统计学基础知识 ppt课件
合集下载
统计学完整全套PPT课件
介绍非线性回归模型的基本形式 、特点以及常见的非线性回归模 型,如指数模型、对数模型等。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
统计学基础ppt课件
➢ 调查失败的主要原因是抽样框出现了问题。在经济大萧条 时期由于电话和汽车并不普及,只是富裕阶层才会拥有, 调查有电话和汽车的人们,并不能够反映全体选民的观点
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n
统计学完整ppt课件完整版
假设检验的基本思想:小概率事件原 理
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
《统计学基础》PPT课件1
任务二 统计学研究对象和作用
本节的重点: 统计研究对象及其特点 统计的作用
本节的难点: 统计研究对象的特点
27
一、统计学的研究对象及其特点
(一)统计学的研究对象 社会经济统计学的研究对象,是社会经济现象
的总体的数量方面,即社会经济现象总体的数 量特征和数量关系。 就是通过特有的统计指标和统计指标体系来表 明社会经济现象的规模、水平、速度、比例和 效益等,揭示现象发展的本质规律。
概率论 (包括分布理论、大数定律
和中心极限定理等)
反映客观 现象的数
据
样本数据
描述统计
(统计数据的搜集、整
总体数据 理、显示和分析等)
推断统计
(利用样本信息和概率 论对总体的数量特征进
行估计和检验等)
总体内在的 数量规律性
统计学探索现象数量规律性的过程
理论统计与应用统计
理论统计
▪ 研究统计学的一般理论 ▪ 研究统计方法的数学原理
23
三、统计学与其他学科的关系
(三)统计学与数学的关系 数学是统计学的研究工具,统计研究要
运用大量的数学知识,研究理论统计学 的人需要较深的数学功底,使用统计方 法的人要具有良好的数学基础。统计学 与数学又有着本质的区别
24
三、统计学与其他学科的关系
(四)统计学与数理统计学的关系 一方面,统计学的产生先于数理统计学,从一
12
历史上各国对统计学的译法
法国: Statistique
意大利: Statistica
英国:
Statistics
日本:
政表、政算、国势、形势等
中国: ,,,,,,,,,,统计(钮永建、林卓南于1903译)
13
《统计学》完整ppt课件
秩和检验的应用场景
适用于等级资料或无法精确测量的数据,如医学 领域的疗效评价、心理学中的量表评分等。
3
秩和检验的优缺点
优点在于对数据分布的假设较为宽松,适用范围 广;缺点是当样本量较大时,检验效率可能降低 。
符号检验
符号检验的基本原理
通过比较样本数据的中位数或均值与某个参考值的大小关 系,判断总体分布是否存在显著差异。
推论性统计分析
介绍如何在Excel中进行推论性统计分析, 如假设检验、方差分析等。
Python编程实现统计分析案例展示
Python统计分析库介绍
数据处理与可视化
简要介绍Python中常用的统计分析库,如 NumPy、Pandas、SciPy等。
演示如何使用Python进行数据清洗、处理 及可视化,包括缺失值处理、异常值检测 等。
相关分析与回归分析
相关分析
研究两个或多个变量之间相关关系的统计分析方法,通过计算相关系数来衡量变量之间 的相关程度。
回归分析
研究因变量与一个或多个自变量之间关系的统计分析方法,通过建立回归模型来预测因 变量的取值。
04
CATALOGUE
非参数统计方法
卡方检验
卡方检验的基本原理
通过比较实际观测值与理论期望值之间的差异,判断两个或多个分 类变量之间是否存在显著关联。
03
CATALOGUE
推论性统计方法
参数估计方法
点估计
用样本统计量直接作为总体参数的估计值。
区间估计
根据样本统计量和抽样分布,构造一个包含总体参数的真值的置信区间,并给出该区间被总体参数真值覆盖的概 率。
假设检验原理及步骤
假设检验的基本原理
先对总体参数提出一个假设,然后利用样本信息判断这一假设是否合理,即判断总体参数与假设值是 否有显著差异。
适用于等级资料或无法精确测量的数据,如医学 领域的疗效评价、心理学中的量表评分等。
3
秩和检验的优缺点
优点在于对数据分布的假设较为宽松,适用范围 广;缺点是当样本量较大时,检验效率可能降低 。
符号检验
符号检验的基本原理
通过比较样本数据的中位数或均值与某个参考值的大小关 系,判断总体分布是否存在显著差异。
推论性统计分析
介绍如何在Excel中进行推论性统计分析, 如假设检验、方差分析等。
Python编程实现统计分析案例展示
Python统计分析库介绍
数据处理与可视化
简要介绍Python中常用的统计分析库,如 NumPy、Pandas、SciPy等。
演示如何使用Python进行数据清洗、处理 及可视化,包括缺失值处理、异常值检测 等。
相关分析与回归分析
相关分析
研究两个或多个变量之间相关关系的统计分析方法,通过计算相关系数来衡量变量之间 的相关程度。
回归分析
研究因变量与一个或多个自变量之间关系的统计分析方法,通过建立回归模型来预测因 变量的取值。
04
CATALOGUE
非参数统计方法
卡方检验
卡方检验的基本原理
通过比较实际观测值与理论期望值之间的差异,判断两个或多个分 类变量之间是否存在显著关联。
03
CATALOGUE
推论性统计方法
参数估计方法
点估计
用样本统计量直接作为总体参数的估计值。
区间估计
根据样本统计量和抽样分布,构造一个包含总体参数的真值的置信区间,并给出该区间被总体参数真值覆盖的概 率。
假设检验原理及步骤
假设检验的基本原理
先对总体参数提出一个假设,然后利用样本信息判断这一假设是否合理,即判断总体参数与假设值是 否有显著差异。
统计学PPT课件
19世纪初,法国数学家、统计学家拉普拉斯在总结前人成果 的基础上出版了《概率的分析理论》一书,从而形成完整的应用 理论体系。
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
二、统计学的产生和发 展
3 古典概率论
古典概率论对统计学的贡献可归纳为以下几点:
(1) 总结了古典概率论的研究成果,初步奠定了数理统计学的 理论基础。 (2) 把大数定律作为概率论与政治算术的桥梁。 (3) 提出应以自然科学的方法研究社会现象,为数理统计的产 生提供了必要的理论依据。
统计活动、统计资料和统计学相互依存、相互联系,共同构成一个完 整的整体,这就是人们所说的统计。
二、统计学的产生和发 展
进入资本主义社会以后,随着社会生产力的发展,人们对 统计数据资料的需求增多,专业的统计机构和研究组织逐渐出 现,统计初步发展为社会分工中的一个独立部门。
到了 17世纪中叶,统计学应运而生。
三、统计学的应用
(二) 统计学在经济领域的应用
统计学最初产生于对经济现象的研究。至今,经济领域仍然是统计 学最重要的研究领域。统计学在经济领域的应用形成了经济统计学。经 济学在研究经济现象及其发展变化的规律性时,除要进行规范性的理论 分析外,还离不开对现实经济活动的实证研究。经济学家只有通过对现 实经济活动的运行条件、运行过程和运行结果的数量分析,才能得出真 正符合客观实际的规律性结论。经济现象是人类参与的活动,其影响因 素异常复杂。对社会经济现象规律性的认识,只能被动地对实际的经济 关系和经济活动的运行情况进行观测。因此,无论是宏观经济学研究还 是微观经济学分析,都需要大量地运用统计方法,通过各种调查方法来 收集实际的经济统计数据,并分析其数量规律性。
《不列颠百科全书》将统计学定义为收集、分析、表 述和解释数据的科学。
一、统计的含义
统计学ppt(全)
概率论—数理统计
概率沦研究起源于17世纪中叶意大利文艺复兴时代,代表人物主要有法国的拉普拉斯和比利时的凯特勒 古典统计时期的概率论基本上是独立发展的,最开始的概率论是从对赌博的研究开始。它与统计学(主要是指政治算术)没有太多的联系 从19世纪中叶到20世纪中叶,概率论的进一步发展为数理统计学的形成和发展奠定了基础。主流从描述性统计学向推断统计学发展 本世纪50年代以后,统计理论、方法和应用进入了一个全面发展的阶段
统计指标体系
由若干个相互联系相互制约的统计指标组成的一个统计指标系统 基本统计指标体系 专题统计指标体系
几种常用的统计软件 (Software)
典型的统计软件 SAS SPSS MINITAB STATISTICA Excel
第一章 绪论
第一节 统计与统计学 第二节 统计学的产生与发展 第三节 统计学的研究对象与方法 第四节 统计学的要素和指标
学习目标
1. 理解统计与统计学的含义 2. 理解统计学的对象和方法 了解统计学的产生与发展过程
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
统计数据的内在规律 (一些例子)
正常条件下新生婴儿的性别比为107:100 投掷一枚均匀的硬币,出现正面和反面的频率各为1/2;投掷一枚骰子出现1~6点的频率各为1/6 农作物的产量与施肥量之间存在相关关系
统计学的应用领域
统计学
经济学
管理学
医学
工程学
社会学
…
应用统计的领域
actuarial work (精算) agriculture (农业) animal science (动物学) anthropology (人类学) archaeology (考古学) auditing (审计学) crystallography (晶体学) demography (人口统计学) dentistry (牙医学) ecology (生态学) econometrics (经济计量学) education (教育学) election forecasting and projection (选举预测和策划) engineering (工程) epidemiology (流行病学) finance (金融) fisheries research (水产渔业研究) gambling (赌博) genetics (遗传学) geography (地理学) geology (地质学) historical research (历史研究) human genetics (人类遗传学)
概率沦研究起源于17世纪中叶意大利文艺复兴时代,代表人物主要有法国的拉普拉斯和比利时的凯特勒 古典统计时期的概率论基本上是独立发展的,最开始的概率论是从对赌博的研究开始。它与统计学(主要是指政治算术)没有太多的联系 从19世纪中叶到20世纪中叶,概率论的进一步发展为数理统计学的形成和发展奠定了基础。主流从描述性统计学向推断统计学发展 本世纪50年代以后,统计理论、方法和应用进入了一个全面发展的阶段
统计指标体系
由若干个相互联系相互制约的统计指标组成的一个统计指标系统 基本统计指标体系 专题统计指标体系
几种常用的统计软件 (Software)
典型的统计软件 SAS SPSS MINITAB STATISTICA Excel
第一章 绪论
第一节 统计与统计学 第二节 统计学的产生与发展 第三节 统计学的研究对象与方法 第四节 统计学的要素和指标
学习目标
1. 理解统计与统计学的含义 2. 理解统计学的对象和方法 了解统计学的产生与发展过程
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
统计数据的内在规律 (一些例子)
正常条件下新生婴儿的性别比为107:100 投掷一枚均匀的硬币,出现正面和反面的频率各为1/2;投掷一枚骰子出现1~6点的频率各为1/6 农作物的产量与施肥量之间存在相关关系
统计学的应用领域
统计学
经济学
管理学
医学
工程学
社会学
…
应用统计的领域
actuarial work (精算) agriculture (农业) animal science (动物学) anthropology (人类学) archaeology (考古学) auditing (审计学) crystallography (晶体学) demography (人口统计学) dentistry (牙医学) ecology (生态学) econometrics (经济计量学) education (教育学) election forecasting and projection (选举预测和策划) engineering (工程) epidemiology (流行病学) finance (金融) fisheries research (水产渔业研究) gambling (赌博) genetics (遗传学) geography (地理学) geology (地质学) historical research (历史研究) human genetics (人类遗传学)
《统计学》完整ppt课件
如销售额、经济增长率等。
.
3. 数据的四个等级 定类数据 也称定名数据,这种数据只对事物的某
种属性和类别进行具体的定性描述。
例如,对人口按性别划分为男性和女性 两类。
定类数据
能够进行的唯一运算是计数,即计算每一 个类型的频数或频率(即比重)。
定序数据,也称序列数据,是对事物所具 有的属性顺序进行描述。
.
(二)数据分类的原则
互斥原则:每一个数据只能划归到某一类型中,而 不能既是这一类,又是那一类 。 穷尽原则:所有被观察的数据都可被归属到适当的 类型中,没有一个数据无从归属。
(三)数据的类型
1. 定性数据和定量数据 定性数据:用文字描述的 。 如在本章的“统计引例”中消费者对永美所提供服 务的总体评价等都属于文字描述的定性数据。
.
定量数据:用数字描述的。
如企业的净资产额、净利润额等。 2. 离散型数据和连续型数据
变量 若我们所研究现象的属性和特征的具体表现在 不同时间、不同空间或不同单位之间可取不同 的数值,则可称这种数据为变量。
离散型变量:数据只能取整数。 类型 如一家公司的职工人数。
连续型变量的数据可以取介于两个数 值之间的任意数值。
(一)普查、抽样、统计报表制度和重点调查
1.普查 特点:工作量大,时间性强,需要大量人力和财力。 任务:搜集重要的国情国力和资源状况的全面资
料,为政府制定规划、方针政策提供依据。
方式:建立专门机构,配备专门人员调查。
利用基层单位原始记录和核算资料进行调查。
也称比率数据,是比定距数据更高一级的 定量数据。它不仅可以进行加减运算,而 且还可以作乘除运算。
如产量、产值、固定资产投资额、居民 货币收入和支出、银行存款余额等。
.
3. 数据的四个等级 定类数据 也称定名数据,这种数据只对事物的某
种属性和类别进行具体的定性描述。
例如,对人口按性别划分为男性和女性 两类。
定类数据
能够进行的唯一运算是计数,即计算每一 个类型的频数或频率(即比重)。
定序数据,也称序列数据,是对事物所具 有的属性顺序进行描述。
.
(二)数据分类的原则
互斥原则:每一个数据只能划归到某一类型中,而 不能既是这一类,又是那一类 。 穷尽原则:所有被观察的数据都可被归属到适当的 类型中,没有一个数据无从归属。
(三)数据的类型
1. 定性数据和定量数据 定性数据:用文字描述的 。 如在本章的“统计引例”中消费者对永美所提供服 务的总体评价等都属于文字描述的定性数据。
.
定量数据:用数字描述的。
如企业的净资产额、净利润额等。 2. 离散型数据和连续型数据
变量 若我们所研究现象的属性和特征的具体表现在 不同时间、不同空间或不同单位之间可取不同 的数值,则可称这种数据为变量。
离散型变量:数据只能取整数。 类型 如一家公司的职工人数。
连续型变量的数据可以取介于两个数 值之间的任意数值。
(一)普查、抽样、统计报表制度和重点调查
1.普查 特点:工作量大,时间性强,需要大量人力和财力。 任务:搜集重要的国情国力和资源状况的全面资
料,为政府制定规划、方针政策提供依据。
方式:建立专门机构,配备专门人员调查。
利用基层单位原始记录和核算资料进行调查。
也称比率数据,是比定距数据更高一级的 定量数据。它不仅可以进行加减运算,而 且还可以作乘除运算。
如产量、产值、固定资产投资额、居民 货币收入和支出、银行存款余额等。
统计学PPTPPT课件
假设检验
零假设和备择假设
零假设是我们要检验的假设,备择假 设是与零假设相对立的假设。
第一类错误和第二类错误
第一类错误是拒绝了正确的零假设, 第二类错误是接受了错误的零假设。
显著性水平
显著性水平表示在零假设为真的情况 下,拒绝零假设的概率。
样本容量和样本误差
样本容量越大,样本误差越小,推断 的准确性越高。
通过观察记录的方式收集数据,适用于小样本的定性研究。
实验法
通过实验的方式控制变量,收集数据,适用于因果关系的研究。
数据的整理和展示
数据整理
对数据进行清洗、分类、 编码等处理,使其符合统 计分析的要求。
数据展示
通过图表、表格等形式展 示数据,以便更好地理解 和分析数据。
数据可视化
利用图形、图像等技术将 数据可视化,以便更直观 地展示数据的特征和关系。
在生物统计学中,统计学方法用于遗 传学、分子生物学等领域的研究。
在商业决策中的应用
市场调查
通过统计学方法进行市场调查,了解客户需 求和市场趋势。
预测分析
利用统计学方法进行销售预测、需求预测等, 为决策提供依据。
质量控制
通过统计学方法监控生产过程,确保产品质 量符合标准。
风险评估
统计学用于评估商业风险,如信用评级、投 资组合优化等。
010203定量数据数值型数据,如身高、体 重、年龄等,可以通过测 量或计数得到。
定性数据
非数值型数据,如性别、 婚姻状况、文化程度等, 通常通过分类或编码得到。
数据来源
数据可以来源于调查、观 察、实验、档案资料等途 径。
数据收集的方法
调查法
通过问卷、访谈等方式收集数据,适用于大样本的定量研究。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差别。 特点:1)抽样误差是不可避免; 2)有统计规律性。
产生原因:个体差异(生物变异)
ppt课件
11
6、频率(frequency)、概率(probability)、小概 率事件
(1)频率: 一次随机试验出现各种可能结果的比例。
例如,投掷一枚硬币,结果不外乎出现“正面”与
“反面”两种,在重复多次后,出现“正面” 或“反
ppt课件
17
2. 数值变量与计量资料
1) 数值变量(numerical variable) :变量值是定量的, 表现为数值大小,一般有度量衡单位。如:身高(cm)、 体重(kg)。
2) 计量资料(measurement data) :由一群个体的数值 变量值构成的资料,即一群变量值。
如:长沙市2011年7岁男孩身高值(118.6cm,121.8cm…)
P(A) 0.05或 P(A) 0.01
件。
称为小概率事
ppt课件
15
湖南风采: 中奖概率大约为: 1/671万 交通事故: 发生概率为:1/20万
ppt课件
16
三、统计资料的类型
变量与统计资料的分类方法 1. 概述
数值变量…………..构成计量资料 分类变量
无序分类变量………构成计数资料 有序分类变量………构成等级资料
2)等级资料(ranked data):一群个体按有序分类变量的级别 清点每级有多少个个体,即分级个体数。 如:某地某人群EB病毒抗体反应: –:65, +:5, ++:6
ppt课件
20
108 名高血压患者治疗后的临床记录如下:
----------------------------------------------------------------------------------------------------------------------
ppt课件
5
2、同质(homogeneity)和变异(variation)
研究长沙市2011年7岁男孩身高的正常值范围?
同质:同长沙市、7岁、男孩、无影响身高的疾病。 变异:长沙市2011年7岁男孩身高有高有矮
ppt课件
6
3、总体(population)和样本(sample)
(1)总体:是根据研究目的确定的同质研究单位的全体。 更确切地说是同质研究单位某种变量值的集合。
ppt课件
18
3.无序分类变量与计数资料 1)无序分类变量(unordered categories variable):变量值
是定性的,有类别。 特点:类别是客观存在的,各类无秩序,可任意排列;
类与类之间界限清楚,(理论上)不会错判。 如:性别:男、女。
血型:O、A、B、AB。 2)计数资料(enumeration data):一群个体按无序分类变量
例如:高血压患者←无时间、空间限制。
ppt课件
8
(2)样本(sample):是总体中抽取的有代表性的一部 分。
注意:随机抽样(无主观性) 样本含量(sample size):样本中包含的研究单位数。
例如:某药治疗高血压患者30名 样本含量(n)为30
ppt课件
9
4、参数(parameter)和统计量(statistic)
(1)用数量反映质量
1)体格检查(量血压、脉搏…)→个体健康质量 2)考试分数→个体学习质量 3)期望寿命→反映人群健康状况 4)婴儿死亡率→反映卫生服务质量
ppt课件
3
(2)用群体归纳个体
2011年长沙市7岁男孩有多高?
7岁男孩身高有高有矮,平均身高=119.5cm 95%的长沙市7岁男孩的身高在110.20cm~
(1)参数:根据总体个体值统计计算出来的描述总体的 特征量。
一般用希腊字母表示
(2)统计量:根据样本个体值统计计算出来的描述样本 的特征量。
一般用拉丁字母表示
ppt课件
10
总体参数一般是不知道的 统计学抽样研究的目的就是: 样本统计量→总体参数 5、抽样误差 由于抽样原因所造成的样本统计量与总体参数之间
一.医学统计学的意义
1.统计学(statistics):应用数学的原理与方法, 研究数据的搜集、整理与分析的科学,对不确 定性数据作出科学的推断。
2.医学统计学(statistics of medicine):应用 统计学的原理与方法进行医学科研与实践。
ppt课件
2
3.统计学方法的特点:
的类别清点每类有多少个个体,即分类个体数。 如:某人群性别构成:男:6, 女:7。
某人群血型构成:O:20, A:35, B:30, AB:15
ppt课件
19
4.有序分类变量与等级资料
1)有序分类变量(ordinal categories variable) :变量值是 定性的、 分等级。 特点:等级是主观划分的,各级有秩序,从低到高或由高 到低;级和级之间界限模糊,可能错判。 如:疗效:无效、好转、显效、治愈。 血清反应:–、+、++
129.20cm之间
ppt课件
4
二、基本概念
1、研究单位(观察单位、unit)、变量(variable)、变 量值(value of variable)
(1)研究单位(unit):研究中的个体。 如:研究2011年长沙市7岁男孩身高的正常值范围 1个人
测得的身高值(120.2cm,118.6cm,121.8cm,…)
例如:调查某地2011年正常成年男子的红细胞数的正 常值范围。
总体:1)某地所有的正常成年男子
2)某地所有的正常成年男子的红细胞数
ppt课件
7
1)有限总体(finite population):研究单位数是 有限的。
例如:调查某地2011年正常成年男子的红细胞数的正 常值范围。
2)无限总体(infinite population):研究单位数 是无限的。
面”这个结果的比例称之为频率。
ppt课件
12
(2)概率(probability) 概率是度量随机事件发生可 能性大小的一个数值。
频率是就样本而言的,而概率从总体的意义上说的。
ppt课件
13
➢ 0< P(A) <1 随机事件
➢
P(A)=1
必然事件
➢
P(A)=0
不可能事件。
ppt课件
14
(3)小概率事件:统计分析中的很多结论都基于 一定置信程度下的概率推断,习惯上将
产生原因:个体差异(生物变异)
ppt课件
11
6、频率(frequency)、概率(probability)、小概 率事件
(1)频率: 一次随机试验出现各种可能结果的比例。
例如,投掷一枚硬币,结果不外乎出现“正面”与
“反面”两种,在重复多次后,出现“正面” 或“反
ppt课件
17
2. 数值变量与计量资料
1) 数值变量(numerical variable) :变量值是定量的, 表现为数值大小,一般有度量衡单位。如:身高(cm)、 体重(kg)。
2) 计量资料(measurement data) :由一群个体的数值 变量值构成的资料,即一群变量值。
如:长沙市2011年7岁男孩身高值(118.6cm,121.8cm…)
P(A) 0.05或 P(A) 0.01
件。
称为小概率事
ppt课件
15
湖南风采: 中奖概率大约为: 1/671万 交通事故: 发生概率为:1/20万
ppt课件
16
三、统计资料的类型
变量与统计资料的分类方法 1. 概述
数值变量…………..构成计量资料 分类变量
无序分类变量………构成计数资料 有序分类变量………构成等级资料
2)等级资料(ranked data):一群个体按有序分类变量的级别 清点每级有多少个个体,即分级个体数。 如:某地某人群EB病毒抗体反应: –:65, +:5, ++:6
ppt课件
20
108 名高血压患者治疗后的临床记录如下:
----------------------------------------------------------------------------------------------------------------------
ppt课件
5
2、同质(homogeneity)和变异(variation)
研究长沙市2011年7岁男孩身高的正常值范围?
同质:同长沙市、7岁、男孩、无影响身高的疾病。 变异:长沙市2011年7岁男孩身高有高有矮
ppt课件
6
3、总体(population)和样本(sample)
(1)总体:是根据研究目的确定的同质研究单位的全体。 更确切地说是同质研究单位某种变量值的集合。
ppt课件
18
3.无序分类变量与计数资料 1)无序分类变量(unordered categories variable):变量值
是定性的,有类别。 特点:类别是客观存在的,各类无秩序,可任意排列;
类与类之间界限清楚,(理论上)不会错判。 如:性别:男、女。
血型:O、A、B、AB。 2)计数资料(enumeration data):一群个体按无序分类变量
例如:高血压患者←无时间、空间限制。
ppt课件
8
(2)样本(sample):是总体中抽取的有代表性的一部 分。
注意:随机抽样(无主观性) 样本含量(sample size):样本中包含的研究单位数。
例如:某药治疗高血压患者30名 样本含量(n)为30
ppt课件
9
4、参数(parameter)和统计量(statistic)
(1)用数量反映质量
1)体格检查(量血压、脉搏…)→个体健康质量 2)考试分数→个体学习质量 3)期望寿命→反映人群健康状况 4)婴儿死亡率→反映卫生服务质量
ppt课件
3
(2)用群体归纳个体
2011年长沙市7岁男孩有多高?
7岁男孩身高有高有矮,平均身高=119.5cm 95%的长沙市7岁男孩的身高在110.20cm~
(1)参数:根据总体个体值统计计算出来的描述总体的 特征量。
一般用希腊字母表示
(2)统计量:根据样本个体值统计计算出来的描述样本 的特征量。
一般用拉丁字母表示
ppt课件
10
总体参数一般是不知道的 统计学抽样研究的目的就是: 样本统计量→总体参数 5、抽样误差 由于抽样原因所造成的样本统计量与总体参数之间
一.医学统计学的意义
1.统计学(statistics):应用数学的原理与方法, 研究数据的搜集、整理与分析的科学,对不确 定性数据作出科学的推断。
2.医学统计学(statistics of medicine):应用 统计学的原理与方法进行医学科研与实践。
ppt课件
2
3.统计学方法的特点:
的类别清点每类有多少个个体,即分类个体数。 如:某人群性别构成:男:6, 女:7。
某人群血型构成:O:20, A:35, B:30, AB:15
ppt课件
19
4.有序分类变量与等级资料
1)有序分类变量(ordinal categories variable) :变量值是 定性的、 分等级。 特点:等级是主观划分的,各级有秩序,从低到高或由高 到低;级和级之间界限模糊,可能错判。 如:疗效:无效、好转、显效、治愈。 血清反应:–、+、++
129.20cm之间
ppt课件
4
二、基本概念
1、研究单位(观察单位、unit)、变量(variable)、变 量值(value of variable)
(1)研究单位(unit):研究中的个体。 如:研究2011年长沙市7岁男孩身高的正常值范围 1个人
测得的身高值(120.2cm,118.6cm,121.8cm,…)
例如:调查某地2011年正常成年男子的红细胞数的正 常值范围。
总体:1)某地所有的正常成年男子
2)某地所有的正常成年男子的红细胞数
ppt课件
7
1)有限总体(finite population):研究单位数是 有限的。
例如:调查某地2011年正常成年男子的红细胞数的正 常值范围。
2)无限总体(infinite population):研究单位数 是无限的。
面”这个结果的比例称之为频率。
ppt课件
12
(2)概率(probability) 概率是度量随机事件发生可 能性大小的一个数值。
频率是就样本而言的,而概率从总体的意义上说的。
ppt课件
13
➢ 0< P(A) <1 随机事件
➢
P(A)=1
必然事件
➢
P(A)=0
不可能事件。
ppt课件
14
(3)小概率事件:统计分析中的很多结论都基于 一定置信程度下的概率推断,习惯上将