线性代数易错点及重点知识点

合集下载

《线性代数》知识点归纳整理-大学线代基础知识

《线性代数》知识点归纳整理-大学线代基础知识

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式- 2 -02、主对角线- 2 -03、转置行列式- 2 -04、行列式的性质- 3 -05、计算行列式- 3 -06、矩阵中未写出的元素- 4 -07、几类特殊的方阵- 4 -08、矩阵的运算规则- 4 -09、矩阵多项式- 6 -10、对称矩阵- 6 -11、矩阵的分块- 6 -12、矩阵的初等变换- 6 -13、矩阵等价- 7 -14、初等矩阵- 7 -15、行阶梯形矩阵与行最简形矩阵- 7 -16、逆矩阵- 7 -17、充分性与必要性的证明题- 8 -18、伴随矩阵- 9 -19、矩阵的标准形:- 9 -20、矩阵的秩:- 9 -21、矩阵的秩的一些定理、推论- 10 -22、线性方程组概念- 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)- 10 -24、行向量、列向量、零向量、负向量的概念- 12 -25、线性方程组的向量形式- 12 -26、线性相关与线性无关的概念- 12 -27、向量个数大于向量维数的向量组必然线性相关- 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题- 12 -29、线性表示与线性组合的概念- 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题- 12 -31、线性相关(无关)与线性表示的3个定理- 13 -32、最大线性无关组与向量组的秩- 13 -33、线性方程组解的结构- 13 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是一门研究向量空间和线性映射的数学学科,是数学中的一个重要分支。

它的应用范围非常广泛,包括物理学、工程学、计算机科学、经济学等等。

下面是对线性代数的一些重要知识点的归纳整理。

1.向量和向量空间:-向量的定义和性质:向量是有方向和大小的量,可以进行加法和数乘运算。

-向量空间的定义和性质:向量空间是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律、零向量存在性等性质。

2.矩阵和矩阵运算:-矩阵的定义和性质:矩阵是一个由数构成的矩形阵列,可以进行加法和数乘运算。

-矩阵的乘法和转置:矩阵可以进行乘法运算,满足结合律和分配律;矩阵的转置是将矩阵的行和列互换得到的新矩阵。

3.线性方程组和矩阵求解:-线性方程组的解的存在性和唯一性:线性方程组的解存在的条件是系数矩阵的秩等于增广矩阵的秩;解的唯一性与线性方程组的自由变量有关。

-矩阵求解线性方程组的方法:高斯消元法、矩阵的逆、克拉默法则等。

4.线性映射和线性变换:-线性映射的定义和性质:线性映射是一种保持向量空间的加法和数乘运算的映射,满足线性性质。

-线性变换的矩阵表示:线性变换可以用矩阵表示,矩阵的列向量是线性变换作用在基向量上的结果。

5.特征值和特征向量:-特征值和特征向量的定义和性质:对于一个线性变换,特征向量是指在这个变换下保持方向不变的向量,特征值是对应特征向量的缩放因子。

-特征值分解:特征值分解是将一个矩阵分解成特征向量和特征值的形式。

6.内积和正交性:-内积的定义和性质:内积是一种度量向量之间夹角的方法,满足对称性、线性性和正定性等性质。

-正交性和正交基:正交向量是指两个向量的内积为零,正交基是一组两两正交的向量。

7.线性相关和线性无关:-线性相关和线性无关的定义和性质:一组向量中,如果存在不全为零的线性组合等于零向量,则称这组向量线性相关;否则称线性无关。

-维数和基:一组线性无关的向量可以作为向量空间的基,基的个数称为向量空间的维数。

线性代数知识重难点和常考题型汇总

线性代数知识重难点和常考题型汇总

②、

a11 a21

a12
a22

a1 n a2 n



x1
x2



b1
b2


Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2

amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2



an


x1
x2



(全部按列分块,其中



b1 b2




);



xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

(完整)线性代数知识点总结汇总,推荐文档

(完整)线性代数知识点总结汇总,推荐文档

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。

线性代数中常见的难题,易错题目解析

线性代数中常见的难题,易错题目解析

线性代数中常见的难题,易错题目解析
1、代数精度:在数值分析中,精度指的是数值计算中所得结果的可靠性,也就是说计算结果是否正确取决于数值计算的精度。

此题目可能会难以回答,要求学生根据自身的数学定义和知识框架来理解和作答,其中的考点是数值计算的精度与数值计算成果的可靠性之间的关系。

2、矩阵的秩:矩阵的秩是矩阵的数学定义,它表示某个矩阵的列数减去它的0行的数目,考察学生对该数学概念的理解程度。

因此,求解矩阵的秩需要对矩阵中的元素进行运算,并判断结果来计算矩阵的秩。

3、线性方程组的系数矩阵:系数矩阵是一个线性方程组的重要概念,表示该线性方程组的解的性质。

系数矩阵的求解主要是根据矩阵操作的行列式计算方法、决定系统的可解性来确定系数矩阵的结构。

4、矩阵乘法:矩阵乘法是线性代数最重要的基本概念之一,它以秩、矩阵维数和矩阵中元素的乘法计算来表示两个矩阵的乘积结果。

矩阵乘法可以有效地解决实际问题,是解决线性方程组最常用的工具之一。

5、矩阵求逆:矩阵求逆是线性代数中常见的概念,它表示将矩阵转换成单位矩阵的变换。

考生在面对本题时,除了熟悉矩阵求逆的基本概念外,还需要掌握大量的乘法和除法运算,以及应用消元法计算矩阵求逆的过程。

6、行列式:行列式是一种矩阵形式的数形式,它由矩阵中各元素的行列式代数计算所构成的一种数字的结果。

通过行列式可以判断矩阵的可逆性、行列式的值与矩阵元素有关。

学生在解答本题时,要掌握行列式的基本概念和行列式的计算方法,以及应用行列式来确定矩阵的可逆性的过程。

线性代数中常见的难题、易错题目解析

线性代数中常见的难题、易错题目解析

线性代数中常见的难题、易错题目解析线性代数是数学的一个重要分支,包括线性方程组、矩阵论、特征值分解等内容,已经成为许多学科的必备的基础知识。

随着学科的发展,线性代数也成为了一门杂而乱的学科,其中很多难题和易错题目都会困扰学习者。

本文将从难题、易错题的解析的角度,介绍如何解决线性代数中常见的难题和易错题目。

一、难题1、求解方程组求解方程组是一个具有挑战性的问题,如果把它当做一个整体去理解和求解,那么将是一个棘手的问题。

一般来说,可以用矩阵的乘法法则进行求解,或者用换元法来求解,或者用逐步求解法求解,最后结合容易理解的思想,来解决更加复杂的多元方程组。

2、求矩阵的特征值、特征向量矩阵的特征值和特征向量非常重要,求解特征值和特征向量十分困难。

特征值是矩阵行列式的解,而特征向量则是将特征值代入矩阵方程来求解,这两个问题会有一定的耦合性,有时候也不容易像前者一样能够得出精确的解。

因此,对矩阵的特征值和特征向量求解,一般来说要尽可能的用矩阵的几何性质,来解决相关的问题。

3、找到向量的基础向量的基础是要证明一组给定的向量可以线性表示其他所有的向量,也就是说,它们能够形成一个若干个线性无关向量的基础。

但是在找到向量的基础时,有时会出现向量冗余的情况,我们要在构造基础时尽可能消除冗余,使用一些四元数计算可以大大减少搜索时间,然后在手动检查和调整时,来增强搜索的精确性和准确性。

二、易错题1、矩阵相乘的几何意义很多学生常常弄混矩阵的相乘的几何意义,将它和普通的算术乘法混为一谈。

实际上,矩阵的相乘有重要的几何意义,也就是图像的变换,图像可以用平移、旋转、缩放等形式来表示,而所有的变换就是矩阵乘法的几何意义。

2、判断一个矩阵是否是对称矩阵对称矩阵是比较常见的一类矩阵,但是给出一个矩阵之后数学家要判断它是否是对称矩阵,也是一个相当难的问题。

其实并不难,只要把它乘自身的转置就可以得到判断的答案,如果转置之后的矩阵和原矩阵相同,那么它就是一个对称矩阵,反之则不是。

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理线性代数是数学的一个重要分支,研究向量空间及其上的线性映射、线性方程组和矩阵等基本概念和性质。

它在数学、物理、工程、计算机科学等领域都有广泛的应用。

下面将对线性代数的一些重要知识点进行归纳整理。

1.向量空间:向量空间是线性代数的核心概念,它是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律和分配律等性质。

向量空间的例子包括实数空间R^n、矩阵空间M(m,n)等。

2.线性映射:线性映射是指一个向量空间到另一个向量空间的映射,满足保持加法和数乘运算的性质。

线性映射可以表示为矩阵乘法的形式,其中矩阵的每一列对应于一个基向量在映射后的值。

3.线性方程组:线性方程组是由一组线性方程组成的方程组,其中每个方程都是关于未知数的线性表达式。

解线性方程组的方法包括高斯消元法、矩阵求逆法和克拉默法则等。

4.矩阵:矩阵是由数按矩形排列成的数组,是线性代数的重要工具。

矩阵可以表示线性映射、线性方程组和向量空间的基等。

矩阵的运算包括加法、数乘、矩阵乘法和转置等。

5.行列式:行列式是一个标量,它由矩阵的元素按一定规则计算得到。

行列式可以用于判断方阵的可逆性、计算线性映射的缩放因子和求解线性方程组等。

6.特征值和特征向量:特征值和特征向量是矩阵的重要性质。

特征值是一个标量,特征向量是一个非零向量,它们满足A*v=lambda*v的关系式,其中A是矩阵,v是特征向量,lambda是特征值。

特征值和特征向量可以用于矩阵的对角化和矩阵的谱分解等。

7.正交性:正交性是指向量之间的垂直关系。

在内积空间中,如果两个向量的内积为零,则它们是正交的。

正交向量组和正交矩阵是线性代数中常见的概念,它们在解线性方程组和进行特征值分解等方面具有重要作用。

8.线性相关性和线性无关性:线性相关性和线性无关性是向量组的重要性质。

如果一个向量可以由其他向量线性表示,则称这个向量与其他向量线性相关;如果一个向量不能由其他向量线性表示,则称这个向量与其他向量线性无关。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)—行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则★ 8对角线的元素为a ,其余元素为b 的行列式的值:(三)按行(列)展开 9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等 于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素 的代数余子式乘积之和等于 0 (四)行列式公式 10、行列式七大公式: (1) |kA|=kn|A|1 1…ik £…益■y (v)」IT=n厲-号)klXn7、n 阶(n 》2)范德蒙德行列式数学归纳法证明(2) |AB|=|A| • |B|(3) |AT|=|A|(4) |A-1|=|A|-1(5) |A*|=|A|n-1(6) 若A的特征值入1、入2、……入n,贝y P(7) 若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )非齐次线性方程组的系数行列式不为0,那么方程为唯解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3 )若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0b2矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O2、转置的性质( 5 条)( 1)( A+B) T=AT+BT( 2)( kA) T=kAT( 3)( AB) T=BTAT( 4) |A|T=|A|( 5)( AT) T=A(二)矩阵的逆3、逆的定义:B=A-1 AB=E或 BA=E成立,称A可逆,B是A的逆矩阵,记为注:A可逆的充要条件是|A|工04、逆的性质:( 5 条)(1)( kA) - 1=1/k ・A-1 (k 工0)(2)(AB)-仁B- 1 ・A-1(3)|A-1|=|A|-1( 4)( AT) -1= ( A-1 ) T( 5)( A-1 ) -1=A5、逆的求法:( 1 ) A 为抽象矩阵:由定义或性质求解(2) A为数字矩阵:(A|E初等行变换E|A-1 )(三)矩阵的初等变换6、初等行(列)变换定义:(1)两行(列)互换;(2)一行(列)乘非零常数c(3)一行(列)乘k 加到另一行(列)7、初等矩阵:单位矩阵E 经过一次初等变换得到的矩阵。

线性代数易错点及重点知识点

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不324712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A反三角行列式为A*(-1)^n(n-1)/2行列式的一行的代数余子式分别乘以另一行元素,值为零。

正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。

克莱姆法则D=22211211a a a a ,D1=222121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1)若一个线性方程组有非零解,则它的行列式式值等于零。

行列式中行叫c ,列叫r写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。

n 维向量分横向量和列向量。

写向量时一定要记得在上面加箭头任意一个n 维向量都能由n 个n 维单位向量线性表示如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。

如果一个向量a 线性相关,则a=0由一个非零向量构成的向量组一定线性无关。

即a ≠0则a 这个向量组线性无关。

含有零向量的向量组一定线性相关例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0K1+2k2=0 k1+3k2=0 3121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零两个向量线性相关除非他们对应分量成比例。

数学线性代数的重点考点

数学线性代数的重点考点

数学线性代数的重点考点数学线性代数是大学数学课程的重要组成部分,它的研究对象是向量空间及其上的线性变换。

对于学习线性代数的学生来说,理解和掌握其中的重点考点是非常重要的。

本文将围绕数学线性代数的重点考点展开讨论,帮助读者加深对这些内容的理解。

一、向量空间的定义和性质1. 向量空间的定义:向量空间是指满足一系列要求的非空集合,包括封闭性、加法运算和数乘运算。

了解向量空间的定义对于理解线性代数的其他内容至关重要。

2. 向量空间的性质:包括零向量、加法逆元、交换律、结合律、分配律等。

掌握这些性质有助于进行向量的运算和推导。

3. 子空间:子空间是指向量空间中满足向量空间的定义和性质的子集。

了解子空间的定义和性质,包括判断一个子集是否为子空间的方法,对于解题和证明相关问题非常有帮助。

二、线性变换和矩阵表示1. 线性变换的定义:线性变换是指保持向量空间加法运算和数乘运算性质的映射。

了解线性变换的定义和性质对于后续的矩阵表示和线性方程组的求解非常重要。

2. 矩阵表示:线性变换可以通过矩阵来表示,其中矩阵的列向量是线性变换后的基向量坐标。

矩阵相乘的运算规则和性质也是线性代数的重点内容。

3. 线性方程组:线性方程组是线性代数的一个重要应用领域,通过矩阵运算的方法可以求解线性方程组。

理解线性方程组的求解过程和相关的概念,如齐次线性方程组和非齐次线性方程组等,对于解决实际问题具有指导意义。

三、特征值和特征向量1. 特征值和特征向量的定义:对于线性变换,存在一些非零向量,当这些向量经过线性变换后,只改变其长度而不改变其方向,这些向量被称为特征向量,而对应的长度比例被称为特征值。

2. 特征值和特征向量的求解:计算特征值和特征向量是求解线性变换的重要方法。

通过特征值和特征向量可以了解线性变换的一些性质,如对角化、相似变换等。

3. 特征多项式和最小多项式:特征多项式是一个和特征值有关的多项式,最小多项式是一个和线性变换的性质有关的最小阶多项式。

线性代数自考知识点汇总各章重点

线性代数自考知识点汇总各章重点

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行〔列〕,行列式变号.推论1 如果行列式有两行〔列〕的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行〔列〕中全部的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行〔列〕元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 假设行列式的某一行〔列〕的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行〔列〕的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行〔列〕展开法则定理1 行列式的值等于它的任一行〔列〕的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行〔列〕的元素与另一行〔列〕的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠4. 行列式的计算〔1〕二阶行列式1112112212212122a a a a a a a a =- 〔2〕三阶行列式〔3〕对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-〔4〕三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==〔5〕消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.〔6〕降阶法:利用行列式的性质,化某行〔列〕只有一个非零元素,再按该行〔列〕展开,通过降低行列式的阶数求出行列式的值.〔7〕加边法:行列式每行〔列〕全部元素的和相等,将各行〔列〕元素加到第一列〔行〕,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1〕对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2〕单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作 E.3〕上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭4〕下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5〕对称矩阵:设A 为n阶方阵,假设T A A =,即ij ji a a =,则称A 为对称矩阵. 6〕反对称矩阵:设A 为n阶方阵,假设T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7〕正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 〔1〕矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 〔2〕数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.〔3〕矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵〔即一个数〕,即 列矩阵乘行矩阵是s 阶方阵,即 3. 逆矩阵设n 阶方阵A 、B ,假设AB=E 或BA=E ,则A ,B 都可逆,且11AB,B A --==.〔1〕二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭〔两调一除法〕.〔2〕对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.〔3〕分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 〔4〕一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式〔各元素的位置不变〕叫做方阵A 的行列式.记作A 或det 〔A 〕. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行〔列〕变换: 〔1〕互换两行〔列〕;〔2〕数乘某行〔列〕;〔3〕某行〔列〕的倍数加到另一行〔列〕. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R 〔A 〕或r 〔A 〕. 求矩阵的秩的方法:〔1〕定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.〔2〕初等行变换法:ERTA −−−→行阶梯形矩阵,R 〔A 〕=R 〔行阶梯形矩阵〕=非零行的行数. 8. 重要公式及结论〔1〕矩阵运算的公式及结论矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地假设AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地假设AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.〔2〕逆矩阵的公式及定理A 可逆⇔|A |≠0⇔A ~E 〔即A 与单位矩阵E 等价〕 〔3〕矩阵秩的公式及结论R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程〔1〕设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .〔2〕设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系〔1〕等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.〔2〕相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 〔3〕合约矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合约. 性质:合约矩阵的秩相等.向量空间1. 线性组合〔1〕假设α=k β,则称向量α与β成比例. 〔2〕零向量O是任一向量组的线性组合.〔3〕向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关〔1〕 单独一个向量线性相关当且仅当它是零向量. 〔2〕 单独一个向量线性无关当且仅当它是非零向量. 〔3〕 两向量线性相关当且仅当两向量对应成比例.〔4〕 两向量线性无关当且仅当两向量不对应成比例. 〔5〕 含有O向量的向量组肯定线性相关. 〔6〕 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.〔7〕n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.〔8〕 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.〔9〕 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.〔10〕当m>n 时,m 个n 维向量肯定线性相关.定理1:向量组 a 1 , a 2 ,……, a m 〔m ≥2〕线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+假设A 线性相关,则向量组B 也线性相关;反之,假设向量组B 线性无关,则向量组A 也线性无关.〔即局部相关,则整体相关;整体无关,则局部无关〕. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。

它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。

以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。

向量是矩阵的特殊情况,只有一个列的矩阵。

矩阵和向量可以进行加法和数乘运算。

2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。

3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。

行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。

4.向量空间:向量空间是一组向量的集合,满足一定的条件。

向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。

5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。

6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。

向量空间的维数是指基向量的个数。

7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。

秩表示矩阵中线性无关的方向个数。

8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。

9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。

对角化后的矩阵可以简化各种计算。

10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。

11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。

如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。

线性代数背诵要点(全)

线性代数背诵要点(全)

第一章 行列式一、行列式的概念、展开公式及其性质 (一)行列式的概念nnn n n n a a a a a a a a a A .. (2)12222111211=(二)行列式按行(列)展开公式公式为关于副对角线,其计算角线上元素的乘积三角行列式等于其主对下上的代数余子式为的余子式,而阶行列式,称之为列元素后的行及第中去掉第是其中.2......)(.1)1(1)1( (221122)11221122112211nnnn nn ij ij j i ij ij ijj i ij nj nj j j j j in in i i i i a a a a a a a a a a M a n j i A M M A A a A a A a A a A a A a A ⋅⋅⋅=******=******---=+++=+++=++11212)1(11211121)1(......n n n n n n n nn n na a a a a a a a a ⋅⋅⋅-=******=******---- B A OB A BA OB A B OA B O A n B m A mn ⋅-=*=*⋅=*=*)1(.3阶矩阵,则是阶矩阵,是开式,设两种特殊的拉普拉斯展(三)行列式的性质1.经转置的行列式的值不变,即T A A =2.行列式中某一行各元素如有公因数k ,则k 可以提到行列式符号外,若行列式某行元素全是零,则行列式的值为零3.如果行列式中某行的每个原色都是两个的和,则这个行列式可以拆成两个行列式的和mlb b a a 2121++=mlb a 11+mlb a 224对换行列中某两行的位置,行列式的值只改变正负号;若两行元素对应相对(成比例),则行列式的值为零 5.把某行的k 倍加至另一行,行列式的值不变(四)关于代数余子式的求和...0...)()(.2,.122112211=+++=+++nk nj k j k j jn in j i j i ij ij ij ij A a A a A a A a A a A a a A A a 乘积之和必为零对应元素的代数余子式列元素与另一行列行列式一行的取值无关与式值并不影响其代数余子所在行或列中的元素的只改变二、有关行列式的几个重要公式A k kA n A n =阶矩阵,则是若.1B A B A n B A •=阶矩阵,则是,若.211-1.3--*==AA n A AA n A n 阶可逆矩阵,则是若阶矩阵,则是若∏≤≤----==ni j j i n nn n n nx x A x x x x x x x x x A n A 1112112222121)( (1)...11.4,则阶范德蒙矩阵是若 ∏==ni i i A A n A 1.5λλ的特征值,则是阶矩阵,是若B A B A =,则若~.6三、关于克莱姆法则的系数换成常数项中的是把其中则方程组有唯一解方程组,如果系行列式个未知数的非齐次线性个方程对于j j n n x D D DDx D D x D D x A D n n ,,...,,,02211===≠=则方程组只有零解程组,系数行列式个未知数的齐次线性方个方程对于,0≠=A D n n 0==A D n n 数行列式程组,有非零解,则系个未知数的齐次线性方个方程对于逆序数的计算,从左至右,看每个数后面比它小的数的个数 经初等变换矩阵的秩不变第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵 (一)矩阵及相关概念 1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A 3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n nn≠≠=得不到由,.............. (2)12222111211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵, 记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设 7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nnnnn n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算 1.矩阵的加法C B A B A b a c C n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A kkA 111))(3(---=A B AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律A A T T =))(1( T T kA kA =))(2( T T T AB AB =))(3( T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n AA n )2())(3(2≥=-**n A AA n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T TT T TD B C A D C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O B C O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A E BA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵 (一)矩阵的初等变换及相关概念 1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换 (1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去 (4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换) (5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P)()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E kE k E EE ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A EA B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~rE PAQ Q n P m n m A BPAQ Q P B A B A⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B AE E A A EE A A AA E BA E AB B 111-1-1-1-111)()();()(1,分块矩阵法初等变换法伴随矩阵法或使定义法,找出为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A AB r A r A B B Ax 2,,1)()(.2.111--===的主对角线元素之和是矩阵T T αββα 若11,--==P PB A PBP A n n 则1-)(,P P A P A n n n Λ=Λ,令与先求特征值与特征向量求 行列变换与单位矩阵、初等矩阵运算的关系第三章 n 维向量一、n 维向量的概念与运算 (一)n 维向量的概念个分量称为向量的第的矩阵,数或维列向量,也就是维行向量或分别称为或维向量,记作构成的有序数组称为个数i a n n n n a a a a a a n a a a n i T n n n 11,),...,,(),...,,(,...,,212121⨯⨯(二)n 维向量的运算0),(......),(,0),(.4...),(.3),...,,(.2),...,,(.1),...,,(,),...,,(222212222122112122112121=⇔==+++=+++=====+++==+++=+==ααααααααααβαβααββαβααβαβαT n nT TT n n Tn T n n T n T n a a a a a a b a b a b a ka ka ka k b a b a b a b b b a a a 正交,,则若内积数乘加法如果二、线性组合与线性表出 1.线性组合若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组称为组合系数的一个线性组合,其中称为向量组所构成的向量个常数及维向量个由s s s s s s k k k k k k k k k s n s ,...,,,...,,...,...,,,...,,212122112121ααααααααα+++ 2.线性表出的线性组合是线性表出,或说可由则称的线性组合能表示成向量维向量如αααβαααββααααααβ,...,,,...,,...,...,,2121221121s s s s k k k n =+++3.向量组等价,则称两个向量等价量组可以互相线性表出线性表出;如果两个向可由向量组线性表出,则称向量组量组的每个向量都可以由向如过向量组)2()1(,...,,)2(,...,,)1(2121t s βββααα等价、则线性表出,可由向量组如果向量组不一定等价秩,但秩相同的向量组等价的向量具有相同的相同向量组所含向量的个数两个等价的线性无关的无关组等价向量组的任意两个极大无关组等价任一向量组和它的极大样,线性相关也可以不一但向量个数可以不一样、对称性、及反身性,等价向量组具有传递性)2()1(),2()1()2()1(.6.5.4.3.21r r =三、向量组的线性相关与线性无关 (一)线性相关与线性无关的概念 1.线性相关线性相关则称此向量组使得的数,如存在一组不全为维向量对于s s s s s k k k k k k n ααααααααα,...,,0...,...,,0,...,,2122112121=+++2.线性无关线性无关称此向量组,,必有不全为或者说如存在一组数线性无关则称此向量组,必有,如果维向量对于s s s s s s s s s k k k k k k k k k k k k n ααααααααααααααα,...,,0...0,...,,,...,,,0...0...,...,,212211212121221121≠+++=====+++(二)线性相关与线性无关的充分必要条件 1.线性相关的充分必要条件位向量一定线性相关个维向量线性相关个个向量线性表出可由其他存在某向量的个数有非零解齐次方程组线性相关,向量组n n n n s s r x x x s i s s s s 10,...,,1)(),...,,(0...),...,,(,...,,2121212121+=⇔-⇔⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔ααααααααααααα2.线性无关的充分必要条件个向量线性表出都不能用其他存在某向量的个数只有零解齐次方程组线性无关,向量组1)(),...,,(0...),...,,(,...,,21212121-⇔=⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔s s r x x x i s s s s αααααααααα3.几个重要结论组必然线性无关两两正交、非零的向量必然线性无关,,,延伸组线性无关,则它的任一若向量组必然线性无关个部分分组线性无关,则它的任一若向量组无关阶梯形向量组一定线性)4(...,...,,)3(,...,,,...,,)2()1(2211212121⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡s s s i i i s t βαβαβαααααααααα四、线性相关性与线性表出的关系ts t s s s t s s t s i i i s s s s s t ≤-线性无关,则线性表出,且可由向量组若向量组线性相关则线性表出,且可由向量组若向量组必然线性无关则它的任一个部分分组一线性表出,且表示法唯可由线性相关,则,线性无关,而向量组若向量组个向量线性表出可以用其余是线性相关,的充要条件向量组αααβββααααααβββαααααααααββαααααααααα,...,,,...,,,...,,)4(,...,,,,...,,,...,,)3(,...,,,...,,,...,,,...,,)2(1,...,,)1(2121212121212121212121五、向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念 1.极大线性无关组是由原向量唯一确定的即个数都是关组中所含向量的个数个极大线性无关组是等价的,从而每的。

线性代数重要知识点总结

线性代数重要知识点总结

线性代数重要知识点总结线性代数是数学中的一个重要分支,它研究向量、向量空间以及线性变换等概念。

在科学、工程、计算机科学等领域中都广泛应用线性代数的知识。

下面是线性代数的一些重要知识点的总结。

1.向量:向量是表示大小和方向的量,可以用有序数组表示。

向量的加法和数乘运算满足交换律、结合律和分配律。

2.向量空间:向量空间是一组向量的集合,在其中向量可以进行加法和数乘运算。

向量空间必须满足闭合性、加法逆元、加法交换律、加法结合律、数乘结合律和数乘分配律等性质。

3.线性相关与线性无关:向量组中的向量可以是线性相关的,也可以是线性无关的。

线性相关表示一些向量可以由其他向量线性表示出来,而线性无关表示所有向量不能通过线性组合得到零向量。

4.矩阵:矩阵是二维数组,也可以看作是向量的扩展。

矩阵的加法和数乘运算满足交换律、结合律和分配律。

5.矩阵乘法:矩阵乘法是矩阵之间的一种运算,前提是第一个矩阵的列数等于第二个矩阵的行数。

矩阵乘法满足结合律,但不满足交换律。

6.线性方程组:线性方程组是一组线性方程的集合。

可以使用矩阵的形式表示线性方程组,通过高斯消元法或矩阵求逆等方法求解线性方程组。

7.特征值与特征向量:在线性代数中,对于一个n维向量,如果它乘以一个n×n的矩阵后,仍然保持方向不变(可能会变长或变短),那么这个向量称为这个矩阵的特征向量,而乘以矩阵后的长度变化倍数称为特征值。

8.内积与外积:内积是向量之间的一种运算,满足交换律和分配律,内积为一个标量。

外积是向量之间的一种运算,满足反对称性和分配律,外积为一个向量。

9.正交与正交子空间:正交指的是两个向量的内积为零,正交子空间是由正交向量组成的向量空间。

10.线性变换:线性变换是将一个向量空间映射到另一个向量空间的变换,保持向量空间的线性运算性质。

11.特征值分解:矩阵的特征值分解是将一个矩阵分解为特征值和特征向量的乘积的形式。

12.奇异值分解:矩阵的奇异值分解是将一个矩阵分解为奇异值和左右奇异向量的乘积的形式。

线性代数复习总结(重点精心整理)

线性代数复习总结(重点精心整理)

线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

线性代数知识点及总结

线性代数知识点及总结

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。

性质1行列式与它的转置行列式相等。

性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。

推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。

性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。

性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。

而算得行列式的值。

4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。

考研线代复习重点解析之核心考点和易错点

考研线代复习重点解析之核心考点和易错点

2016考研线代复习重点解析之——核心考点和易错点通过7-9月这三个月时间的复习,大家应该做到把所学的知识系统化综合化,尤其是考研数学中的线性代数。

在考研数学中线性代数只占分值的22%,所占比例虽然不高,但是对每位考研学子来说同样重要。

线性代数部分的内容相对容易,从历年真题分析可知考试的时候出题的套路也比较固定。

但是线性代数的知识点比较琐碎,记忆量大而且容易混淆的地方较多;另外这门学科的知识点之间的联系性也比较强,这种联系不仅指各个章节之间的相互联系,更重要的是不同章节中的各种性质、定理、判定法则之间也有着相互推导和前后印证的关系。

因此,在复习线性代数的时候,要求考生做到“融会贯通”,即不仅要找到不同知识点之间的内在联系,还要掌握不同知识点之间的顺承关系。

为了使广大考生在暑期强化阶段更好地复习线性代数这门学科,跨考教育数学教研室的老师为大家总结了本门课程的核心考点和易错考点,希望对大家的复习能有所帮助! 一、核心考点 1、行列式本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。

对于低阶的数值型行列式来说,主要的处理方法是:找1,化0,展开,即首先找行列式中最简单的元素,利用行列式的性质将最简单元素所在的行或者列的其他元素均化为0,然后再利用行列式的展开定理对目标行列式进行降阶,最后利用已知公式求得目标行列式的值。

对于高阶的数值型行列式来说,它的处理方法有两种:一是三角化;二是展开。

所谓的三角化就是利用行列式的性质将目标行列式化成上三角行列式或者下三角行列式,三角化的主要思想就是化零,即利用行列式中各元素之间的关系通过行列式的性质化出较多的零,它是解决“爪型”行列式和“对角线型”行列式的主要方法。

而所谓的展开就是利用行列式的展开定理对目标行列式进行降阶,一般解决的是递推形式的行列式,而它的关键点则是找出1n D 与n D 的结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不
3
24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A
反三角行列式为A*(-1)^n(n-1)/2
行列式的一行的代数余子式分别乘以另一行元素,值为零。

正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。

克莱姆法则D=222112
11a a a a ,D1=22
2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1)
若一个线性方程组有非零解,则它的行列式式值等于零。

行列式中行叫c ,列叫r
写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。

n 维向量分横向量和列向量。

写向量时一定要记得在上面加箭头
任意一个n 维向量都能由n 个n 维单位向量线性表示
如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。

如果一个向量a 线性相关,则a=0
由一个非零向量构成的向量组一定线性无关。

即a ≠0则a 这个向量组线性无关。

含有零向量的向量组一定线性相关
例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关
解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0
K1+2k2=0 k1+3k2=0 3
121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关
一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零
两个向量线性相关除非他们对应分量成比例。

如果一个向量组一部分向量线性相关,则,整个向量组线性相关。

一个向量组线性无关,那么它的一部分也线性无关
向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。

应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。

要证线性无关,则减少维,如果减少后无关,则原向量组无关。

要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。

要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。

向量个数大于维数一定线性相关
一个向量组的每个最大线性无关组中的向量个数一定相等
向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基
数和矩阵的乘法和数和行列式的乘法是不同的,行列式是乘到一行里,矩阵是乘到每个元素里
⎥⎦⎤⎢⎣⎡2322211312a11a a a a a *⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡323122211211b b b b b b =
⎥⎦
⎤⎢⎣⎡++++++++322322221221312321221121321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a A m*n *B n*j =C m*j
矩阵乘矩阵没有交换率,但有结合率
A+B 的转置矩阵等于A,B 的转置矩阵相加
AB=B ’A ’
矩阵的乘法有分配率,无论是数还是矩阵都有,唯有AB ≠BA 对称矩阵是除主对角线外以主对角线对称的矩阵A=A ’
行等于列的矩阵称为方阵
只有方阵才有幂
(A+B )2≠A 2+B 2+2AB
因为AB ≠BA
A 乘以单位矩阵E 还是A
非奇异矩阵即矩阵的行列式值不等于零的矩阵
B A AB =
若A*B=E 则B 是A 的逆阵,B=A -1
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a 的逆阵位⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211A A A A A A A A A /33
3231232221131211a a a a a a a a a 其中A11,A12为a11,a12的代数余子式
单位矩阵E 2=E
要想求一个矩阵的逆矩阵,一种是用上三行的那种方法,对于是字母的就凑个B 让他们乘积等于E
矩阵的秩等于它列向量组的最大无关线性组的个数
矩阵补行补列找它秩原理和向量原理相同
矩阵找它的秩只要画网格,网格交叉的元素若值不等于零,则它的竖线个数就是矩阵的秩 矩阵只能进行行变换,行加减变换和行列式一样
矩阵化阶梯矩阵
例题。

相关文档
最新文档