信号与系统第三章知识点总结
信号与系统-第三章习题讲解
Fn
1 T
T f (t)e jntdt 1
0
T
T E(1 t )e jntdt
0
T
E T e jnt dt 1 T te jnt dt]
T0
T0
E { 1 [t TT
1 e jnt
jn
|T0
T e jnt
0 jn
dt]}
E { 1 [T 1 0]} j E ; n 1, 2,....
E cos( )
2
2E cos( ) 2E cos( )
2
2 2 2
2
[1 ( )2 ]
3 32已知阶跃函数和正弦、余弦函数的傅立叶变换:
FT[u(t)] 1 (); j
FT[cos(0t)] [ ( 0 ) ( 0 )]; FT[sin(0t)] j[ ( 0 ) ( 0 )];
E
n
e
j
2
,
n为奇数
0,
n为偶数
故:f (t ) jE e jt jE e jt jE e j3t jE e j3t ....
3
3
4、求题图3-4所示周期三角信号的傅里叶级 数并画出幅度谱。
解:将该信号表示为三角形式的傅里叶级数,有
1T
2
频谱图如下所示:
3 7利用信号f (t)的对称性,定性判断题图3-7中各 周期信号的傅里叶级数中所含有的频率分量。
解:(1)图(a)中f (t)为偶函数,同时也是奇谐函数,故其 傅氏级数中只含奇次余弦分量。 (2)图(b)中f (t)为奇函数,同时也是奇谐函数,故其傅 氏级数中只含奇次正弦分量。 (3)图(c)中f (t)为奇谐函数,故其傅氏级数只含奇次谐 波分量。 (4)图(d )中f (t)为奇函数,故其傅氏级数中只含正弦分量。 (5)图(e)中f (t)既为偶函数又为偶谐函数,故其傅氏级数 中仅含直流和偶次谐波的余弦分量。
信号与系统重点概念公式总结
信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统重点概念公式总结
信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统第三章 连续信号的正交分解
f (t ) Ci gi (t )
i 1
n
第三章连续信号的正交分解
13
理论上讲
f (t ) lim Ci gi (t )
n i 1
n
在使近似式的均方误差最小条件下,可求得
t t1 f (t ) gi (t )dt Ci t 2 gi2 (t )dt t1
均方误差
n t2 2 ( t ) [ f ( t ) crgr ( t )]2 dt t 2 t 1 t 1 r 1
第三章连续信号的正交分解 23
1
若令 n 趋于无限大, 2 (t )的极限等于零 lim 2 (t ) 0
n
则此函数集称为完备正交函数集
第三章连续信号的正交分解
15
定义2:
如果在正交函数集 g1( t ), g 2( t ), gn( t ) 之外, 不存在函数x(t)
t2 2 0 x ( t )dt t1 t2 满足等式 x( t ) gi ( t )dt 0 t1
第三章连续信号的正交分解 8
信号的分量和信号的分解
信号常以时间函数表示,所以信号的分解指的就是 函数的分解。 1、函数的分量 设在区间
t 1 t t 2 内,用函数 f 1(t )
在另一
函数 f 2(t ) 中的分量 C 12 f 2(t ) 来近似的代表 原函数 f 1(t ) 。
f 1(t ) C12 f 2(t )
1 jnt f (t ) An e cn e jnt 2 n n
cn
1 An 称为复傅里叶系数。 2
表明任意周期信号可以表示成 e jn t 的线性组合,加权因 子为 cn 。
信号与系统分析《信号与系统分析》吴京,国防科技大学出版社第三章-1
n
2.图解法。 步骤:变量置换、翻转、移位、相乘及累加。
例: x1 (n) 2,1,50 , x 2 (n) 3,1,4,21 , 求y(n) x1 (n) * x 2 (n)。
§3.1 离散时间信号-序列
一 离散时间信号的描述 1. 解析式: 例如:x( n) 2( 1) n ,
1 x ( n) , 2
n
n 0,1,2,... n 0,1,2,...
双边离散信号 单边离散信号
2. 一组数字-序列的形式:
例如: x(n) ...,2,2,2,2,2,...
第三章离散时间信号与系统分析31离散时间信号序列32离散信号的基本运算33序列的卷积和34离散时间系统的差分方程35零输入响应36零状态响应37离散系统响应模式分析31离散时间信号序列一离散时间信号的描述1
第三章 离散时间信号与系统分析
§3.1 离散时间信号-序列 §3.2 离散信号的基本运算 §3.3 序列的卷积和 §3.4 离散时间系统的差分方程 §3.5 零输入响应 §3.6 零状态响应 §3.7 离散系统响应模式分析
一 序列的相加
y(n) x1 (n) x 2 (n)
例: x1 ( n) u( n), x2 ( n) u( n 3), 求y( n) x1 ( n) x2 ( n)
同序号的值对应相加减。 x1(n)
x1(n)+x2(n)
{ 1, 1, 1, 1, 1, 1, ...}0
2 1
2
n-2 n-1 n
x1(0) x2(1) x2(2) x2(3) x2(4) x1(0)x2(1) x1(0)x2(2) x1(0)x2(3) x1(0)x2(4)
信号与系统王明泉第三章习题解答
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。
《信号与系统》第三章
它的解: y(k ) y h k y p k
齐次解 特解
齐次解:齐次差分方程
y(k) an1 y(k 1) a0 y(k n) 0
的解,称为齐次解。
例y(k ) ay(k 1)
0
yk yk 1
当a是特征单根
a p k ak p 1k 1ak p1kak p0ak 当 是 重特征根。
cosk P cosk Q sink
当所有的特征根均不等于 e j
sin k Acosk , Ae j P jQ
全解:n阶线性差分方程的全解是齐次解与特解之和。 如果方程的特征根均为单根,则差分方程的全解为:
F k, yk,yk,,n yk 0
n 阶差分方程。
由于各阶差分均可写成 yk及其各移位序列的线
性组合,故通常所说的差分方程是指如下的形式:
Gk, yk, yk 1,, yk n 0
n 阶差分方程。
例如 yk 3yk 1 2 yk 2 f k
5、线性常系数差分方程
如果 yk及其各移位序列 yk 1,, yk n 均为
·主要内容 一、差分与差分方程 二、差分方程的经典解 三、零输入响应和零状态响应
一、差分与差分方程(书上这部分符号有错误,请改正) 1、一阶差分的定义及序列求和运算(85页)
设有序列 f k,则称 f k 1, f k 1, f k 2
等为 f k的移位序列。
仿照连续信号的微分运算,定义离散信号的差分运算。
a1f1k a2f2k 因此差分具有线性性质。
3、二阶及更高阶差分定义
2 f k f k f k f k 1
f k f k 1
信号与系统(郑君里第二版)讲义第三章 傅里叶变换
t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0
∫
∫
t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n
∞
jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2
−
T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
信号与系统第三章-周期信号的傅里叶级数表示
一. 连续时间傅里叶级数
成谐波关系的复指数信号集:
k(t) { ejk 0 t}k 0 , 1 , 2 ,
其中1. 每个信号都是以 2 为周期的.
2.公共周期为
2 0
k 0
,且该集合中所有的信号都
是彼此独立的。
若将信号集 k (中t ) 所有的信号线性组合起来
有 x(t) akejk0t, k0,1 , 2
——傅里叶级数的三角函数表示式
若令 ak Bk jCk 则
x (t) a 0 1(B k jC k)e jk 0 t (B k jC k)e jk 0 t
k
k 1
a 0 (B k jC k)e jk 0 t (B k jC k)e jk 0 t k 1
ak* ak
k1
a k * a k A k e jk A k e j k
即: Ak Ak
k k
结论: 若 x ( t ) 是实信号,则有:
a k 的模关于k 偶对称,幅角关于 k 奇对称。
x(t)a 0[A kejk0 tejkA kejk0 tejk] k 1
a02 Akcos(k0tk) k1
B kjC kB kjC k
因此 Bk Bk
Ck Ck
结论: 若 x ( t ) 是实信号,则有:
a k 的实部关于 k 偶对称,虚部关于 k 奇对称。
将关系 Bk Bk , Ck Ck 代入,可得到
x (t) a 0 (B k jC k)e jk 0 t (B k jC k)e jk 0 t k 1 a 0 (B kjC k)ejk 0 t (B kjC k)ejk 0 t k 1 a02 B kcosk0tC ksink0t k1
信号与系统王明泉科学出版社第三章习题解答
左右对t求导,得:
显然, 的指数傅里叶级数为 (式中 )
3.9求题图3.9所示各信号的傅里叶变换。
题图3.9
解:根据定义
3.10计算下列每个信号的傅里叶变换。
(1) ;(2) ;
(3) ;(4)
(5) ;(6)
解: (1)
(2)
(3)由于
根据卷积乘积性质,得
(4)由于
所以
(5) ,设
第3章傅里叶变换与连续系统的频域分析
3.6本章习题全解
3.1证明函数集 在区间 内是正交函数集。
证明:对任意的自然数n,m (n m),有
=0
证毕
3.2一个由正弦信号合成的信号由下面的等式给出:
(1)画出这个信号的频谱图,表明每个频率成分的复数值。对于每个频率的复振幅,将其实部和虚部分开或者将其幅度和相位分开来画。
图3-19-3
3.21用傅里叶变换法求题图3.21所示周期信号 的傅里叶级数。
题图3.21
解:对x(t)一个周期信号x0(t)的傅里叶变换为
X0(j )=
=
傅里叶级数
3.22求题图3.22所示周期性冲激信号的频谱函数。
题图321-1
3.23已知 的幅频与相频特性如题图3.23所示,求其傅里叶逆变换 。
(a)(b)
题图3.12
解:令傅里叶变换对 ,
(1)根据已知图形可知:
,
已知有
所以
根据傅里叶变换的微积分性质
所以
即
(2) ,
根据(1)的结论得
根据傅里叶变换的微积分性质
所以
即
3.13利用傅里叶变换的对称性求下列信号的频谱函数。
(1) ;(2) ;
信号与系统第三章习题答案
T 0
−
T 0
e−
jnω0t dt
( ) =
1 − jnω0T
e− jnω0T
+
1 jnω0T
+
1 jnω0T 2
Te
−
jnω0
T
−1 − jnω0
e− jnω0t T 0
=
1 jnω0T
+
1 j2 n 2ω02T 2
e− jnω0T
−1 =
1 j2nπ
+
1 n 2π
2
1−
e− j2 nπ
=1 j2 nπ
n = ±1, ±2,L
∫ ∫ F0
=
1 T
T f (t ) dt = 1
0
T
T 0
1−
1 T
t
dt
=
1 2
该信号的指数型傅里叶级数为
( ) ∑∞
ft =
1 e jnω0t
n=−∞ j 2nπ
98
其频谱图如图 3.2(b)所示。
(2)由图 3.1(b)可知,其周期为T = 2π ,其频ω0 = 1,信号的解析式为:
2πn
100
即
bn
=
−
2E nπ
n为奇数
0
n为偶数
故得信号的傅里叶级数展开式为
f
(t )
=
−
2E π
sin
ω0t
+
1 sin 3
3ω 0t
+
1 sin 5
5ω 0t
+
L
+
1 n
sin
nω0 t
+
信号与系统 郑君里 第三章 连续系统频域分析
编辑状态下,图形演示平移T1/2再翻转。
第3章 连续时间信号频域分析
1.三角型傅里叶级数
让· 巴普蒂斯· 约瑟夫· 傅立叶(Jean
Baptiste Joseph Fourier,1768 –1830), 法国著名数学家、物理学家,1817年当 选为科学院院士,1822年任该院终身秘 书,后又任法兰西学院终身秘书和理工 科大学校务委员会主席,主要贡献是在 研究热的传播时创立了一套数学理论。 小行星10101号傅里叶星、他是名字被刻在埃菲尔铁塔的七十二位法国 科学家与工程师其中一位、约瑟夫.傅立叶大学 1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方 程,提出任一函数都可以展成三角函数的无穷级数。
������=−1
������ ������������1 ej������������1������
因此得到指数形式的傅里叶级数
∞
������(������) =
������=−∞
������(������������1 )ej������������1������
第3章 连续时间信号频域分析
2.指数型傅里叶级数
������=1
������ ������ = ������0 +
������0 = ������0 = ������0
������������ = ������������ =
2 2 ������������ + ������������
������������ = ������������ cos ������������ = ������������ sin ������������
第3章 连续时间信号频域分析
(1) 三角型傅里叶级数系数的计算
信号与系统第三章(2)
F n ⋅ 2 πδ (ω − n ω
) )
= 2π
n = −∞
∑
∞
F n ⋅ δ (ω − n ω
0
即周期信号的傅里叶变换为
F (ω ) = 2π ∑ Fn ⋅ δ (ω − nω 0 )
−∞
∞
上式表明:周期信号的频谱函数,是由无限多个冲激组 上式表明:周期信号的频谱函数, 成,这些冲激位于基频整数倍的频率 nω0处,每一冲激的 强度即为 2π Fn 。
3.5.1 单位冲激 δ (t )
由根据傅里叶变换的定义式, 由根据傅里叶变换的定义式,并且考虑到冲激函 数的抽(取)样性质,得 数的抽( 样性质,
F (ω ) = ∫ δ (t )e
−∞
∞
− jωt
dt = ∫ δ (t )dt = 1
−∞
∞
结论:
1、单位冲激信号在整个频率范围内具有恒定的频 、单位冲激信号在整个频率范围内具有恒定的频 恒定的 谱函数,为常数1,即冲激信号包含相对幅度相等的所 谱函数 为常数 即冲激信号包含相对幅度相等的所 有频率分量,相位都为 相位都为0. 有频率分量 相位都为 2、信号的持续时间与其频带宽度成反比。 反比。 、信号的持续时间与其频带宽度成反比
−∞ ∞ − jωt
dt = ∫ τ e
2 − 2
− jωt
dt =
e
−e − jω
j
ωτ
2
3.5.7 虚指数函数
利用傅里叶反变换定义和冲激函数的抽样性质, 利用傅里叶反变换定义和冲激函数的抽样性质,可得
1 F [δ (ω − ω 0 )] = 2π
−1
∫ δ (ω − ω )e
−∞ 0
∞
《信号与系统》第3章
信号与系统讲稿
• 这部经典著作将欧拉、伯努利等人在一 些特殊情形下应用的三角级数方法发展 成内容丰富的一般理论,三角级数后来 就以傅里叶的名字命名。 • 《热的解析理论》影响了整个19世纪分 析严格化的进程。
信号与系统讲稿
3.1
周期性信号的频域分析
教学目标:掌握周期性信号频谱的概念, 会用傅里叶级数表示周期信号。
或 E 2 E f (t ) T1 T1 n1 Sa 2 n 1
Cos( n1t )
若将展开指数形式的傅里叶级数,由式(8)可得:
1 Fn T1
T1 2 T 1 2
Ee
ห้องสมุดไป่ตู้
jn1t
E n1 dt Sa T1 2
幅度谱cn和相位谱 见书P104页。
特别注意:书P103 1. 2. 3. P105 “对称方波信号有两个特点: (1)它是正负交替的信号,其直流分量(a0 等于零。 (2) 它的脉宽等于周期的一半,即 ”
信号与系统讲稿 第三章
)
信号与系统讲稿
二. 三. 四. 五.
周期锯齿脉冲信号(书P106,自学) 周期三角脉冲信号(书P106,自学) 周期半波余弦信号(书P108,自学) 周期全波余弦信号(书P108,自学)
n 1
a0 d0 2 dn
2 2 an bn 1
n tg
an bn
n次谐波的初相角
信号与系统讲稿
三. 频谱的概念
f ( t )为时间函数,而c0、cn、n为频率函数, 所以,信号从用时间函数来表达过渡到用频率函 数来表达。 1. 幅度频谱:cn 随频率变化的情况用图 来表示就叫幅度频谱。 2. 相位频谱:n随频率变化的情况用图 来表示就叫相位频谱。
信号与系统第三章(陈后金)3.
离散时间LTI系统的响应
3. 卷积法: 系统完全响应 = 零输入响应+零状态响应
y[k] yzi [k] yzs [k] yzi [k] x[k]* h[k]
✓ 求解齐次差分方程得到零输入响应
✓ 利用信号分解和线性非时变特性可求出 零状态响应
一、零输入响应
定义:系统的零输入响应是输入信号为零,仅由系 统的初始状态单独作用而产生的输出响应。
离散时间LTI系统的响应
1. 迭代法
n
m
ai y[k i] bj x[k j]
i0
j0
已知 n 个初始状态{ y[1], y[2], y[2],∙∙∙∙, y[n] } 和输入,由差分方程迭代出系统的输出。
n
m
y[k] ai y[k i] bj x[k j]
C2
1 2
解得 C1=1,C2= 2
yzi [k] (1)k 2(2)k k 0
[例] 已知某线性时不变系统的动态方程式为: y[k]+4y[k1]+4y[k2]=x[k]
解: (2) 求非齐次方程y[k]5y[k1]+6y[k2] =x[k]的特解yp[k]
由输入x[k]的形式,设方程的特解为
yp[k] Ak2k , k 0
将特解带入原差分方程即可求得常数A= 2。
[例]已知某二阶线性时不变离散时间系统的差分方程
y[k]5y[k1]+6y[k2] = x[k] 初始条件y[0] = 0,y[1] = 1,输入信号 x[k] = 2k u[k],求系统的完全响应y[k]。
1) 若初始条件不变,输入信号 x[k] = sin0 k u[k],
信号与系统第三章知识点总结
∫
T
x (t ) e
1 ak = N
n =< N >
∑ x ( n )e
− jk
相似处:1.信号都可以表示为成谐波关系的复指数信 号的线性组合 2.傅立叶级数系数是离散的 3.求解傅立叶级数系数的方法相似 不同处:1.离散域仅N个复指数信号累加 2.离散域傅立叶级数系数是周期的 3.连续域存在收敛问题,而离散域无该问题
k =< N >
∑ a H (e
k
j
2π k N
)e
j
2π kn N
− st
H ( s ) = ∫ h (t )e dt
−∞
∞
H ( jω ) = ∫ h (t )e − jω t dt
−∞
∞
H ( z) =
n =−∞
∞
∑
∞
h( n) z
−n
H ( e jω ) =
n = −∞
∑
∞
h ( n ) e − jω n
y(t ) =
y(n) =
k =−∞
ak H ( jkω0 )e jkω0t ∑
第三章需要重点掌ቤተ መጻሕፍቲ ባይዱ的知识点
2.傅立叶级数的物理意义 表征信号在不同频率点的强度,是频域分析的 一种方法。
3.傅里叶级数的性质 表3.1 表3.2
第三章需要重点掌握的知识点
4.傅立叶级数的收敛 仅连续时间傅里叶级数存在收敛问题 (1)平方可积
∫
T0
x(t ) dt < ∞
2
(2)狄里赫利条件
5.傅立叶级数与LTI系统 系统函数 频率响应
第三章需要重点掌握的知识点
1.傅立叶级数的表示方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章需要重点掌握的知识点
2.傅立叶级数的物理意义 表征信号在不同频率点的强度,是频域分析的 一种方法。
3.傅里叶级数的性质 表3.1 表3.2
第三章需要重点掌握的知识点
4.傅立叶级数的收敛 仅连续时间傅里叶级数存在收敛问题 (1)平方可积
∫
T0
x(t ) dt < ∞
2
(2)狄里赫利条件
5.傅立叶级数与LTI系统 系统函数 频率响应
∫
T
x (t ) e
1 ak = N
分析公式
n =< N >
∑ x ( n )e
− jk
会画 ak 的幅度和相位图。
离散域和连续域的相似处和不同处
x(t ) =
1 ak = T
k = −∞
∑a e
k
∞
jk
2π t T
x ( n) =
dt
k =< N >
2π t − jk T
∑a e
k
jk
2π n N
1 ak = N
n =< N >
∑ x ( n )e
− jk
第三章需要重点掌握的知识点
1.傅立叶级数的表示方法 针对周期信号!
综合公式
x(t ) =
1 ak = T
k = −∞
∑a e
k
∞
2π jk t T
2π t − jk T
x ( n) =
dt
k =< N >
∑a e
k
jk
2π n N
2π n N
− st
H ( s ) = ∫ h (t )e dt
−∞
∞
H ( jω ) = ∫ h (t )e − jω t dt
−∞
∞
H ( z) =
n =−∞
∞
∑
∞
h( n) z
−n
H ( e jω ) =
n = −∞
∑
∞
h ( n ) e − jω n
y(t ) =
y(n) =
k =−∞
ak H ( jkω0 )e jkω0t ∑
k =< N >
∑ a H (e
k
j
2π k N
)eN
∫
T
x (t ) e
1 ak = N
n =< N >
∑ x ( n )e
− jk
相似处:1.信号都可以表示为成谐波关系的复指数信 号的线性组合 2.傅立叶级数系数是离散的 3.求解傅立叶级数系数的方法相似 不同处:1.离散域仅N个复指数信号累加 2.离散域傅立叶级数系数是周期的 3.连续域存在收敛问题,而离散域无该问题
第三章需要重点掌握的知识点
1.傅立叶级数的表示方法
第三章需要重点掌握的知识点
1.傅立叶级数的表示方法 针对周期信号!
x(t ) =
1 ak = T
k = −∞
∑a e
k
∞
2π jk t T
2π t − jk T
x ( n) =
dt
k =< N >
∑a e
k
jk
2π n N
2π n N
∫
T
x (t ) e