 + (1 )2 5
2
∴ cos2 θ = 1 . 5
y
l1
A
M
O
Fx
N B
通径 H = 2b2 = 2b × b = b .
a
a
5
又设直线 AB 与双曲线的交点为 M、N.
于是有: |
y
A D
P
B F1 O
F2
x
C
∴ S ∈ ⎢⎣⎡9265,4⎥⎦⎤ . 96
故四边形 ABCD 面积的最小值为 .
25
4
例 3(08 全国Ⅰ理第 21 题文第 22 题)双曲线的中心为原点 O,焦点在 x 上,两条渐近线
分别为 l1 、 l2 ,经过右焦点 F 垂直于 l1 的直线分别交 l1 、 l2 于 A、B 两点. 已知| OA | 、| AB | 、
| AB | =_________.
1. 解: a = 2, b = 1, c = 3 ,离心率 e = c = 3 ,通径 H = 2b2 = 1 ,直线 l 的倾斜角
a2
a
α=π . 4
H
1
8
∴ | AB |=
=
=.
1 − e2 sin 2 α 1 − ( 3 )2 ⋅ ( 2 )2 5
22
2. 过双曲线 x2 − y 2 = 1 的左焦点 F 作倾斜角为 π 的直线 l 交双曲线于 A、B 两点,则
| AC |=
H
43
=
.
1 − e2 cos2(π + α) 3 − sin 2 α
2
∴四边形 ABCD 的面积
S = 1 | BD | ⋅ | AC | 2
1 43
43
=⋅

2 3 − cos2 α 3 − sin 2 α
96
=
.
24 + sin 2 2α
∵α ∈ [0,π ),∴sin 2 2α ∈[0,1] .
+
y2 2
= 1的左、右焦点分别为 F1 、 F2 ,过 F1 的
直线交椭圆于 B、D 两点,过 F2 的直线交椭圆于 A、C 两点,且 AC ⊥ BD ,垂足为 P.
(1)设 P 点的坐标为(x0,y0),证明:
x0 2 3
+
y02 2
<1.
(2)求四边形 ABCD 的面积的最小值.
y
A D
P
x2 y2 例 2.(1)证明:在 + = 1中, a =
+
y2 3
= 1,抛物线(y − m)2 = 2 px( p >0),
且 C1 、 C2 的公共弦 AB 过椭圆 C1 的右焦点.
(Ⅰ)当 AB ⊥ x 轴时,求 p,m 的值,并判断抛物线 C2 的焦点是否在直线 AB 上;
(Ⅱ)若
p
=
4 3
且抛物线 C2
的焦点在直线
AB
上,求
m
的值及直线
AB
的方程.
l1 的方程为
y
=
b a
x.
∴ tanα
=
b.
而 tan 2α
= tan ∠AOB = | AB |
=
4 .
a
| OA | 3
b

2 tanα
=
2× a
4 =.
1 − tan 2 α 1 − ( b )2 3 a
l2
解之得: b = 1 . a2
∴ e = 1+ (b)2 = 5 . a2
(Ⅱ)设过焦点 F 的直线 AB 的倾斜角为θ , 则θ = π + α . 2
O
Fx
| OB |= m + d ,
N
B
∴ (m − d )2 + m2 = (m + d )2 . 即 m2 − 2dm + d 2 + m 2 = m2 + 2dm + d 2 .
∴ d = m . 从而| OA |= 3m ,| OB |= 5m .
4
4
4
又设直线 l1 的倾斜角为α ,则 ∠AOB = 2α .
定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),
焦点为 F,设倾斜角为α 的直线 l 经过 F,且与圆锥曲线交于 A、B 两点,记圆锥曲线的离
心率为 e,通径长为 H,则
(1)当焦点在 x 轴上时,弦 AB 的长| AB |=
H

| 1 − e2 cos2 α |
H
(2)当焦点在 y 轴上时,弦 AB 的长| AB |=
S2
求证: 为定值.
m
y A
4. 解:焦点为 F ( p,0) ,通径 H = 4 p .
OF
x
当直线 AB 的斜率不存在时, AB ⊥ x 轴,这时| AB |= m = 4 p ,高| OF |= pB,△AOB
7
的面积 S = 1 × | AB | × | OF |= 2 p 2 . 2
相关文档
最新文档