电压互感器设计计算
V型电压互感器接线分析及计算
V型电压互感器接线分析与计算摘要:本文主要阐述了在高压电能计量中V型电压互感器与三相三线电能表所组成的计量系统的接线方式,通过对正确与错误接线的分析和计算,为公司电能的正确计量提供理论上的技术支持,同时也可为计量人员的分析提供相应的帮助,从而加快公司计量工作的进一步开展。
关键词:V型电压互感器三相有功电能表接线分析计算随着节能工作的进一步推进,计量工作成为企业管理工作中的重要组成局部,由于矿区尤其是井下能源消耗主要来自于电能,因此做好电能计量〔尤其是井下电能计量〕则是做好计量工作的关键。
我公司高压计量系统中广泛采用了V型电压互感器配感应式三相三线电能表进展计量,但在计量过程中常出现计量明显不准或电能表反转的现象。
电能表计量的工作原理:当电压线圈两端加以线路电压,电流线圈串接在电源与负载之间电流过电流时,电压元件和电流元件就产生了在空间上不同位置、相角上不同相位的电压工作磁通和电流工作磁通。
电压工作磁通与电流工作磁通在圆盘中产生的感应涡流相互作用及电流工作磁通与电压工作磁通在圆盘中产生的感应涡流相互作用,使圆盘转动并通过传动机构实现对电能消耗的记录,即电能计量。
一般来说,电能的消耗正比于表计圆盘转动。
为确保计量的准确性,在表计完好的前提下,最关键就是接线正确,尤其是电压互感器的正确接线。
则,我们应如何接线呢.由于电流互感器星形〔Y型〕互感器接线较为简单,这里,就开口角形〔V型〕电压互感器与三相三线电能表配合接线进展分析,以供参考。
一、V型电压互感器接线的高压电能计量装置与Y型电压互感器相比,V型电压互感器接线很容易接错,接线一旦错误,就会造成计量错误,因此必须接对电压互感器的极性。
V型接线实际上是开口三角形接线,即三角形的接线取去一组线圈。
三角形接线是三相绕组正极与负极连接,所以V 型接线也是一相绕组的负极与另一相绕组的正极连接,而不能同极连接,其正确接线图如图1所示。
这种接线是用两个单相互感器接成V 型接线,一次和二次绕组极性接法是对称的,且都是正极和负极连接,接线是严禁改变任何一相接线,它是V 型电压互感器正确接线的标准接线图。
电流电压互感器额定二次容量计算方法
附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l LR A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入90,其余为1。
2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。
mZ ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接头接触电阻,一般取0.05~0.1根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。
而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。
电压互感器设计计算完整版
电压互感器设计计算完整版电压互感器的设计计算需要考虑以下几个关键参数:变比(Turns Ratio)、额定电压(Rated Voltage)、额定绝缘水平(Rated Insulation Level)、额定频率(Rated Frequency)、额定输出(Secondary Rated Output)和准确度等级(Accuracy Class)。
首先,根据系统要求和设备额定功率,确定电压互感器的变比。
变比(k)的计算公式为:k=V1/V2其中,V1为高压线路的额定电压,V2为低压线路的额定电压。
根据具体要求,选择合适的变比。
其次,根据系统的额定电压和电压互感器的变比,计算电压互感器的额定电压(Un)。
额定电压一般选择高压电压阶段的最大值。
然后,确定电压互感器的额定绝缘水平(Ui)。
额定绝缘水平表示电压互感器的抗电击穿能力。
根据系统电气设备的要求,选择合适的额定绝缘水平。
接下来,确定电压互感器的额定频率(f)。
额定频率一般为50Hz或60Hz,根据系统的实际情况选择。
然后,根据电压互感器的额定电压和额定功率,计算电压互感器的额定输出(Ps)。
Ps=Un*Is其中,Un为电压互感器的额定电压,Is为电压互感器的额定输出电流。
最后,确定电压互感器的准确度等级(Accuracy Class)。
准确度等级是指电压互感器的测量误差范围。
根据具体要求,选择合适的准确度等级。
除了以上关键参数,电压互感器的设计还需要考虑安装方式、外形尺寸、绝缘材料和重要零部件的选型等。
综上所述,电压互感器的设计计算需根据系统要求和设备额定功率确定变比、根据系统的额定电压和电压互感器的变比计算额定电压、确定额定绝缘水平、选择额定频率、根据额定电压和额定功率计算额定输出、选择准确度等级等。
在设计过程中,还需要考虑安装方式、外形尺寸、绝缘材料和重要零部件的选型等因素。
仔细计算和选择,能够设计出满足系统要求的高质量电压互感器。
电压互感器设计计算完整版
电压互感器设计计算 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第六章电压互感器设计计算第一节计算依据电压互感器计算依据是:(1)额定一次电压、(2)额定二次电压(3)剩余电压绕组(如果有)额定电压(4)二次绕组准确级及额定电压,极限输出(5)剩余电压绕组(如果有)准确级及额定电压(6)额定频率(7)绝缘水平第二节铁心和绕组设计计算一、铁心设计计算1.铁心额定磁通密度选择额定磁通密度是一个选择性很强的基本设计参数。
不同的电压互感器其额定磁通密度值差别很大。
选择合适的额定磁通密度是产品设计中必须首先解决的问题之一。
额定磁通密度与互感器误差及过励磁特性直接有关,其数值选取分析如下。
(1)单相及三相不接地电压互感器通常用于测量过压、压保护,当系统发生故障时并不改变互感器相间电压或线端与中心点的电压。
因此这两种电压互感器并不承受系统故障所引起的工频电压升高。
它们可能承受的最大工频电压升高幅度一般不超过倍额定电压,是指发电机突然甩负荷而引起的飞转,长线电容效应等所引起的工频电压升高。
此时如果铁心过饱和,二次绕组感应电势中将含有较大的三次谐波分量,电压波形失真。
这种电压互感器选择磁通密度时需满足以下两点要求。
a.电压互感器在两个极限电压空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
这种电压互感器选取额定磁通密度应不大于。
(2)供中性点有效接地系统使用的单相接地电压互感器,主要用于测量及单相接地保护。
互感器一次绕组连接在相与地间,它除了承受幅度一般不超过倍额定电压的工频电压升高外,还要承受接地短路引起的工频过电压,其幅度一般不超过倍额定电压。
这两种过电压都是瞬时的,选择这种互感器额定磁通密度时,需满足以下三点要求。
a.测量用绕组在两个极限电压下空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
c.系统发生单相接地短路时,互感器铁心不应过饱和。
互感器设计其它知识
电压互感器的设计1、铁芯截面积计算铁心截面积(S)=铁芯切面的长×宽图1该铁芯截面积为60×25+50×16+40×10+30×6=28.8cm22、匝数计算首先要知道二次电压是多少,一般有100V和100/√3V,100/√3就是57.73672V,约58V,剩余绕组为100/3V,就是33.3V,我们在设计时只考虑主绕组的100V和100/√3V,同时要考虑铁芯的磁通密度,一般二次输出100V的电压互感器磁通密度定在1.1-1.15特斯拉,100/√3V的电压互感器磁通密度定在0.7-0.8特斯拉之间,如磁通密度过高铁芯容易发热,严重时会发生爆炸,影响供电。
根据公式可知:匝数=二次电压(100或58V)×10000/222/0.96(叠片系数)/磁通密度/铁芯截面积2.1 如果二次输出为100V,按照图1举例说明:匝数=100×10000/222/0.96(叠片系数)/1.1/28.8匝数=1482.2 如果二次输出为100/√3V,按照图1举例说明:匝数=58×10000/222/0.96(叠片系数)/0.75/28.8匝数=1232.3 不管你设计的是10KV还是35KV产品,给你一个切面的铁芯,那就决定了这台互感的二次匝数,(根据设计思路的不同,所取的磁通密度也会因人而异,二次匝数偏差一般不会超出10%)其它部分的几何尺寸设计就要按照理论计算来确定,或者借助于计算机用制图软件来虚拟描绘,确定最终铁芯规格。
2.4 二次匝数得出后怎么计算一次匝数呢?根据公式得出:一次匝数/二次匝数= 一次电压/二次电压即一次匝数=二次匝数×一次电压/二次电压但是在实际制造过程中由于铁芯有磁滞损耗特性,所以要考虑误差补偿,一般采用一次匝数补偿法,就是在一次线圈上增减数匝到数十匝来补偿误差成绩。
3、剩余绕组的计算3.1 压变在实际使用中线路上如出现单相接地故障,而为了保护其它电器设备的安全,及时反馈故障到保护电路,所以在电压互感器上设计有剩余绕组也称之为保护绕组。
电流、电压互感器额定二次容量计算方法
电流、电压互感器额定二次容量计算方法-CAL-FENGHAI.-(YICAI)-Company One1附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l LR A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,ΩjxK ——二次回路导线接触系数,分相接法为2星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入90o 1。
2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。
m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接头接触电阻,一般取~根据上述的设定,以二次额定电流为5A ,分相接法,4 mm2的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。
而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。
电压互感器相关设计与计算
电压互感器相关设计与计算一、电压互感器的工作原理1.高压绕组:高压绕组通过与高电压设备的电路相连,感应该设备的电势,高压端的电势通过高压绕组传导到互感器的低压端。
2.低压绕组:低压绕组是用来输出互感器的低电压信号的绕组,它的线圈匝数较高,通常为几千匝。
低电压信号可以用于电力测量、保护和继电器等应用。
3.铁芯:铁芯是电压互感器的重要组成部分,它通过磁耦合的方式将高电压的电势传导到低电压绕组。
铁芯的质量和导磁特性对电压互感器的精度和性能有着重要影响。
二、电压互感器的设计要点在设计电压互感器时,需要考虑以下要点:1.额定电压:根据应用要求和电力系统的额定电压,确定电压互感器的额定电压值。
额定电压是互感器设计的基本参考参数。
2.检定准确度等级:根据使用要求和国家标准,选择电压互感器的检定准确度等级。
检定准确度等级决定了电压互感器的测量精度。
3.绝缘水平:电压互感器需要具备良好的绝缘性能,以确保安全可靠的运行。
绝缘材料的选择和绝缘水平的确定是设计过程中的重要考虑因素。
4.负载特性:电压互感器在不同负载条件下的输出特性需要进行分析和计算。
通常要求电压互感器在负载变化范围内具有较好的线性性能。
5.频率响应:电压互感器需要具备较好的频率响应特性,能够在不同频率下稳定输出信号。
频率响应的计算和分析可以根据电力系统的工作频率来确定。
三、电压互感器的计算方法根据电压互感器的设计要点,可以采用以下计算方法进行设计:1.高压绕组的匝数计算:根据高压绕组的匝数和高压绕组与低压绕组的变比关系,可以计算出低压绕组的匝数。
2.铁芯和铁芯材料的选取:铁芯的尺寸和材料的选择对电压互感器的性能有着重要的影响。
通过计算和分析,可以确定合适的铁芯尺寸和材料。
3.绝缘材料的选取:根据绝缘水平的要求和电压互感器的使用环境,选择合适的绝缘材料,确保电压互感器的安全可靠运行。
4.负载特性的计算:根据电压互感器的设计要求和应用需求,计算和分析电压互感器在不同负载条件下的输出特性。
电流、电压互感器额定二次容量计算方法
附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l L R A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3A ——二次回路导线截面, 2mm ρ——铜导电率,257m /m m )ρ=Ω,(•L ——二次回路导线单根长度,m lR ——二次回路导线电阻,Ωjx K——二次回路导线接触系数,分相接法为2,不完全星形接法为星形接法为1; 2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。
2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。
m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接头接触电阻,一般取0.05~0.1根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R KZ R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。
而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R KZ R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。
电动互感器倍数计算公式
电动互感器倍数计算公式电动互感器是一种用于测量电流和电压的传感器,它可以将高压电流或电压转换为低压信号,以便于测量和控制。
在电力系统中,电动互感器倍数是一个重要的参数,它决定了电动互感器的输出信号与被测电流或电压之间的比例关系。
因此,正确地计算电动互感器倍数对于电力系统的正常运行和安全运行至关重要。
电动互感器倍数计算公式是用来计算电动互感器倍数的数学表达式。
通常情况下,电动互感器倍数可以通过测量电动互感器的一些参数来计算得到。
下面我们将介绍一些常见的电动互感器倍数计算公式,并对其进行详细的解释。
1. 电动互感器倍数计算公式(对于电流互感器):电流互感器的倍数(CT)可以通过以下公式计算得到:CT = Iout / Iin。
其中,CT表示电流互感器的倍数,Iout表示电流互感器的输出电流,Iin表示被测电流。
这个公式表明,电流互感器的倍数是电流互感器输出电流与被测电流之间的比值。
通过测量电流互感器的输出电流和被测电流,就可以得到电流互感器的倍数。
2. 电动互感器倍数计算公式(对于电压互感器):电压互感器的倍数(PT)可以通过以下公式计算得到:PT = Vout / Vin。
其中,PT表示电压互感器的倍数,Vout表示电压互感器的输出电压,Vin表示被测电压。
这个公式表明,电压互感器的倍数是电压互感器输出电压与被测电压之间的比值。
通过测量电压互感器的输出电压和被测电压,就可以得到电压互感器的倍数。
3. 电动互感器倍数计算公式(综合计算):在一些情况下,需要同时测量电流和电压,此时可以使用综合计算公式来计算电动互感器的倍数:CT × PT = Iout / Iin × Vout / Vin。
这个公式表明,电流互感器倍数和电压互感器倍数的乘积等于电流互感器输出电流与被测电流之间的比值与电压互感器输出电压与被测电压之间的比值的乘积。
通过测量电流互感器和电压互感器的输出信号,以及被测电流和电压,就可以得到电动互感器的倍数。
电压互感器设计计算
电压互感器设计计算电压互感器是一种测量高电压的电器装置,它通过电感和磁链耦合原理将高压侧的高电压信号转换成低电压信号,以便测量、保护和控制装置使用。
设计和计算电压互感器需要考虑很多因素,例如额定电压、容量、抗短路能力、磁化特性和误差等。
下面将详细介绍电压互感器设计和计算的过程。
首先,电压互感器的设计需要确定额定电压。
额定电压是指电压互感器连续运行的最高电压值,通常选择额定电压为系统工作电压的1.1~1.2倍,以保证电压互感器的安全运行。
其次,根据额定电压和要求的输出电压比例确定变比。
变比是指高压侧与低压侧电压之间的比值。
变比可以根据需求来确定,常见的变比有1:1、10:1、100:1等。
变比的选择要考虑到测量范围、精度和输出电压等要求。
然后,计算电感值。
电感是电流在电压互感器中产生磁能的度量。
电感可以通过下式计算得到:L = Vn * n / (2 * π * f * Imax)其中,L为电感值,Vn为额定电压,n为变比,f为频率,Imax为电流互感器的额定电流。
计算完成后,需要选择合适的铁芯材料和截面积。
铁芯材料的选择要考虑到对磁场的导磁性和磁饱和能力,常见的铁芯材料包括硅钢片和铁氧体等。
截面积的选择要根据电感值和变比来确定,以满足对电压的耦合效果和磁场的均匀分布。
在设计过程中,还需要考虑到电压互感器的抗短路能力。
抗短路能力是指电压互感器在短路条件下能够承受的最大电流,并保持正常工作。
Zsc = Vn / (In * S)其中,Zsc为短路阻抗,Vn为额定电压,In为电流互感器的额定电流,S为电压互感器的容量。
最后,还需要进行磁化特性和误差计算。
磁化特性是指电压互感器在额定电压下的磁化曲线。
在设计过程中,通常需要进行磁化特性的仿真和优化,以满足国际标准的要求。
误差是指电压互感器输出信号与输入信号之间的差异。
误差计算可以通过校正和标定来进行,以确保电压互感器的精度和可靠性。
综上所述,电压互感器的设计和计算涉及到很多方面,包括额定电压、变比、电感值、铁芯材料、抗短路能力、磁化特性和误差等。
互感器倍率计算公式
互感器倍率计算公式
摘要:
I.互感器简介
A.互感器的定义
B.互感器的作用
C.互感器的分类
II.互感器倍率计算公式
A.互感器倍率的定义
B.互感器倍率计算公式
1.电流互感器倍率计算公式
2.电压互感器倍率计算公式
C.互感器倍率计算公式的应用
III.互感器倍率计算公式的意义
A.互感器倍率计算公式的重要性
B.互感器倍率计算公式在工程中的应用
C.互感器倍率计算公式的发展趋势
IV.结论
正文:
互感器是一种电力系统中常见的电气设备,用于将电路中的电压、电流变换为可测量的信号,以保护电力系统的安全运行。
互感器可以分为电流互感器和电压互感器两大类。
互感器的倍率计算公式是互感器设计和运行中非常重要的一个参数。
互感器倍率计算公式可以帮助工程师快速准确地计算出互感器的倍率,从而为互感器的选型和运行提供重要的参考依据。
电流互感器的倍率计算公式为:
倍率= (二次电流/ 一次电流) × 匝数比
电压互感器的倍率计算公式为:
倍率= (二次电压/ 一次电压) × 匝数比
其中,匝数比是互感器的一次匝数和二次匝数之比,通常由互感器的制造厂家提供。
互感器倍率计算公式的意义在于,它可以帮助工程师快速准确地计算出互感器的倍率,从而为互感器的选型和运行提供重要的参考依据。
在实际工程中,互感器的倍率计算公式被广泛应用于电力系统的保护、测量和控制等方面。
随着电力系统的发展,互感器倍率计算公式也在不断地发展和完善。
电流互感器和电压互感器选择和计算导则正文
电流互感器和电压互感器选择和计算导则The Guide for Selection and Calculation ofCurrent Transformer and voltage Transformer范围本导则为电流互感器和电压互感器的选择和计算导则,包括:对互感器的性能要求,互感器类型及参数选择,计算方法等本导则适用于交流电流互感器、电磁式电压互感器和电容式电压互感器,不适用于保护装置内部专用的小互感器、各类变送器和直流电流互感器。
本导则适用于发电厂和变电所工程用的电流互感器和电压互感器,不适用于试验室用互感器。
2 引用标准下列标准所包含的条文,通过本标准引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 1207-1997 电压互感器GB 1208-1997 电流互感器GB 4703-84 电容式电压互感器GB 14285-93 继电保护和安全自动装置技术规程GB 16847-1997 保护用电流互感器暂态特性技术要求DL -2000 火力发电厂、变电所二次接线设计技术规程DL -2000 电测量及电能计量装置设计技术规程IEEE Std C37.110-1996 保护继电器用电流互感器的应用导则3名词和定义3.1名词及代号本导则采用以下名词及代号,其中有些名词的定义详见3.2及3.3节:3.2电流互感器有关定义3.2.1 电流误差(比值差) current error (ratio error) (εI)互感器在测量电流时所出现的误差,它是由于实际电流比与额定电流比不相等造成的。
电流误差的百分数用下式表示:εI=[100(K n I s-I p)/ I p]%式中:K n-额定电流比;I p-实际一次电流,A;I s-测量条件下通过I p时的二次电流,A。
3.2.2 相位差 phase displacement (δε)一次电流与二次电流相量的相位差。
电压互感器VV接矢量图及矢量计算
电压互感器V/V接矢量图及矢量计算编辑ABC5694993052012年10月22日一、电网电源矢量图电网电源的矢量表示方式。
三相电源互差120º,,相电压相序依次为U A(U AO)、U B(U BO)、U C(U CO),线电压相序依次为U AB、U BC、U CA。
矢量图上各个电压用带箭头的线段和带下标的字母来表示,下标的第一个字母是电压的高电位端,如U AB表示A 端的电位高于B端,在矢量图上箭头指向A。
如下图二、两台单相互感器V/V连接方式与矢量图1、接线方式。
两台单相互感器V/V连接有多种方式,通常接法是首尾连接法。
电压互感器一次侧与二次侧接线柱傍都有标记。
老标准一次侧首端为A,末端为X,二次侧首端为a,末端为x。
新标准一次侧首端为A,末端为B,二次侧首端为a,末端为b。
通常接线方式为一次侧AB-AB,二次侧ab-ab。
实物接线图(右)及接线原理图(左)如下。
2、矢量图。
V/V连接的电压互感器一次侧电压的矢量关系与电源是一致的,在接线原理图上的标示如上右图(参见“三相矢量图”)。
电压互感器二次侧的电压是从一次侧感应过来的,各相电压的相位、相序是不会改变的。
这样我们就可以根据两个互感器一次侧的矢量图和一二次侧的同名端,在接线原理图上标出二次侧电压方向(上左图中的箭头)。
依照接线原理图上电压方向(上左图中的箭头),参照矢量图就可以绘制出两个互感器二次侧矢量图。
具体方法如下:1、u ab与U AB(电源线电压)相位相同(参见三相矢量图),即与水平线成60度夹角,箭头左上方。
u bc与U BC相位相同,即与水平线成0度夹角,箭头向右。
2、从接线原理图上表示电压方向的箭头得知,u ab的箭尾是与u bc的箭头是相连的。
根据上述两点,把两条带箭头的线段组合在一起,二次侧u ab与u bc的相位图就绘制完成。
如下图3、矢量计算从矢量图得知,u ab与u bc是相加的关系(首尾相接的矢量,就是相加关系)。
电流互感器和电压互感器选择及计算导则
目 次前言1范围2规范性引用文件3术语、定义和符号3.1电流互感器术语和定义3.2电压互感器术语和定义3.3符号4电流互感器应用的一般问题4.1基本特性及应用4.2电流互感器的配置4.3一次参数选择4.4二次参数选择5测量用电流互感器5.1类型及额定参数选择5.2准确级选择5.3二次负荷选择及计算6保护用电流互感器6.1性能要求6.2类型选择6.3额定参数选择6.4准确级及误差限值6.5稳态性能验算6.6二次负荷计算7TP类保护用电流互感器7.1电流互感器暂态特性基本计算式7.2TP类电流互感器参数7.3TP类电流互感器的误差限值和规范7.4TP类电流互感器的应用7.5TP类电流互感器的性能计算8电压互感器8.1分类及应用8.2配置和接线8.3一次电压选择8.4二次绕组和电压选择8.5准确等级和误差限值8.6二次绕组容量选择及计算8.7电压互感器的特殊问题附录A(资料性附录) TP类电流互感器的暂态特性附录B(资料性附录) 测量仪表和保护装置电流回路功耗附录C(资料性附录) P类或PR类电流互感器应用示例附录D(资料性附录) TP类电流互感器应用示例附录E(资料性附录) 电子式互感器简介前 言随着超高压系统的发展和电力体制的改革,继电保护系统和测量计费系统对电流互感器和电压互感器提出了许多新的和更严格的要求,现有的选择和计算方法已不能适应。
为了规范电流互感器和电压互感器的选择和计算方法,统一对产品开发的技术要求,解决设计应用存在的问题,特制定此标准。
有关电流互感器和电压互感器的国家标准和行业标准对互感器的技术规范和订货技术条件作了规定,本标准是对电力工程中如何选定这些规范和需要进行的相应计算方法作出规定,并对新产品开发提出要求。
本标准主要适用于工程广泛使用的常规电流互感器和电压互感器。
对于新开发的尚未普遍应用的新型电子式互感器,仅在附录中给出简要介绍。
本标准的附录均为资料性附录。
本标准由中国电力企业联合会提出。
常规电流互感器和电压互感器参数选择及计算
常规电流互感器和电压互感器参数选择及计算1.互感器额定电流:互感器的额定电流应根据被测回路的最大电流决定。
一般来说,互感器的额定电流选取为被测回路最大电流的1.2倍左右,以确保在负载波动或突变的情况下,仍能保证互感器的准确测量并有一定的过载能力。
2.互感器变比:互感器变比是指互感器的秒级与一次侧(被测侧)的变比之比。
在选择互感器变比时,需要根据被测回路的电流范围和测量仪表的输入范围来确定。
一般来说,互感器的变比选取为被测回路电流的倒数。
3.互感器准确等级:互感器的准确等级是指互感器的准确度等级,用于表示互感器的测量准确度。
根据应用要求的精度和费用可承受能力,选择适当的准确等级。
常见的互感器准确等级有0.2等、0.5等、1等等。
4.互感器的负荷能力:互感器的负荷能力是指互感器在额定负荷下的能力。
根据被测回路的负荷特性以及互感器的额定电流和准确度等级,选择合适的互感器负荷能力,以保证互感器在额定负荷下的长期稳定工作。
5.互感器的绝缘强度:互感器的绝缘强度要求互感器能够承受额定绝缘电压,并且在工频电场下不发生击穿和绝缘损坏。
根据被测回路的额定电压,选择适当的互感器绝缘强度,以确保互感器的安全可靠工作。
6.互感器的外部尺寸和重量:在选择互感器时,需要考虑互感器的外部尺寸和重量是否适合安装和运输要求。
根据现场情况和设备布局,选择适当的互感器外部尺寸和重量。
7.互感器的材料和结构:互感器的材料和结构对其工作寿命和安全可靠性有重要影响。
选择具有良好材料和结构设计的互感器,以确保互感器的长期稳定工作和防护措施。
以上是常规电流互感器和电压互感器参数选择及计算的一般原则和要点。
在实际应用中,还需要根据具体的电力系统特点和测量要求,结合相关标准和规范,进行详细的参数选择和计算,以确保互感器能够满足实际需求并具有良好的测量准确度和安全可靠性。
电压互感器设计计算
第六章电压互感器设计计算第一节计算依据电压互感器计算依据是:(1)额定一次电压、(2)额定二次电压(3)剩余电压绕组(如果有)额定电压(4)二次绕组准确级及额定电压,极限输出(5)剩余电压绕组(如果有)准确级及额定电压(6)额定频率(7)绝缘水平第二节铁心和绕组设计计算一、铁心设计计算1.铁心额定磁通密度选择额定磁通密度是一个选择性很强的基本设计参数。
不同的电压互感器其额定磁通密度值差别很大。
选择合适的额定磁通密度是产品设计中必须首先解决的问题之一。
额定磁通密度与互感器误差及过励磁特性直接有关,其数值选取分析如下。
(1)单相及三相不接地电压互感器通常用于测量过压、压保护,当系统发生故障时并不改变互感器相间电压或线端与中心点的电压。
因此这两种电压互感器并不承受系统故障所引起的工频电压升高。
它们可能承受的最大工频电压升高幅度一般不超过倍额定电压,是指发电机突然甩负荷而引起的飞转,长线电容效应等所引起的工频电压升高。
此时如果铁心过饱和,二次绕组感应电势中将含有较大的三次谐波分量,电压波形失真。
这种电压互感器选择磁通密度时需满足以下两点要求。
a.电压互感器在两个极限电压空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
这种电压互感器选取额定磁通密度应不大于。
(2)供中性点有效接地系统使用的单相接地电压互感器,主要用于测量及单相接地保护。
互感器一次绕组连接在相与地间,它除了承受幅度一般不超过倍额定电压的工频电压升高外,还要承受接地短路引起的工频过电压,其幅度一般不超过倍额定电压。
这两种过电压都是瞬时的,选择这种互感器额定磁通密度时,需满足以下三点要求。
a.测量用绕组在两个极限电压下空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
c.系统发生单相接地短路时,互感器铁心不应过饱和。
三点要求中起决定性作用的是c点。
这种电压互感器选取额定磁通密度时应不大于1T。
(3)供中性点非有效接地系统使用的单相电压互感器和三相电压感器,它们所承受的过电压也有两种。
互感器计算公式范文
互感器计算公式范文
1.互感比计算公式:
互感比是指互感器的二次侧电压与一次侧电压之比,一般用K表示,公式如下:
K=U2/U1
其中,K为互感比,U2为二次侧电压,U1为一次侧电压。
2.自感系数计算公式:
自感系数是指互感器自身的电感大小,一般表示为L。
自感系数的计算公式如下:
L=N^2*μ*A/l
其中,L为自感系数,N为匝数,μ为相对磁导率,A为互感器磁芯有效截面积,l为磁区长度。
3.互感系数计算公式:
互感系数是指互感器的互感大小,一般表示为M。
互感系数的计算公式如下:
M = K * sqrt(L1 * L2)
其中,M为互感系数,K为互感比,L1和L2分别为两端自感系数。
4.互感器绕组电感计算公式:
互感器绕组电感是指互感器一次侧绕组和二次侧绕组的自感大小,一般表示为L1和L2、绕组电感的计算公式如下:
L1=N1^2*μ1*A1/l1
L2=N2^2*μ2*A2/l2
其中,L1和L2分别为一次侧绕组和二次侧绕组自感系数,N1和N2分别为一次侧绕组和二次侧绕组匝数,μ1和μ2分别为一次侧绕组和二次侧绕组的相对磁导率,A1和A2分别为一次侧绕组和二次侧绕组的有效截面积,l1和l2分别为一次侧绕组和二次侧绕组的磁区长度。
1.互感器设计:
2.互感器性能评估:
3.互感器应用分析:
总结:
互感器计算公式是用来计算互感器参数的数学公式,包括互感比、自感系数、互感系数和绕组电感等。
这些公式在互感器的设计、性能评估和应用分析中起着重要的作用。
熟练掌握互感器计算公式,对于互感器的应用和优化设计具有重要意义。
JDZ-10电压互感器电磁计算
JDZ-10 电压互感器电磁计算1. 技术参数1.1 额定一次电压:10kV1.2 额定二次电压:100V ,0.2级/15V A 1.3 额定绝缘水平:12/42/75kV1.4 感应试验电压:30kV , 150Hz, 40s 1.5 环氧树脂浇注体尺寸2. 铁心截面试选2.1 选用带绕矩形铁心,Z8H-0.3 硅钢带,退火处理 2.2 计算截面22.38)65.0*5.685.0*74*5.7(95.0cm A c =++=3. 绕组设计3.1 绕组匝数计算,带铁心绕线9817.982.1*2.38100*45**4522≈===c c n n B A U N 匝980010098*10000*2211===n n n n U N U N 匝3.2 一次绕组设计a) 铁心长度:26010*2280=- b) 铁心窗口尺寸=15055*2260=-c) 一次绕组分两段绕制每段4900匝,每段与铁轭的距离为15,两段之间的距离5521015*2150=--=,每段层间绝缘、每段伸出导线 5,每段绕组导线的高度为45,见图示:d) 一次绕组导线: 182.0/15.0φφ QZ-2 e) 每段绕组导线高度及计算层数:层数:4900/229=21.4 取 22层678.41229*182.0=(线径*每层匝数) 4508.1*678.41=f) 每段的层间绝缘(PMP )和平均电场强度● 局放测量电压下的场强mm kV E /4.2)07.0*4/(229*2*980014400==(PMP ) ● 感应试验电压下的场强mm kV E /01.5)07.0*4/(229*2*980030000==(PMP )g) 每段绕组厚度5.9102.1*)62.422*182.0(=+mm其中:222*07.0*662.4= 3.3 二次绕组设计a) 二次绕组导线02.2/9.1φφ,直接绕在铁芯上 b) 高度及层数110047.1*52*02.2=mm其中52为第一层的层数;注意:第一层为52匝,第二层为46匝(稀绕) c) 厚度5.4095.1*)07.02*02.2(=+mm其中:0.07为层间绝缘PMP 厚度3.4 绕组绝缘直径其直径为铁心柱的外径、芯柱半叠胶带两层厚度、0.2mm 厚的皱纹复合纸、二次绕组、皱纹复合纸、胶带半叠两层厚度、半导体皱纹纸一层的厚度、绕线纸筒、一二次绕组之间的间隙和一次绕组厚度之和即为绕组绝缘总直径1411911*231*25.4*2185=++++++φ85+1 胶带两层+1层青壳纸86+9 2*4.5 二次绕组 95+2 2*1青壳纸一层和铁芯窗口一样宽,绝缘胶带半叠两层,半导电纸半叠一层 97+22 2×11绝缘间隙 119+3 绕线筒 119/122×120 122+19 2×9.5 一次 141+4 包括静电屏、层间绝缘、半导电纸等静电屏和一次绕组之间还是按层间绝缘一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章电压互感器设计计算第一节计算依据电压互感器计算依据是:(1)额定一次电压、(2)额定二次电压(3)剩余电压绕组(如果有)额定电压(4)二次绕组准确级及额定电压,极限输出(5)剩余电压绕组(如果有)准确级及额定电压(6)额定频率(7)绝缘水平第二节铁心和绕组设计计算一、铁心设计计算1.铁心额定磁通密度选择额定磁通密度是一个选择性很强的基本设计参数。
不同的电压互感器其额定磁通密度值差别很大。
选择合适的额定磁通密度是产品设计中必须首先解决的问题之一。
额定磁通密度与互感器误差及过励磁特性直接有关,其数值选取分析如下。
(1)单相及三相不接地电压互感器通常用于测量过压、压保护,当系统发生故障时并不改变互感器相间电压或线端与中心点的电压。
因此这两种电压互感器并不承受系统故障所引起的工频电压升高。
它们可能承受的最大工频电压升高幅度一般不超过1.3倍额定电压,是指发电机突然甩负荷而引起的飞转,长线电容效应等所引起的工频电压升高。
此时如果铁心过饱和,二次绕组感应电势中将含有较大的三次谐波分量,电压波形失真。
这种电压互感器选择磁通密度时需满足以下两点要求。
a.电压互感器在两个极限电压空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
这种电压互感器选取额定磁通密度应不大于1.2T。
(2)供中性点有效接地系统使用的单相接地电压互感器,主要用于测量及单相接地保护。
互感器一次绕组连接在相与地间,它除了承受幅度一般不超过1.3倍额定电压的工频电压升高外,还要承受接地短路引起的工频过电压,其幅度一般不超过1.5倍额定电压。
这两种过电压都是瞬时的,选择这种互感器额定磁通密度时,需满足以下三点要求。
a.测量用绕组在两个极限电压下空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
c.系统发生单相接地短路时,互感器铁心不应过饱和。
三点要求中起决定性作用的是c点。
这种电压互感器选取额定磁通密度时应不大于1T。
(3)供中性点非有效接地系统使用的单相电压互感器和三相电压感器,它们所承受的过电压也有两种。
1.3倍额定电压的工频电压升高和单相接地短路引起的工频过电压,其幅度一般不超过1.9倍额定电压。
前一种过电压是瞬时的,而后一种过电压可持续数小时。
另外,中性点非有效接地系统中互感器可能引起并联铁磁谐振,仅以铁磁谐振要求,铁心额定磁通密度愈小愈好。
选取这种电压互感器额定磁通密度时,需满足以下四点要求。
a.测量用绕组在两个极限电压下空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
c.系统发生单相接地短路时,互感器铁心不应过饱和。
d.互感器具有良好的过励磁特性,以尽量防止并联铁磁谐振发生。
四点要求中起决定性作用的是c、d两点,这种电压互感器选取的额定磁通密度应不大于0.8T。
必须指出,三相铁心不对称,三相励磁特性不相同,这对防止铁磁谐振不利。
为此,三相磁路不对称的三相接地电压互感器,额定磁通密度还应适当降低,选取应不大于0.7T。
2.铁心截面确定(1)按磁通密度确定铁心截面根据选定的磁通密度,初步计算 电压互感器铁心直径确定的原理和方法与变压器相似。
为了 出所需要的心柱及铁轭的截面积。
为了确定铁心D 必须选取合适的磁通密度B N 与每匝电势e t 。
心柱截面积:c t c fB e A 44.4104⨯= , 2cm FC N t K B e D 57.7=铁轭截面积:y t y fB e A 44.4104⨯=, 2cm 如:86.015.13.257.7⨯=D =11.54cm式中 e t ------ 绕组的每匝电压,V /匝, 取D=115mm (标准直径) e t----每匝电压,V f ------ 额定频率, H Z N B ---- 额定磁通密度,TB C ------ 铁心柱磁通密度,T FC K ---- 心柱空间利用系数,初步可取0.84~0.88 B y ------ 铁轭磁通密度, T (经验值取0.86) (2)按心柱及铁轭尺寸计算截面积叠片铁心的心柱叠装成呈外接圆型的多级形状,级数愈多,心柱填充绕线筒内孔空间的填充 系数愈大,填充系数α=外接圆面积/铁心柱截面积。
用积分方法计算出不同级数时,填充系数最大时 的各级铁心片宽,如图6-1所示。
为了便于生产管理,硅钢片合理剪裁,使铁心片宽标准化,片宽取整 数且为5mm 进级,如片宽为20、25、30、35、40mm 等等。
按图6-1计算出的片宽大多数不是标准值,此时应取与其数值相近的标准片宽,每级厚度也应尽量取成整数。
根据按图6-1确定的尺寸计算铁心柱的有效截面积。
〔第一级(厚度×片宽)+第二级(厚度×片宽)+第三级(厚度×片宽级)+第四级……〕 ×叠片系数叠片系数是铁心柱或铁轭有效截面积与其几何截面积的比值。
硅钢片厚度一定时,叠片系数与铁 心叠片的波浪度,绝缘厚度与铁心夹紧程度有关。
对于0.35mm 厚冷轧硅钢片叠片系数为0.94~0.95, 对于0.35mm 厚热轧硅钢片叠片系数为0.91~0.92。
矩形卷铁心,“c”型铁心及叠片铁心的铁轭多为 矩形截面,其有效截面为: 铁心片宽×铁心厚度×叠片系数 铁心片宽应取标准尺寸。
(3)根据需要的A C 和A y ,选取心柱及铁轭标准尺寸。
如果A C 、A y 与标准尺寸的截面积有差别, 应调整B C 、B y 使二着截面积相同,但标准尺寸的截面积应不小于A C 、A y 。
通常A y 应大于A C 5%~10%。
3.铁心尺寸确定根据绕组的高度、直径,绕组到铁心各部分的绝缘距离以及绕组之间的绝缘距离,来确定铁心总的尺寸。
确定铁心尺寸还应考虑油箱形状及产品选型的要求。
(补充说明的资料)铁心柱及铁轭磁密的确定:对单相双柱铁心和三相三柱铁心(忽略三相磁路不对称的影响。
)心柱磁密(T ) ct c fA e B π2104⨯= 铁轭磁密(T )B e = A C B C /A e 单相单柱带双旁轭铁心,铁轭截面积按心柱的1/2再适当放大;而三相三柱带双旁轭铁心,铁轭截 面则按心柱截面的1/3再作适当放大。
4.铁心重量计算(1)单相双柱铁心 见图6-2,其重量计算如下: 铁心柱重量:G c =2HA C g γ×10-3 , kg铁轭重量:G y =2MO A y g γ×10-3+2H y A C g γ×10-3, kg 铁心重量:G= G c +G y , kg 式中g γ---硅钢片比重,g/cm 3(2) 单相三柱铁心 见图6-3,其重量计算如下: 铁心柱重量:G c =HA C g γ×10-3 , kg铁轭重量:G y =(MB+H +2H y )A y g γ×10-3, kg 铁心重量:G= G c +G y , kg 式中g γ---硅钢片比重,g/cm 3(3) 三相三柱铁心 见图6-4,其重量计算如下: 铁心柱重量:G c =HA C g γ×10-3 , kg铁轭重量:G y =2MO A y g γ×10-3+H y A C g γ×10-3, kg 铁心重量:G= 3G c +2G y , kg 式中g γ---硅钢片比重,g/cm 3(4) 三相五柱铁心 见图6-5,其重量计算如下: 铁心柱重量:G c =2HA C g γ×10-3 , kg主铁轭重量:G y =2MO A y g γ×10-3 , kg旁铁轭重量:G b =(2MO b +H+H b )A b g γ×10-3 , kg铁心重量:G= 3G c +2G y +2G b , kg 式中A b ---旁轭截面积, cm 2二、绕组设计计算1.一次绕组(1) 匝数确定首先需要选取合理的每匝电压e t。
e t值直接影响产品的误差性能和经济指标。
在确定磁通密度已经确定的情况下,e t值愈大铁心愈大,硅钢片用量多,空载误差大,e t值愈小绕组匝数愈多,导线用量多,绕组阻抗压降大,误差大。
用多方案计算比较,以求得到最佳每匝电压值。
选择e t值还应使二次绕组为整数匝,剩余电压绕组、保护绕组和其它二次绕组亦应尽量为整数匝,以减少因非整数匝所造成的误差。
根据以往的经验,开始计算时可先按表6-1选择e t值。
互感器额定电压,KV 10及以下35 110及以下每匝电压et,V/匝0.4~1 0.7~1.3 1.8~3一次绕组额定匝数计算公式为N1n=U1n/e t ,匝。
在选择每匝电压时,要特别注意使输出侧的二次绕组和三次绕组的匝数都接近整数匝,以减少匝数比的误差。
在输出容量和准确定给定(约束条件)时,最佳变量的组合可获得成本最低和重量最轻的最优方案;而在几何尺寸和准确度给定时,则可获得输出容量最大的最佳方案。
(2) 导线选择电压互感器一次绕组采用漆包圆铜线,因额定负荷及极限输出都很小,不能完全根据温升限值选择导尺寸。
应着重考虑导线的机械强度和短路电流。
一般导线直径不小于0.2mm.线径过细绕线时容易拉断,或在绕线过程线径变细而影响产品性能。
如果有性能良好的绕线设备,也可以选择线径更小的导线,但在二次短路时铜导线的电流密度不应大于160/mm2.导线截面积计算:S1=πr12,mm2r1—导线半径,mm.(3) 一次绕组设计与绝缘计算电压互感器大都采用多层同心圆筒式绕组。
根据造型需要,一次绕组可以布置成轴向尺寸大于径向尺寸,也可以使径向尺寸大于轴向尺寸。
径向尺寸大的绕组其导线电阻及漏电抗较大。
为了增加绕组至主铁轭的距离,一次绕组也可布置成截面为宝塔形状。
总之,需要综合考虑各种因素而设计绕组形状。
计算多层同心圆筒绕组尺寸,首先选定每层线匝数,再计算导线层数及层间绝缘,最后计算绕组轴向和径向尺寸。
调整每层匝数,改变绕组轴向和径向尺寸,直到满足要求为止。
设计一次绕组应进行下列计算:a.线层高度计算一次绕组加静电屏补偿后,一般情况下,QQ-2型缩醛漆包线和QZ-2型聚酯漆包线可以满足各种电压互感器一、二次绕组匝间绝缘的要求。
有时二次绕组及剩余电压绕组采用截面大的纸包线,纸包线的绝缘厚度δ为0.3、0.45、0.8、1.2 mm等。
根据绕组匝间绝缘要求选用不同的纸层厚度。
如果绕组直径很大或漆包线针孔较多,还应在漆包线外增加丝包绝缘层或纱包绝缘层。
每层导线高度= 导线绝缘直径×(每层匝数+1)×胀包系数式中的胀包系数与导线的绝缘直径有关,φ0.5mm及以下导线胀包系数为1.06~1.08,φ0.5mm 以上导线胀包系数为1.04~1.06。
对于浇注互感器及干式互感器,线层高度应尽可能小,树脂或绝缘漆容易充满绕组线层之间。