SPSS 重复测量的多因素方差分析
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。
它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。
SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。
本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。
二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。
它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。
在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。
三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。
一般自变量为定类变量,而因变量可以是定量或定类变量。
2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。
接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。
点击“确定”后,SPSS会生成方差分析表。
3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。
此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。
4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。
SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。
5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。
SPSS重复测量的多因素方差分析
SPSS重复测量的多因素方差分析多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于一个或多个变量的影响。
在实验设计中,重复测量多因素方差分析常用于研究不同因素(比如治疗、时间、性别等)对同一测量结果的影响。
多因素方差分析假设各个因素之间相互独立,并将数据分为各个因素的组合。
例如,一个的实验可能包括两个因素:治疗和时间。
治疗可以有两个水平:A和B,时间可以有三个水平:T1、T2和T3、通过重复测量同一个变量,并结合不同的因素水平,可以得到一个完整的数据集。
进行多因素方差分析需要检验三个假设:主效应假设、交互效应假设和均等性假设。
主效应是指每个因素对于因变量的直接影响,交互效应是指多个因素之间相互作用的影响,均等性假设是指各组之间的方差是否相等。
首先,我们需要计算各组的平均值、总平均值、因素间平方和、误差平方和以及均方。
平均值是各组数据的均值,总平均值是所有数据的均值。
因素间平方和是各组均值与总平均值之差的平方和乘以每组的样本量。
误差平方和是各个样本与其对应组均值之差的平方和。
均方是因素间平方和和误差平方和除以对应的自由度。
接下来,我们需要计算F统计量,并进行假设检验来确定各个因素是否显著影响因变量。
F统计量是因素间均方和误差平方的比值。
根据假设检验的结果,如果得到的p值小于设定的显著性水平(通常为0.05),则我们拒绝原假设,即说明该因素对因变量有显著影响。
当我们观察到交互作用时,可以进行进一步的分析来确定具体哪些因素交互作用显著。
可以通过绘制交互作用图来进行可视化分析。
此外,还有很多其他的方法可以对多因素方差分析的结果进行进一步分析。
比如,事后检验(post-hoc analysis)常用于确定哪些因素水平之间存在显著差异。
Tukey's HSD、Bonferroni修正和Sidak校正是常用的事后检验方法之一总结起来,多因素方差分析是一种强大的统计方法,可以研究多个因素对一个或多个变量的影响。
SPSS-多因素方差分析
④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25
SPSS重复测量的多因素方差分析报告
1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
采集PS 组及对照组患儿0小时,治疗后24小时和72小时静脉血2ml,离心并提取上清液后保存备用并记录血清中VEGF的含量变化情况。
双因素重复测量方差分析spss
双因素重复测量方差分析spss
一、双因素重复测量方差分析(two-way repeated measures ANOVA)
双因素重复测量方差分析(Two-Way repeated measures ANOVA)可以用来检测一个
变量的变化在两个或多个独立变量的作用下是否发生变化。
在双因素重复测量方差分析中,变量1是因素1,因素1有若干水平,变量2是因素2,因素2也有若干水平。
双因素重
复测量方差分析可以检验两个因素是否共同影响变量1的变化,或者检测某个因素是否单
独地影响变量1的变化。
1、打开spss统计软件,点击文件、数据,从窗口中打开需要分析数据文件;
2、点击“分析”菜单,然后从子菜单中点击“多维分析”,再单击“双因素重复测
量方差分析”;
3、在弹出的窗口中,在“变量”框中选择需要分析的变量;
4、在“因素”框中,选择双因素,比如实验组和对照组;
5、点击“定义”按钮,设定因素的水平,比如实验组的水平为A,对照组的水平为B;
6、在“多重比较”框中,勾选“重复测量”框,并且可以设定多重比较的参数;
7、选择“显著性水平”框,设定检验的显著性,通常设定为0.05;
8、单击“OK”按钮,查看分析结果,该分析结果将显示两个因素及其交互作用对变
量1的影响情况。
SPSS操作多因素方差分析
SPSS操作多因素方差分析
一、多因素方差分析简介
多因素方差分析(ANOVA)是一种统计学方法,利用它可以检验两个
或多个样本的总体均值是否相同。
它的基本假设是,多个样本取自同一总
体的正态分布,样本之间的差异是根据其中一种因素的变化而产生的,而
不是随机变化。
多因素方差分析一般用于检验不同变量的数据间的差异性。
二、多因素方差分析SPSS使用步骤
1、打开并登录SPSS:在Windows桌面找到SPSS图标,双击打开,
输入用户名和密码即可进入SPSS主界面。
2、导入数据:在SPSS主界面点击【文件】,再点击【导入数据】,
从计算机中找到需要导入的数据文件,打开,确定即可将数据文件导入到SPSS中。
3、运行多因素方差分析:在SPSS主界面点击【分析】,再点击【多
因素方差分析】,它会弹出一个多因素方差分析窗口,在窗口中配置多因
素方差分析的模型,一般情况下,前三步不需要修改,点击【下一步】;
第四步,需要在【变量】框中选择要分析的变量,点击【下一步】;第五步,需要在【因子】框中添加本次分析的因子,双击所选变量,添加到
【因子】框中,确定添加无误后,点击【下一步】;第六步,设定多因素
方差分析的显著性水平,点击【完成】,结束设置。
SPSS学习笔记之——重复测量的多因素方差分析说课讲解
S P S S学习笔记之——重复测量的多因素方差分析SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
SPSS多因素方差分析(一般线性模型):重复测量
SPSS多因素⽅差分析(⼀般线性模型):重复测量⼀、GLM重复测量(分析-⼀般线性模型-重复度量)1、概念:“GLM 重复测量”过程在对每个主体或个案多次执⾏相同的测量时提供⽅差分析。
如果指定了主体间因⼦,这些因⼦会将总体划分成组。
通过使⽤此⼀般线性模型过程您可以检验关于主体间因⼦和主体内因⼦的效应的原假设。
可以调查因⼦之间的交互以及单个因⼦的效应。
另外,还可以包含常数协变量的效应以及协变量与主体间因⼦的交互。
在双重多变量重复测量设计中,因变量表⽰主体内因⼦不同⽔平的多个变量的测量。
例如,您可能在三个不同的时间对每个主体同时测量了脉搏和呼吸。
“GLM 重复测量”过程提供了对重复测量数据的单变量和多变量分析。
平衡与⾮平衡模型均可进⾏检验。
如果模型中的每个单元包含相同的个案数,则设计是平衡的。
在多变量模型中,模型中的效应引起的平⽅和以及误差平⽅和以矩阵形式表⽰,⽽不是以单变量分析中的标量形式表⽰。
这些矩阵称为SSCP(平⽅和与叉积)矩阵。
除了检验假设,“GLM 重复测量”过程还⽣成参数估计。
常⽤的先验对⽐可⽤于对主体间因⼦执⾏假设检验。
另外,在整体的F 检验已显⽰显著性之后,可以使⽤两两⽐较检验评估指定均值之间的差值。
估计边际均值为模型中的单元提供了预测均值估计值,且这些均值的轮廓图(交互图)允许您轻松对其中⼀些关系进⾏可视化。
残差、预测值、Cook 距离以及杠杆值可以另存为数据⽂件中检查假设的新变量。
另外还提供残差SSCP 矩阵(残差的平⽅和与叉积的⽅形矩阵)、残差协⽅差矩阵(残差SSCP 矩阵除以残差的⾃由度)和残差相关矩阵(残差协⽅差矩阵的标准化形式)。
WLS 权重允许您指定⼀个变量,⽤来针对加权最⼩平⽅(WLS) 分析为观察值赋予不同权重,这样也许可以补偿测量的不同精确度。
2、⽰例。
根据学⽣的焦虑程度检验的得分将⼗⼆个学⽣分配到⾼或低焦虑程度组。
焦虑等级被认为是主体间因⼦,因为它会将主体划分成组。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于某个连续型变量的影响是否显著不同。
通常,研究者需要了解不同因素对于结果值的影响,并确定是否存在交互作用。
SPSS(统计软件包for社会科学)是一款常用的统计软件,它提供了丰富的功能和工具,可用于数据分析和建模。
本文将介绍如何使用SPSS软件进行多因素方差分析。
二、数据准备在进行多因素方差分析之前,需要先进行数据准备。
假设我们有一个研究目的是了解不同教育水平和不同工作经验对个人收入的影响。
我们收集了400位参与者的数据,包括个人收入(连续型变量),教育水平(分类变量:小学、初中、高中、本科、硕士、博士)和工作经验(分类变量:1-5年、6-10年、11-15年、16年及以上)。
三、数据导入首先,将数据导入SPSS软件。
打开SPSS软件后,选择“文件”-“读取数据”-“输入数据”。
在弹出的对话框中选择数据文件,并将其导入到SPSS软件中。
四、数据探索在进行多因素方差分析之前,我们首先需要对数据进行探索,查看教育水平、工作经验和收入之间的关系。
选择“描述统计”-“交叉表”菜单,将教育水平和工作经验作为行变量,将收入作为列变量。
点击“确定”按钮后,SPSS将生成一个交叉表,显示不同教育水平和工作经验对于收入的平均值和标准差等统计信息。
五、多因素方差分析在导入数据并进行数据探索后,我们可以开始进行多因素方差分析。
选择“分析”-“一般线性模型”-“多因素”菜单。
在弹出的对话框中,将个人收入作为因变量,将教育水平和工作经验作为因子变量。
点击“因子”按钮,将教育水平和工作经验拖动到因子变量框中。
然后,点击“选项”按钮,对方差分析的设置进行调整,如是否显示交互作用。
点击“确定”按钮,SPSS将自动生成多因素方差分析的结果报告。
在报告中,我们可以看到各个因素的显著性检验结果,以及不同因素对于个人收入的影响情况。
SPSS学习笔记之重复测量的多因素方差分析报告
SPSS学习笔记之重复测量的多因素方差分析报告学习笔记之重复测量的多因素方差分析报告SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款功能强大的数据分析工具,广泛应用于各个领域的研究。
在SPSS中,重复测量的多因素方差分析被视为一项重要的统计方法,用于研究相同参与者在不同条件下的测试结果。
本篇学习笔记以重复测量的多因素方差分析为主题,将介绍如何使用SPSS进行该项分析,并给出详细的分析报告。
1. 研究目的和问题描述2. 数据采集和处理3. 研究设计和假设4. 数据分析5. 结果解释与讨论1. 研究目的和问题描述本次研究的目的是考察不同刺激条件对参与者注意力的影响。
具体而言,我们想了解参与者在三种刺激条件下的注意力水平是否存在显著差异。
2. 数据采集和处理我们招募了40位参与者,并随机将其分为三组。
每组参与者分别接受三次测试,每次测试采用不同的刺激条件。
我们记录了每位参与者的测试结果,并进行数据整理和清洗。
3. 研究设计和假设本研究采用的是重复测量的多因素方差分析设计。
考察因素为刺激条件,对应的水平为A、B和C。
我们的研究假设如下:- H0(零假设):不同刺激条件下的注意力水平无显著差异。
- H1(备择假设):不同刺激条件下的注意力水平存在显著差异。
4. 数据分析为了进行重复测量的多因素方差分析,我们打开SPSS软件,并导入数据集。
接下来,我们按照以下步骤进行分析:步骤一:打开SPSS软件,点击“打开”按钮,导入数据集。
步骤二:选择“分析”菜单,然后选择“一般线性模型”和“重复测量”。
步骤三:将待分析的因子变量(刺激条件)拖动到“因子”框中,并设置不同刺激条件的水平。
步骤四:选择适当的因变量(注意力水平),并将其拖动到“依赖变量”框中。
步骤五:点击“选项”按钮,可以对分析进行更多设置,比如是否计算偏斜度和峰度等。
步骤六:点击“确定”按钮,SPSS将自动进行重复测量的多因素方差分析,并生成分析结果。
重复测量设计资料的方差分析SPSS操作
重复测量设计资料的方差分析SPSS操作重复测量方差分析的基本概述:被试对象在接受不同处理后,对同一因变量(测试指标)在不同时点上进行多次测量所得的资料,称为重复测量资料。
这里的重复并不是单一的反复,而是在多个时点上的测量。
这种资料的特点是其定量观测指标的数值会随着时间的变化而发生动态变化,并且各时点上的数值是不满足相互独立的假设的。
因此不能用方差分析的方法直接进行处理。
如果在期初、期中、期末分别测量学生的电脑能力,则这是单变量重复测量问题。
如果分别在三个时期测量学生的电脑和数学成绩,则是多变量重复测量的问题。
重复测量资料的方差分析需满足的前提条件:1、一般方差分析的正态性和方差齐性检验。
2、协方差矩阵的球形对称性或者复合对称性;需要进行球形检验,检验对称性。
原假设:协方差满足球形对称。
当拒绝球形假设时,结果中还有其他表可以检验,见例题中的分析。
被试对象处理测量时间1 2 3 4…………m1 1 ………………………………………….2 1 ………………………………………….. ………………………………………………………………………………………………………….N1 1 …………………………………………..N1+1 2 …………………………………………. …………………………………………………………………………………………………………N2 2 …………………………………………………….例:为研究新减肥药和现有减肥药的效果是否不同,以及肥胖者在服药后不同时间体重的变化情况,将40名体重指标BMIF27的肥胖者随机分为两组,一组用新药,另一组用现有减肥药;坚持服药6个月,期间禁止使用任何影响体重的药物,而且被试对象行为、饮食、运动与服药前平衡期保持一致;分别测得0周、8周、16周、24周的体重资料;试对其进行方差分析。
Spss数据格式片段如下:1、正态性和方差齐性检验对4个不同时点上的体重变量进行检验使用科莫格洛夫—斯米诺夫检验只要16周第二种处理不显著,其他都显著不为0.可认为正态性假设基本成立。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析多因素方差分析(ANOVA)是一种常用的统计分析方法,用于研究多个独立与自变量对因变量的影响程度。
SPSS软件是一款强大的数据分析工具,提供了多种统计方法,包括多因素方差分析。
本文将重点介绍如何,以及如何解读分析结果。
一、数据准备与导入在进行多因素方差分析之前,我们首先需要准备好要进行分析的数据,并将其导入到SPSS软件中。
SPSS软件支持各种数据格式的导入,包括Excel、CSV等。
在导入数据之后,可以使用SPSS软件的数据编辑功能进行必要的数据清洗与整理。
二、选择分析方法在SPSS软件中,多因素方差分析有两种不同的方法:多因素方差分析(逐步)和多因素方差分析(GLM)。
前者适用于符合方差齐性和正态分布要求的数据,而后者则没有这些限制。
根据实际情况选择适合的方法进行分析。
三、设置因素在进行多因素方差分析之前,需要设置自变量(因素)和因变量。
SPSS软件允许用户添加多个因素,并可以对每个因素进行设置。
例如,设置因素的水平数目、因素名称、因素标签等。
四、进行多因素方差分析设置因素之后,即可进行多因素方差分析。
在SPSS软件中,选择“分析”-“一般线性模型”-“多因素”进行分析。
进入多因素方差分析的参数设置界面后,依次选择因变量和自变量,并根据实际情况选择交互作用。
五、解读结果多因素方差分析完成后,SPSS软件会生成一系列分析结果。
这些结果包括效应大小(主效应和交互作用)、显著性检验结果(F值和P值)以及不同因素水平之间的差异(均值和置信区间)。
用户应该重点关注显著性检验结果,以判断因素是否对因变量产生显著影响。
六、结果可视化除了结果解读之外,SPSS软件还提供了数据可视化功能,可帮助用户更直观地理解分析结果。
用户可以通过绘制柱状图、折线图等图表,展示因变量在不同自变量水平之间的差异。
七、结果报告最后,用户可以根据分析结果编写一份详细的结果报告,对分析结果进行综合、客观地描述和解释。
SPSS学习笔记之——重复测量的多因素方差分析
重复测量的多因素方差分析——SPSS学习笔记之(2012-08-14 22:30:39)转载▼SPSS杂分类:spss方差分析统计标签:谈、概述1重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观(或组织)察值,或者是通过重复测量同一个个体的不同部位获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检,则说明重复测量数据之间﹥0.05验。
如果该检验结果为P条件,可以用单不存在相关性,测量数据符合Huynh-Feldt,则说0.05因素方差分析的方法来处理;如果检验结果P﹤明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
MANOVA)采用(球形条件不满足时常有两种方法可供选择:1检验结果ANOVA(多变量方差分析方法);(2)对重复测量F值的自由度进行调整。
中与时间有关的、问题2新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
重复测量设计资料的方差分析SPSS操作
8.000 104.703 19.101
2.000 418.813 19.101
48
5.482
32. 577
8.077
48. 000
5.482
12. 000
21. 927
不同诱导时相之间收缩
Sig. .0ቤተ መጻሕፍቲ ባይዱ0
压存在差别,
.000
.000 F=106.558,P<0.01;
.000
.000
.000 诱导时相与诱导方法之
Corre cted
t ests
are
b.
满足了协方差矩阵
Design: Inte rcept+GROUP Within Subjects Design: FACTOR1
球对称的条件,不 需对结果进行校正;
Te sts of Within-Subje cts Effect s
Measure: MEASURE_1
患者序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 0
T 1
麻醉诱导时相
T 2 T 3
120
108
112
120
118
109
115
126
119
112
119
124
121
112
119
126
127
121
127
133
121
120
118
131
122
121
119
129
128
129
126
Lower-bound
263. 120
df Mean Square F
重复测量设计资料的方差分析SPSS操作
重复测量设计资料的方差分析SPSS操作
1、环境准备
1.1.首先在安装SPSS统计软件,在进行数据分析时,打开SPSS统计
软件,创建新文档,完成环境准备。
2、数据载入
2.1.将重复测量数据载入SPSS,可以通过文件菜单打开。
2.2.载入数据时,需要指定变量的类型,如字符型、数值型等。
3、变量转换
3.1.在方差分析中,重复测量设计需要把成对数据转换成单个观察值,以便进行分析。
3.2.将重复测量变量用SPSS的“变量转换”功能进行变换,变换类
型可以选择“算术变换”。
3.3.在变换过程中,需要指定新变量的表达式,如取均值、差值等,
以计算新变量的值。
4、数据检验
4.1.在得到变量后,需要对数据进行检验,以检验数据的有效性、完
整性和准确性。
4.2.可以使用SPSS的“数据检验”功能,检查变量是否正确转换,
此外,也可以使用“数据缺失标记”、“偏度-峰度检验”等功能,以检
查变量的数据情况。
5、方差分析
5.1.方差分析是重复测量设计中的主要统计分析方法,可以用来检验两个或多个样本之间的差异。
5.2.在SPSS中,可以使用“多因素方差分析”功能,设置因变量和自变量,进行分析。
5.3.在运行分析时。
SPSS重复测量地多因素方差分析报告
SPSS重复测量地多因素方差分析报告
一、实验结果的总体分析
1、总体数据及描述性统计
首先我们来分析实验的总体数据,主要包括对被试者的一般信息及参
与实验的各个变量的描述统计及分布情况。
基本信息:本次实验共有30名参与者,其平均年龄为31岁。
其中男
性占比为53.3,女性占比为46.7%。
变量的描述性统计:检测变量的标准差为0.614,最小值为1.4,最
大值为3.0,平均值为2.2,中位数为2.2,偏度为0.00,峰度为0.61变量的分布情况:根据变量分布图可以看出,变量的分布情况接近正
态分布。
2、数据检验
完成数据收集后需要对数据进行检验,以确保数据的准确性和可靠性。
检验的方法包括残差检验、异方差分析以及 Shapiro-Wilk 检验等。
经过
检验后,发现所有数据满足检验条件,可以用于进一步的分析。
二、多因素重复测量方差分析
本次实验使用多因素重复测量方差分析,用来检验被试者对不同环境
条件下的反应差异。
由于本次实验中因素为环境条件A、B、C,为三因素
实验,所以本次实验的实验设计为3X3实验设计。
1、方差分析表
计算完毕后,计算结果如下所示:。
SPSS多因素 重复测量 的方差分析
2020/3/5
Page27
SPSS统计软件操作
将12名患者按交叉设计方案随机分为两组,观察两种药物、 两个阶段睡眠时间增加量(小时),每个阶段两周,间隔两 周。第一组患者为A→B顺序,即第一阶段服用A药,第二 阶段服用B药;第二组为B→A顺序,即第一阶段服用B药, 第二阶段服用A药。
2020/3/5
Page23
SPSS统计软件操作
重复测量资料的方差分析
2020/3/5
Page5
SPSS统计软件操作
随机区组设计资料的方差分析
表 A、B、C三种方案处理后大白兔血中白蛋白减少量(g/L)
区组
A方案 丹参2ml/kg
B方案 丹参1ml/kg
C方案 生理盐水2ml/kg
均数
1
2.21
2.91
4.25
3.1233
2
2.32
2.64
4.56
3.1733
3
3.15
2020/3/5
Page18
SPSS统计软件操作
析因设计资料的方差分析
表 四种不同处理下吸光度的值%
煤焦油3ug/ml
煤焦油75ug/ml
totle
时间6小时 时间8小时 时间6小时 时间8小时
n mean variance
0.163 0.199 0.184 0198
4 0.1860 0.0003
2020/3/5
Page12
SPSS统计软件操作
随机区组设计资料的方差分析
❖ 练习4 ❖ 为了研究克拉霉素的抑菌效果,某实验室对28个短小芽孢
杆菌平板依据菌株的来源不同分成了7个区组,每组4个平 板用随机的方式分配给标准药物高剂量组(SH)、标准 药物低剂量组(SL),以及克拉霉素高剂量组(TH)、 克拉霉素低剂量组(TL)。给予不同的处理后,观察抑菌 圈的直径。数据见“kelameisu.sav”。 ❖ 试对该资料进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、概述
重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题
新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
采集PS 组及对照组患儿0小时,治疗后24小时和72小时静脉血2ml,离心并提取上清液后保存备用并记录血清中VEGF的含量变化情况。
结果如下:
3、统计分析
建立数据文件变量视图:
数据视图:菜单选择:
首先进入如下对话框,在“被试内因子名称”中输入“time”,“级别数”输入3,因为每个患者重复测量了3次。
后点击“添加”按钮。
此时下方“定义”按钮变为可用,点击进入下列对话框:
将“group”选入“因子列表”框,t1-t3分别选入“全体内变量(time)”框内,如下图所示:
点击右上角“模型”按钮,进入以下对话框,选择“设定”,将“time”选入“全体内模型”框,“group”选入“群体间模型”框,“构建项”选择“主效应”。
下方的平方和选“类型III”,这是对于平衡数据。
如果两组样本量不等,则选择“类型IV”。
点击“继续”返回,点击“绘制”按钮。
进入下面对话框:将“time”选入“水平轴”,group选入“单图”,然后点击“添加”按钮,下面框中会显示“time*group”。
点击“继续”返回,点击“两两比较”按钮,将group选入右侧“两两比较检验”框中,选中复选框“LSD”。
点击“继续”返回,点击“选项”按钮,进入下面对话框:将time选入“显示均值框”,选中“比较主效应”复选框,选中下方“描述统计”复选框。
下方显著性水平设为0.05。
点击“继续”返回,点击“确定”输出结果。
4、结果解读:
这是一个关于各个时间点的两组数据描述性统计。
这是球形检验结果,p=0.001<0.05,所以不满足球形分布假设,需要进行多变量方差分析或者自由度调整,SPSS接下来会给出以上两种结果。
这是进行多变量方差分析的结果,给出了4种统计量,它们的检验结果一致,time的P<0.001,说明各个时间点的数据的差异有统计学意义,time*group的P>0.05,说明时间和分组无交互作用,说明时间因素(即0小时、24小时、72小时)的作用不随分组(即治疗组和对照组)的不同而不同。
所谓“主体内”,即是重复测量的各个时间点。
上表是用各个时间点进行分组的方差分析表,给出4种统计量,第一种为满足球形假设的情况,后三种对自由度进行了校正,本题目中不满足球形分布假设,只能看下面的三种检验方法。
结果解释同上一个表。
这是对分组的方差分析,对变量进行如下的变换:y=(t1+t2+t3)/sqrt(3)。
P=0.043<0.05,说明有治疗组与对照组之间有统计学差异。
这个图可以直观地看出测量指标随时间的变化趋势。
治疗组与对照组两组资料随时间变化的趋势大致相同,治疗组血清中VEGF的含量较对照组呈下降趋势,说明治疗组的效果优于对照组。
我们还可以给出在每个时间点上两个分组之间的比较,需要用到多变量方差分析:操作步骤如下:跟之前操作类似,不赘述,看图就行。
结果输出
每个时间点上两组之间的比较(即分别比较0小时、24小时及72小时时对照组和治疗组的数据)结果显示0小时时P﹥0.05,治疗组和对照组之间没有统计学差异,而24小时和72小时时P﹤0.05,治疗组和对照组两组间有显著的统计学差异。