(最新)矢量分析与场论课后习题及答案.
矢量分析与场论第四版谢树艺习题答案
![矢量分析与场论第四版谢树艺习题答案](https://img.taocdn.com/s3/m/590869f1a76e58fafbb003e5.png)
习題1 解答1.写出下列曲线的矢長方程,并说明它们規何种曲线。
(1)x=“cos/,y =bsinf(2)x = 3sln/,j = 4sinf,z = 3cos/解:(l)F=“cos〃+"siii{/,其图形是xOy平面上之椭圆。
(2) r = 3sinri +4sin//+ 3coszAr ,其图形是平面4x - 3j = 0 与圆柱面X2+Z2=32之交线,为一椭圆。
2.设有定圆O与动圆C ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点A/ 所描曲线的矢■方程。
解:设M点的矢径为OM ^r^xi + yj ,厶OC = 8,页7与兀轴的夹角为28—希;因OM =OC + CM^r = xi+yj = 2«cos^ + 2«sin^+acos(2&—7r)j +asin(2^—/r)j则x = 2a cos 0-a cos 28, y = 2a sin& - a sin2&・故r =(加cos&-acos2&” + (2«sin&-asin2&)</4.求曲线x = r,j = /2,z = |z3的一个切向单位矢。
2 2 , 解:曲线的矢長方程为f=ti + t j + ~( k则其切向矢長为^ = i + 2tj + 2t2k模为I —-1= J1 + 4/2 + 4严=1 + 2/2 'dtdr dr i + 2(/ + 2t 2k 于是切向单位矢長为示/ I莎'= i +2八—6・求曲线x=asin t,y=asln2t,z=acost,在心二处的一个切向矢1L4解:曲线矢星方程为r=a sin2+«sin2(/^acostkdr7 •求曲线x=t 2 +l,y=4t-3.z = 2t 2 -6t 在对应于f = 2的点M 处的切线方程和 法平面方程。
矢量分析与场论习题
![矢量分析与场论习题](https://img.taocdn.com/s3/m/b080868384868762cbaed500.png)
∂Dy
PDF 文件以 "PDF 制作工厂" 试用版创建 ÿÌÿ
r r ∂Dz ∂Dy r ∂Dx ∂Dz r ∂Dy ∂Dx Method B: ∇ × D = e − − + ey − + ez x ∂ ∂ ∂ ∂ ∂ ∂ y z z x x y r
例题
1. 设一标量函数ϕ ( x, y, z ) = x2+y2-z 描述了空间标量场。试 求: (1) 该函数ϕ 在点 P(1,1,1) 处的梯度,以及表示该梯度方向 的单位矢量。 r r r r o o (2) 求该函数ϕ 沿单位矢量 el = ex cos 60 + e y cos 45 + ez cos 60o 方向的方向导数,并以点 P(1,1,1) 处的方向导数值与该点的梯度 值作以比较,得出相应结论。 解 (1)由梯度计算公式,可求得P点的梯度为 r r r r ∂ r ∂ r ∂ 2 2 ∇ϕ = [(ex + ey + ez )( x + y − z )] = ex 2 x + e y 2 y − ez ∂x ∂y ∂z r r r P点的梯度 ∇ϕ P = e x 2 + e y 2 − e z | ∇ϕ P |= 3 r r r r e r 2 r 2 r 1 el = x 2 + e y 2 − ez = e + e y − ez x 3 3 3 3
第一章矢量分析与场论基础题解
![第一章矢量分析与场论基础题解](https://img.taocdn.com/s3/m/252d7624482fb4daa58d4b7a.png)
第一章 矢量分析与场论基础1-1 求下列温度场的等温线1)T xy =,2)T x y=+122解 求等温线即设定相关的方程为常数,因此可得⑴ C xy =,xCy =;⑵ C y x =+221-2 求下列标量场的等值面1)u ax by cz=++1,2) =- u z x y 22+, 3)u x y z =ln(++)222解 据题意可得 ⑴ k cz by ax =++⑵ c y x z =+-22,()222c z y x -=+⑶ ()c z y x =++222ln ,c e z y x =++222,2222k z y x =++1-3 求矢量场A e e e =++x y z x y z 2 经过点M (.,.,.)102030的矢量线方程。
解 根据矢量线的定义,可得zzy y x x 2d d d == 解微分方程,可得 x c y 1=,22x c z =将点M (.,.,.)102030的坐标代入,可得 21=c ,32=c 即 x y 2=,23x z = 为所求矢量线方程。
1-4 求矢量场A e e e =++y x x y y z x y z 222的矢量线方程。
解 根据矢量线的定义,可得zy zy x y x y x 222d d d == 解微分方程,可得 122c y x =-,x c z 2= 为所求矢量线方程。
1-5 设u x z yz xz ()M =+-+32222,求:1)u ()M 在点M 0102030(.,.,.)处沿矢量l e e e =++yx zx xy x y z 方向的方向导数,2)u ()M 在点M 0(.,.,.)102030处沿矢量l e e e =+-+-+()()622222x z z z y x x y z 方向的方向导数。
解 l 的方向余弦为 1722322cos 222=++=α,1732323cos 222=++=β,1722322cos 222=++=γ;又有12260=+=∂∂M M xz x xu ,620-=-=∂∂M M z yu ,42220=+-=∂∂M M x y z zu据方向导数的定义,可得 1714172436212cos cos cos 0000=⨯+⨯-⨯=∂∂+∂∂+∂∂=∂∂γβαM M M M z uy u x u l u1-6 求标量场u xy yz zx =++在点M 0(.,.,.)102030 处沿其矢径方向的方向导数。
第一章矢量分析与场论基础题解
![第一章矢量分析与场论基础题解](https://img.taocdn.com/s3/m/4f4d9a21af45b307e8719723.png)
第一章 矢量分析与场论基础1-1 求下列温度场的等温线1)T xy =,2)T x y=+122解 求等温线即设定相关的方程为常数,因此可得⑴ C xy =,xCy =;⑵ C y x =+221-2 求下列标量场的等值面1)u ax by cz=++1,2) =- u z x y 22+, 3)u x y z =ln(++)222解 据题意可得 ⑴ k cz by ax =++⑵ c y x z =+-22,()222c z y x -=+⑶ ()c z y x =++222ln ,c e z y x =++222,2222k z y x =++1-3 求矢量场A e e e =++x y z x y z 2 经过点M (.,.,.)102030的矢量线方程。
解 根据矢量线的定义,可得zzy y x x 2d d d == 解微分方程,可得 x c y 1=,22x c z =将点M (.,.,.)102030的坐标代入,可得 21=c ,32=c 即 x y 2=,23x z = 为所求矢量线方程。
1-4 求矢量场A e e e =++y x x y y z x y z 222的矢量线方程。
解 根据矢量线的定义,可得zy zy x y x y x 222d d d == 解微分方程,可得 122c y x =-,x c z 2= 为所求矢量线方程。
1-5 设u x z yz xz ()M =+-+32222,求:1)u ()M 在点M 0102030(.,.,.)处沿矢量l e e e =++yx zx xy x y z 方向的方向导数,2)u ()M 在点M 0(.,.,.)102030处沿矢量l e e e =+-+-+()()622222x z z z y x x y z 方向的方向导数。
解 l 的方向余弦为 1722322cos 222=++=α,1732323cos 222=++=β,1722322cos 222=++=γ;又有12260=+=∂∂M M xz x xu ,620-=-=∂∂M M z yu ,42220=+-=∂∂M M x y z zu据方向导数的定义,可得 1714172436212cos cos cos 0000=⨯+⨯-⨯=∂∂+∂∂+∂∂=∂∂γβαM M M M z uy u x u l u1-6 求标量场u xy yz zx =++在点M 0(.,.,.)102030 处沿其矢径方向的方向导数。
答案 矢量分析与场论(A卷)
![答案 矢量分析与场论(A卷)](https://img.taocdn.com/s3/m/cb21e03c0b4c2e3f5727634d.png)
系别_______ _____ _ _ 专业__________ ___年级_________ ____姓名______ _ ______学号┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈密┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈封┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈线┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈安阳师范学院 05电气,06电气专升本 专 业 矢量分析与场论 课2006——2007学年度第一学期期末考试试卷 答案(A 卷)一、判断题:在每道题前的括号中划错对号。
(每题2分, 共10分)1.√二、填空题:把正确答案填到每道题的前的括号中。
(每题3分, 共30分)(1)0 (2) k j i 4128++ (3)k t t j t t t i t t t t )1610()1743()4103(647648765--++++--+-(4)k a 2 π- (5)⎪⎩⎪⎨⎧=+=⎪⎩⎪⎨⎧=++=2zxy 21y 1x 10z y -x 21y 1x 1或 (6)3100 (7))723(621k j i ++ (8)0 (9)0(10)0三、计算题(每题10分, 共30分)1.解: r rgradr = ------------------------------------------1分 dr d r2)r (f )r (f -=''⇒----------------------------7分 k z j y i x++++=222z y x 1 1ln 2)r (f ln c r +-='⇒-----------------8分)]z y x (3r [r1gradr)(div 22223++-=∴ 22)r (f -='⇒r c ----------------------9分 =r2------------------------------------------3分 413)r (f c r c +=⇒-------------10分 )r (f )gradr (div )r (f )]r (gradf [div ''+'= 43)r (f c rc+=或=)r (f )r (f r2''+'------------------------------4分 0)]r (gradf [div = 0)r (f )r (f r2=''+'∴---------------------------------5分 )r (f r2)r (f '-=''⇒)r (f r2)r (f '-='⇒dr d ---------------------------------6分2.解:△u =)53243)((3322222222--++-∂∂+∂∂+∂∂y x y x z y z x zy x ----------------------------3分=)33()324()2126(222332z y x zyz x y y x xz x -∂∂+--∂∂+++∂∂-------------7分 z y z z xy 2362624--+=-----------------------------------------------------------------10分3.解:⎪⎪⎪⎭⎫ ⎝⎛=22242420202y yz x yz z x z A D --------------------------------------------2分k j x x i yz yz A rot)00()22()44(-+-+-=∴=0-----------------------------------------------------------------------3分所以矢量场A为无旋场------------------------------------------------------------4分故为保守场,则存在数性函数)z ,y ,x (u 使得du =dl A --------------5分其中, dz )(R dy )(Q dx )P()u(zy 0x⎰⎰⎰++=x,y,z x,y,0x,0,0x,y,zdz )12(z22⎰-+=z y x ----------------------------------------------6分z222z)z (-+=z y xz z 222-+=z y x --------------------------------------------7分⎰⎰=∴B Aldl A dl A------------------------------------------------------8分⎰=BAd u --------------------------------------------------------9分(5,-1,3)(3,0,1)222z)z (-+=z y x73881=-=-------------------------------------------10分四、证明题(每题10分, 共30分)1.证明:k u j u i u gradu z y x '+'+'=--------------------3分⎪⎪⎪⎭⎫ ⎝⎛''''''''''''''''''=∴zz zyzxyzyyyx xzxy xx u u u u u u u u u D(gradu)--------------------------6分 k )u -u (j )u -u (i )u -u ()gradu (rot xy yx zx xz yz zy''''+''''+''''=∴--------------8分 因为函数)z ,y ,x (u 有二阶的连续偏导数所以,xy yx zx xz yz zy u u u u u u ''=''''=''''='';;---------------9分 0)gradu (rot=∴-------------------------------------10分2.证明: ⎪⎪⎪⎭⎫ ⎝⎛=6-20241012A D ---------------------------3分06-42A div =+=∴----------------------------6分0)11()00()22(A rot=-+-+-=k j i -------9分所以,矢量场A为调和场。
矢量分析与场论(定理一及例题)
![矢量分析与场论(定理一及例题)](https://img.taocdn.com/s3/m/3472cde40b1c59eef8c7b4e3.png)
而全体势函数为 v sin y x2 yz 2 c
例2. 用不定积分法求例1中矢量场的势函数.
解:在例1中已经证得A为有势场,故存在函数u满足
ur A gradu, 即有
由第一个方程对x积分,得
与 代入
比较,得 得
从而,势函数
v
v
v
v
例3. 证明 A 2xyz3i x2z3 jur 3xr2 yz2k
所以
vv A dl
x2 yz3
B
12 4
8
»AB
A
代入公式
v
v
v
v
例4. 若 A P(x, y, z)i Q(x, y, z) j R(x, y, z)k 为保守场,
则存在函数u(M )使
vv
B
A dl u(M ) u(B) u( A)
AB
A
得
z
R(x, y, z)dz z0
例1. 证明矢量场
v
r
r
ur
A 2xyz2i (x2z2 cos y) j 2x2 yzk
为有势场,并求其势函数.
解:由
2 yz2
D
uv A
2xz
2
4xyz
2 xz 2 sin y 2x2z
4xyz
2
x
2
z
2x2 y
得rotAv 0v, 故Av为有势场。
y
z
ur
定理1. 在线单连域内,矢量场A 为有势场的
ur
充要条件是 A为无旋场.
此性质表明:
ur r A dl Pdx Qdy Rdz
u dx u dy u dz x y zdu即表来自式ur Ar dl
电动力学答案
![电动力学答案](https://img.taocdn.com/s3/m/4cc31854f01dc281e53af025.png)
r 1 1 a 3(a r )r ( a r ) 3 3 (a r ) 3 3 r r r r r5 (2) (3) [(a r ) r ] r ( a r ) (a r ) r 4a r ( a )
(4) [(a r ) r ] (a r ) r (a r ) r a r
A B 3e x e y 解 (1) A C 3e x 2e y 3e z (2)
ex
ey Ay By
ez Bz
ex 1
ey 0
ez 1
A B C
(3) (4)
Ax Bx
Az C 2
1 1 ( e x e y 2e z ) 0
(uv )
1 u 1 v 1 u 1 v 1 u 1 v ve 1 ue 1 ve 2 ue 2 ve 3 ue 3 h1 q1 h1 q1 h2 q 2 h2 q 2 h3 q3 h3 q3
(2)
1 v 1 u 1 v 1 v 1 u 1 u u e e e v e e e 1 2 3 1 2 3 h q h q h q h q h q h q 2 2 3 3 2 2 3 3 1 1 1 1 uv vu (h3 A3 ) (h2 u ) (h2 A2 ) 1 (h3u ) (uA) A3 u A2 u e 1 h2 h3 q 2 q 2 q 3 q3 (h3u ) (h3 A3 ) (h1 A1 ) 1 (h1u ) A1 u A3 u e 2 h1h3 q3 q3 q1 q1 (h2 A2 ) (h1u ) (h1 A1 ) 1 (h2 u ) A2 u A1 u e 3 h1h2 q1 q1 q 2 q 2
第一章 练习题参考答案
![第一章 练习题参考答案](https://img.taocdn.com/s3/m/3e63e4cdd1d233d4b14e852458fb770bf68a3b6d.png)
第一章 矢量分析 练习题参考答案参考答案:1、解:(1)z y x e ˆe ˆeˆB A 427--=+ (2)103310=+-=⋅B A2、解:(1)y xy A +-=⋅∇2(2)2ˆˆx e z e A z x +=⨯∇3、解:(1)z y x e e eB A ˆ2ˆˆ-+=- (2) 60=θ4、解:(1) 12-+=⋅∇x A(2) ⎰⎰⎰+-=+-===⋅11110x y S xdxdy S d A5、解:(1)y x e ˆyu e ˆx u u ∂∂+∂∂=∇y x e ˆy e ˆx 22+= (2) 2=∇u6、解:(1) z y x P e e eˆ3ˆ2ˆ++-=∇ψ 梯度的大小:14=∇P ψ(2)梯度的方向 14ˆ3ˆ2ˆˆz y x e e en++-= 7、解:(1)2ˆ3ˆ6ˆ301021ˆˆˆz y x z y x e e ee e e B A -+-=-=⨯ (2)z y x e e eB A ˆ3ˆ2ˆ2-+=+ 8、解:(1)y A 24-=⋅∇(2)在点()1,1处 矢量 y x e e A ˆ4ˆ-=所以矢量场A 在点()1,1处的大小为()171422=-+=A 9、解(1) 21y x A ++=⋅∇(2)z x e y eyz A ˆˆ2+=⨯∇ 10、解:(1) 52122=+=A()103122=-+=B(2) z z y y x x B A B A B A B A ++=⋅()1300211=-⨯+⨯+⨯= 11、解:(1)zE y E x E E z y x ∂∂+∂∂+∂∂=⋅∇ 0=(2)点()43,处y x e ˆeˆE 34+= ,故其大小为 53422=+=E12、解: (1) 不一定(2) 由: C A B A ⋅=⋅ 知: ()0=-⋅C B A此时当有三种可能:C B = 或 0=A 或 A 与C B -相互垂直13、解:(1)点电荷位置矢量 z y x s e e er ˆ4ˆˆ3++-= 场点位置矢量 z y x f e e er ˆ3ˆ2ˆ2+-=(2) 点电荷到场点的距离矢量 s f r r R -=z y x e e eR ˆˆ3ˆ5--= 14、解:(1)y x e yu e x u u ˆˆ∂∂+∂∂=∇y x e y e ˆ2ˆ+-= (2)梯度在正x 方向的投影 1ˆ-=⋅∇x eu15、解:(1)设直角坐标系中的坐标为()z y x ,,,由圆柱坐标系与直角坐标系转换关系得:232cos 4cos -===πϕρx 464.332sin 4sin ===πϕρy 3=z (2)任意点的位置矢量为 z y x e z e y ex r ˆˆˆ++= 将()z y x ,,的数值代入得该点的位置矢量: z y x e e er ˆ3ˆ464.3ˆ2++-= 16、解:(1)3=⋅∇A(2)矢量场A 在点()2,2,1处的大小 3=A17、解:(1)根据2cos ==⋅θAB B A3714.01385.52cos =⨯=θ 所以 12.68=θ(2)矢量A 在B 上的分量为 2=⋅=⋅B A BB A 18、解(1)直角坐标中的表达式z y x r e z e y e x r r eE ˆˆˆˆ++=== (2) 3=E19、解:(1) 0=⨯∇A(2) 矢量场A 的在点()1,1处的大小为:2=A20、证明:在直角坐标系里计算3=⋅∇r若在球坐标系里计算,则 232211()()()3r r r r r r r r r ∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
第一章矢量分析与场论基础题解
![第一章矢量分析与场论基础题解](https://img.taocdn.com/s3/m/a99d3fde6f1aff00bed51e91.png)
第一章 矢量分析与场论基础1-1 求下列温度场的等温线 1)Txy=,2)Txy=+122解 求等温线即设定相关的方程为常数,因此可得 ⑴ Cxy =,xC y=;⑵ Cyx =+221-2 求下列标量场的等值面 1)ua xb y cz=++1,2) =-uz xy 22+, 3)uxyz =ln(++)222解 据题意可得 ⑴ kcz by ax =++ ⑵ cyxz=+-22,()222c z yx -=+⑶ ()c z y x =++222ln ,c e z y x =++222,2222k z y x =++1-3 求矢量场A e e e =++x y z x y z 2 经过点M (.,.,.)102030的矢量线方程。
解 根据矢量线的定义,可得zz y y x x 2d d d ==解微分方程,可得 x c y 1=,22x c z =将点M (.,.,.)102030的坐标代入,可得 21=c ,32=c 即 x y 2=,23x z = 为所求矢量线方程。
1-4 求矢量场A e e e =++y x x y y z x y z 222的矢量线方程。
解 根据矢量线的定义,可得zy z yx y xy x 222d d d ==解微分方程,可得 122c y x =-,x c z 2= 为所求矢量线方程。
1-5 设u x z yz xz ()M =+-+32222,求:1)u ()M 在点M 0102030(.,.,.)处沿矢量l e e e =++yx zx xy x y z 方向的方向导数,2)u ()M 在点M 0(.,.,.)102030处沿矢量l e e e =+-+-+()()622222x z z z y x x y z 方向的方向导数。
解 l 的方向余弦为1722322cos 222=++=α,1732323cos 222=++=β,1722322cos 222=++=γ;又有12260=+=∂∂MMxzx xu ,620-=-=∂∂MMzyu ,42220=+-=∂∂MMxy z zu据方向导数的定义,可得1714172436212cos cos cos 0=⨯+⨯-⨯=∂∂+∂∂+∂∂=∂∂γβαMMMMzu yu xu lu1-6 求标量场uxy yz zx=++在点M 0(.,.,.)102030 处沿其矢径方向的方向导数。
第一章矢量分析与场论基础题解
![第一章矢量分析与场论基础题解](https://img.taocdn.com/s3/m/252d7624482fb4daa58d4b7a.png)
第一章 矢量分析与场论基础1-1 求下列温度场的等温线1)T xy =,2)T x y=+122解 求等温线即设定相关的方程为常数,因此可得⑴ C xy =,xCy =;⑵ C y x =+221-2 求下列标量场的等值面1)u ax by cz=++1,2) =- u z x y 22+, 3)u x y z =ln(++)222解 据题意可得 ⑴ k cz by ax =++⑵ c y x z =+-22,()222c z y x -=+⑶ ()c z y x =++222ln ,c e z y x =++222,2222k z y x =++1-3 求矢量场A e e e =++x y z x y z 2 经过点M (.,.,.)102030的矢量线方程。
解 根据矢量线的定义,可得zzy y x x 2d d d == 解微分方程,可得 x c y 1=,22x c z =将点M (.,.,.)102030的坐标代入,可得 21=c ,32=c 即 x y 2=,23x z = 为所求矢量线方程。
1-4 求矢量场A e e e =++y x x y y z x y z 222的矢量线方程。
解 根据矢量线的定义,可得zy zy x y x y x 222d d d == 解微分方程,可得 122c y x =-,x c z 2= 为所求矢量线方程。
1-5 设u x z yz xz ()M =+-+32222,求:1)u ()M 在点M 0102030(.,.,.)处沿矢量l e e e =++yx zx xy x y z 方向的方向导数,2)u ()M 在点M 0(.,.,.)102030处沿矢量l e e e =+-+-+()()622222x z z z y x x y z 方向的方向导数。
解 l 的方向余弦为 1722322cos 222=++=α,1732323cos 222=++=β,1722322cos 222=++=γ;又有12260=+=∂∂M M xz x xu ,620-=-=∂∂M M z yu ,42220=+-=∂∂M M x y z zu据方向导数的定义,可得 1714172436212cos cos cos 0000=⨯+⨯-⨯=∂∂+∂∂+∂∂=∂∂γβαM M M M z uy u x u l u1-6 求标量场u xy yz zx =++在点M 0(.,.,.)102030 处沿其矢径方向的方向导数。
矢量分析与场论综合资料
![矢量分析与场论综合资料](https://img.taocdn.com/s3/m/3e94d0e4f7ec4afe04a1dffc.png)
C.夹角为 45° D.相互垂直
15.一个矢量场的散度表示该矢量场中一点处的
A.环量
B.通量
C.通量对体积的变化率
D.通量对面积的变化率
() ()
() ()
二、填空题
1. 矢量场 A(r) 穿过闭合曲面 S 的通量的表达式为:
。
2. 如果两个不等于零的矢量的
等于零,则此两个矢量必然相互垂直。
3. 如 果 两 个 不 等 于 零 的 矢 量 的 点 积 ( 也 称 为 点 乘 ) 等 于 零 , 则 此 两 个 矢 量 必 然 相
(1)分别求出矢量 A 和 B 的大小
(2)两矢量之间的夹角
9. 矢量场 A 的表达式为 A aˆ x 4x aˆ y y 2
(1)求矢量场 A 的散度。
(2)在点
1,1处计算矢量场
A
与正
x
轴的夹角。
10. 标量场 x, y, z x2 y3 e z ,在点 P1,1,0处
(1)求出其梯度的大小 (2)求梯度的方向
2. 任一矢量场为 A(r) ,写出其穿过闭合曲面 S 的通量表达式,并讨论通量与源的关系。 3. 设任一矢量场为 A(r) ,写出其穿过闭合曲线 C 的环量表达式,并讨论环量与源的关系。
五、计算应用题
1. 现有标量 u(x, y, z) x 2 y 2 z 2 给出一球簇。
(1)求该标量在任意一点处的梯度。 (2)求在点(1,2,0)处单位法向矢量。
上环量的表达式为:
。 。
两个角度
。
15. 所谓矢量线,乃是这样一些曲线,在曲线上的每一点上,该点的切线方向与矢量场的方
向
。
2/4
三、名词解释 1. 无散场 2. 无旋场 3. 矢量场 4. 标量场 5. 矢量线 6. 通量 7. 环量 8. 散度 9. 旋度 10. 等值面
第一章 矢量分析习题解答
![第一章 矢量分析习题解答](https://img.taocdn.com/s3/m/b1246c484b7302768e9951e79b89680202d86b48.png)
第一章 矢量分析一、基本概念与公式1.标量与矢量矢量:一个既有大小又有方向的量。
标量:一个仅用大小就能够完整描述的物理量。
2.矢量运算1.加法矢量的加法符合交换律和结合律A B B A +=+ ()A B C A B A C ⋅+=⋅+⋅2.矢量的乘法 1) 数乘一个标量k 与一个矢量A 的乘积kA 仍为一个矢量,即x y z x y z k A kA e kA e kA e =++ 若0k >,则kA 与A 同方向;若0k <,则kA 与A 与反方向。
2) 标量积AB cos A B AB θ⋅=x x y y z z A B A B A B =++3)矢量积||||sin n AB A B A B e θ⨯=xy zxy z xyzxe e e A A A B B B = ()()()x y z y z z y z x x z x y y x e A B A B e A B A B e A B A B =-+-+-4)三个矢量的乘积标量三重积:()A B C ⋅⨯ 的结果为一标量。
有如下循环互换规律:()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯ 矢量三重积:)(C B A⨯⨯的结果为一矢量。
可展成下述两矢量之差:()()()A B C B A C C A B ⨯⨯=⋅-⋅3.三种常用的正交坐标系 1)直角坐标系在直角坐标系内的任一矢量A 可以表示为(,,)(,,)(,,)(,,)x y z x y z A x y z A x y z e A x y z e A x y z e =++式中,,,x y z A A A 分别为矢量A 在,,x y z e e e 方向上的分量。
位置矢量: x y z r xe ye ze =++ ( 位置矢量的微分为 x yzd r d x ed ye d z e =++ 与三个坐标面单位矢量相垂直的三个面积元分别为 x d S d y d z =,y dS dxdz =,z dS dxdy =体积元为 dV dxdydz =2)柱坐标系任一矢量场A 在圆柱坐标系中可表示为z z A A e A e A e ρρϕϕ=++ 式中,,z A A A ρϕ称为圆柱坐标分量,是矢量A 在三个垂直坐标轴上的投影。
《矢量分析与场论》数量场的方向导数和梯度
![《矢量分析与场论》数量场的方向导数和梯度](https://img.taocdn.com/s3/m/94f96f05ee06eff9aef80774.png)
(3) grad(u v) gradu gradv
(4) grad(uv) ugradv vgradu
u 1 (5) grad ( v ) v 2 (vgradu ugradv )
' gradf ( u ) f (u) gradu (6)
3.梯度的应用 例:设有位于坐标原点的点电荷 q ,在空间任何 一点 M ( x, y, z ) 处产生的电位为: q v 4r r xi yj zk,r r ,试求电位 v 的梯度。 解:
E q 4r
3
r
E gradv
电场中的电场强度等于电位的负梯度。电场 强度垂直于等位面,且指向电位减小的方向。
的模,试 r
r gradr r r
x r x2 y 2 z 2 x
r y y r
r z z r
r r r gradr i j k x y z x y z r i j k r r r r r
t 证明 u cons tan (习题 3第10题)。
证: 因 gradu 0 ,得
u u u 0, 0, 0 x y z
积分得: u cons tan t 表明:数量场等值面的梯度为0。
3.梯度的应用
例:若在数量场 u u(M ) 在 M 0处可微,且满 足 u(M ) u(M 0 ) ,证明在 M 0处有 gradu 0。 (习题3第11题) 证:因 u u(M ) 可微,且 u(M ) u(M 0 ) , 则 u(M ) 在 M 0 处取得极大值,有:
2 2 2
欲使 gradu M 平行 OZ 轴且模为32,则应有: