不等式5课时作业
课时作业5:一 二维形式的柯西不等式
第三讲 柯西不等式与排序不等式一 二维形式的柯西不等式一、选择题1.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是( )A .P ≤QB .P <QC .P ≥QD .P >Q2.若a ,b ∈R ,且a 2+b 2=10,则a -b 的取值范围是( )A .[-25,25]B .[-210,210]C .[-10,10]D .(-5,5)3.函数y =x -5+26-x 的最大值是( ) A. 3 B. 5 C .3 D .54.若3x 2+2y 2≤1,则3x +2y 的取值范围是( )A .[0,5]B .[-5,0]C .[-5,5]D .[-5,5]5.已知a ,b ,c ,d ,m ,n ∈R +,P =ab +cd ,Q =am +cn ·b m +d n ,则P 与Q 的大小关系为( )A .P ≤QB .P <QC .P ≥QD .P =Q6.已知a ,b >0,且a +b =1,则(4a +1+4b +1)2的最大值是( )A .2 6B. 6 C .6D .12二、填空题7.设实数x ,y 满足3x 2+2y 2≤6,则P =2x +y 的最大值为________.8.设x ,y ∈R +,则(x +y )⎝⎛⎭⎫3x +2y 的最小值是________.9.已知x >0,y >0,且1x +1y =1,则2x +y 的最小值为________.10.已知函数f (x )=34-x +4x -3,则函数f (x )的最大值为________.三、解答题11.设a ,b ∈R +,且a +b =2.求证:a 22-a +b 22-b≥2.12.试求函数f (x )=3cos x +41+sin 2x 的最大值,并求出相应的sin x 和cos x 的值.13.已知a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞).求证:(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.四、探究与拓展14.若a +b =1,则⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2的最小值为( ) A .1B .2 C.252 D.7215.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求at +12+bt 的最大值.答案精析1.A 2.A3.B [根据柯西不等式知,y =1×x -5+2×6-x ≤12+22×(x -5)2+(6-x )2=5(当且仅当x =265时取等号).] 4.C [(3x +2y )2≤()(3)2+(2)2()(3x )2+(2y )2=5×(3x 2+2y 2)≤5,∴-5≤3x +2y ≤ 5.]5.A [∵P = am ·b m + nc ·d n≤ [(am )2+(cn )2]·⎣⎡⎦⎤⎝⎛⎭⎫b m 2+⎝⎛⎭⎫d n 2 =am +cn ·b m +d n =Q . ∴P ≤Q .] 6.D [(4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2]=2×(4×1+2)=12,当且仅当4b +1=4a +1,即a =b =12时等号成立.] 7.11 解析 由柯西不等式,得(2x +y )2≤[(3x )2+(2y )2]·⎣⎡⎦⎤⎝⎛⎭⎫232+⎝⎛⎭⎫122 =(3x 2+2y 2)·⎝⎛⎭⎫43+12≤6×116=11⎝⎛⎭⎫当且仅当x =411,y =311时取等号, 所以2x +y ≤11.8.5+2 6解析 (x +y )⎝⎛⎭⎫3x +2y ≥⎝⎛⎭⎫x ·3x +y ·2y 2 =(3+2)2=5+26,当且仅当x ·2y =3x·y 时, 等号成立.9.3+2 2 解析 2x +y =(2x +y )⎝⎛⎭⎫1x +1y =[(2x )2+(y )2]⎣⎡ ⎝⎛⎭⎫1x 2+ ⎦⎤⎝⎛⎭⎫1y 2≥⎝⎛⎭⎫2x ·1x +y ·1y 2 =3+22,当且仅当2x ·1y =1x ·y 时,等号成立,又1x +1y =1,则此时⎩⎪⎨⎪⎧ x =2+22,y =2+1.10.5解析 由柯西不等式知,(34-x +4x -3)2≤(32+42)·[(4-x )2+(x -3)2]=25. 当且仅当3x -3=44-x 时,等号成立,因此f (x )≤5.11.证明 根据柯西不等式,有[(2-a )+(2-b )]⎝⎛⎭⎫a 22-a +b 22-b =[(2-a )2+(2-b )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2 ≥⎝ ⎛⎭⎪⎫2-a ·a 2-a +2-b ·b 2-b 2 =(a +b )2=4.∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2. ∴原不等式成立.12.解 设m =(3,4),n =(cos x ,1+sin 2x ),则f (x )=3cos x +41+sin 2x=m ·n ≤|m ||n |=cos 2x +1+sin 2x ·32+42=5 2.当且仅当m ∥n 时,上式取“=”.此时,31+sin 2x -4cos x =0.解得sin x =±75,cos x =325. 故当sin x =±75,cos x =325时. f (x )=3cos x +41+sin 2x 取最大值5 2.13.证明 由a ,b ∈(0,+∞),a +b =1, x 1,x 2∈(0,+∞),及柯西不等式,可得(ax 1+bx 2)(ax 2+bx 1)=[(ax 1)2+(bx 2)2]·[(ax 2)2+(bx 1)2]≥(ax 1·ax 2+bx 2·bx 1)2=(a x 1x 2+b x 1x 2)2=x 1x 2, 当且仅当ax 1ax 2=bx 2bx 1, 即x 1=x 2时取得等号.所以(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.14.C [⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2 =a 2+2+1a 2+b 2+2+1b2. ∵a +b =1,∴a 2+b 2=12(a 2+b 2)·(1+1)≥12(a +b )2=12. 又∵1a 2+1b 2≥2ab ≥8(a +b )2=8, 以上两个不等式都是当且仅当a =b =12时,等号成立. ∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥12+2+2+8=252, 当且仅当a =b =12时等号成立.] 15.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4, 解得a =-3,b =1.(2)-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2]=24-t+t=4,当且仅当4-t3=t1,即t=1时等号成立,故(-3t+12+t)max=4.。
课时作业6:不等式选讲
§14.3 不等式选讲课时1绝对值不等式A组专项基础训练(时间:50分钟)1.在实数范围内,求不等式||x-2|-1|≤1的解集.2.不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,求实数a的取值范围.3.(2015·无锡模拟)对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.4.已知f(x)=|x-3|,g(x)=-|x-7|+m,若函数f(x)的图象恒在函数g(x)图象的上方,求m 的取值范围.5.(2015·常州模拟)求不等式|x+3|-|2x-1|<x2+1的解集.6.(2015·盐城模拟)已知关于x的不等式|2x-m|≤1的整数解有且仅有一个值为2,求关于x 的不等式|x-1|+|x-3|≥m的解集.B 组 专项能力提升(时间:40分钟)7.设函数f (x )=|2x +1|-|x -4|.(1)解不等式f (x )>2;(2)求函数y =f (x )的最小值.8.(2015·泉州模拟)已知函数f (x )=|x +3|-|x -2|.(1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围.9.(2015·镇江模拟)已知a 和b 是任意非零实数.(1)求|2a +b |+|2a -b ||a |的最小值; (2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,求实数x 的取值范围.10.已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围.课时2 不等式的证明A 组 专项基础训练(时间:50分钟)1.已知x +y =1,求2x 2+3y 2的最小值.2.设a +b =2,b >0,当12|a |+|a |b取得最小值时,求a 的值.3.(2015·徐州模拟)设a 、b 、c 是正实数,且a +b +c =9,求2a +2b +2c的最小值.4.设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求x +y +z .5.(2015·南京、盐城联考)已知△ABC 的三边长分别为a ,b ,c .求证:a 2b +c -a +b 2c +a -b+c 2a +b -c≥a +b +c .6.(2015·苏州模拟)已知a ,b ,c ∈R ,且2a +2b +c =8,求(a -1)2+(b +2)2+(c -3)2的最小值.B 组 专项能力提升(时间:40分钟)7.(2015·湖南)设a >0,b >0,且a +b =1a +1b. 证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.8.(2015·南阳质检)已知:a n =1×2+2×3+3×4+…+n (n +1)(n ∈N *),求证:n (n +1)2<a n <n (n +2)2.9.(2015·锦州一模)(1)关于x 的不等式|x -3|+|x -4|<a 的解集不是空集,求a 的取值范围;(2)设x ,y ,z ∈R ,且x 216+y 25+z 24=1,求x +y +z 的取值范围.10.(2015·南京模拟)已知a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞).(1)求x 1a +x 2b +2x 1x 2的最小值; (2)求证:(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.答案解析课时1 绝对值不等式1.解 由||x -2|-1|≤1得-1≤|x -2|-1≤1,解⎩⎪⎨⎪⎧|x -2|≥0,|x -2|≤2得0≤x ≤4.∴不等式的解集为[0,4]. 2.解 由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立, 则需a <2.3.解 因为|a -b |≤1,|2a -1|≤1,所以|3a -3b |≤3,|a -12|≤12, 所以|4a -3b +2|=|(3a -3b )+(a -12)+52| ≤|3a -3b |+|a -12|+52≤3+12+52=6, 即|4a -3b +2|的最大值为6,所以m ≥|4a -3b +2|max =6.4.解 由题意,可得不等式|x -3|+|x -7|-m >0恒成立,即(|x -3|+|x -7|)min >m ,由于x 轴上的点到点(3,0)和点(7,0)的距离之和的最小值为4,所以要使不等式恒成立,则m <4.5.解 ①当x <-3时,原不等式化为-(x +3)-(1-2x )<x 2+1,解得x <10,∴x <-3. ②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25. ③当x ≥12时,原不等式化为(x +3)-(2x -1)<x 2+1, 解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2. 6.解 由不等式|2x -m |≤1,可得m -12≤x ≤m +12, ∵不等式的整数解为2,∴m -12≤2≤m +12,解得3≤m ≤5. 再由不等式仅有一个整数解2,∴m =4.本题即解不等式|x -1|+|x -3|≥4,当x <1时,不等式等价于1-x +3-x ≥4,解得x ≤0,不等式解集为{x |x ≤0}.当1≤x ≤3时,不等式等价于x -1+3-x ≥4,解得x ∈∅,不等式解集为∅.当x >3时,不等式等价于x -1+x -3≥4,解得x ≥4,不等式解集为{x |x ≥4}.综上,原不等式解集为(-∞,0]∪[4,+∞).7.解 (1)方法一 令2x +1=0,x -4=0分别得x =-12,x =4.原不等式可化为: ⎩⎪⎨⎪⎧ x <-12-x -5>2或⎩⎪⎨⎪⎧ -12≤x <43x -3>2或⎩⎪⎨⎪⎧x ≥4,x +5>2. ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-7,或x >53.方法二 f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3, -12≤x <4,x +5, x ≥4. 画出f (x )的图象,如图所示. 求得y =2与f (x )图象的交点为(-7,2),⎝⎛⎭⎫53,2. 由图象知f (x )>2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-7,或x >53. (2)由(1)的方法二知:f (x )min =-92. 8.解 (1)f (x )=|x +3|-|x -2|≥3,当x ≥2时,有x +3-(x -2)≥3,解得x ≥2;当x ≤-3时,-x -3+(x -2)≥3,解得x ∈∅;当-3<x <2时,有2x +1≥3,解得1≤x <2.综上,f (x )≥3的解集为{x |x ≥1}.(2)由绝对值不等式的性质可得,||x +3|-|x -2||≤|(x +3)-(x -2)|=5,则有-5≤|x +3|-|x -2|≤5.若f (x )≥|a -4|有解,则|a -4|≤5,解得-1≤a ≤9.所以a 的取值范围是[-1,9].9.解 (1)∵|2a +b |+|2a -b ||a |≥|2a +b +2a -b ||a |=|4a ||a |=4, ∴|2a +b |+|2a -b ||a |的最小值为4. (2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,即|2+x |+|2-x |≤|2a +b |+|2a -b ||a |恒成立, 故|2+x |+|2-x |≤⎝⎛⎭⎫|2a +b |+|2a -b ||a |min . 由(1)可知,|2a +b |+|2a -b ||a |的最小值为4, ∴x 的取值范围即为不等式|2+x |+|2-x |≤4的解集.解不等式得-2≤x ≤2,故实数x 的取值范围为[-2,2].10.解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧ -5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,∴原不等式的解集是{x |0<x <2}. (2)∵a >-1,则-a 2<12, ∴f (x )=|2x -1|+|2x +a |=⎩⎪⎨⎪⎧ -4x +1-a , x <-a 2,a +1, -a 2≤x <12,4x +a -1, x ≥12.当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=a +1, 即a +1≤x +3在x ∈⎣⎡⎭⎫-a 2,12上恒成立. ∴a +1≤-a 2+3,即a ≤43, ∴a 的取值范围为⎝⎛⎦⎤-1,43. 课时2 不等式的证明1.解 由柯西不等式(2x 2+3y 2)·⎣⎡⎦⎤⎝⎛⎭⎫122+⎝⎛⎭⎫ 132 ≥⎝⎛⎭⎫2x ·12+3y ·132=(x +y )2=1, ∴2x 2+3y 2≥65,当且仅当2x =3y ,即x =35,y =25时,等号成立.所以2x 2+3y 2的最小值为65. 2.解 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ,由于b >0,|a |>0,所以b 4|a |+|a |b ≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b ,a <0,即a =-2. 3.解 ∵(a +b +c )⎝⎛⎭⎫2a +2b +2c=[(a )2+(b )2+(c )2]· ⎣⎡⎦⎤⎝⎛⎭⎫2a 2+⎝⎛⎭⎫2b 2+⎝⎛⎭⎫2c 2 ≥⎝⎛⎭⎫a ·2a +b ·2b +c ·2c 2=18. ∴2a +2b +2c ≥2.∴2a +2b +2c的最小值为2.4.解 由柯西不等式可得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2,即(x +2y +3z )2≤14,因此x +2y +3z ≤14.因为x +2y +3z =14,所以x =y 2=z 3,解得x =1414,y =147,z =31414,于是x +y +z =3147. 5.证明 因为⎝⎛⎭⎫a 2b +c -a +b 2c +a -b +c 2a +b -c [(b +c -a )+(c +a -b )+(a +b -c )]≥(a +b +c )2, 又a +b +c >0,所以a 2b +c -a +b 2c +a -b +c 2a +b -c≥a +b +c (当且仅当b +c -a a =c +a -b b =a +b -c c 时取等号). 6.解 由柯西不等式得(4+4+1)×[(a -1)2+(b +2)2+(c -3)2]≥[2(a -1)+2(b +2)+c -3]2,∴9[(a -1)2+(b +2)2+(c -3)2]≥(2a +2b +c -1)2.∵2a +2b +c =8,∴(a -1)2+(b +2)2+(c -3)2≥499, 当且仅当a -12=b +22=c -3时等号成立, ∴(a -1)2+(b +2)2+(c -3)2的最小值是499. 7.证明 由a +b =1a +1b =a +b ab,a >0,b >0,得ab =1. (1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立. 8.证明 ∵n (n +1)=n 2+n ,n ∈N *,∴n (n +1)>n ,∴a n =1×2+2×3+…+n (n +1)>1+2+3+…+n=n (n +1)2. ∵n (n +1)<n +(n +1)2, ∴a n <1+22+2+32+3+42+…+n +(n +1)2=12+(2+3+…+n )+n +12=n (n +2)2. 综上得n (n +1)2<a n <n (n +2)2. 9.解 (1)∵|x -3|+|x -4|≥|(x -3)-(x -4)|=1,且|x -3|+|x -4|<a 的解集不是空集,∴a >1,即a 的取值范围是(1,+∞).(2)由柯西不等式,得[42+(5)2+22]·[(x 4)2+(y 5)2+(z 2)2] ≥(4×x 4+5×y 5+2×z 2)2 =(x +y +z )2,即25×1≥(x +y +z )2.∴5≥|x +y +z |,∴-5≤x +y +z ≤5.∴x +y +z 的取值范围是[-5,5].10.(1)解 因为a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),所以x 1a +x 2b +2x 1x 2≥3·3x 1a ·x 2b ·2x 1x 2=3·32ab ≥3·32(a +b 2)2=3×38=6, 当且仅当x 1a =x 2b =2x 1x 2且a =b ,即a =b =12且x 1=x 2=1时,x 1a +x 2b +2x 1x 2有最小值6. (2)证明 方法一 由a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),及柯西不等式可得:(ax 1+bx 2)(ax 2+bx 1)=[(ax 1)2+(bx 2)2]·[(ax 2)2+(bx 1)2]≥(ax 1·ax 2+bx 2·bx 1)2=(a x 1x 2+b x 1x 2)2=x 1x 2,当且仅当ax 1ax 2=bx 2bx 1,即x 1=x 2时取得等号. 所以(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.方法二 因为a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),所以(ax 1+bx 2)(ax 2+bx 1)=a 2x 1x 2+abx 22+abx 21+b 2x 1x 2=x 1x 2(a 2+b 2)+ab (x 22+x 21) ≥x 1x 2(a 2+b 2)+ab (2x 1x 2)=x1x2(a2+b2+2ab)=x1x2(a+b)2=x1x2,当且仅当x1=x2时,取得等号.所以(ax1+bx2)(ax2+bx1)≥x1x2.。
一元二次方程、不等式:高考数学一轮复习
链接教材 夯基固本
典例精研
核心考点
课时分层作业
名师点评 解一元二次不等式的一般方法和步骤
(1)化:把不等式变形为二次项系数大于零的标准形式.
(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,
不等式的解集为R或∅).
(3)求:求出对应的一元二次方程的根(解集的端点对应方程的根).
一元二次方程、不等式
能从实际情景
结合二次函数图象,
中抽象出一元
会判断一元二次方程
二次不等式.
的根的个数,以及解
一元二次不等式.
考试
要求
了解简单的分式、绝对值不等式
的解法.
第5课时
一元二次方程、不等式
链接教材
夯基固本
二次函数与一元二次方程、不等式的解的对应关系
判别式
Δ=b2-4ac
二 次 函 数 y = ax2
=0的两个根是x1和x2.
( √ )
−
(3)
≥0等价于(x-a)(x-b)≥0.
−
( × )
(4)若ax2+bx+c>0恒成立,则a>0且Δ<0.
( × )
第5课时
一元二次方程、不等式
链接教材 夯基固本
典例精研
核心考点
课时分层作业
二、教材经典衍生
1.(人教A版必修第一册P53练习T1改编)不等式(x-1)(x-3)>0的解集为(
1
,
课时分层作业
第5课时
一元二次方程、不等式
链接教材
名师点评 解含参数的一元二次不等式的步骤
夯基固本
典例精研
核心考点
课时分层作业
第5课时
课时作业(四) 基本不等式
课时作业(四) 基本不等式[基础保分练]1.(2023·广州揭阳模拟)设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +ba ≥2”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B2.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎡⎦⎤12,3 上的最小值为( ) A .12 B .43 C .-1 D .0答案:D3.(2022·黑龙江哈九中三模)已知x ,y 都是正数,且x ≠y ,则下列选项不恒成立的是( ) A .x +y 2 >xyB .x y +yx >2C .2xy x +y <xyD .xy +1xy >2答案:D4.若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|P A |+|PB |的最大值为( )A .2B .22C .4D .42 答案:B5.(2022·湖北十堰三模)函数f (x )=16x +14x +12x -1 的最小值为( )A .4B .22C .3D .42 答案:A6.(2022·江苏南京调研)设a >0,b >0,且2a +b =1,则1a +2aa +b 的最小值为( )A .22 +1B .2 +1C .143 D .4答案:A7.(多选)已知x 2+y 2=4(xy ≠0),则下列结论正确的是( ) A .|x +y |≤22 B .|xy |≤2 C .log 2|x |+log 2|y |<2 D .1|x | +1|y | >2答案:ABC8.(多选)已知a >b >0,a +b +1a +1b =5,则下列不等式成立的是( )A .1<a +b <4B .⎝⎛⎭⎫1a +b ⎝⎛⎭⎫1b +a ≥4C .⎝⎛⎭⎫1a +b 2>⎝⎛⎭⎫1b +a 2D .⎝⎛⎭⎫1a +a 2>⎝⎛⎭⎫1b +b 2答案:AB9.函数y =x -1x +3+x -1的最大值为________.答案:15解析:y =x -1x -1+4+x -1,当x -1=0时,y =0,当x -1>0时,y =1x -1+4x -1+1 ≤14+1 =15 ,当且仅当x -1 =4x -1 ,即x =5时等号成立,y max =15. 10.(2023·浙江模拟)已知xy >0,x +2y -2x -4y =7,则x +2y 的最小值是________.答案:9 解析:由题意得, x +2y =7+2x +4y ,①2x +4y =2x +82y,② 所以⎝⎛⎭⎫2x +82y ()x +2y =2+4y x +8x 2y +8≥10+216 =18⇒2x +82y ≥18x +2y⇒2x +4y ≥18x +2y, 所以①式x +2y =7+2x +4y ≥7+18x +2y ,令t =x +2y ,t >0,所以t ≥7+18t⇒t 2≥7t +18⇒t 2-7t -18≥0⇒t ≥9,即(x +2y )min =9.[技能提分练]11.(2023·辽宁模拟)已知正实数x ,y 满足2x +1y =1,则4xy -3x -6y 的最小值为( )A .2B .4C .8D .12 答案:C12.(2022·天津红桥二模)设a >0,b >0,若a +2b =5,则()a +1()2b +1ab的最小值为( )A . 3B .2C .2 2D .4 3D 解析:因为a >0,b >0,且a +2b =5,所以ab >0, 所以()a +1()2b +1ab=2ab +a +2b +1ab=2ab +6ab=2ab +6ab≥22ab ·6ab=43 ,当且仅当2ab =6ab ,即⎩⎪⎨⎪⎧b =1a =3 或⎩⎪⎨⎪⎧b =32a =2 时取等号.即(a +1)(2b +1)ab 的最小值为43 .13.司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析( )A .甲合适B .乙合适C .油价先高后低甲合适D .油价先低后高甲合适答案:B14.(多选)已知a >0,b >0,且2a +b =ab ,则( ) A .ab ≥8 B .a +b ≤3+22 C .2b >4D .log 2(a -1)·log 2(b -2)≤14答案:ACD15.(2023·山东枣庄模拟)已知a >b >0,则a +4a +b +1a -b 的最小值为________.答案:32 解析:因为a >b >0,所以a +b >0,a -b >0,a +4a +b +1a -b =a +b 2 +4a +b+a -b 2 +1a -b≥2a +b 2×4a +b+2a -b 2×1a -b=22 +2×22 =32 当且仅当⎩⎪⎨⎪⎧a +b =22a -b =2,即a =322,b =2 时等号成立. 16.(2023·浙江模拟)已知正实数x ,y 满足:x 2+xy +2x y =2,则3x +2y +2y 的最小值为________.答案:42 解析:因为x 2+xy +2x y =2,所以x 2+xy +2xy +2=4,所以x (x +y )+2y (x +y )=4,所以(x +y )⎝⎛⎭⎫x +2y =4, 令⎩⎪⎨⎪⎧x +y =mx +2y =4m, 则3x +2y +2y =2(x +y )+⎝⎛⎭⎫x +2y =2m +4m ≥22m ·4m=42 , 当且仅当2m =4m ,即m =2 时取等号,所以3x +2y +2y 的最小值为42 .。
3.4《不等式的实际应用》课时作业(人教B版必修5)
3.4不等式的实际应用一、选择题(每题5分,共20分)1.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处【解析】 设仓库建在离车站x km 处,则土地费用y 1=k 1x,运输费用y 2=k 2x 把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45, 故总费用y =20x +45x ≥220x ·45x =8, 当且仅当20x =45x 即x =5时等号成立. 【答案】 A2.银行计划将某资金给项目M 和N 投资一年,其中40%的资金给项目M,60%的资金给项目N ,项目M 能获得10%的年利润,项目N 能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户,为了使银行年利润不小于给M 、N 总投资的10%而又不大于总投资的15%,则给储户的回扣率最小值为( )A .5%B .10%C .15%D .20% 【解析】 设给储户的回扣率为x ,由题意:⎩⎪⎨⎪⎧0.4×0.1+0.6×0.35-x ≥0.10.4×0.1+0.6×0.35-x ≤0.15, 解得0.1≤x ≤0.15,故x 的最小值是0.1=10%.【答案】 B3.天文台用3.2万元买一台观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的日平均耗资最少)为止,一共使用了( )A .600天B .800天C .1 000天D .1 200天【解析】 日平均耗资为3 2000+n ·12·⎝⎛⎭⎫5+n +4910n=3 2000n +n 20+9920≥2 3 2000n ·n 20+9920=80+9920,当且仅当3 2000n =n 20,即n =800时取等号. 【答案】 B4.用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( )A .85 cm 2B .610 cm 2C .355 cm 2D .20 cm 2【解析】 设三角形各边长为x 、y 、z ,且x 、y 、z ∈N +,则x +y +z =20.由于在周长一定的三角形中,各边长越接近的三角形面积越大,于是当三边长为7 cm 、7 cm 、6 cm 时面积最大,则S △=12×6×72-32=610(cm 2),故选B.【答案】 B二、填空题(每题5分,共10分)5.建造一个容积为8 m 2,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元.【解析】 设池底长x m ,则宽4xm , 总造价y =(4x +16x)×80+4×120 ≥24x ·16x×80+480=1 760, 当且仅当4x =16x即x =2时等号成立. 【答案】 1 7606.某省每年损失耕地20万亩,每亩耕地价格24 000元,为了减少耕地损失,决定以每年损失耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,则t 的取值范围是____. 【解析】 由题意得(20-52t )×2 4000×t %≥9 000, 化简得t 2-8t +15≤0解得3≤t ≤5.【答案】 3≤t ≤5三、解答题(每题10分,共20分)7.某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元,如果墙高为3 m ,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?【解析】 设房子的长为x m ,宽为y m ,总造价为t 元,则xy =12.t =3x ·1 200+3y ·800·2+5 800=1 200(3x +4y )+5 800≥1 200·212xy +5 800=34600(当且仅当3x =4y 时取等号).故最低总造价是34 600元.8.一批救灾物资随26辆汽车从某市以v km/h 的速度匀速直达灾区,已知两地公路线长400 km ,为了安全起见,两辆汽车的间距不得小于(v 20)2 km ,那么这批物资全部安全到达灾区,最少需要多少小时? 【解析】 第一辆汽车到达用400v h ,由题意每隔(v 20)2v h 到达一辆汽车, ∴400v +25×(v 20)2v =400v +v 16≥2400v ×v 16=10(h), 当且仅当400v =v 16,v =80 km/h 时取等号. ∴每辆汽车以80 km/h 的速度行驶,最少需10 h 这批物资全部安全到达灾区.9.(10分)工厂对某种原料的全年需要量是Q 吨.为保证生产,又节省开支,打算全年分若干次等量订购,且每次用完后可立即购买.已知每次订购费用是a 元.又年保管费用率是p ,它与每次购进的数量(x 吨)及全年保管费(S 元)之间的关系是S =12px .问全年订购多少次才能使订购费与保管费用之和最少?并求这个最少费用的和(为简便计算,不必讨论订购次数是否为整数).【解析】 设每次购进的数量为x 吨,则全年定购费用=a ·Q x ,全年保管费S =12px , 定购费与保管费之和y =a ·Q x +12px . 由于a ·Q x +12px ≥212paQ =2paQ , 当且仅当a ·Q x =12px ,即x =2aQp p时取等号, 即最优批量订购数为x 0=2aQp p(吨), 最小费用数为y min =2paQ (元),全年最佳定购次数n =Q x 0=2paQ 2a(次). 故全年订购2paQ 2a次,才能使全年的订购费用与保管费用之和最少,最少费用为2paQ 元.高$考じ试(题╬库。
第二章 不等式含答案
第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = b a -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b<1⇔a < b (a ∈R ,b >0).2.等式的性质性质1:如果a =b ,那么b =a ;性质2:如果a =b ,b =c ,那么b =c ; 性质3:如果a =b ,那么a ±c=b ±c ; 性质4:如果a =b ,那么a c=bc ; 性质5:如果a =b ,c 0≠那么cbc a =;3.不等式的性质性质1 a b >⇔ ________;(对称性) 性质2 a b >,b c >⇒ ________;(传递性)性质3 a b >⇒ ______________;(可加性) 推论:a b c >⇒+___________;(移项法则) 性质4 a b >,0c >⇒ __________,(可乘性)a b >,0c ac bc <⇒<;(乘负反序性) 性质5 a b >,c d >⇒ ______________;(同向可加性) 性质6 0a b >>,0c d >>⇒ __________;(同正同向可乘性) 性质7 0a b >>⇒ __________()2n N n ∈≥,.(可乘方性)性质8 ①a >b ,ab >0⇒1a < 1b . ②a <0<b ⇒1a < 1b.(可倒性)典例例1 某矿山车队有4辆载重为10t 的甲型卡车和7辆载重为6t 的乙型卡车,且有9名驾驶员,此车队每天至少要运360t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.例2 已知a ,b +例3 若0a b <<,则下列结论正确的是( )A .22a b <B 2ab b < C .11a b> D .22ac bc > 例4 已知1025m <<,3015n -<<-,求m+n ,m n -与mn 的取值范围.例5 已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.课时作业1.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( ) A.b -a>0 B.a 3+b 3<0 C.a 2-b 2<0 D.b+a>02、当1x ≤时,比较大小:33x 231x x -+.3、设1≤a -b ≤2, 2≤a +b ≤4,求4a -2b 的取值范围.4、已知a ∈R ,且a ≠1,比较a+2与31-a的大小.2.2 基本不等式1. 重要的不等式:a 2+b 2≥2ab (a ,b ∈R ).2.基本不等式:ab ≤a +b2:两个正数的几何平均数不大于它们的算术平均数.(a+b ≥2ab )注意:(1)此结论运用前提:一正、二定、三相等典例例1.(1)函数y =x +1x(x >0)的值域为( )A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞) (2).已知m >0,n >0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243(3).已知x <0,则y =2+4x+x 的最大值为_______例2、当x >0时,则y =2xx 2+1的最大值为________.例3、若x >1,则x +4x -1的最小值为________.例4、已知a >0,b >0,且a +b =1,求1a +2b的最小值.例5、函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2例6 如图所示动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)要使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?课时作业一、选择题1、已知x >0,函数y=x+的最小值是( ) A .2 B .4C .6D .82、当x ∈R 时,x+的取值范围是( )A .(﹣∞,﹣4]B .(﹣∞,﹣4)∪(4,+∞)C .[4,+∞)D .(﹣∞,﹣4]∪[4,+∞)3、已知x >0,y >0,且2x+y=1,则xy 的最大值是( ) A .B .C .4D .84、的最小值为)(函数)0(2>+=ab abb a y A .B.12C .4D .65、函数15(1)1y x x x =++>-的最小值为A .5B .6C 7 D.86、已知正数x,y 满足431x y +=,则x+3y 的最小值为A .5B .12C .13D .25 7、设,,若,则的最小值为 A . B .6 C . D .8、已知y=,其中x≥0,则y 的最小值为( )A .1B .C .D .9.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由形状为长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=x (x>1),求公园ABCD所占面积S 关于x 的函数解析式;(2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?1a >0b >2a b +=121a b+-3+2.3 二次函数与一元二次方程、不等式一、形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式. 二、“三个二次”之间的对应关系设()00022≠<++>++a c bx ax c bx ax 或相应的一元二次方程()002≠=++a c bx ax 的两根为1x ,2,则不等式的解的各种情况如下表:0>∆ 0=∆0<∆c bx ax y ++=2cbx ax y ++=2cbx ax y ++=2三、一元二次不等式的解法: (1)化二次项系数为正;(2)令左边=右边,求出两根x 1 , x 2; (当0<∆时,需另作考虑) (3)大于取两根之外,小于取两根之间。
高中数学同步练习 课时分层作业1 不等式的基本性质
课时分层作业(一) 不等式的基本性质(建议用时:45分钟)[基础达标练]一、选择题1.设a,b,c,d∈R ,且a>b,c>d,则下列结论正确的是( )A .a +c>b +dB .a -c>b -dC .ac>bdD .a d >b cA [∵a>b ,c>d,∴a+c>b +d.]2.设a,b∈R ,若a -|b|>0,则下列不等式中正确的是( )A .b -a>0B .a 3+b 3<0C .b +a>0D .a 2-b 2<0 C [a -|b|>0⇒|b|<a ⇒-a<b<a ⇒a +b>0.故选C.]3.若a<b<0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a|>|b|>0D .⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b B [考查不等式的基本性质及其应用.取a =-2,b =-1验证即可求解.]4.已知a <0,-1<b <0,那么( )A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a D [ab 2-ab =ab(b -1),∵a<0,-1<b <0,∴b-1<0,ab >0,∴ab 2-ab <0,即ab 2<ab ;又ab 2-a =a(b 2-1),∵-1<b <0,∴b 2<1,即b 2-1<0.又a <0,∴ab 2-a >0,即ab 2>a.故ab >ab 2>a.]5.设a,b 为实数,则“0<ab <1”是“b<1a”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件D [∵0<ab <1,当a <0且b <0时可推得b >1a, 所以“0<ab <1”不是“b<1a”的充分条件, ① 反过来,若b <1a, 当b <0且a >0时,有ab <0,推不出“0<ab <1”,所以“0<ab <1”也不是“b<1a”的必要条件, ②由①②知,应选D.]二、填空题6.若f(x)=3x 2-x +1,g(x)=2x 2+x -1,则f(x)与g(x)的大小关系是f(x)________g(x).[解析] f(x)-g(x)=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f(x)>g(x).[答案] >7.给出四个条件:①b>0>a ,②0>a>b ,③a>0>b ,④a>b>0.能得出1a <1b成立的有________.(填序号) [解析] 1a <1b ⇔1a -1b <0⇔b -a ab<0, ∴①②④可推出1a <1b成立. [答案] ①②④8.已知α,β满足-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围是________.[解析] 设α+3β=λ(α+β)+μ(α+2β),可解得λ=-1,μ=2,∴α+3β=-(α+β)+2(α+2β).又-1≤α+β≤1,1≤α+2β≤3,∴1≤α+3β≤7.[答案] [1,7]三、解答题9.(1)已知a >b >0,c <d <0,求证:3a d <3b c;(2)若a >b >0,c <d <0,e <0,求证:e (a -c )2>e (b -d )2. [证明] (1)∵c<d <0,∴-c >-d >0.∴0<-1c <-1d.又a >b >0, ∴-a d >-b c>0, ∴ 3-a d >3-b c ,即-3a d >-3b c. 两边同乘以-1,得3a d <3b c. (2)∵c<d <0,∴-c >-d >0.∵a>b >0,∴a-c >b -d >0,∴(a-c)2>(b -d)2>0,∴1(a -c )2<1(b -d )2. 又∵e<0,∴e (a -c )2>e (b -d )2. 10.设x,y 为实数,且3≤xy 2≤8,4≤x 2y ≤9,求x 3y 4的取值范围. [解] 由4≤x 2y ≤9,得16≤x 4y2≤81.① 又3≤xy 2≤8,∴18≤1xy 2≤13.② 由①×②得18×16≤x 4y 2·1xy 2≤81×13, 即2≤x 3y 4≤27,因此x 3y4的取值范围是[2,27]. [能力提升练]1.若a,b 为实数,则“0<ab <1”是“a<1b 或b >1a”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A [对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a成立,因此“0<ab <1”是“a<1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a<1b或 b >1a ”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a<1b 或b >1a”的必要条件,即“0<ab <1”是“a<1b 或b >1a”的充分而不必要条件.] 2.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c)>log a (b -c). 其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③D [由a >b >1,c <0,得1a <1b ,c a >c b;幂函数y =x c (c <0)是减函数,所以a c <b c ;因为a -c >b -c,所以log b (a -c)>log a (a -c)>log a (b -c),①②③均正确.]3.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b.其中能推出log b 1b <log a 1b<log a b 成立的条件的序号是________.(填所有可能的条件的序号)[解析] ∵log b 1b=-1, 若1<a <b,则1b <1a<1<b, ∴log a 1b <log a 1a=-1,故条件①不可以; 若0<a <b <1,则b <1<1b <1a, ∴log a b >log a 1b >log a 1a =-1=log b 1b, 故条件②可以;若0<a <1<b,则0<1b<1, ∴log a 1b>0,log a b <0,条件③不可以.故应填②. [答案] ②4.已知f(x)=ax 2+c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.[解] 由-4≤f(1)≤-1,-1≤f(2)≤5,得⎩⎪⎨⎪⎧ -4≤a+c≤-1,-1≤4a+c≤5.设u =a +c,v =4a +c,则有a =v -u 3,c =4u -v 3, ∴f(3)=9a +c =-53u +83v. 又⎩⎪⎨⎪⎧ -4≤u≤-1,-1≤v≤5,∴⎩⎪⎨⎪⎧ 53≤-53u ≤203,-83≤83v ≤403, ∴-1≤-53u +83v≤20,即-1≤f(3)≤20.∴f(3)的取值范围为[-1,20].。
(精品人教)2020版高考数学一轮复习 第六章 不等式 第5讲 不等式的应用课时作业 理
第5讲 不等式的应用1.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析:每辆客车营运的总利润y (单位:10万元)与营运年数x 的函数关系为y =-(x -6)2+11(x ∈N *),要使每辆客车运营的年平均利润最大,则每辆客车营运的最佳年数为( )A .3年B .4年C .5年D .6年2.(2017年广东惠州三模)设z =4x ·2y,变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,则z 的最小值为( )A .2B .4C .8D .163.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,若将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,则楼房应建为( )A .10层B .15层C .20层D .30层4.(2016年山东烟台诊断)已知在等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,-1)∪(1,+∞) C .[3,+∞) D.(-∞,-1]∪[3,+∞)5.某农户计划种植黄瓜和韭菜,种植面积不超过50亩(1亩≈666.7平方米),投入资金不超过54万元,假设项目 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润((单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,506.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元7.(2017年江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是__________.8.某项研究表明,在考虑行车安全的情况下,某路段车流量F (单位时间内测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其关系式为F =76 000vv 2+18v +20l. (1)如果不限定车型,l =6.05,那么最大车流量为______辆/时;(2)如果限定车型,l =5,那么最大车流量比(1)中的最大车流量增加______辆/时.9.(2017年湖北孝感一模)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (单位:升)与速度x (单位:千米/时)(50≤x ≤120)的关系可近似表示为:y =⎩⎪⎨⎪⎧175x 2-130x +,x ∈[50,,12-x60,x ∈[80,120].(1)该型号汽车速度为多少时,可使得每小时耗油量最低?(2)已知A ,B 两地相距120千米,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?10.(2017年天津)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?第5讲 不等式的应用1.C 解析:y x =-⎝⎛⎭⎪⎫x +25x +12≤-2x ×25x +12,当且仅当x =25x ,即x =5时取等号.2.C 解析:作出不等式组对应的平面区域,由⎩⎪⎨⎪⎧ x -4y =-3,x =1解得⎩⎪⎨⎪⎧x =1,y =1,设A (1,1),由图可知,直线2x +y =m 经过点A 时,m 取最小值,同时z =4x ·2y =22x +y 取得最小值.所以z min =22×1+1=23=8.故选C.3.B 解析:设楼房每平方米的平均综合费用为f (x )元,则f (x )=(560+48x )+2160×10 0002000x=560+48x +10 800x=560+48⎝ ⎛⎭⎪⎫x +225x≥560+48×2 x ·225x=2000(x ≥10,x ∈N *).当且仅当x =225x,即x =15时,f (x )取得最小值为f (15)=2000.4.D 解析:设公比为q .因为a 2=1=a 1q ,所以S 3=a 1+1+a 1q 2=1q +q +1.当q >0时,1q +q ≥2;当q <0时,1q+q ≤-2.所以S 3≥3或S 3≤-1.故选D.5.B 解析:设黄瓜和韭菜的种植面积分别为x ,y 亩,种植总利润为z 万元,则目标函数z =(0.55×4x -1.2x )+(0.3×6y -0.9y )=x +0.9y .作出约束条件如图D124所示的阴影部分.易求得点A (0,50),B (30,20),C (45,0).平移直线x +0.9y =0,当直线x +0.9y =0经过点B (30,20)时,z取得最大值为48.故选B.图D124 图D1256.C 解析:设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z 元,则线性约束条件为⎩⎪⎨⎪⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ,y ∈N ,目标函数为z =1600x +2400y .画出可行域:如图D125所示的阴影部分,可知当目标函数过点(5,12)时,有最小值z min =36 800(元).7.30 解析:总费用4x +600x×6=4⎝ ⎛⎭⎪⎫x +900x ≥4×2900=240.当且仅当x =900x,即x =30时等号成立.8.(1)1900 (2)100 解析:(1)当l =6.05时,F =76 000v v 2+18v +20l =76 000v +121v+18≤76 0002v ·121v+18=76 00022+18=1900,当且仅当v =121v ,即v =11时,等号成立.(2)当l =5时,F =76 000v v 2+18v +20l =76 000v +100v+18≤76 0002v ·100v+18=76 00020+18=2000,当且仅当v =100v ,即v =10时,等号成立.此时车流量比(1)中的最大车流量增加100辆/时. 9.解:(1)①当x ∈[50,80)时,y =175(x 2-130x +4900)=175[(x -65)2+675] 当x =65时,y 有最小值175×675=9.②当x ∈[80,120]时,函数单调递减,故当x =120时,y 有最小值10. 因为9<10,故当x =65时每小时耗油量最低.(2)设总耗油量为l ,由题意,可知l =y ·120x.①当x ∈[50,80)时,l =y ·120x =85⎝ ⎛⎭⎪⎫x +4900x -130≥85⎝⎛⎭⎪⎫2 x ×4900x-130=16.当且仅当x =4900x,即x =70时,l 取得最小值16.②当x ∈⎣⎢⎡⎦⎥⎤80120时,l =y ·120x =1440x -2为减函数,当x =120时,l 取得最小值10.因为10<16,所以当速度为120时,总耗油量最少.10.解:(1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为如图D126中的阴影部分.图D126 图D127 (2)设总收视人次为z 万, 则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图D127可知,当直线z =60x +25y经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多。
高中数学课时作业五充分条件与必要条件新人教A版必修第一册
课时作业(五) 充分条件与必要条件练基础1.[2022·山东青岛高一期末]“x,y∈Q”是“xy∈Q”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.设x∈R,则“x<3”是“1<x<3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设x∈R,则“x>1”是“x2>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.“xy>0”是“x>0,y>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(多选)下列说法中正确的是( )A.“m是有理数”是“m是实数”的充分条件B.“x∈(A∩B)”是“x∈A”的必要条件C.“x2-2x-3=0”是“x=3”的必要条件D.“x>3”是“x2>4”的充分条件6.若m,n∈R,则“m+n≥0”是“m≥0且n≥0”的________条件.7.设甲、乙、丙是三个命题.如果甲是乙的必要条件;丙是乙的充分条件但不是乙的必要条件,那么丙是甲的________ 条件.8.下列各题中,p是q的什么条件?说明理由.(1)p:△ABC有两个角相等,q:△ABC是等边三角形.(2)p:“-2<x<1”,q:“x>1或x<-1”.提能力9.“a<1”是“关于x的方程ax2-2x+1=0有实数根”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(多选)若-1<x≤3是-3<x<a的充分不必要条件,则实数a的值可以是( ) A.2 B.3C.4 D.511.已知条件p:1-x<0,条件q:x>a,若p是q的充分条件,则实数a的取值范围是________;若p是q的必要条件,则实数a的取值范围是________.12.已知集合A={0,a+2},B={0,1,a2}.(1)若a=3,求A∪B;(2)若“x∈A”是“x∈B”的充分不必要条件,求实数a的值.培优生13.[2022·江苏连云港高一期末]若不等式|x|<a的一个充分条件为-2<x<0,则实数a 的取值范围是________.课时作业(五) 充分条件与必要条件1.解析:若x,y∈Q,则xy∈Q,若xy∈Q,当x=y=2时,x,yD∈/Q,所以“x,y∈Q”是“xy∈Q”的充分不必要条件.答案:A2.解析:由1<x<3时,一定有x<3成立,故必要性成立;但x<3时,不一定有1<x<3成立,如x=0,故充分性不成立,所以“x<3”是“1<x<3”的必要不充分条件.答案:B3.解析:由x>1可得x2>1成立,反之不成立,所以“x>1”是“x2>1”的充分不必要条件.答案:A4.解析:充分性:若xy>0,则x>0,y>0或x<0,y<0,故充分性不成立;必要性:若x>0,y>0,则xy>0,故必要性成立,所以“xy>0”是“x>0,y>0”的必要不充分条件.答案:B5.解析:A正确,因为“m是有理数”⇒“m是实数”,所以“m是有理数”是“m是实数”的充分条件;B不正确,因为“x∈A” “x∈(A∩B)”,所以“x∈(A∩B)”不是“x ∈A”的必要条件;C正确,由于“x=3”⇒“x2-2x-3=0”,故“x2-2x-3=0”是“x=3”的必要条件;D正确,由于“x>3”⇒“x2>4”,所以“x>3”是“x2>4”的充分条件.答案:ACD6.解析:m≥0,n≥0时,m+n≥0成立,是必要的.m=2,n=-1时,有m+n=1>0,即m+n≥0时不一定有m≥0且n≥0,不充分.因此应是必要不充分条件.答案:必要不充分7.解析:∵甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,∴乙⇒甲,丙⇒乙,乙推不出丙,∴丙⇒甲,且甲不能推出丙,所以丙是甲的充分不必要条件.答案:充分不必要8.解析:(1)有两个角相等不一定是等边三角形,反之一定成立,所以p不能推出q,q能推出p,故p是q的必要不充分条件.(2)因为当-2<x<1时,不能得到x>1或x<-1,而x>1或x<-1时,不能得到-2<x<1,所以“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.故p 是q 的既不充分也不必要条件.9.解析:当a =0时,方程的实数根为x =12, 当a ≠0时,方程ax 2-2x +1=0有实数根,则Δ=4-4a ≥0,解得a ≤1,则有a ≤1且a ≠0,因此,关于x 的方程ax 2-2x +1=0有实数根等价于a ≤1,所以“a <1”是“关于x 的方程ax 2-2x +1=0有实数根”的充分不必要条件. 答案:A10.解析:因为-1<x ≤3是-3<x <a 的充分不必要条件,所以a >3,所以a 的可取值有4,5.答案:CD11.解析:由1-x <0,得x >1,令A ={x |x >1},B ={x |x >a }.若p 是q 的充分条件,则x >1⇒x >a ,即A ⊆B ,∴a ≤1.若p 是q 的必要条件,则x >a ⇒x >1.即B ⊆A ,∴a ≥1.答案:{a |a ≤1} {a |a ≥1}12.解析:(1)若a =3,则A ={0,5},B ={0,1,9},所以A ∪B ={0,1,5,9}.(2)因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,①当a +2=1时,即a =-1时,不满足互异性,不符合题意;②当a +2=a 2时,即a =-1或a =2时,由①可知,a =-1时,不符合题意, 当a =2时,集合B ={0,1,4},满足,故可知a =2符合题意.所以a =2.13.解析:由不等式|x |<a ,当a ≤0时,不等式|x |<a 的解集为空集,显然不成立;当a >0时,不等式|x |<a ,可得-a <x <a ,要使得不等式|x |<a 的一个充分条件为-2<x <0,则满足{x |-2<x <0}⊆{x |-a <x <a }, 所以-2≥-a ,即a ≥2.∴实数a 的取值范围是a ≥2.答案:a ≥2。
2023版新教材高中数学第二章等式与不等式-不等式及其性质课时作业新人教B版必修第一册
2.2.1 不等式及其性质必备知识基础练1.完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x人,瓦工y人,则工人满足的关系式是( ) A.5x+4y<200 B.5x+4y≥200C.5x+4y=200 D.5x+4y≤2002.下列结论中正确的是( )A.若ac>bc,则a>b B.若a2>b2,则a>bC.若>,则a>b D.若<,则a>b3.设M=3x2-x+1,N=x2+x-1,则( )A.M>NB.M<NC.M=ND.M与N的大小关系与x有关4.已知c>a>b>0,则________.(填“>”“<”或“=”)5.若1<a<3,-4<b<2,那么a-|b|的取值范围是( )A.(-3,3] B.(-3,5)C.(-3,3) D.(1,4)6.(1)比较x2+3与2x的大小;(2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2的大小.关键能力综合练7.下列不等式中,正确的是( )A.若a-c>b-d且c>d,则a>bB.若a>b且k∈N+,则a k>b kC.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc28.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为( )A.①②③ B.①③②C.②③① D.③①②9.要证明+<2 可选择的方法有以下几种,其中最合理的为( )A.综合法 B.分析法C.反证法 D.归纳法10.已知α∈(0,),β∈[0,],则2α-的取值范围是( )A.(0,) B.(-,)C.(0,1) D.(-,1)11.(多选)已知a,b,c,d均为实数,则下列命题正确的是( )A.若ab<0,bc-ad>0,则->0B.若ab>0,->0,则bc-ad>0C.若bc-ad>0,->0,则ab>0D.若<<0,则<12.已知1<a<6,3<b<4,求a-b,的取值范围.核心素养升级练13.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数;②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.14.已知a>0,b>0,试比较+与+的大小.2.2.1 不等式及其性质必备知识基础练1.解析:由题意可得,总的工资为50x+40y,又因为现有工人工资预算2 000元,故50x+40y≤2 000,化简可得5x+4y≤200.答案:D2.解析:对于A,c>0时,结论成立,故A不正确;对于B,a=-2,b=-1,满足a2>b2,但a<b,故B不正确;对于C,利用不等式的性质,可得结论成立;对于D,a=-1,b=2,满足<,但a<b,故D不正确.答案:C3.解析:因为M-N=3x2-x+1-(x2+x-1)=2x2-2x+2=2(x-)2+>0,所以M>N.答案:A4.解析:因为c>a,所以c-a>0,又因为a>b,所以>.答案:>5.解析:∵-4<b<2,∴0≤|b|<4,∴-4<-|b|≤0.又∵1<a<3,∴-3<a-|b|<3.答案:C6.解析:(1)(x2+3)-2x=x2-2x+3=(x-1)2+2≥2>0,所以x2+3>2x.(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)2(a+b),因为a>0,b>0,且a≠b,所以(a-b)2>0,a+b>0.所以(a3+b3)-(a2b+ab2)>0,即a3+b3>a2b+ab2.关键能力综合练7.解析:若a-c>b-d且c>d,则a>b,故A正确;当a=1,b=-2,k=2时,命题不成立,故B错误;令a=2,b=1,c=-2,d=-3,满足a>b>0,c>d,但推不出ac>bd,故C错误;令c=0可知D错误.答案:A8.解析:根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.答案:D9.解析:要证明+<2最合理的方法是分析法.答案:B10.解析:因为α∈(0,),β∈[0,],所以2α∈(0,1),∈[0,],则-∈[-,0],所以2α-∈(-,1).答案:D11.解析:对于A,若ab<0,bc-ad>0,不等式两边同时除以ab得-<0,所以A不正确;对于B,若ab>0,->0,不等式两边同时乘以ab得bc-ad>0,所以B正确;对于C,若->0,当两边同时乘以ab时可得bc-ad>0,所以ab>0,所以C正确;对于D,由<<0,可知b<a<0,所以a+b<0,ab>0,所以<成立,所以D正确.答案:BCD12.解析:∵3<b<4,∴-4<-b<-3.∴1-4<a-b<6-3,即-3<a-b<3.又<<,∴<<,即<<2.综上,a-b的取值范围为(-3,3),的取值范围为(,2).核心素养升级练13.解析:设男学生、女学生、教师人数分别为x,y,z,则x>y>z.(1)若教师人数为4,则4<y<x<8,当x=7时,y取得最大值6.(2)当z=1时,1=z<y<x<2,不满足条件;当z=2时,2=z<y<x<4,不满足条件;当z=3时,3=z<y<x<6,y=4,x=5,满足条件.所以该小组人数的最小值为3+4+5=12.答案:(1)6 (2)1214.解析:方法一 作差法(+)-(+)=(-)+(-)=+==.∵a>0,b>0,∴+>0,>0,(-)2≥0,∴≥0,∴+≥+.方法二 作商法=====1+≥1.∵a>0,b>0,∴+>0,+>0,∴+≥+.方法三 平方法∵(+)2=++2,(+)2=a+b+2,∴(+)2-(+)2=.∵a>0,b>0,∴≥0,∵+>0,+>0,∴+≥+.。
2019_2020年高中数学课时作业10简单形式的柯西不等式北师大版选修4_5(精编)
1.已知函数 f(x) =3 4- x+ 4 x-3,则函数 f(x) 的最大值为 ________. 答案 5
32 2.设 x , y∈ R+,则 (x +y)( + ) 的最小值是 ________.
xy 答案 5+ 2 6
4
解析 设 m= (p 2, q2) , n= (p 2, q2) ,则 p2+ q2= p2·p2+ q2·q 2= | m· n| ≤|m| ·|n| =
p3+ q3· p+ q= 2· p+ q.
∵(p + q) 2≤ 2(p 2+ q2) ,
∴
(
p+
q
)
2
≤
p
2+
q2≤
2
p+ q.
2
∴(p + q) 4≤ 8(p + q) ,∴ p+q≤2.
1 A.
10
C. 10
答案 C
B. 5 D. 5
) B. 1 D. 100
1
2
2
2
2
2
2
2
2
解析 ∵3x+ y= 10,∴ 100= (3x +y) =(3 ×x+1×y) ≤(3 + 1 )(x + y ) = 10(x + y ) ,∴
x2+y 2≥ 10.
92
6.设 x , y∈ R+,且 x+ 2y= 8,则 x+ y 的最小值为 (
3
2
2
2
2
证明 因为 a+ 2b+3c= 4,由栖西不等式,得 (a + b + c )(1 +4+9) ≥(a + 2b+3c) = 16,
2
2
28
abc
2
4
6
所以 a + b + c ≥ 7,当且仅当 1= 2= 3时, 等号成立, 即当 a= 7,b=7,c= 7时, 等号成立,
课时作业15:第1课时 基本不等式
§3.4 基本不等式:ab ≤a +b 2第1课时 基本不等式一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A.a 2+b 2≥2|ab |B.a 2+b 2=2|ab |C.a 2+b 2≤2|ab |D.a 2+b 2>2|ab |考点 基本不等式的理解题点 基本不等式的理解答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( )A.a 2+b 2>2abB.a +b ≥2abC.1a +1b >2abD.b a +a b ≥2 考点 基本不等式的理解题点 基本不等式的理解答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +a b≥2 b a ·a b =2, 当且仅当a =b 时,等号成立.3.若x >0,y >0且x +y =4,则下列不等式中恒成立的是( )A.1x +y ≥14B.1x +1y ≥1C.xy ≥2D.1xy ≥1 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 B解析 若x >0,y >0,由x +y =4,得x +y 4=1, ∴1x +1y =14(x +y )⎝⎛⎭⎫1x +1y =14⎝⎛⎭⎫2+y x +x y ≥14(2+2)=1, 当且仅当x =y =2时,等号成立.4.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )A.ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一B.ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一C.ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一D.ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一考点 基本不等式的理解题点 基本不等式的理解答案 A解析 因为a +b =cd =4,所以由基本不等式得a +b ≥2ab ,故ab ≤4.又因为cd ≤(c +d )24,所以c +d ≥4,所以ab ≤c +d ,当且仅当a =b =c =d =2时,等号成立.5.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.p =r <qC.q =r >pD.p =r >q 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 B解析 因为0<a <b ,所以a +b 2>ab . 又因为f (x )=ln x 在(0,+∞)上单调递增,所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q . 而r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.6.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( )A.a +b +1ab ≥2 2B.(a +b )⎝⎛⎭⎫1a +1b ≥4C.a 2+b 2ab≥2ab D.2ab a +b >ab 考点 基本不等式的理解题点 基本不等式的理解答案 D解析 a +b +1ab ≥2ab +1ab≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab =4, 当且仅当a =b 时,等号成立,B 成立;∵a 2+b 2≥2ab >0, ∴a 2+b 2ab≥2ab ,当且仅当a =b 时,等号成立,C 成立; ∵a +b ≥2ab ,且a ,b ∈(0,+∞),∴2ab a +b ≤1,2ab a +b≤ab . 当且仅当a =b 时,等号成立,D 不成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12.(填“>”“≥”“≤”或“<”)考点 基本不等式比较大小题点 利用基本不等式比较大小答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍),∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b;④a b +b a ≥2.其中恒成立的不等式是________.考点 基本不等式的理解题点 基本不等式的理解答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确;当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b=-12,可知③不正确;当a =1,b =-1时,可知④不正确. 9.已知a >b >c ,则(a -b )(b -c )与a -c 2的大小关系是______________________________. 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 (a -b )(b -c )≤a -c 2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立. 10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是________.(用“>”连接)考点 基本不等式比较大小题点 利用基本不等式比较大小答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n .三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +ab c≥a +b +c . 考点 基本不等式证明不等式题点 运用基本不等式证明不等式证明 ∵a ,b ,c 都是正数,∴bc a ,ca b ,ab c也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +ab c≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab c≥a +b +c , 当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 考点 基本不等式证明不等式题点 运用基本不等式证明不等式证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立. 四、探究与拓展13.设0<a <1<b ,则一定有( )A.log a b +log b a ≥2B.log a b +log b a ≥-2C.log a b +log b a ≤-2D.log a b +log b a >2考点 基本不等式的理解题点 基本不等式的理解答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A.x +y ≥2(2+1)B.xy ≤2+1C.x +y ≤(2+1)2D.xy ≥2(2+1) 考点 基本不等式的理解题点 基本不等式的理解答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。
2023届一轮复习北师大版 一元二次不等式及其解法 作业
课时分层作业(五) 一元二次不等式及其解法一、选择题1.不等式(x -1)(2-x )≥0的解集为( ) A .{x |1≤x ≤2} B .{x |x ≤1或x ≥2} C .{x |1<x <2}D .{x |x <1或x >2}A [原不等式可化为(x -1)(x -2)≤0,解得1≤x ≤2,故选A .] 2.若0<m <1,则不等式x 2-⎝ ⎛⎭⎪⎫m +1m x +1<0的解集为( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <mB .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <mC .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1mD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1mD [不等式x 2-⎝ ⎛⎭⎪⎫m +1m x +1<0可化为(x -m )⎝ ⎛⎭⎪⎫x -1m <0,由0<m <1知m<1m ,因此原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D .]3.若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >12B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12C .{x |-2<x <1}D .{x |x <-2或x >1}A[由题意知⎩⎪⎨⎪⎧-ba =-1+2,2a =-1×2,即⎩⎪⎨⎪⎧b a =-1,2a =-2,解得⎩⎪⎨⎪⎧a =-1,b =1,则不等式2x 2+bx +a >0,即为2x 2+x -1>0,解得x >12或x <-1,故选A .] 4.已知某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台C [由题设,产量为x 台时,总售价为25x 万元; 欲使生产者不亏本,必须满足总售价大于或等于总成本, 即25x ≥3 000+20x -0.1x 2,即0.1x 2+5x -3 000≥0,x 2+50x -30 000≥0, 解得x ≥150或x ≤-200(舍去).故欲使生产者不亏本,最低产量是150台.]5.若存在实数x ,使得不等式x 2-ax +1<0成立,则实数a 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .(-2,2]D .(-∞,-2)∪(2,+∞)D [由题意知,当x ∈R 时,不等式x 2-ax +1<0有解,则Δ=a 2-4>0,解得a >2或a <-2.故选D .]6.关于x 的不等式x 2-(a +1)x +a <0的解集中恰有3个整数,则实数a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]D [原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0,则-3≤a <-2,因此实数a 的取值范围是[-3,-2)∪(4,5].故选D .]二、填空题7.一元二次方程x 2-(k -2)x +k +1=0有一正一负实数根,则k 的取值范围是________.(-∞,-1) [由题意知k +1<0,即k <-1.]8.关于x 的不等式x 2+ax +a ≤1对一切x ∈(0,1)恒成立,则a 的取值范围为________.(-∞,0] [原不等式可化为x 2+ax +a -1≤0,设f (x )=x 2+ax +a -1, 由题意知⎩⎪⎨⎪⎧f (0)≤0,f (1)≤0,即⎩⎪⎨⎪⎧a -1≤0,2a ≤0,解得a ≤0.] 9.不等式2x +1<1的解集是________. {x |x >1或x <-1} [由2x +1<1得1-x x +1<0,原不等式可化为(x -1)(x +1)>0,解得x >1或x <-1.] 三、解答题10.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.[解] (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+23.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎨⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.故a 的值为3±3,b 的值为-3.11.解不等式2x 2-3(1+a )x +6a >0(0<a <1). [解] Δ=9(1+a )2-48a =9a 2-30a +9=9(a -3)⎝ ⎛⎭⎪⎫a -13.(1)当13<a <1时,Δ<0,原不等式的解集为R .(2)当a =13时,原不等式为2x 2-4x +2>0,即(x -1)2>0,解得x ≠1,原不等式的解集为{x |x ≠1}.(3)当0<a <13时,Δ>0,方程2x 2-3(1+a )x +6a =0的两个根为x 1=3a +3-9a 2-30a +94,x 2=3a +3+9a 2-30a +94,因为x 2>x 1,所以原不等式的解集为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >3a +3+9a 2-30a +94或x <3a +3-9a 2-30a +94. 综上所述:当0<a <13时,原不等式的解集为 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >3a +3+9a 2-30a +94或x <3a +3-9a 2-30a +94当a =13时,原不等式的解集为{x |x ≠1}; 当13<a <1时,原不等式的解集为R .1.设函数f (x )=ax 2-2x +2,对任意的x ∈(1,4)都有f (x )>0,则实数a 的取值范围是( )A .[1,+∞)B .⎝ ⎛⎭⎪⎫12,1C .⎣⎢⎡⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫12,+∞D [∵对任意的x ∈(1,4),都有f (x )=ax 2-2x +2>0恒成立,∴a >2(x -1)x 2=2⎣⎢⎡⎦⎥⎤14-⎝ ⎛⎭⎪⎫1x -122,对任意的x ∈(1,4)恒成立,∵14<1x <1, ∴2⎣⎢⎡⎦⎥⎤14-⎝ ⎛⎭⎪⎫1x -122∈⎝ ⎛⎦⎥⎤0,12,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.]2.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-235,+∞B .⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞)D .⎝ ⎛⎦⎥⎤-∞,-235A [由题意知a >2x -x 在x ∈[1,5]时有解.又y =2x -x 在区间[1,5]上是减函数,则y ≥25-5=-235. 所以a >-235,故选A .]3.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y 元,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围. [解] (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价, 所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0, 解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.。
数学一轮复习第六章第2讲基本不等式课时作业含解析
第2讲基本不等式组基础关1.设非零实数a,b,则“a2+b2≥2ab”是“错误!+错误!≥2”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析因为a,b∈R时,都有a2+b2-2ab=(a-b)2≥0,即a2+b2≥2ab,而错误!+错误!≥2成立的条件是ab>0,所以“a2+b2≥2ab”是“错误!+错误!≥2"成立的必要不充分条件.2.已知a>0,b〉0,a,b的等比中项是1,且m=b+错误!,n=a+错误!,则m+n的最小值是()A.3 B.4C.5 D.6答案B解析由题意知ab=1,∴m=b+1a=2b,n=a+错误!=2a,∴m+n=2(a+b)≥4错误!=4,当且仅当a=b=1时取等号,故m +n的最小值为4.3.已知p=a+错误!,q=错误!x2-2,其中a>2,x∈R,则p,q的大小关系是()A.p≥q B.p>qC.p<q D.p≤q答案A解析由a>2,故p=a+错误!=(a-2)+错误!+2≥2+2=4,当且仅当a=3时取等号.因为x2-2≥-2,所以q =错误!x2-2≤错误!-2=4,当且仅当x=0时取等号,所以p≥q.故选A。
4.(2019·郑州外国语学校月考)若a>b>1,P=错误!,Q=错误!(lg a+lg b),R=lg 错误!,则()A.R<P<Q B.Q<P<RC.P<Q<R D.P<R<Q答案C解析因为a>b>1,所以lg a>0,lg b>0,且lg a≠lg b,所以错误!<错误!(lg a+lg b),由错误!<错误!,得lg错误!<lg 错误!.所以错误!(lg a+lg b)<lg 错误!,综上知P<Q<R.5.若正数x,y满足4x2+9y2+3xy=30,则xy的最大值是()A.错误!B.错误!C.2 D.错误!答案C解析由x>0,y〉0,得4x2+9y2+3xy≥2·(2x)·(3y)+3xy(当且仅当2x=3y时等号成立),∴12xy+3xy≤30,即xy≤2,∴xy的最大值为2.6.《几何原本》第二卷的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F在半圆O上,点C在半径OB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为()A.错误!≥错误!(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.错误!≤错误!(a>0,b>0)D。
课时作业9:§7.1 不等关系与不等式
§7.1 不等关系与不等式A 级 基础达标一、选择题1.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ; ②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b .其中正确的有( ) A .1个 B .2个 C .3个D .4个2.设a ,b ∈R ,若p :a <b ,q :1b <1a <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |4.设a >b >0,下列各数小于1的是( ) A .2a -b B. ⎝⎛⎭⎫a b 12 C. ⎝⎛⎭⎫a b a -bD. ⎝⎛⎭⎫b a a -b5.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1 C .2ab >2D .log 2(ab )<-26.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >ac B .c (b -a )>0 C .cb 2<ab 2D .ac (c -a )>07.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .12log b <12log a <0C .2b <2a <2D .a 2<ab <18.设a ,b 为实数,则“0<ab <1”是“b <1a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题9.若1<α<3,-4<β<2,则α-|β|的取值范围是________. 10.若log a (a 2+1)<log a 2a <0,则a 的取值范围是________.11.若-1<a +b <3,2<a -b <4,则2a +3b 的取值范围为________. 12.已知下列结论:①若a >|b |,则a 2>b 2;②若a >b ,则1a <1b;③若a >b ,则a 3>b 3;④若a <0,-1<b <0,则ab 2>a . 其中正确的是________(只填序号即可).B 级 能力提升1.已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,1,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2D .a ≥22.若a <b <0,则下列不等式一定成立的是( ) A. 1a -b >1b B .a 2<ab C.|b ||a |<|b |+1|a |+1D .a n >b n 3.设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③D .①②③4.已知定义域为R 的奇函数f (x )的导函数为f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f ⎝⎛⎭⎫12,b=-2f (-2),c =⎝⎛⎭⎫ln 12f ⎝⎛⎭⎫ln 12,则a ,b ,c 的大小关系正确的是( ) A .a <c <b B .b <c <a C .a <b <cD .c <a <b参考答案A 级 基础达标一、选择题 1.【答案】 B【解析】 ①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 2.【答案】 B【解析】 若1b <1a <0,则a <b <0;而当a <0<b 时,1a <0<1b ,所以p 是q 的必要不充分条件,故选B.3.【答案】 D【解析】 ∵1a <1b <0,∴b <a <0,则a 2<b 2,ab <b 2,a +b <0,故A ,B ,C 正确;而|a |+|b |=-a -b =|a +b |,故D 错误,故选D. 4.【答案】 D【解析】 解法一:(特殊值法) 取a =2,b =1,代入验证.故选D. 解法二:y =a x (a >0且a ≠1).当a >1,x >0时,y >1;当0<a <1,x >0时,0<y <1. ∵a >b >0,∴a -b >0,a b >1,0<b a <1.由指数函数性质知,D 成立. 5.【答案】 D【解析】 由已知,0<a <1,0<b <1,a -b <0,0<ab =a (1-a )<14,log 2(ab )<-2,故选D.6.【答案】 C【解析】 由题意知c <0,a >0,则A ,B ,D 一定正确,若b =0,则cb 2=ab 2.故选C. 7.【答案】 C【解析】 解法一:特值法.取b =14,a =12,代入验证.故选C.解法二:0<b <a ⇒b 2<ab ,A 不对; y =12log x 在(0,+∞)上为减函数,∴12log b >12log a ,B 不对;a >b >0⇒a 2>ab ,D 不对,故选C. 8.【答案】 D【解析】 一方面,若0<ab <1,则当a <0时,0>b >1a .∴b <1a 不成立;另一方面,若b <1a ,则当a <0时,ab >1,∴0<ab <1不成立,故选D. 二、填空题9.【答案】 (-3,3)【解析】 -4<β<2⇒-4<-|β|≤0,-3<α-|β|<3. 10.【答案】 ⎝⎛⎭⎫12,1【解析】 ∵a 2+1>2a ,log a (a 2+1)<log a 2a , ∴0<a <1.∵log a (2a )<log a 1,∴2a >1,∴a >12,∴12<a <1.11.【答案】 ⎝⎛⎭⎫-92,132 【解析】 设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧x +y =2,x -y =3,解得⎩⎨⎧x =52,y =-12。
课时作业18 基本不等式
课时作业18 基本不等式|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.不等式(x-2y)+≥2成立的条件为( )A.x≥2y,x-2y=1B.x>2y,x-2y=1C.x≤2y,x-2y=1D.x<2y,x-2y=1解析:因为不等式成立的前提条件是各项均为正,所以x-2y>0,即x>2y,且等号成立时(x-2y)2=1,即x-2y=1,故选B.答案:B2.已知m=a+(a>2),n=2(b≠0),则m,n之间的大小关系是( )A.m>n B.m<nC.m=n D.不确定解析:因为a>2,所以a-2>0,又因为m=a+=(a-2)++2,所以m≥2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=2<4.所以m>n.答案:A3.若a+b=1,恒有( )A.ab≤ B.ab≥C.a2b2≤16 D.以上均不正确解析:因为a+b=1>0,所以a,b中至少有一个为正数.故当a,b中有一个是负数或0时,显然有ab≤0<;当a,b均为正数时,有1=a+b≥2,所以ab≤.答案:A4.已知a,b∈(0,1),且a≠b,下列各式中最大的是( ) A.a2+b2 B.2C.2ab D.a+b解析:因为a,b∈(0,1),所以a2<a,b2<b,所以a2+b2<a+b,又a2+b2>2ab(因为a≠b),所以2ab<a2+b2<a+b.又因为a+b>2(因为a≠b),所以a+b最大.故选D.答案:D5.设a,b为正数,且a+b≤4,则下列各式中正确的一个是( )A.+<1B.+≥1C.+<2D.+≥2解析:因为ab≤2≤2=4,所以+≥2≥2=1.答案:B二、填空题(每小题5分,共15分)6.设a>1,且m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是________(用“>”连接).解析:因为a>1,所以a2+1>2a>a+1,所以loga(a2+1)>loga(2a)>loga(a+1),所以m>p>n.答案:m>p>n7.设正数a,使a2+a-2>0成立,若t>0,则logat________loga(填“>”“≥”“≤”或“<”).解析:因为a2+a-2>0,所以a<-2或a>1,又a>0,所以a>1,因为t>0,所以≥,所以loga≥loga=logat.答案:≤8.给出下列不等式:①x+≥2;②≥2;③≥2;④>xy;⑤≥ .其中正确的是________(写出序号即可).解析:当x>0时,x+≥2;当x<0时,x+≤-2,①不正确;因为x与同号,所以=|x|+≥2,②正确;当x,y异号时,③不正确;当x=y时,=xy,④不正确;当x=1,y=-1时,⑤不正确.答案:②三、解答题(每小题10分,共20分)9.设a,b,c为正实数,求证:(a+b+c)·≥4.证明:因为a,b,c为正实数,所以(a+b+c)·=[(a+b)+c]=1+++1≥2+2=2+2=4.当且仅当=,即a+b=c时,取等号.所以(a+b+c)·≥4.10.设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ac≤;(2)++≥1.证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.|能力提升|(20分钟,40分)11.若f(x)=x,a,b均为正数,P=f,G=f(),H=f,则( )A.P≤G≤H B.P≤H≤GC.G≤H≤P D.H≤G≤P解析:因为a,b均为正数,所以≥=≥=,又因为f(x)=x为减函数,所以f≤f()≤f,所以P≤G≤H.答案:A12.若a>0,b>0,a+b=2,则下列不等式①ab≤1;②+≤;③a2+b2≥2;④+≥2,对满足条件的a,b恒成立的是________.(填序号)解析:因为ab≤2=1,所以①正确;因为(+)2=a+b+2=2+2≤2+a+b=4,故②不正确;a2+b2≥=2,所以③正确;+==≥2,所以④正确.答案:①③④13.已知a,b,c为不全相等的正实数,且abc=1.求证:++<++.证明:因为a,b,c都是正实数,且abc=1,所以+≥2=2,+≥2=2,+≥2=2,以上三个不等式相加,得2≥2(++),即++≥++,因为a,b,c不全相等,所以上述三个不等式中的“=”不都成立,所以++<++.14.设a>0,b>0,试比较,,,的大小,并说明理由.解析:因为a>0,b>0,所以+≥;即≥(当且仅当a=b时取等号),又2=≤=.所以≤ (当且仅当a=b时等号成立),而≤,故≥≥≥(当且仅当a=b时等号成立).课时作业18 基本不等式|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.不等式(x-2y)+≥2成立的条件为( )A.x≥2y,x-2y=1B.x>2y,x-2y=1C.x≤2y,x-2y=1D.x<2y,x-2y=1解析:因为不等式成立的前提条件是各项均为正,所以x-2y>0,即x>2y,且等号成立时(x-2y)2=1,即x-2y=1,故选B.答案:B2.已知m=a+(a>2),n=2(b≠0),则m,n之间的大小关系是( ) A.m>n B.m<nC.m=n D.不确定解析:因为a>2,所以a-2>0,又因为m=a+=(a-2)++2,所以m≥2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=2<4.所以m>n.答案:A3.若a+b=1,恒有( )A.ab≤ B.ab≥C.a2b2≤16 D.以上均不正确解析:因为a+b=1>0,所以a,b中至少有一个为正数.故当a,b中有一个是负数或0时,显然有ab≤0<;当a,b均为正数时,有1=a+b≥2,所以ab≤.答案:A4.已知a,b∈(0,1),且a≠b,下列各式中最大的是( )A.a2+b2 B.2C.2ab D.a+b解析:因为a,b∈(0,1),所以a2<a,b2<b,所以a2+b2<a+b,又a2+b2>2ab(因为a≠b),所以2ab<a2+b2<a+b.又因为a+b>2(因为a≠b),所以a+b最大.故选D.答案:D5.设a,b为正数,且a+b≤4,则下列各式中正确的一个是( ) A.+<1 B.+≥1C.+<2D.+≥2解析:因为ab≤2≤2=4,所以+≥2≥2=1.答案:B二、填空题(每小题5分,共15分)6.设a>1,且m=loga(a2+1),n=loga(a+1),p=loga(2a),则m,n,p的大小关系是________(用“>”连接).解析:因为a>1,所以a2+1>2a>a+1,所以loga(a2+1)>loga(2a)>loga(a+1),所以m>p>n.答案:m>p>n7.设正数a,使a2+a-2>0成立,若t>0,则logat________loga(填“>”“≥”“≤”或“<”).解析:因为a2+a-2>0,所以a<-2或a>1,又a>0,所以a>1,因为t>0,所以≥,所以loga≥loga=logat.答案:≤8.给出下列不等式:①x+≥2;②≥2;③≥2;④>xy;⑤≥ .其中正确的是________(写出序号即可).解析:当x>0时,x+≥2;当x<0时,x+≤-2,①不正确;因为x与同号,所以=|x|+≥2,②正确;当x,y异号时,③不正确;当x=y时,=xy,④不正确;当x=1,y=-1时,⑤不正确.答案:②三、解答题(每小题10分,共20分)9.设a,b,c为正实数,求证:(a+b+c)·≥4.证明:因为a,b,c为正实数,所以(a+b+c)·=[(a+b)+c]=1+++1≥2+2=2+2=4.当且仅当=,即a+b=c时,取等号.所以(a+b+c)·≥4.10.设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ac≤;(2)++≥1.证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.|能力提升|(20分钟,40分)11.若f(x)=x,a,b均为正数,P=f,G=f(),H=f,则( )A.P≤G≤H B.P≤H≤GC.G≤H≤P D.H≤G≤P解析:因为a,b均为正数,所以≥=≥=,又因为f(x)=x为减函数,所以f≤f()≤f,所以P≤G≤H.答案:A12.若a>0,b>0,a+b=2,则下列不等式①ab≤1;②+≤;③a2+b2≥2;④+≥2,对满足条件的a,b恒成立的是________.(填序号)解析:因为ab≤2=1,所以①正确;因为(+)2=a+b+2=2+2≤2+a+b=4,故②不正确;a2+b2≥=2,所以③正确;+==≥2,所以④正确.答案:①③④13.已知a,b,c为不全相等的正实数,且abc=1.求证:++<++.证明:因为a,b,c都是正实数,且abc=1,所以+≥2=2,+≥2=2,+≥2=2,以上三个不等式相加,得2≥2(++),即++≥++,因为a,b,c不全相等,所以上述三个不等式中的“=”不都成立,所以++<++.14.设a>0,b>0,试比较,,,的大小,并说明理由.解析:因为a>0,b>0,所以+≥;即≥(当且仅当a=b时取等号),又2=≤=.所以≤ (当且仅当a=b时等号成立),而≤,故≥≥≥(当且仅当a=b时等号成立).。
红对勾·讲与练高中数学北师大必修五:课时作业 基本不等式 含解析
课时作业20 基本不等式时间:45分钟 满分:100分一、选择题(每小题5分,共35分)1.a +b ≥2ab (a >0,b >0)中等号成立的条件是( ) A .a =b B .a =-b C .a =|b | D .|a |=b【答案】 A【解析】 由基本不等式成立的条件易知. 2.x 2+y 2=4,则xy 的最大值是( ) A.12 B .1 C .2 D .4【答案】 C【解析】 xy ≤x 2+y 22=2,当且仅当x =y =2或x =y =-2时,等号成立,∴xy 的最大值为2.3.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q【答案】 B【解析】 ∵a >b >1,∴lg a ·lg b <lg a +lg b 2. ∵a ≠b ,∴“=”不成立.又∵lg a +lg b =lg ab <lg ⎝ ⎛⎭⎪⎪⎫a +b 22=2lg a +b 2, ∴lg a +b 2>12(lg a +lg b ),故选B. 4.下列不等式一定成立的是( ) A .x +1x ≥2 B.x 2+2x 2+2≥ 2C.x 2+3x 2+4≥2D .2-3x -4x ≥2【答案】 B【解析】 A 项中当x <0时,x +1x <0<2,∴A 错误. B 项中,x 2+2x 2+2=x 2+2≥2,∴B 正确.而对于C ,x 2+3x 2+4=x 2+4-1x 2+4, 当x =0时,x 2+3x 2+4=32<2,显然选项C 不正确.D 项中取x =1,2-3x -4x <2,∴D 错误. 5.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D.ab <a <a +b2<b【答案】 B【解析】 ∵0<a <b ,∴a ·a <ab .∴a <ab .由基本不等式知ab <a +b2(a ≠b ),又∵0<a <b ,a +b <b +b ,∴a +b 2<b . ∴a <ab <a +b2<b .6.下列选项中正确的是( ) A .当a ,b ∈R 时,a b +ba ≥2a b ×b a =2B .当a >1,b >1时,lg a +lg b ≥2lg a lg bC .当a ∈R 时,a +9a ≥2a ×9a =6D .当ab <0时,-ab -1ab ≤-2 【答案】 B【解析】 选项A 中,可能ba <0,所以A 不正确; 选项C 中,当a <0时,a +9a <0,所以C 不正确; 选项D 中,当ab <0时,-ab >0,-1ab >0, 则-ab -1ab ≥2,当且仅当-ab =-1ab ,即ab =-1时取等号,所以D 不正确; 很明显,选项B 中当a >1,b >1时,lg a >0,lg b >0, 则lg a +lg b ≥2lg a lg b 成立,所以B 正确.7.若两个正实数x ,y 满足2x +1y =1,并且x +2y >m +1恒成立,则实数m 的取值范围是( )A .(-∞,7]B .(-∞,7)C .(7,+∞)D .[7,+∞)【答案】 B【解析】 x +2y =(x +2y )(2x +1y )=2+4y x +xy +2≥8, 当且仅当4y x =xy ,即4y 2=x 2时,等号成立, ∴m +1<8,∴m <7.二、填空题(每小题5分,共20分)8.对于任意正数a ,b ,设A =a +b2,G =ab ,则A 与G 的大小关系是________.【答案】 A ≥G【解析】 ∵a >0,b >0,∴a +b2≥ab >0,∴A ≥G .9.已知a >0,b >0,且a +b =1,则ab 的取值范围是________. 【答案】 (0,14]【解析】 ∵a >0,b >0,a +b =1,∴ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22=14. 当且仅当a =b =12时,等号成立. ∴ab 的最大值为14.10.已知0<α<π,则2sin α+12sin α的取值范围是________. 【答案】 [2,+∞) 【解析】 ∵0<α<π,∴sin α>0. ∴2sin α+12sin α≥22sin α×12sin α=2,当且仅当2sin α=12sin α,即sin α=12时,等号成立. ∴2sin α+12sin α的最小值为2.11.函数y =log a (x -1)+1(a >0,且a ≠1)的图像恒过定点A ,若点A 在一次函数y =mx +n 的图像上,其中m ,n >0,则1m +2n 的取值范围为________.【答案】 [8,+∞)【解析】 由题意,得点A (2,1),则1=2m +n , 又m ,n >0,所以1m +2n =2m +n m +2(2m +n )n =4+n m +4m n ≥4+24=8. 当且仅当n m =4m n ,即m =14,n =12时取等号,则1m +2n 的最小值为8.三、解答题(共45分,解答应写出必要的文字说明、证明过程或演算步骤)12.(14分)设实数a 使a 2+a -2>0成立,t >0,比较12log a t 与log a t +12的大小.【解析】 ∵a 2+a -2>0,∴a <-2或a >1, 又a >0且a ≠1,∴a >1,∵t >0,∴t +12≥t ,∴log a t +12≥log a t =12log a t , ∴12log a t ≤log a t +12.13.(15分)已知y =x +9x (x ≠0),试比较|y |与6的大小.【解析】 (1)当x >0时,由基本不等式,得y =x +9x ≥6,(当且仅当x =3取等号),即y ≥6,∴|y |≥6;(2)当x <0时,-x >0,y =x +9x =-[(-x )+9-x ]≤-6(当且仅当x=-3时取等号),即y ≤-6,∴|y |≥6.综上所述,|y |≥6.14.(16分)已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8. 【解析】 ∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=a +b +c a -1=b +c a ≥2bc a >0. 同理,1b -1≥2ac b >0,1c -1≥2ab c >0.∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8ab ac bc abc =8.。
高中数学(文)统考版 复习 选修4-5课时作业 63绝对值不等式
(1)当a=-1时,求不等式f(x)≥g(x)的解集;
(2)若存在x0∈R,使得f(x0)≥g(x0)成立,求a的取值范围.
解析:(1)当a=-1时原不等式可化为|x+1|-2|x|≥-1,
设φ(x)=|x+1|-2|x|,则φ(x)=
故不等式的解集为 ∪ .
(2)f(x)≤|2a+1|有解等价于f(x)min≤|2a+1|.
f(x)=|x|+2|x-1|= ,故f(x)的最小值为1,
所以1≤|2a+1|,得2a+1≤-1或2a+1≥1,解得a≤-1或a≥0,
故实数a的取值范围为(-∞,-1]∪[0,+∞).
3.[2020·昆明市质量检测]已知函数f(x)=|2x-1|.
∴g(x)max=-2,
∴-2≤a≤0,即实数a的取值范围为[-2,0].
课时作业
[
1.[2020·福建三明一中检测]已知不等式|2x+3|+|2x-1|<a的解集为M.
(1)若a=6,求集合M;
(2)若M≠∅,求实数a的取值范围.
解析:(1)当a=6时,原不等式为|2x+3|+|2x-1|<6,
当x≤- 时,原不等式化为-2x-3+1-2x<6,
解得x>-2,
∴-2<x≤- ;
则 ,或 ,或 ,
即- ≤x≤2.
∴原不等式的解集为{x|- ≤x≤2}.
(2)存在x0∈R使得f(x0)≥g(x0)成立,等价于|x+1|≥2|x|+a有解,
即φ(x)≥a有解,即a≤φ(x)max,
由(1)可知,φ(x)在(-∞,0)上单调递增,在[0,+∞)上单调递减.
不等式的证明5
课 题:不等式的证明(5) 教学目的:要求学生掌握放缩法和反证法证明不等式; 教学重点: 放缩法 教学难点:反证法 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 2.定理:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 3:ab ≤222b a +,ab ≤(2b a +)24.baa b +≥2(ab >0),当且仅当a =b 时取“=”号; 5.定理:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”)6.推论:如果+∈R c b a ,,,那么33abc c b a ≥++ (当且仅当c b a ==时取“=”)7.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论 8.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法叫做综合法用综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法叫做分析法用分析法证明不等式的逻辑关系是:12n B B B B A ⇐⇐⇐⇐⇐分析法的思维特点是:执果索因 分析法的书写格式:要证明命题B 为真,只需要证明命题1B 为真,从而有…… 这只需要证明命题2B 为真,从而又有…… ……这只需要证明命题A 为真而已知A 为真,故命题B 必为真 10三角换元:若0≤x ≤1,则可令x = sin θ (20π≤θ≤)或x = sin 2θ (22π≤θ≤π-) 若122=+y x ,则可令x = cos θ , y = sin θ (π≤θ≤20)若122=-y x ,则可令x = sec θ, y = t a n θ (π≤θ≤20)若x ≥1,则可令x = sec θ (20π<θ≤) 若x ∈R ,则可令x = t a n θ (22π<θ<π-)11代数换元:“整体换元”,“均值换元”,“设差换元”的方法二、讲解新课: 1放缩法: 2反证法:三、讲解范例:例1若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a证明:(用放缩法)记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R + ∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立例2当 n > 2 时,求证:1)1(log )1(log <+-n n n n 证明:(用放缩法)∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n 例3 求证:213121112222<++++n 证明:(用放缩法)n n n n n111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n一、 :例4 设0 < a , b , c < 1,求证:(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于41证明:(用反证法)设(1 - a )b >41, (1 - b )c >41, (1 - c )a >41, 则三式相乘:(1 - a )b •(1 - b )c •(1 - c )a >641①又∵0 < a , b , c < 1 ∴412)1()1(02=⎥⎦⎤⎢⎣⎡+-≤-<a a a a 同理 41)1(≤-b b , 41)1(≤-c c 将以上三式相乘 (1 - a )a •(1 - b )b •(1 - c )c ≤641此与①矛盾 ∴(1 - a )b , (1 - b )c , (1 - c )a ,不可能同时大于41 例4 已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a , b , c > 0 证明:(用反证法)设a < 0, ∵abc > 0, ∴bc < 0 又由a + b + c > 0, 则b + c >-a > 0∴ab + bc + ca = a (b + c ) + bc < 0 此与题设矛盾 又 若a = 0,则与abc > 0矛盾, ∴必有a > 0 同理可证 b > 0, c > 0 四、小结 : 五、课后作业: 证明下列不等式: 1.设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b放缩法:yy x x y x y y x x y x y x +++<+++++=+++111112.lg9•lg11 < 1放缩法:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅3.1)1(log )1(log <+-n n n n放缩法:222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n4.若a > b > c , 则0411≥-+-+-ac c b b a 放缩法:c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((121125.)2,(11211112≥∈>+++++++n R n nn n n 放缩法:左边11111122222=-+=++++>n nn n n n n n 6.121211121<+++++≤nn n 放缩法:11121<⋅+≤≤⋅n n n n 中式 7.已知a , b , c > 0, 且a 2 + b 2 = c 2,求证:a n + b n < c n (n ≥3, n ∈R *)放缩法: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0, ∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n∴<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛n n c b c a 122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ⇒ a n + b n < c n8.设0 < a , b , c < 2,求证:(2 - a )c , (2 - b )a , (2 - c )b ,不可能同时大于1反证法:(2 - a )c>1, (2 - b )a>1, (2 - c )b>1,则(2 - a )c (2 - b )a (2 - c )b >1 …① 又因为设0 < a , b , c < 2,(2 - a ) a 12)2(=+-≤aa ,同理 (2 - b ) b ≤1, (2 - c ) c ≤1,所以(2 - a )c (2 - b )a (2 - c )b ≤1此与①矛盾 9.若x , y > 0,且x + y >2,则xy +1和y x+1中至少有一个小于2反证法:设xy+1≥2,y x +1≥2 ∵x , y > 0,可得x + y ≤2 与x + y >2矛盾六、板书设计(略) 七、课后记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课一元二次不等式应用题分层训练
1.某厂扩建后计划后年的产量不低于今年的2倍, 那么明、后两年每年的平均增长率至少
是.(精确到0.1%). 2.要在长为800米,宽为600米的一块长方形地面上进行绿化,要求四周种花卉(花卉带的宽度相同),中间种草坪,要求草坪的面积不小于总面积的一半,则花卉带宽度x的范围为 .
3.已知半圆的半径为1,其内接等腰梯形的一条
底边与半圆的直径重合,则当x= 时,梯形的周长最长.
考试热点
4.国家为了加强对烟酒生产的宏观管理, 实行征收附加税政策, 已知某种酒每瓶70元, 不加收附加税时, 每年大约销售100万瓶; 若政府征收附加税, 每销售100元要征税R元(叫做税率R%), 则每年的销售量将减少10R万瓶, 要使每年在此项经营中所收取的附加税不少于112万, R应怎样确定?
5.某地区上年度电价为0.8元/千瓦时,年用电量
为a千瓦时,本年度计划将电价降低到0.55元/千瓦时至0.75元/千瓦时之间,而用户期望电价为0.4元/千瓦时.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k),该地区电力成本价为0.3元/千瓦时,(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式.
(2)设k=0.2a,当电价最低定为多少时仍可保证
电力部门的收益比上年度至少增长20%?(注:收益=实际用电量×(实际电价-成本价)).拓展延伸
6.已知汽车刹车到停车所滑行的距离s (m)与速度v (km/h)的平方及汽车的总重量a(t)的乘积成正比, 设某辆卡车不装货物以50km/h行驶时, 从刹车到停车滑行了20m , 如果这辆车装载着与车身相等重量的货物行驶, 并与前面的车辆距离为15m , 为了保证在前面车辆紧急停车时不与前面车辆相撞, 那么最大车速是多少? (假定卡车司机从发现前面车辆停车到自己刹车需耽搁1s , 答案精确到1km/h . )
本节学习疑点:。