初一数学方程路程应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲 乙
600
甲 乙 一元一次方程应用题分类练习题一
——行程问题
一、路程问题
(1)行程问题中的三个基本量及其关系: 路程=速度×时间,即S=vt (2)基本类型有① 相遇问题;② 追及问题;③行船问题
常见的还有:相背而行;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析、理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? 分析:相遇问题,画图表示为:
等量关系是:慢车走的路程+快车走的路程=480公里。 解:
(2)两车同时开出,相背而行多少小时后两车相距600公里? 分析:相背而行,画图表示为:
等量关系是:两车所走的路程和+480公里=600公里。 解:
(3)两车同时开出,慢车在快车后面同向而行,几小时后快车与慢车相距600公里?
甲 乙
分析:画图表示为:
等量关系为:快车所走路程-慢车所走路程+480公里=600公里。 解:
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? 分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。 解:
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。
解:
二、行船问题:流水问题是研究船在流水中的行程问题,因此,又叫行船问题。 行船问题有如下两个基本公式:
顺水速度=船速+水速 (V 顺=V 静+V 水) 逆水速度=船速-水速 (V 顺=V 静-V 水)
例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
【行程问题巩固练习】
1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?
(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?
(3)若他们同时同向而行,则经几小时乙追上甲?
(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?
(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?
2. 甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。
(1)如果背向而行,两人多久第一次相遇?
(2)如果同向而行,两人多久第一次相遇?
3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?
4、某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
5. A、B两地相距1200千米。甲从A地、乙从B地同时出发,相向而行。甲每分钟行50千米,乙每分钟行70千米。两人在C处第一次相遇。问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。问CD之间距离是多少?
6.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。