北师大版八年级不等式总复习
北师大版八年级下册数学各章知识要点总结
北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。
6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。
)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。
北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)
第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。
不等式知识点北师大八年级
不等式知识点北师大八年级不等式知识点不等式是数学中的一种基本概念,其本质是描述数值大小之间的关系。
不等式在数学中具有广泛应用,尤其在代数与几何中具有极其重要的地位。
本文将对不等式的基本概念、不等式的解法、不等式的应用等方面进行详细介绍。
一、不等式的基本概念不等式是由‘>’、‘<’、‘≥’、‘≤’等符号来表示的数值大小关系的式子。
不等式中的数值可以是整数、分数、甚至是根式等。
不等式中出现的符号具有以下含义:1.>:大于2.<:小于3.≥:大于或等于4.≤:小于或等于例如:x > 2 表示x大于2y < 3 表示y小于3a +b ≤ 10 表示a与b的和小于或等于10二、不等式的解法解不等式就是要求出不等式中未知数的取值范围。
不等式的解法需要根据不等式的形式来进行,以下为常见的不等式形式及其解法:1.一元一次不等式一元一次不等式是一种只涉及一个变量及其一次项的不等式,其通式为ax + b > c(或ax + b < c、ax + b ≥ c、ax + b ≤ c)。
对于一元一次不等式的解法,需要注意以下步骤:(1)将不等式移项,使得未知数在等号左侧。
(2)对不等式两侧同乘/除以正数,使得未知数的系数为1。
(3)求出未知数的取值范围。
例如:3x - 4 ≥ 5,将-4移项得3x ≥ 9,再除以3,得到x ≥ 3。
2.一元二次不等式一元二次不等式是一种有二次项的不等式,其通式为ax² + bx + c > 0(或ax² + bx + c <0、ax² + bx + c ≥ 0,ax² + bx + c ≤ 0)。
对于一元二次不等式的解法,需要注意以下步骤:(1)将不等式移项,使得不等式的右侧为0。
(2)根据判别式(b² - 4ac),判断二次函数的零点个数及其位置。
(3)根据二次函数在零点处的取值情况,求出不等式的解集。
例如:x² - 2x - 3 > 0,移项得x² - 2x + 3 < 0,此时判别式Δ = b² - 4ac = 4 - 4(1)(3)=-8 <0,说明该二次函数没有实数根,即对任意x,该不等式均成立。
北师大版八年级下册数学《不等关系》一元一次不等式和一元一次不等式组研讨说课复习课件
4. 用“<”或“>”号填空.
(1)-2_<___2;
(2)-3_<___-2;
(3)12_>___6;
(4)0__>__-8;
(5)-a__<__a (a>0); (6)-a__>__a(a<0).
5.用不等式表示下列问题中数量之间的关系.
(1)小陈的体重(x)至少100斤. x≥100
(2)这支铅笔的价钱(y)至多3元. y≤3
(3)一辆轿车在某公路上的行驶速度是 x km/h,已知 x≤100 这辆轿车在该公路上行驶的速度不超过100 km/h. (4)一块正方形的苗圃地,边长为y(m),周长不少于 36 m . 4y≥36 (5)某隧道限速为60km/h,一辆车在隧道中行驶 的速度为v(km/h)的轿车因超速被交警处罚. v>60 (6)山亭3月8日最低气温1oC,最高气温是 13oC,薛城这一天某一时刻的气温是toC . 1oC ≤ toC ≤ 13oC
探究新知
不等式的概念:
观 察 由 上 述 问 题 得 到 的 关 系 式 : x>50 , s>60x , s<100x,a+b+c≤160 ,6+3x>30,它们有什么共同的特点?
结论
一般地,用不等号“>”(或“≥”),“<”(或
“≤”)连接的式子叫做不等式.
探究新知
不等号:
不等号
>
读作
大于
<
第二章 一元一次不等式与一元一次不等式组
不等关系
课件
情景导入
找出下列材料中的不等关系.
(完整版)北师大版八年级下册数学复习知识点及例题相结合
一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
北师大版数学八年级下第一章、一元一次不等式与不等式组培优复习讲义(一)
戴氏西门总校数学资料北师大版八年级下第一章、一元一次不等式与不等式组复习讲义(一)第一部分、要点概况(一)不等关系1、一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。
注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。
⑵常用的不等号有:<、≤、>、≥、≠。
⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号; ⑥若ab <0或0ab<,则a 、b 异号。
⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例1:判断下列哪些式子是不等式,哪些不是不等式。
①32>-; ②21x ≤; ③21x -; ④s vt =; ⑤283m x <-;⑥124x x ->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
不等式: 。
变式训练1:已知下列各式:①-1<0,②2+3=5 ③3x>7 ④2x-3y=1 ,其中不等式有不等式: 。
例2:⑴a 是正数: ;⑵x 的平方是非负数: ; ⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。
变式训练2:用不等式表示:(1)x 与1的差不大于y 的3倍; (2)a 与b 的平方和是非负数;例3:试判断237a a -+与32a -+的大小变式训练3-1:比较1415-与1314-的大小。
北师大版八年级下册数学总复习 第二章一元一次不等式与一元一次不等式组单元过关专题练习(无答案)
一元一次不等式与一元一次不等式组单元过关【含参不等式】1. 若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .1a ≥B .1a >C .1a -≤D .1a <-2. 已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩≥的解集为3≤x <5,则ba 的值为( )A .-2B .12-C .-4D .14-3. 若不等式组30x ax >⎧⎨-⎩≤只有三个整数解,则a 的取值范围为( )A .0≤a <1B .0<a <1C .0<a ≤1D .0≤a ≤14. 如图,如果不等式组4030x a x b -⎧⎨-<⎩≥的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( ) A .16个B .12个C .9个D .2个5. 一元一次不等式组x ax b >⎧⎨>⎩的解集是x >a ,则a 与b 的关系为( )A .a ≥bB .a >bC .a ≤bD .a <b6. 已知关于x 的不等式组21321x ax b <+⎧⎨+⎩≥仅有3个自然数解,则整数a 与整数b 的和的最小值等于_________.7. 已知关于x 的不等式424233x x a +<-的解,也是不等式12162x -<的解,则a的取值范围是___________.8. 若不等式组0122x a x x -⎧⎨->-⎩≥恰有两个整数解,则a 的取值范围是________.9. 若关于x ,y 的方程组2121x y p x y p +=+⎧⎨-=-⎩的解满足x >y ,求p 的取值范围.10.已知关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩.(1)当m=2时,请解关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩;(2)若关于x,y的方程组1173x y mx y m-=-⎧⎨+=-⎩中,x为非负数,y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.【数形结合求范围】1.如图所示,函数y1=|x|和214 33y x=+的图象相交于(-1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>22.如图所示,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()A .BC .D .3. 一次函数y 1=kx +b 与y 2=x +a 的图象如图,交点横坐标为3,则下列结论:①当x <3时,y 1>0;②当x <3时,y 2>0;③当x >3时,y 1<y 2.正确的个数是( ) A .0B .1C .2D .3第3题图 第4题图4. 已知函数y 1=x ,2113y x =+,3455y x =-+的图象如图所示,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为( )A .32B .3717C .6017D .2595. 如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx +b >mx -2的解集是( ) A .1<x <2B .0<x <2C .0<x <1D .x >1第5题图 第6题图6. 如图,直线y 1=3x +b 和y 2=ax -3的图象交于点P (-2,-5),当y 1>y 2时,x 的取值范围是__________________.7. 已知一次函数y =3x -6的图象如图所示,回答下列问题:(1)当-5<y ≤3时,x 的取值范围是__________; (2)当x >3时,y 的取值范围是__________.8.如图,直线y1=mx与直线y2=kx+b交于点P(2,1),则不等式组12-<mx<kx+b的解集为________________.9.三个数3,1-a,1-2a在数轴上从左到右依次排列,你能确定a的取值范围吗?10.如图,直线OC,BC的函数关系式分别是11 2y x=和y2=-x+12,两直线的交点为C.(1)求点C的坐标,并直接写出y1>y2时x的范围;(2)在直线y1上找一点D,使△DCB的面积是△COB的一半,求点D的坐标;(3)点M(t,0)是x轴上的任意一点,过点M作直线l⊥x轴,分别交直线y1,y2于点E,F,当E,F两点间的距离不超过8时,求t的取值范围.【应用题】1.小明要从甲地到乙地,两地相距1千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15-x)≥1800 B.90x+210(15-x)≤1800C.210x+90(15-x)≥1.8 D.90x+210(15-x)≤1.82.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x-(30-x)≤120 B.10x≥120C.10x>120 D.10x-3(30-x)≥1203.三个连续正偶数的和小于19,这样的正偶数组共有多少组?把它们都写出来.4.某校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?5.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可打几折?6.某公司准备把240吨白砂糖运往A,B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见表:(2)如果安排10辆货车前往A地,其中大货车有m辆,其余货车前往B 地,且运往A地的白砂糖不少于130吨.①求m的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.7.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品,若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?(用一元一次不等式求解)8.某市计划修建一条长60千米的地铁,根据甲、乙两个地铁修建公司标书数据发现:甲、乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲、乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲、乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的56”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.9. 某商场促销方案规定:商场内所有商品按标价的8折出售,同时,若折后价满一定金额后,按表中获得相应的现金返还.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则顾客第一重优惠是:400×80%=320元,第二重优惠是返回现金30元,实际付款320-30=290元,获得的优惠额是400-290=110元.(1)购买一件标价为1000元的商品,顾客实际付款多少?优惠额是多少? (2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?10. 我县黄泛区农场有A ,B 两个果园,分别收获水果380件,320件,现需把这些水果全部运往甲、乙两个销售点,每件运费如图所示.现甲销售点需水果400件,乙销售点需水果300件.(1)设从A 果园运往甲销售点水果x 件,总运费w 元,请用含x 的代数式表示w ,并写出x 的取值范围.(2)若总运费不超过18 300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求最低运费.乙元20B A。
北师大版八年级下册数学[一元一次不等式组(基础) 知识点整理及重点题型梳理]
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2.(2016•莆田)解不等式组:. 【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】 解:解:.由①得x ≤1;由②得x <4;所以原不等式组的解集为:x ≤1.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三: 【变式】解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树; 第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式. 到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤< 答:此商品的原价在37.5元(包括37.5元)至40元范围内.4. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元; (2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
北师大版八年级下数学第一章不等式复习课件
(2)m的2倍与n的5倍的差不大于7; 2m-5n≤7 (3)x与y的5倍的差最多为5.
x-5y≤5
3.如果a<b,用适当的符号填空. < (1) a+c___b+c;
(3) 2a+10___2b+10; < > (2) -3a___-3b; < (4) a-b___0;
自学指导二: (3分钟)
1.下列说法不正确的是( D ) A. 不等式x<3的整数解有无数个;
自学指导三: (5分钟)
1.下列式子:①3x2+2x>5; ②2x-5>3y+1;③3x+1<7;
2 ④-3>0. ⑤ - x +2<3; ⑥ y>0.中是一元一次不等式的
③⑥ 有_________.( 填序号)
2.如图是一次函数y=kx+b的图象, 观察图象回答问题:
y
2
0
1
x
(1)x 等于1时,y=0; (2) x 小于1 时.y>0; (3) x 大于1 时.y<0 3.移项 x-11 2x+1 3.求不等式 >-1的非负整数解. 1. 去分母 3 4 4.合并同类项 解: x -311 - 2x4- 1 < -12.去括号 4x - 6x < -12 + 44 - 3 5.系数化为1
1. (1)不等式x<3.5的非负整数解是 0, 1,2,3; (2)不等式x<-3.5的最大整数解是_______; -4 2. 已知关于x的不等式m-2x<3的解集如图,则m的值 -1 为_______.
-4 -3 -2 -1 0 1 2 3
2.根据题意确定不等式组 3.已知关于x不等式-5x+a<3的负整数解为 -1,-2,求a的取 值范围. ∵ x取负整数是 -1,-2 a -3 解: -5x+a<3 5 <-2 ∴-3≤ a-3 -5x<3-a 即 3≤ <-2 a-3 5 x> 5 解得:-12≤a<-7 1.用含a的式子表示x的取值 3.解不等式组确定a的取值
北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件
3×4 + 2X ≤ 30
表示不等式的解集 你能用什么办法把不等式 x>5的解集和 不等式x-5≤-1的解集表示在数轴上?
x>5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x≤4
将不等式的解集表示在数轴上时,要注意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 2 在数轴上表示不等式的解集
思考:如何在数轴上表示出不等式x>2的解集呢? 先在数轴上标出表示2的点A; 则点A右边所有的点表示的数都大于2,而点A左边 所有的点表示的数都小于2;
因此可以像图那样表示不等式的解集x>2.
A -1 0 1 2 3 4 5 6
课堂检测
能力提升题
2、根据不等式的基本性质确定不等式2-x<1的解集,并把解集表
示在数轴上. 解:根据不等式的基本性质1,不等式的两边同时减去2得-x<-1; 根据不等式的基本性质3,不等式的两边同时除以-1得x>1. 这个不等式的解集在数轴上表示为:
课堂检测
拓广探索题
1、不等式2x-3≥-1的解集在数轴上表示为( A )
-3 -2 -1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集,
并把解集表示在数轴上.
(1)x-2≥ -4
(2)2x ≤ 8
解:两边同时加2得:
解:两边同时除以2得:
x ≥ -2
x ≤4
-3 -2 -1 0 1 2
(3)-2x-2 > -10
北师大版初中数学八年级下册期末总复习
第一章 一元一次不等式和一元一次不等式组
一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式
子叫做不等式。能使不等式成立的未知数的值,叫做不等式的解. 不等式的解
不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解
集的过程叫解不等式.
3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
第一章 整章水平测试
一、填空题(每小题3分,共30分)
1.若代数式t?1t?1?的值不小于-3,则t的取值范围是_________. 52
2.不等式3x?k?0的正数解是1,2,3,那么k的取值范围是________.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组。
不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
等式基本性质:
1、在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.
2、在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本性质:
五、列一元一次不等式组解实际问题的一般步骤:
(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)
关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型:
1、 求4x-6 7x-12的非负数解.
2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.
若c<0, 则ac<bc
不等式的其他性质:反射性:若a>b,则b<a;传递性:若a>b,且b>c,、去分母; 2、去括号; 3、移项合并同类项; 4、系
北师大版中考复习:方程与不等式综合复习
中考复习:方程与不等式综合复习【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程x=ax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.+b0≠a为未知数,)(05.一元一次方程解法的一般步骤整理方程——去分母——去括号——移项——合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)x b ac =-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,ac x x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0a b<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )A .2,2x y =-⎧⎨=⎩B .2,3x y =-⎧⎨=⎩C .3,3x y =-⎧⎨=⎩D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解.【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩ 【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升. 根据题意,得15015018.751.8x x-=-, 整理,得2 1.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2.(1)求证:B-A >0,并指出A 与B 的大小关系;(2)指出A 与C 哪个大?说明理由.【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小.【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0.由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3).∵ a >2,∴ a+7>0.当2<a <3时,a-3<0,∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0,∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0,∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大.【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由.【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >->∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+>∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+-∵1>a ,∴20,10a a +>->∴A>C>B【方程与不等式综合复习 关联的位置名称:例3】【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105;若x 为偶数,即x =22时,y =101.∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名?【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式.【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110.故今年最少可招收“宏志班”学生110名.【总结升华】本题属于列方程与不等式组综合题.举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数)(1)若此方程的一个非零实数根为k ,① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式; (2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式;(2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可.【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程,∴ m ≠ 2.∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0m m k m k ---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+. (2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ . 当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根. 解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图) 当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根.【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知:关于x 的一元二次方程2220kx x k ++-=(1k ≥).(1)求证:方程总有两个实数根;(2)当k 取哪些整数时,方程的两个实数根均为整数.【答案】(1)证明:2244(2)4844(1)0k k k k k ∆=--=-+=-≥,∴方程恒有两个实数根.(2)解:方程的根为x == 1k ≥,∴1(1)k x k-±-==. ∴11x =-,221x k=-. 1k ≥,∴当1k =或2k =时,方程的两个实数根均为整数.【方程与不等式综合复习 关联的位置名称:例5】【变式2】已知:关于x 的方程 (1)求证:方程总有实数根; (2)若方程有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数和二次函数=,当时,有,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16 ()0322=-+-+k x k x ()0322=-+-+k x k x ()0322=-+-+k x k x b x y +=12y ()322-+-+k x k x 71<<-x 21y y >=(k -4)2≥0∴此方程总有实根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式与一元一次不等式组学习目标:1. 认识一元一次不等式,会解简单的一元一次不等式;2. 会解一元一次不等式并能够在数轴上表示出来。
3. 会用不等式或不等式组解决实际问题。
教学难点:根据不等式组解的情况求不等式组参数的取值范围。
教学内容知识点一:不等式及其基本性质1. 不等式的相关概念(1)不等式:用不等号(>,》,v,w或工)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围2. 不等式的基本性质性质 1 :若a> b,贝U a ± c>b± c;性质2:若a> >0,则>,a>b ;c c性质3:若a><0,则<,a<b.c c知识点二:一元一次不等式1. 定义:用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式.[来源:学。
科。
网Z。
X。
X。
K]2. 解法[来源:学科(1)步骤:去分母;去括号;移项;合并同类项;系数化为 1.(2)解集在数轴上表示:x > a x > a x < a x v a 知识点三:一元一次不等式组的定义及其解法1. 定义:由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.2. 解法:先分别求出各个不等式的解集,再求出各个解集的公共部分3. 不等式组解集的类型知识点四:列不等式解决简单的实际问题列不等式解应用题(1) 一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2) 应用不等式解决问题的情况:a.关键词:含有“至少(》)”、“最多(W)”、“不低于(》)”、“不高于(W)”、“不大(小)于”、“超过(>)”、“不足(V)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案基础知识达标知识点一1.若x>y,则下列式子中错误的是(A. x —3>y—3B. 2x > 2yC. 3> 3D.—3x >—3y解:A根据不等式的性质1, 可得x —3>y —3, 故A正确;根据不等式的性质2, 可得2x> 2y,故B正确;根据不等式的性质1, 可得3>3,故C正确;根据不等式的性质3, 可得-3x V —3y,故D错误;2.当KX W2时,2>0,则a的取值范围是(A )A. a>—1B. a>—2C. a>0D. a>—1 且a^0【解析】不等式的性质.当1时,2>0;当2, 22>0,解两个不等式,得到a的范围,最后综合得到a的取值范围.解:当1时,2>0解得:a>—2;当2, 22>0,解得:a>—1,•••a的取值范围为:a>—1.知识点二1. 不等式32>- 1的解集是(C )A. x>—-B. X V—2C. x >—1D. x V —31解:移项得,3x >— 1 —2,合并同类项得,3x >—3,把x的系数化为1得,x >—1. 故选C.2. 一元一次不等式 2 (1 )>4的解在数轴上表示为(A)解:由 2 (1) >4,可得1> 2,解得x> 1,--- -- 所以一元一次不等式2 (1 )》4的解 1 在数轴上表示为故选:A.知识点三1. 一个关于x的一元一次不等式组的解集在数轴上表示如图,贝U该不等式组的解集是(C )-4 -3 -2 -1 0 1 2 3 4 5A.—2 V X V 1B. —2 V X W1C.—2W X V 1D.—2W x W1【解析】在数轴上表示不等式的解集. 根据不等式解集的表示方法即可判断.【解答】解:该不等式组的解集是:-2W x v 1. 故选 C.2x+l> - 32. 不等式组t - x+3>°的整数解的个数是(B )A. 3B.5C.7D.无数个【解析】一元一次不等式组的整数解.先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.'2x+l>- 3®解:尤+3>0②,解①得:x>- 2,解②得:X W3.则不等式组的解集是:-2v x w 3.则整数解是:-1, 0, 1, 2, 3共5个.故选B.知识点四1. 某电器商场销售A, B两种型号计算器,两种计算器的进货价格分别为每台30元,40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A, B两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A, B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?解:(1)设A, B型号的计算器的销售价格分别是x元,y 元,得:5(x -30) (y -40) =76 x =42|6(x —30) +3(y —40) =120,解得"=56 .答:A, B两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A型号的计算a台,得30a +40(70 -a) > 2500解得a》30答:最少需要购进A型号的计算器30台.2. 为提高饮水质量,越来越多的居民选购家用净水器. 一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B型号家用净水器进价是350 元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价- 进价)解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,\+y=160 fx=100由题意得i 15Z+350尸36Q0Q ,解得l尸60 .答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,每台B型号家用净水器的毛利润是2a元,由题意得10060X 2a> 11000, 解得a>50,150+50=200 (元).答:每台A型号家用净水器的售价至少是200元.能力提高1. 不等式组『铝〔了的解集是(A )L2X+3>1A. - Kx v 2B. x>- 1C. x v 2D. - 1V x<2解:产-段,[2K+3>1②由①得,4x v8, x v2,由②得,x>- 1,故不等式组的解集为- K x v 2, 故选A.2. 若不等式-2> 0的解集为x v- 2,则关于y的方程2=0的解为(D )A.- 1B. 1C.- 2D. 2【解析】解一元一次不等式;一元一次方程的解.根据不等式-2>0的解集为x v-2即可确定a的值,然后代入方程,解方程求得.【解答】解:解-2>0,移项,得:〉2,•••解集为X V- 2,则-1,则2=0 即-2=0,解得:2.故选D.3. 关于x的不等式x - b> 0恰有两个负整数解,则b的取值范围是(D )A.- 3V b v- 2 B . - 3V b<- 2 C. - 3< b<- 2D.- 3W b v - 2【解析】一元一次不等式的整数解.表示出已知不等式的解集,根据负整数解只有-1,- 2,确定出b的范围即可.【解答】解:不等式x - b>0,解得:x>b,•••不等式的负整数解只有两个负整数解,•••- 3< b v 2 故选D.4. 关于x的不等式组/>a的解集为x> 1 ,则a的取值范围是^>1(D )> 1 v 1 C. a> 1 D . a<1【解析】不等式的解集.解两个不等式后,根据其解集得出关于a的不等式,解答即可.【解答】解:因为不等式组x a的解集为x> 1, 所以可I X >1得a w 1, 故选D5. 等式组的解集是x>2,则m的取值范围是(C )A. m w 2 B . m> 2 C . me 1 D . m>16. 关于x的一元一次方程4仁31的解是负数,则m的取值范围是(C )A 2B m>2C m<2 Dn W27. 关于x的]无解.则a的取值范围是(C )A. B . C . D .【解析】:\r -实厂,由①得,x<1,由②得,x>a•此不等式组无解,•/ ? 1 .8. 已知2是不等式x-5 a^3a 2 <0的解,且1不是这个不等式的解,则实数a的取值范围是(C )A. a > 1B. a w 2C. 1 v a w 2D. 1 w a<2【解析1 V2 是不等式(x-5)(-32)? 0 的解,•••(2-5)(2a -32)? 0, 解得:a? 2,T1不是这个不等式的解,二(1 -5)(a -32)>0,解得:a>1, 二1<a? 2, 故选:C.r9. 不等式组/十2〉1的最大整数解是3 .2x - 1 兰8 _ x试题分析:「X + 2> 1①,解不等式①得x >-1,解不等式②、2x - 1 兰8 - x ②得,x w 3,则不等式组的最大整数解为-1 v x w 3,则不等式组的最大整数解为3.•••- 46V 0, x > 3, 故答案为:x> -2 213. 如图,直线y i =经过P(2, 1)和Q(- 4,- 2)两点,且与直线y2 =+ b交于点P,则不等式+ b>>- 2的解集为—4V x V2.【解析】将P (2, 1)代入解析式y i,先求出m的值为丄,将Q2点纵坐标2代入解析式丄,求出y i的横坐标4,即可由图直接求2出不等式>> -2的解集为y2>y i>-2时,x的取值范围为-4 V x V 2, 故答案为:-4 V x V 2.严+ 1 < 2a14. 不等式组的解集是,则关于x 的方程恥+ b二o的解为_ 2.3【解析】根据不等式组的解集即可得出关于a、b的方程组,解方程组即可得出a、b值,将其代入方程0中,解出方程即可得出结果.jx + 1 < 2a解:•.•不等式组的解集是,f2 日一1 - 5 rH = 3二,解得:,•••方程0为32=0,解得:.2故答案为:23 315. (1)解不等式心 -3^-5>x- S,并把它的解集在数轴上3 2 3表示出来.(2)解不等式组: 3x+3 _ 2x+7{ 2x 4 ,并把解集在数轴上表示出来.3 -x3试题解析:(1)解.原不等式化简为.2x — 4 — 9x — 15》6x — 4+ 2x ,解得x w-1,解集在数轴上表示为:・ 5-4-3-2-10 I 2 3 4 5⑵ 解:由①得x >4由②得x v 1,二原不等式组无解.—2x + 3 3—316.已知实数a 是不等于3的常数,解不等式组{ 1ix - 2 a x :: 0 22并依据a 的取值情况写出其解集.【解析】试题分析:分别解两个不等式,然后根据不等式组的解 集的确定法分情况讨论即可-2x 3 一 -3{1 c 1 C x —2a x : 02 2解①得:x w 3,解②得:x v a , •••实数a 是不等于3的常数, •••当a >3时,不等式组的解集为x w 3; 当a v 3时,不等式组的解集为 x v a.17. 若关于x 、y 的二元一次方程组{5x 2^5a 的解满足不等式7x 4y =4a组{2x y 5求出整数a 的所有值.x 「八-9试题解析:解:试题解析:解: 5x 2y =5a ① {7x 4y = 4a ②'①X 2-②,得:36a ,解得:2a ,将2a 代入①,得:1025a ,解得:- 2a,的健身器材若干套,A , B 两种型号健身器材的购买单价分别为 每套310元,460元,且每种型号健身器材必须整套购买. (1) 若购买A,B 两种型号的健身器材共 50套,且恰好支出20000 元,求A, B 两种型号健身器材各购买多少套?(2) 若购买A , B 两种型号的健身器材共 50套,且支出不超过 18000元,求A 种型号健身器材至少要购买多少套?试题解析:(1)设购买A 种型号健身器材x 套,B 型器材健身 器材y 套,解得:20, 30,答:购买A 种型号健身器材20套,B 型器材健身器材30 套.二方程组的解为x =2a .将x =2a 代入不等式组2x • y ::: 5,得: { 5{ 5{x — y 一9 y a y a2 254a a :: 5 25解得:--2v a v 10,二整数a 的所有值为-1、0、1、2、3. 3{2a 5 a 乜-9218.倡导健康生活,推进全民健身,某社区要购进 A, B 两种型号 根据题意,得:1+尸 50'310y+460y=20000(3) 设购买A型号健身器材m套,13 / 26根据题意,得:310460 (50 - m < 18000,解得:m> 33 ',Tm为整数,•••m的最小值为34,答:A种型号健身器材至少要购买34套.课后作业1.不等式2x -3样1的解集在数轴上表示为( D )A. B. C. D.【解析】在数轴上表示不等式的解集;解一元一次不等式.数形结合.先解不等式得到x V 2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D选项正确.【解答】解答:解:2x V 4,解得x v 2, 用数1 ---轴表示为.故选D.r2x- 1>32 .不等式组飞+1/ 的解集是(C )A. x>2 <3 C . 2v x<3 D .无解【解析】解一元一次不等式组.先求出每个不等式的解集,再求出不等式组的解集即可.•.•解不等式①得:x > 2, 解不等式②得:x w 3,•••不等式组的解集为2v x w 3,故选C.3 .不等式组『空勺的整数解共有(B )A. 3B.2C.0D.无数个【解析】一元一次不等式组的整数解.此题可先根据一元一次不等式组解出x 的取值,根据x 是整数解得出x 的可能取值.【解答】解:『夕9;¥,解①得:X 》3, 则不等式组的解集是:3w x v 5. 则整数解是3和4共2个.故选B.4. 在平面直角坐标系中,点 P (1, 2 - m 在第二象限,贝U m 的 取值范围为(A ) A. m v- 1 B.m v 2 C. m > 2 D. — 1 v m v 2fin + 1 < 0【解析】根据题意,得: ‘― ',解得m v - 1,故选A.5.某商场店庆活动中,商家准备对某种进价为600元、标价为1200元的商品进行打折销售, 但要保证利润率不低于10%则最 低折扣是(B )A. 5 折B. 5.5 折C. 6 折D. 6.5 折 【解析】设至多可以打x 折【解答】解:r2x- 1>3©"晋<2②1200600》600 X 10%解得x>55%即最多可打5.5折. 故选B.6. _____________________________________________ 不等式29>3 ( 2)的正整数解是1 , 2, 3. ___________________ . 【解析】一元一次不等式的整数解.先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:29> 3 ( 2),去括号得,29> 36,移项得,2x - 3x> 6 - 9,合并同类项得,-x>- 3,系数化为1得,x w3, 故其正整数解为1, 2, 3.7. 直线经过点B (- 2, 0)与直线42相交于点A,与y轴交于C(0,- 4),则不等式42V的解集为x V—1试题分析:根据图像的交点可得「2_b",解得{^-2,因此一 b = —4 b = _4次函数的解析式为24,求出交点A的坐标为(-1 , -2 )然后根据函数的图像可知42v的解集为x V -1.8. 关于x的不等式组{2x 1 3的解集为1v x V3,则a的值为4.a —x > 1【解析】解不等式21 > 3可得x > 1,解不等式〉1,可得x V 1, 然后根据不等式组的解集为1V x V 3,可知仁3,解得4. 故答案为:4.9. 如果m 是实数,且不等式(1) x > 1的解是x v 1,那么实数m 的值为_ n v — 1【解析】由含有m 的不等式(1) x > 1的解集为:x v 1,根据不等式的基本性质3,可知1 v 0,解得n v -1. 故答案为:n v -1.f 3x-m < 010.若关于沖勺不等式"■'"x的整数解共有4个,贝的取值 范围展:6 C 巴 W 76 .故 ■' ,解得:山 -1.故答案为:18 < m 2111. 解不等式组,并把解集在是数轴上表示出来. “ x+5 页、弋. I 丁冇沁试题分析:分别求出不等式组中两不等式的解集, 找出解集的公共部分确定出不等式组的解集,表示在数轴上即可. 试题解析:解:由①得:x >-寸, 由②得:x V 4,二不等式组的解集为-? < x v 4,f 3x-m < 0①【解析】解:',由①得:in;,由②得:> ',inT 整数解有四个,•••’’:,•••四个整数解为:3, 4, 5,12. 某市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30 本,种植类图书60本.计划养殖类图书不超过 2 000本,种植类图书不超过1 600本.(1)符合题意的组建方案有几种?请写出具体的组建方案;⑵若组建一个中型图书室的费用是 2 000元,组建一个小型图书室的费用是1 500元,哪种方案费用最低?最低费用是多少元?试题解析:解:(1)设组建中型两类图书室x个、小型两类图书室(30 - x)个.由题意得:{80X 30 30「X - 2000,化简得:{5x汨10,解这个不等式组,得50X 60 30 -x 乞1600 ' x 一2020W X W 22.由于x只能取整数,••• x的取值是20, 21, 22.当20 时,30- 10;当21 时,30- 9;当22 时,30- 8.故有三种组建方案:方案一,中型图书室20个,小型图书室10个;方案二,中型图书室21个,小型图书室9个;方案三,中型图书室22个,小型图书室8个.(2)方案一的费用是:2000X 20+1500X 10=55000 (元);方案二的费用是:2000X 21+1500X 9=55500 (元);方案三的费用是:2000X 22+1500X 8=56000 (元);故方案一费用最低,最低费用是55000元.13. (2015?四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。