悬链线方程的推导

悬链线方程的推导
悬链线方程的推导

悬链线方程的推导

柔软的绳子上质量分布均匀,绳子两端悬挂在同一水平面的两点,悬挂点间距小于绳子总长,求绳子的形状满足的曲线方程。

解:根据对称性,只考查一半绳子,图示坐标系中,A(0,b)是绳子最低点,B(x ,y)是绳子上的任意一点。分析绳子受力情况,在B 点受到拉力T ,在A 点受到水平向左的拉力f ,平衡条件:

cos T f θ= 《1》 sin T gs θλ= 《2》

λ是单位长度绳子的质量,s 是AB 的长度:

0s =? 《3》

θ是拉力T 与水平方向的夹角,符合:tan y θ'= 《4》

推出

01y d x a '=? 《5》其中1g f a

λ= 两边对x 求导,得到

a y

''= 《6》 边界条件:(0),(0)0y b y '== 《7》

对《6

dx a '

=积分得到1arcsinh x y C a '=+1sinh x y C a ??'→=+ ???

代入边界条件(0)0y '=得C 1=0:sinh x y a ??'= ???

《8》 进一步积分得到 2c o s h x y a C a ??=+ ???

代入边界条件y(0)=b 解得2C b a =-,

所以所求悬链线方程为 cosh 1x y a b a ????=-+ ? ????

? (注:题头右图中a=1,b=0.5)

最新悬链线方程培训资料

通常任何材料包括导线在内,都具有一定的刚性,但由于悬挂在杆塔上的一档导线相 对较长,因此导线材料的刚性对其几何形状的影响很小,故在计算中假定: (1)导线为理想的柔索。因此,导线只承受轴向张力(或拉力),任意一点的弯矩为 零。这样导线力学计算可应用理论力学中的柔索理论进行计算。 (2)作用在导线上的荷载均指同一方向,且沿导线均匀分布。 一、悬链线方程及曲线弧长 1.悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D点承受拉力为T x=σx S,它

与导线曲线相切,与x轴夹角为α;O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外还有OD段导线自身的荷载为G=gSL x,其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数和分别等于零。或沿x轴或y轴上分力代数和分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力和张力,σx、T x为导线任一点的应力和张力,S、g为导线截面和比载。将上述二式相比,则可求得导线任意一点D 的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11)

悬链线方程的推导

悬链线方程的推导 一根无比柔软的绳子,两固定,自然静止状态下,它的形状是悬链线。其实曲线是以绳子命名的。如何根据绳子的受力来推导出悬链线方程呢用高等数学所学的知识就够了。 第一步:背景知识 ㈠我们熟悉如何将)2sin(π α?+n 转化成余弦的形式,口诀是奇变偶不变,符号看象限。 现在扩展一下,研究正切、余切,正割、余割的转化口诀。 tanx cotx 转换:奇变号变偶不变。也就是说,n 为奇数时,要转化成相反形式,且要补一个负号,n 为偶数时就不用变了。 secx cscx 转换:奇变偶不变,符号看象限。我正弦、余弦非常相似。 ㈡不定积分 C x x C x x x x d x dx xdx C x x C x x x d x x d x x x dx x dx xdx ++=++-+=++==+-=+=====????????tan sec ln )2cot()2csc(ln )2 sin()2(cos sec cot csc ln 2tan ln 2tan 2tan 2tan 22sec 2 cos 2sin 2sin csc 2 ππππ

求?+22a x dx ,令t a x tan =,2 2π π<<-t a C C C a x x C a x a a x C t t tdt a t a tdt a ln )ln(ln tan sec ln sec tan sec 11 2 22 22222-=+++=+++=++==+=?? ㈢ 双曲余弦 chx e e y x x =+=-2 双曲正弦 shx e e y x x =-=-2 反双曲余弦 x>0时,archy y y x =-+=)1ln(2; 反双曲正弦 arshy y y x =++=)1ln(2; 求导:shx chx chx shx ='=')()( 第二步:微分方程

伯努利方程推导

根据流体运动方程P F dt V d ??+=ρ1 上式两端同时乘以速度矢量 ()V P V F V dt d ???+?=???? ??ρ 1 22 右端第二项展开—— () ()V P V P V F V dt d ???-???+?=???? ? ?ρρ1122 利用广义牛顿粘性假设张量P ,得出单位质量流体微团的动能方程 () E V div p V P div V F V dt d -+?+?=??? ? ?? ρρ1 22 右第三项是膨胀以及收缩在压力作用下引起的能量转化项(膨胀:动能增加<--内能减少) 右第四项是粘性耗散项:动能减少-->内能增加 热流量方程:用能量方程减去动能方程 反映内能变化率的热流量方程 ()() dt dq V P div V F V T c dt d +?+?=+ ρυ12/2 () E V div p V P div V F V dt d -+?+?=???? ? ? ρρ122 得到 ()()E V div p T c dt d dt dq dt dq E V div p T c dt d -+=++-= ρ ρυυ / 对于理想流体,热流量方程简化为: ()V d i v p T c dt d dt dq ρυ+= 这就是通常在大气科学中所用的“热力学第一定律”的形式。 由动能方程推导伯努利方程: 对于理想流体,动能方程简化为:() V div p V P div V F V dt d ρρ+?+?=??? ? ??122无热流量项。 又因为() V pdiv p V z pw y pv x pu V P div -??-=??? ???++-=???????)()()(故最终理想流体的动能方 程可以写成: p V V F V dt d ??-?=???? ? ?ρ 22 【理想流体动能的变化,仅仅是由质量力和压力梯度力对流体微团作功造成的,而与热能不 发生任何转换。】 假设质量力是有势力,且质量力位势为Φ,即满足:Φ-?=F 考虑Φ为一定常场,则有: dt d V V F Φ- =Φ??-=?

悬链线方程复习过程

悬链线方程

通常任何材料包括导线在内,都具有一定的刚性,但由于悬挂在杆塔上的一档导线相 对较长,因此导线材料的刚性对其几何形状的影响很小,故在计算中假定: (1)导线为理想的柔索。因此,导线只承受轴向张力(或拉力),任意一点的弯矩为 零。这样导线力学计算可应用理论力学中的柔索理论进行计算。 (2)作用在导线上的荷载均指同一方向,且沿导线均匀分布。 一、悬链线方程及曲线弧长 1.悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D点承受拉力为T x=σx S,它

与导线曲线相切,与x轴夹角为α; O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外还有OD段导线自身的荷载为G=gSL x,其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数和分别等于零。或沿x轴或y轴上分力代数和分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力和张力,σx、T x为导线任一点的应力和张力,S、g为导线截面和比载。将上述二式相比,则可求得导线任意一点D的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11)

悬链线方程的推导

1 悬链线方程的推导 锚链一端受到水平预张力()0T KN ,并在其均匀分布的自重力作用下产生下垂。设锚链水中 单位重力为()/W KN m ,建立如图1所示的直角坐标系,并设锚链曲线对应的函数为()y f x =。 对于横坐标上0至x 这段锚链,长度为L ,则G wL =,顶端拉力为T ,该力倾角为θ,水平张力0T ,根据力学原理可知,T ,G 和0T 三力平衡。可知0tan /G T θ=(图2). 图1图2 假定该水平张力在锚链上处处相等,对于任意一段锚链L ,该平衡均成立,0tan wL T θ=,而tan dy dx θ=,对该式取微分,则有()() 00tan x w d d L T θ===(1) 弧长微分ds =1 )分离变量后并积分: 0 tan d w dx T =?(2) 对式(2)积分后得到: 10tan w sh x c T θ??=+ ???(3) 对式(3)再次分离变量后,得 10w dy sh x c dx T ??=+ ??? (4) 并积分, 10w y sh x c dx T ??=+ ????(5) 查积分公式可得: 0120T w y ch x c c w T ??=++ ??? (6) 式(6)即为锚链悬链线的一般方程。

假设锚链末端拖地,并设拖地点为原点,则 对于拖地点有,0,0,tan 0x y θ===,代入式(3)和(6),联立方程后,可解得:10c =,2T c w =,代入式(6)得: 001T w y ch x w T ??=- ??? (7) 式(5)即为拖地点为原点的悬链线一般方程。 而对于悬挂点为原点的悬链线方程,仅系数有所变化,如下式表示,推导过程不再叙述。该方程对于有悬锤的悬链线更适用。0,0,tan wL x y T θ=== ,代入式(3),(6)可解得: 002cosh sinh wL T a T c w ?????? ?????=(8) 式(8)即是以悬挂点为原点的悬链线一般方程。 L 为悬链线长度,在y 已知的情况下,根据式(7)可求出x 值,并对曲线积分,即可求出悬链线长度L 。 2 带悬锤的悬链线方程 有悬锤的悬链线,受力模式和求解过程均与一般悬链线相似。区别的是其初值不同,因此只是1c 和2c 不同而已。 从图3可以看出,以悬锤点为界,上段悬链线中的竖向力多了悬锤重C G 和2L ,水平力均相同,悬锤以下段,悬链线与一般悬链线相同。 图 3 带悬锤的悬链线受力图 悬挂点处初始值:0,0x y ==,且 ()120 tan C w L L G T θ++=(9) 式中;C G 为悬锤水下重力,实际重力应作换算。

伯努利方程的推导

第八节伯努利方程 ●本节教材分析 本节属于选学内容,但对于一些生活现象的解释,伯努利方程是相当重要的.本节主要讲述了理想流体,理想流体的定常流动,然后结合功和能的关系推导出伯努利方程,最后运用伯努利方程来解释有关现象. ●教学目标 一、知识目标 1知道什么是理想流体,知道什么是流体的定常流动. 2知道伯努利方程,知道它是怎样推导出来的. 二、能力目标 学会用伯努利方程来解释现象. 三、德育目标 通过演示,渗透实践是检验真理的惟一标准的思想. ●教学重点 1.伯努利方程的推导. 2.用伯努利方程来解释现象. ●教学难点 用伯努利方程来解释现象. ●教学方法 实验演示法、归纳法、阅读法、电教法 ●教学用具 投影片、多媒体课件、漏斗、乒乓球、两张纸 ●教学过程 用投影片出示本节课的学习目标: 1.知道什么是理想气体. 2.知道什么是流体的定常流动. 3.知道伯努利方程,知道它是怎样推导出来的,会用它解释一些现象. 学习目标完成过程: 一、导入新课 1.用多媒体介绍实验装置 把一个乒乓球放在倒置的漏斗中间 2.问:如果向漏斗口和两张纸中间吹气,会出现什么现象? 学生猜想: ①乒乓球会被吹跑; ②两张纸会被吹得分开. 3.实际演示: ①把乒乓球放在倒置的漏斗中间,向漏斗口吹气,乒乓球没被吹跑,反而会贴在漏斗上

不掉下来; ②平行地放两张纸,向它们中间吹气,两张纸不但没被吹开,反而会贴近 4.导入:为什么会出现与我们想象不同的现象,这种现象又如何解释呢?本节课我们就来学习这个问题. 二、新课教学 1.理想流体 (1)用投影片出示思考题: ①什么是流体? ②什么是理想流体? ③对于理想流体,在流动过程中,有机械能转化为内能吗? (2)学生阅读课文,并解答思考题: (3)教师总结并板书 ①流体指液体和气体; ②液体和气体在下列情况下可认为是不可压缩的. a:液体不容易被压缩,在不十分精确的研究中可以认为液体是不可压缩的. b:在研究流动的气体时,如果气体的密度没有发生显著的变化,也可以认为气体是不可压缩的. ③a:流体流动时,速度不同的各层流体之间有摩擦力,这叫流体具有粘滞性. b:不同的流体,粘滞性不同. c:对于粘滞性小的流体,有些情况下可以认为流体没有粘滞性. ④不可压缩的,没有粘滞性的流体,称为理想流体.对于理想流体,没有机械能向内能的转化. 2 定常流动 (1)用多媒体展示一段河床比较平缓的河水的流动. (2)学生观察,教师讲解. 通过画面,我们可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化,河水不断地流走,可是这段河水的流动状态没有改变,河水的这种流动就是定常流动. (3)学生叙述什么是定常流动 流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫定常流动. (4)举例:自来水管中的水流,石油管道中石油的流动,都可以看作定常流动. (5)学生阅读课文,并回答下列思考题: ①流线是为了表示什么而引入的? ②在定常流动中,流线用来表示什么? ③通过流线图如何判断流速的大小? (6)学生答: ①为了形象地描绘流体的流动,引入了流线; ②在定常流动中,流线表示流体质点的运动轨迹; ③流线疏的地方,流速小;流线密的地方,流速大. 3.伯努利方程 (1)设在右图的细管中有理想流体在做定常流动,且流动 方向从左向右,我们在管的a1处和a2处用横截面截出一段流 体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度

L=40m空腹式悬链线无铰拱石拱桥计算(修改版)

L=50m空腹式悬链线无铰拱石拱桥计算 1.设计资料 某等截面空腹式悬链线无铰拱石拱桥上部结构为等跨50m的石砌板拱,下部结构为重力式墩和U型桥台,均置于非岩石土上。 (1)设计标准 l)设计荷载 公路-Ⅱ级汽车荷载,人群荷载3kN/m2。 2)跨径及桥宽 净跨径L0=50m,净矢高f0=10m,净矢跨比f0/L0=1/5。 桥面净宽为净9+2×1.5,B0=12m。 (2)材料及其数据 l)拱上建筑 γ=20kN/m3。 拱顶填料厚度h d=0.5m,包括桥面系的计算厚度为0.68m,换算平均重力密度 1 γ=23kN/m3。 护拱为浆砌片石,重力密度 2 γ=24kN/m3。 腹孔结构材料重力密度 3 γ=20kN/m3。 主拱拱腔填料为砂、砾石夹石灰炉渣黄土,包括两侧侧墙的平均重力密度 4 2)主拱圈 γ=24kN/m3。 M7.5砂浆砌MU80块石,重力密度 5 f=4.37MP a。 拱圈材料抗压强度设计值 cd f=0.075MP a。 拱圈材料抗剪强度设计值 vd 弹性模量E m=7300MPa。 拱圈设计温度差为+22℃,-15℃。 (3)设计依据 1)《公路桥涵通用设计规范》(JTG D60-2004),简称《桥规D60》; 2)《公路圬工桥涵设计规范)》(JTG D61-2005),简称《桥规D61》; 3)《公路桥涵设计手册——拱桥》上册(石绍甫)、下册(顾安邦),简称《拱桥》。 2.主拱圈计算

(1)确定拱轴系数 拱轴系数m 值的确定,一般采用“五点重合法”,先假定一个m 值,定出拱轴线,拟定上部结构各种几何尺寸,计算出半拱恒载对拱脚截面形心的弯矩j M ∑和自拱顶至1/4跨的恒载对1/4跨截面形心的弯 矩4/1M ∑。其比值f y M M j //4/14/1=∑∑。求得f y /4/1值后,可由肌1)2/)(2/1(2 4/1--=y f m 中反 求m 值,若求出的m 值与假定的舰值不符,则应以求得的肌值作为假定值,重复上述计算,直至两者接近为止。 l)拟定上部结构尺寸 ①主拱圈几何尺寸 a. 截面特性 4.8 1.298.495d cm ==?=截面高度: 主拱圈横桥向取1m 单位宽度计算,2 =0.90A m 横截面面积:; 2341 0.90.060751212d I m ==?=惯性矩:; 2 3=0.1356 hd W m =截面抵抗距:; w γ= 截面回转半径:。 b. 计算跨径和计算矢高 假定m=2.814,相应的1/4/=0.21y f 。查《拱桥》表(Ⅲ)-20(8)得 sin =0.70097j φ ,cos =0.71319j φ; 0sin =50+0.900.70097=50.63087j l L d m φ=+?计算跨径: 00.90 /2(1cos )=10+ 1-0.71319=10.12912 j f f d m φ=+?-?计算矢高:()。 c. 拱脚截面的投影 sin =0.900.70097=0.63087j x d m φ=?水平投影:; cos =0.900.71319=0.64187j y m φ=?竖向投影:。 d. 计算主拱圈坐标(图3.4-63)

1悬链线方程的推导

1 悬链线方程的推导 锚链一端受到水平预张力()0T KN ,并在其均匀分布的自重力作用下产生下垂。设锚链水中 单位重力为()/W KN m ,建立如图1所示的直角坐标系,并设锚链曲线对应的函数为()y f x =。 对于横坐标上0至x 这段锚链,长度为L ,则G wL =,顶端拉力为T ,该力倾角为θ,水平张力0T ,根据力学原理可知,T ,G 和0T 三力平衡。可知0tan /G T θ=(图2). 图1图2 假定该水平张力在锚链上处处相等,对于任意一段锚链L ,该平衡均成立,0 tan wL T θ=,而tan dy dx θ=,对该式取微分,则 有()() 00tan x w d d L T θ===(1) 弧长微分ds =1 )分离变量后并积分: 0 tan d w dx T θ=?(2) 对式(2)积分后得到: ()110 tan w sh x c T θ-=+ 10tan w sh x c T θ??=+ ??? (3) 10tan dy w sh x c dx T θ??==+ ??? 对式(3)再次分离变量后,得 10w dy sh x c dx T ??=+ ??? (4) 并积分, 10w y sh x c dx T ??=+ ? ?? ?(5) 查积分公式可得:

0120T w y ch x c c w T ??=++ ??? (6) 式(6)即为锚链悬链线的一般方程。 假设锚链末端拖地,并设拖地点为原点,则 对于拖地点有,0,0,tan 0x y θ===,代入式(3)和(6),联立方程后,可解得:10c =,2T c w =,代入式(6)得: 001T w y ch x w T ??=- ??? (7) 式(5)即为拖地点为原点的悬链线一般方程。 而对于悬挂点为原点的悬链线方程,仅系数有所变化,如下式表示,推导过程不再叙述。该方程对于有悬锤的悬链线更适用。0,0,tan wL x y T θ=== ,代入式(3),(6)可解得: 001sinh wL T a T c w ?? ???= 002cosh sinh wL T a T c w ?????? ?????=(8) 0000000cosh sinh sinh wL wL T a T a T T T w y ch x w T w w ?????????????? ??? ???????????=--????????????? ??? 式(8)即是以悬挂点为原点的悬链线一般方程。 L 为悬链线长度,在y 已知的情况下,根据式(7)可求出x 值,并对曲线积分,即可求出悬链线长度L 。 2 带悬锤的悬链线方程 有悬锤的悬链线,受力模式和求解过程均与一般悬链线相似。区别的是其初值不同,因此只是1c 和2c 不同而已。 从图3可以看出,以悬锤点为界,上段悬链线中的竖向力多了悬锤重C G 和2L ,水平力均相同,悬锤以下段,悬链线与一般悬链线相同。 图

伯努利方程的推导及其实际应用

伯努利方程的推导及其实际应用总结 楼主:西北荒城时间:2015-03-03 14:08:00 点击:1091 回复:0 一,伯努利方程的推导 1726年,荷兰科学家丹尼尔·伯努利提出了描述理想流体在稳流状态下运动规律伯努利原理,并用数学语言将之精确表达出来,即为伯努利方程。伯努利方程是流体力学领域里最重要的方程之一,学习伯努利方程有助于我们更深刻的理解流体的运动规律,并可以利用它对生活中的一些现象作出解释。同时,作为土建专业的学生,我们将来在实际工作中,很可能要与水、油、气等流体物质打交道,因此,学习伯努利方程也有一定的实际意义。作为将近300岁高龄的物理定律,伯努利方程的理论是非常成熟的,因此不大可能在它身上研究出新的成果。在本文中,笔者只是想结合自己的理解,用自己的方式推导出伯努利方程,并应用伯努利方程解释或解决现实生活中的一些问题。 既然要推导伯努利方程,那么就首先要理解一个概念:理想流体。所谓理想流体,是指满足以下两个条件的流体:1,流体内部各部分之间无黏着性。2,流体体积不可压缩。需要指出的是,现实世界中的各种流体,其内部或多或少都存在黏着性,并且所有流体的体积都是可以压缩的,只是压缩的困难程度不同而已。因此,理想流体只是一种理想化的模型,其在现实世界中是不存在的。但为了对问题做简化处理,我们可以讲一些非常接近理想流体性质的流体视为理想流体。 假设有某理想流体在某细管中做稳定流动。如图,在细管中任取一面积为s1的截面,其与地面的相对高度h1,,流体在该截面上的流速为v1,并且该截面上的液压为p1。某一时刻,有流体流经s1截面,并在dt时间内发生位移dx1运动到新截面s2。由于细管中的水是整体移动的,现假设细管高度为h2处有一截面s3,其上流体在相同的时间内同步运动到了截面s4,流速为v2,共发生位移dx2。则有如下三个事实: 1:截面s1、s2之间流体的体积等于截面s3、s4之间流体的体积,即s1dx1=s2dx2 2:截面s1、s3之间流体的体积等于截面s2、s4之间流体的体积(由事实1可以推知) 3:细管中相应液体的机械能发生了变化。 事实1和事实2实际上是质量守恒的体现,事实3则须用能量守恒来解释,即外力对该段流体做功的总和等于该段流体机械能的变化。因截面s2、s3之间流体的运动状态没有变化,故全部流体机械能的变化实质上是截面s1、s2之间

悬链线方程及曲线弧长

第二章导线应力弧垂分析 第三节悬点等高时导线弧垂、线长和应力关系 一、悬链线方程及曲线弧长 1.悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D 点承受拉力为T x=σx S,它与导线曲线相切,与x轴夹角为α;O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外还有OD段导线自身的荷载为G=gSL x,其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数和分别等于零。

或沿x轴或y轴上分力代数和分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力和张力,σx、T x为导线任一点的应力和张力,S、g为导线截面和比载。将上述二式相比,则可求得导线任意一点D的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11) 再进行分离变量积分,有 于是,导线任一点D的纵坐标为: (2-12) 式(2-12)是悬链方程的普通形式,其中C1和C2为积分常数,其值可根据取坐标原点的位置及初始条件而定。如果将坐标原点于导线最低点处,则有下述初始条件:x=0, dy/dx=tgα=0 代入式(2-11)则C1=0,将x=0,y=0,C1=0 代入式(2-12),,如此,求得坐标原点最低点O处的悬链方程为: (2-13) 式中σ0—水平应力(即导线最低点应力),MPa; g—导线的比载,N/m.mm2。 当坐标原点选在其它点(例如选在悬挂点处)时,悬链线方程的常数项将有所不同,可

伯努利方程

伯努利方程 伯努利方程就是能量守衡定律在流动液体中的表现形式。 (动能定理) 1、理想液体的运动微分方程 在微小流束上,取截面积为dA,长为ds的微元体,现研究理想液体定常流动条件下在重力场中沿流线运动时其力的平衡关系。 微元体的所受的重力为-ρgdAds,压力作用在两端面上的力为 微元体在定常流动下的加速度为 微元体的力平衡方程为 上式简化后可得

p,z,u只是s的函数,进一步简化得 上式即为重力场中,理想液体沿流线作定常流动时的运动方程,即欧拉运动方程。 2、理想液体的伯努利方程 沿流线对欧拉运动方程积分得 上式两边同除以g 得 以上两式即为理想液体作定常流动的伯努利方程。 伯努利方程推导简图 物理意义: 第一项为单位重量液体的压力能称为比压能(p/ρg ); 第二项为单位重量液体的动能称为比动能(u2/2g );

第三项为单位重量液体的位能称为比位能(z)。 由于上述三种能量都具有长度单位,故又分别称为压力水头、速度水头和位置水头。三者之间可以互相转换,但总和(H,称为总水头)为一定值。 3.实际液体流束的伯努利方程 实际液体都具有粘性,因此液体在流动时还需克服由于粘性所引起的摩擦阻力,这必然要消耗能量,设因粘性二消耗的能量为hw',则实际液体微小流束的伯努利方程为 4.实际液体总流的伯努利方程 将微小流束扩大到总流,由于在通流截面上速度u是一个变量,若用平均流速代替,则必然引起动能偏差,故必须引入动能修正系数。于是实际液体总流的伯努利方程为 式中hw---由液体粘性引起的能量损失; α1,α2---动能修正系数,一般在紊流时取α=1,层流时取α=2。 5.伯努利方程应用举例

悬链线方程

通常任何材料包括导线在内,都具有一定的刚性,但由于悬挂在杆塔上的一档导线相 对较长,因此导线材料的刚性对其几何形状的影响很小,故在计算中假定: (1)导线为理想的柔索。因此,导线只承受轴向张力(或拉力),任意一点的弯矩为 零。这样导线力学计算可应用理论力学中的柔索理论进行计算。 (2)作用在导线上的荷载均指同一方向,且沿导线均匀分布。 一、悬链线方程及曲线弧长 1、悬链线方程 为了分析方便,我们先从悬挂点等高,即相邻杆塔导线悬挂点无高差的情况讨论导线的应力及几何关系。实际上,导线悬在空中的曲线形态,从数学角度用什么方程来描述就是进行导线力学分析的前题。由于假定视导线为柔索,则可按照理论力学中的悬链线关系来进行分析,即将导线架设在空中的几何形态视为悬链形态,而由此导出的方程式为悬链线方程。 如图2-5所示,给出了悬挂于A、B两点间的一档导线,假定为悬挂点等高的孤立档,设以导线的最低点O点为原点建立直角坐标系。 图2-5导线悬链线及坐标系 同时假定导线固定在导线所在的平面,可随导线一起摆动,显然这就是一个平面力系。根据这个坐标进行导线的受力分析,可建立导线的悬链线方程。 我们先从局部受力分析开始,再找出其一般规律。首先在导线上任取一点D(x,y),然后分析OD段导线的受力关系,由图2-5所示,此OD段导线受三个力而保持平衡,其中D点承受拉力为T x=σx S,它与导线曲线相切,与x轴夹角为α; O点承受拉力为T0=σ0S,T0为导线O点的切线方向,恰与x轴平行,故又称水平张力;此外

还有OD段导线自身的荷载为G=gSL x, 其中L x为OD段导线的弧长。 将OD段导线的受力关系画为一个三角形表示,如图2-6所示, 图2-6导线受力情况 由静力学平衡条件可知,在平面坐标系中,其水平分力,垂直分力的代数与分别等于零。或沿x轴或y轴上分力代数与分别等于零。 垂直方向分力G=T x sinα=gSL x;水平方向分为T0=T x cosα=σ0S。其中σ0、T0为导线最低点的应力与张力,σx、T x为导线任一点的应力与张力,S、g为导线截面与比载。将上述二式相比,则可求得导线任意一点D的斜率为: (2-10) 由微分学知识可知,曲线上任一点的导数即为切线的斜率。 式(2-10)就是悬链曲线的微分方程。我们要用坐标关系表示出导线受力的一般规律,还需要将不定量 L x消去,因此,将式对x微分得: (微分学中弧长微分公式为dS2=(dx)2+(dy)2)将上式移项整理后,两端进行积分 这就是个隐函数,因此,再进行分离变量积分,查积分公式有: (2-11) 再进行分离变量积分,有

架空线悬链方程的积分普遍形式

在高压架空线路的设计中,不同气象条件下架空线的弧垂、应力、和线长占有十分重要的位置,是输电线路力学研究的主要内容。这是因为架空线的弧垂和应力直接影响着线路的正常安全运行,而架空线线长微小的变化和误差都会引起弧垂和应力相当大的改变。设计弧垂小,架空线的拉应力就大,振动现象加剧,安全系数减少,同时杆塔荷载增大因而要求强度提高。设计弧垂过大,满足对地距离所需杆塔高度增加,线路投资增大,而且架空线的风摆、舞动和跳跃会造成线路停电事故,若加大塔头尺寸,必然会使投资再度提高。因此设计合适的弧垂是十分重要的。 架空线悬链方程的积分普遍形式 假设一:架空线是没有刚度的柔性索链,只承受拉力而不承受弯矩。 假设二:作用在架空线上的荷载沿其线长均布;悬挂在两基杆塔间的架空线呈悬链线形状。 由力的平衡原理可得到一下结论: 1、架空线上任意一点C 处的轴向应力σx 的水平分量等于弧垂最低点处的轴向应力σ0,即架空线上轴向应力的水平分量处处相等。 σx cos θ=σ0 2、架空线上任意一点轴向应力的垂直分量等于该点到弧垂最低点间线长L oc 与比载γ之积。 σx sin θ=γL oc 推导出: 0 t g L o c γ θσ= dy Loc dx γ σ= 即 0'y L o c γσ= (4-3) 由(4-3)推导出 10 ()dy sh x C dx γ σ=+ (4-4) 结论:当比值γ/σ0一定时,架空线上任一点处的斜率于该点至弧垂最低点之间的线长成正比。最 后推到得到架空线悬链方程的普遍积分形式。C1、C2为积分常数,其值取决于坐标系的原点位置。 0(1)20 y ch x C C σγ γσ= ++ (4-5)

实腹式悬链线拱的拱轴线和拱轴系数如何确定

1) 实腹式悬链线拱的拱轴线和拱轴系数如确定(含拱轴系数公式推 导)? 答:定拱轴线一般采用无矩法,即认为主拱圈截面仅承受轴向压力而无弯矩。 拱轴系数的确定:拱轴系数: 拱顶恒载分布集度d g 为 : d h g d d 21γγ+= (4-20) 拱脚恒载分布集度x g 为: (4-21) 式中: 321,,γγγ─—分别为拱顶填料、拱圈材料及拱腹填料的容重; d h ─—为拱顶填料厚度,一般为300~500mm ; d ─—为主拱圈厚度; j ?─—为拱脚处拱轴线的水平倾角; 由几关系有 (4-22) 由以上各式可以看出,尽管只有 j ? 为未知数,其余均为已知,但仍不能直接算出m 。所以,在具体计算m 值时可采用试算法确定。具体做法如下: ①先根据拱的跨径和矢高假设m ,再由《拱桥》附录表(Ⅲ)-20查得拱脚处的 j ?cos 值; ②将j ?cos 值代入式(4-21)计算出j g 后,再与d g 一同代入式 (4-11),即可求得m 值。 ③再与假设的m 值比较,如两者相符,即假定的m 为真实值;如两者相差较大(差值大于半级,即相邻m 值的差值的一半),则以计算出的m 值作为假设值,重新计算,直到两者接近为止。 2) “五点重合法”如确定空腹式悬链线拱的拱轴线和拱轴系数?

答:五点重合法:使悬链线拱轴线接近其恒载压力线,即要求拱轴线在全拱有5点(拱顶、拱脚和1/4点)与其三铰拱恒载压力线重合。 3) 为什么可以用悬链线作为空腹式拱的拱轴线形?其拱轴线与三 铰拱的恒载压力线有偏离情况(结合图说明)? 答:由于悬链线的受力情况较好,又有完整的计算表格可供利用,故多采用悬链线作为拱轴线。用五点重合法计算确定的空腹式无铰拱桥的拱轴线,仅保证了全拱有五点与三铰拱的恒载压力线(不计弹性压缩)相重合,在其他截面点上都有不同程度的偏离(图)。计算表明,从拱顶到4l 点,一般压力线在拱轴线之上;而从4l 点到拱脚,压力线却大多在拱轴线之下。拱轴线与相应的三铰拱恒载压力线的偏离类似于一个正弦波(图4-44c )。 4) 拱桥的伸缩缝和变形缝如设置? 答:实腹式拱桥的伸缩缝通常设在两拱脚上,并需在横桥向贯通全宽和侧墙的全高以及人行道;空腹式拱桥一般在紧靠桥墩(台)的第一个腹拱圈做成三铰拱,并在靠墩台的拱铰上的侧墙上也设置伸缩缝,其余两铰上的侧墙上可设变形缝。 5) 什么是弹性中心?试推导弹性中心的计算公式? 答:对称无铰拱若从拱顶切开取为基本结构,则:多余力1X (弯矩)﹑2X (轴力)为正对称,而3X (剪力)是反对称的,故知副系数: 00 32233113====δδδδ 但仍有02112≠=δδ,为了使02112=δδ=,可以通过引入“刚臂”

悬链线

悬链线科技名词定义 中文名称:悬链线 英文名称:catenary 定义:两端悬挂的理想柔性软索的曲线。工程计算中,可近似用抛物线计算。应用学科:电力(一级学科);输电线路(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 目录 悬链线 等高悬链线数学表达式的证明 工程中的应用 悬链线 悬链线(Catenary) 是一种曲线,它的形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名。适当选择坐标系后,悬链线的方程是一个双曲余弦函数,其公式为:y = a*cosh(x/a) 其中a 是一个常数。 等高悬链线数学表达式的证明 注释 如右图,设最低点A处受水平向左的拉力H,右悬挂点处表示为C点,在AC弧线区段任意取一段设为B点,则B受一个斜向上的拉力T,设T 和水平方向夹角为θ,绳子的质量为m,受力分析有:Tsinθ=mg;Tcosθ=H,tanθ=dy/dx=mg/H,mg=ρs,,其中s是右段AB 绳子的长度,ρ是绳子线重量密度,代入得微分方程dy/dx=ρs/H;利用弧长公式ds=√(1+dy^2/dx^2)*dx;所以s=∫√(1+dy^2/dx^2)*dx; 所以把s 带入微分方程得dy/dx=ρ∫√(1+dy^2/dx^2)*dx/H;.....(1) 对于(1)设p=dy/dx微分处理得p'=ρ/H*√(1+p^2)......(2) p'=dp/dx; 对(2)分离常量求积分∫dp/√(1+p^2)=∫ρ/H*dx 得ln[p+√(1+p^2)]=ρx/H+C,即asinhp(反双曲正弦)=ρx/H+C 当x=0时,dy/dx=p=0;带入得C=0;整理得asinhp=ρx/H 另祥解:(ln[p+√(1+p^2)]=ρx/H);p=sh(ρx/H) (1+p^2=e^(2ρx/H)-2pe^(ρx/H)+p^2);(p=[e^(ρx/H)-e^(-ρx/H)]/2=dy/dx);y=ch (ρx/H)* H / ρ(y=H/(2ρ)*[e^(ρx/H)+e^(-ρx/H)] );令a=H/ρ:y=a*cosh (x/a) (y=a[e^(x/a)+e^(-x/a)]/(2)= a*cosh(x/a))。 工程中的应用 悬索桥、双曲拱桥、架空电缆、双曲拱坝都用到悬链线的原理。在工程中有一种应用,a称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:悬链线公式 悬链线图像

40米等截面悬链线拱桥计算

等截面悬链线空腹式石砌拱桥【目录】 目录 目录 (1) 算例一:等截面悬链线空腹式石砌拱桥 (1) 第1章基本资料 (1) 1.1设计标准 (1) 1.2材料及其数据 (1) 1.3设计依据 (2) 第2章确定拱轴线m (2) 2.1拟定上部结构尺寸 (2) 2.1.1主拱圈几何尺寸拟定 (2) 2.1.2拱上构造尺寸 (4) 2.2恒载计算 (6) 2.2.1主拱圈恒载 (6) 2.2.2拱上空腹段荷载 (6) 2.2.3拱上实腹段的恒载 (8) 2.2.4各部分恒载对拱脚及拱跨1/4截面的力矩 (10) 2.3验算拱轴线m (10) 第3章作用效用计算 (10) 3.1自重作用效应 (10) 3.1.1弹性中重心位置和弹性压缩系数 (10) 3.1.2不计弹性压缩的自重水平推力 (11) 3.1.3计入弹性压缩的主拱圈截面内力 (11) 3.2活载作用效应 (13) 3.2.1公路—Ⅱ级汽车荷载效应 (13) 3.2.2人群荷载效应 (18) 3.2.3温度作用效应 (18)

叙府路车行道拓宽及人行道改造项目工程可行性研究报告【目录】 3.3主拱圈作用效应组合.......................................... 错误!未定义书签。第4章拱圈截面强度验算.. (20) 第5章桥台计算 (25)

算例一:40米等截面悬链线空腹式石砌拱桥 第1章 基本资料 1.1设计标准 (1)设计荷载:公路—Ⅱ级汽车荷载,人群荷载3kN/㎡ (2)桥面宽度:〔净7.0m 行车道+2×(0.75m 人行道+0.25m 护栏)〕=9.0m (3)环境类别:Ⅱ类环境 (4)地震动加速度峰值: 水平向地震动加速度峰值为0.2g ,地震烈度8度 (5)设计洪水频率:1/100 1.2材料及其数据 (1)主拱圈 ① 净 跨 径:l 0=40m ,净失高: f 0=8m ,净失跨比:f 0/l 0=1/5 ② 拱圈宽度:B=8.5m ③ 拱圈材料:M10砂浆砌MU60块石,重力密度γ1=24 kN/m 3 轴心抗压强度设计值:MPa MPa f cd 06.522.42.1=?= 抗剪强度设计值:MPa f vd 073.0= 弹性模量:MPa E m 7300= ④ 设计温差:±15℃ (2)拱上建筑 ① 主(腹)拱顶填料厚度:h c =0.5m ② 腹拱、腹拱墩:均采用M10砂浆砌MU30块石,重力密度γ1=24 kN/m 3;腹拱净跨径:l ’0=3m ,净失高: f ’0=0.6m ,净失跨比:f ’0/l ’0=1/5;腹拱墩宽b=0.9m ③ 侧墙、护拱:侧墙采用M7.5砂浆砌MU30块石,护拱为M7.5砂浆砌MU30片石;其平均重力密度γ2=24 kN/m 3 ④ 路面及拱腔填料(炉渣):平均重力密度γ3=22 kN/m 3;路面结构层为6cm 沥青混凝土+8cm C40混凝土+36cm 水泥稳定碎石

相关文档
最新文档