2.基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理

合集下载

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定律的验证实验报告一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。

2、进一步学会使用电压表、电流表。

二、实验原理基本霍夫定律是电路的基本定律。

1)基本霍夫电流定律对电路中任意节点,流入、流出该节点的代数和为零。

即∑I=02)基本霍夫电压定律在电路中任一闭合回路,电压降的代数和为零。

即∑U=0 三、实验设备序号名称型号与规格数量备注1 可调直流稳压电源0~30V 12 直流数字电压表 13 直流数字毫安表 1四、实验内容实验线路如图2-1所示图2-11、实验前先任意设定三条支路的电流参考方向,2、按原理的要求,分别将两路直流稳压电源接入电路。

3、将电流插头的两端接至直流数字毫安表的“+,-”两端。

4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。

5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。

被测量I1(mA)I2(mA)I3(mA)E1(V)E2(V)U FA(V)U AB(V)U AD(V)U CD(V)U DE(V)计算值 1.93 5.99 7.92 6.00 12.00 0.98 -5.99 4.04 -1.97 0.98测量值 2.08 6.38 8.43 6.00 11.99 0.93 -6.24 4.02 -2.08 0.97相对误差7.77% 6.51% 6.43% 0% -0.08% -5.10% 4.17% -0.50% -5.58% -1.02%五、基尔霍夫定律的计算值:I1 + I2 = I3 (1)根据基尔霍夫定律列出方程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 =0.00193A I2 =0.0059A I3 =0.00792AU FA=0.98V U BA=5.99V U AD=4.04V U DE=0.98VU DC=1.98V六、相对误差的计算:E(I1)=(I1(测)- I1(计))/ I1(计)*100%=(2.08-1.93)/1.93=7.77%同理可得:E(I2)=6.51% E(I3)=6.43% E(E1)=0% E(E1)=-0.08%E(U FA)=-5.10% E(U AB)=4.17% E(U AD)=-0.50% E(U CD)=-5.58% E(U DE)=-1.02%七、实验数据分析根据上表可以看出I1、I2、I3、U AB、U CD的误差较大。

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定理的验证实验报告(含数据处理)基尔霍夫定律的验证实验报告⼀、实验⽬的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。

2、进⼀步学会使⽤电压表、电流表。

⼆、实验原理基本霍夫定律是电路的基本定律。

1)基本霍夫电流定律对电路中任意节点,流⼊、流出该节点的代数和为零。

即∑I=02)基本霍夫电压定律在电路中任⼀闭合回路,电压降的代数和为零。

即∑U=0 三、实验设备序号名称型号与规格数量备注1 可调直流稳压电源0~30V 12 直流数字电压表 13 直流数字毫安表 1四、实验内容实验线路如图2-1所⽰图2-11、实验前先任意设定三条⽀路的电流参考⽅向,2、按原理的要求,分别将两路直流稳压电源接⼊电路。

3、将电流插头的两端接⾄直流数字毫安表的“+,-”两端。

4、将电流插头分别插⼊三条⽀路的三个电流插座中,记录电流值于下表。

5、⽤直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。

被测量I1(mA)I2(mA)I3(mA)E1(V)E2(V)U FA(V)U AB(V)U AD(V)U CD(V)U DE(V)计算值 1.93 5.99 7.92 6.00 12.00 0.98 -5.99 4.04 -1.97 0.98测量值 2.08 6.38 8.43 6.00 11.99 0.93 -6.24 4.02 -2.08 0.97相对误差7.77% 6.51% 6.43% 0% -0.08% -5.10% 4.17% -0.50% -5.58% -1.02%五、基尔霍夫定律的计算值:I1 + I2 = I3 (1)根据基尔霍夫定律列出⽅程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 =0.00193A I2 =0.0059A I3 =0.00792AU FA=0.98V U BA=5.99V U AD=4.04V U DE=0.98VU DC=1.98V六、相对误差的计算:E(I1)=(I1(测)- I1(计))/ I1(计)*100%=(2.08-1.93)/1.93=7.77%同理可得:E(I2)=6.51% E(I3)=6.43% E(E1)=0% E(E1)=-0.08%E(U FA)=-5.10% E(U AB)=4.17% E(U AD)=-0.50% E(U CD)=-5.58% E(U DE)=-1.02%七、实验数据分析根据上表可以看出I1、I2、I3、U AB、U CD的误差较⼤。

基尔霍夫定律、叠加原理的验证

基尔霍夫定律、叠加原理的验证

实验二基尔霍夫定律、叠加原理的验证一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2、验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

3、进一步掌握仪器、仪表的使用方法。

二、原理说明1、基尔霍夫定律是电路的基本定律。

测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。

即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。

运用上述定律时必须注意各支路电流或闭合回路的正方向,此方向可预先任意设定。

2、叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K 倍。

三、实验设备1、万用表2、RXDI--1型电路原理实验箱四、实验内容内容1. KCL和KVL 定律的验证验证各节点∑I=0 以及各闭合回路∑U=0 。

实验线路如图2-1所示图2-11、实验前先任意设定三条支路电流正方向。

如图2-1中的I1、I2、I3的方向已设定。

闭合回路的正方向可任意设定。

2、分别将两路直流稳压源接入电路,令U1=6V,U2=12V。

3、将直流电流表分别接入三条支路中,读出并记录电流值于表1。

4、用直流电压表分别测量两路电源及电阻元件上的电压值,记录于表2和表3。

表3内容2. 叠加原理的验证实验电路如图2-2所示。

图2-21、按图2-2电路接线,取U1=12V,U2为可调直流稳压电源,调至U2=+6V。

2、令U1单独作用时(注意:须先断开电源U2,再将BC短接),用直流电压表和直流电流表测量各支路电流及各电阻元件两端电压,将数据记录表4中。

3、令U2单独作用时(注意:须先断开电源U1,再将FE短接),重复实验步骤2的测量,并记录数据于表4中。

电路实验指导书叠加定理和基尔霍夫定律的验证

电路实验指导书叠加定理和基尔霍夫定律的验证

电路实验指导书叠加定理和基尔霍夫定律的验证电路实验叠加定理和基尔霍夫定律的验证⼀、实验⽬的1.加深对叠加定理和基尔霍夫定律的理解,并通过实验进⾏验证。

2.学会⽤电流插头、插座测量各⽀路电流的⽅法。

3.学会⾼级电⼯电⼦实验台上直流电⼯仪表的正确使⽤⽅法。

⼆、实验原理1.基尔霍夫定律(1)电流、电压的参考⽅向对电路进⾏分析,最基本的要求就是求解电路中各元件上的电流和电压,⽽其参考⽅向的选择与确定是⾸要的问题之⼀。

电流、电压的参考⽅向是⼀种假设⽅向,可以任意选定⼀个⽅向作为参考⽅向,电路中的电流和电压的参考⽅向可能与实际⽅向⼀致或者相反,但不论属于哪⼀种情况,都不会影响电路分析的正确性。

应注意在未标明参考⽅向的前提下,讨论电流或电压的正负值是没有意义的。

当电流、电压参考⽅向⼀致时,称为关联的参考⽅向。

否则为⾮关联参考⽅向。

(2)基尔霍夫电流定律(KCL)基尔霍夫电流定律应⽤于结点,它是⽤来确定连接在同⼀结点上各⽀路电流之间关系的,缩写为KCL。

KCL是电流连续性原理在电路中的体现。

对电路中任何⼀个结点,任⼀瞬时流⼊某⼀结点的电流之和等于流出该结点的电流之和。

KCL也适⽤于任意假想的闭合曲⾯。

(3)基尔霍夫电压定律(KVL)基尔霍夫电压定律应⽤于回路,它描述了回路中各段电压间的相互关系,缩写为KVL。

KVL 是能量守恒定律的体现。

从回路中任⼀点出发,沿回路循⾏⼀周,电位降之和必然等于电位升之和。

KVL也适⽤于电路中的假想回路。

2.叠加定理叠加定理可描述为:在线性电路中,如果有多个独⽴电源同时作⽤时,它们在任意⽀路中产⽣的电流(或电压)等于各个独⽴电源分别单独作⽤时在该⽀路中产⽣电流(或电压)的代数和。

电源单独作⽤是指:电路中某⼀电源起作⽤,⽽其他电源不作⽤。

不作⽤电源的具体处理⽅法如下:理想电压源短路,理想电流源开路。

本实验⽤直流稳压电源来模拟理想电压源(内阻可认为是零),所以去掉某电压源时,直接⽤短路线代替即可。

2.基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理

2.基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理

实验二 基尔霍夫定律和叠加原理的验证一、实验目的1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2. 验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加 性和齐次性的认识和理解。

3. 进一步掌握仪器仪表的使用方法。

二、实验原理1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。

它包括基尔霍夫电流定律(KCL)和基尔霍 夫电压定律(KVL)。

(1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即 ΣI =0。

(2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即 ΣU =0。

基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假 定电流和电压的参考方向。

当电流和电压的实际方向与参考方向相同时,取值为 正;相反时,取值为负。

基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还 是含源的或无源的电路,它都是普遍适用的。

2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中 每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。

某独立源单 独作用时,其它独立源均需置零。

(电压源用短路代替,电流源用开路代替。

)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加 或减小 K 倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压 值)也将增加或减小 K 倍。

三、实验设备与器件1. 直流稳压电源 12. 直流数字电压表 13. 直流数字毫安表 14. 万用表 15. 实验电路板1四、实验内容1.基尔霍夫定律实验 按图 2-1 接线。

台块块块块(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。

图2-1 中的电流I1、I2、I3 的方向已设定,三个闭合回路的绕行方向可设为ADEFA、BADCB 和FBCEF。

(2)分别将两路直流稳压电源接入电路,令U1=6V,U2=12V。

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定律的验证实验报告一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。

2、进一步学会使用电压表、电流表。

二、实验原理基本霍夫定律是电路的基本定律。

1)基本霍夫电流定律对电路中任意节点,流入、流出该节点的代数和为零。

即∑I=02)基本霍夫电压定律在电路中任一闭合回路,电压降的代数和为零。

即∑U=0三、实验设备四、实验内容实验线路如图2-1所示图2-11、实验前先任意设定三条支路的电流参考方向,2、按原理的要求,分别将两路直流稳压电源接入电路。

3、将电流插头的两端接至直流数字毫安表的“+,-”两端。

4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。

5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。

被测量I1(mA)I2(mA)I3(mA)E1(V)E2(V)U FA(V)U AB (V)U AD(V)U CD(V)U DE(V)计算值测量值相对误差%%%0%%%%%%%五、基尔霍夫定律的计算值:I1 + I2 = I3 ……(1)根据基尔霍夫定律列出方程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 = I2 = I3 =U= U BA= U AD= U DE=U DC=六、相对误差的计算:E(I1)=(I1(测)- I1(计))/ I1(计)*100%=()/=%同理可得:E(I2) =% E(I3)=% E(E1)=0% E(E1)=%E(U)=% E(U AB)=% E(U AD)=% E(U CD)=% E(U DE)=%七、实验数据分析根据上表可以看出I1、I2、I3、U AB、U CD的误差较大。

八、误差分析产生误差的原因主要有:(1)电阻值不恒等电路标出值,(以510Ω电阻为例,实测电阻为515Ω)电阻误差较大。

(2)导线连接不紧密产生的接触误差。

(3)仪表的基本误差。

实验1 基尔霍夫定律及叠加定理实验报告

实验1 基尔霍夫定律及叠加定理实验报告

实验1 基尔霍夫定律及叠加定理实验报告1、实验目的本实验的目的是通过实验测量和计算,验证基尔霍夫定律和叠加定理在电路中的有效性,并实际应用这些定律去解决实际工程中的电路问题。

2、实验原理基尔霍夫定律是德国物理学家罗尔夫·基尔·霍夫(Gustav Kirchhoff)在1845年提出的,它说明在电路中,其中一个点的流入电流之和等于其中另一个点的流出电流之和:即电流经过支路时守恒,这就是熟知的第一定律(支路定律)。

对应地,基尔霍夫又提出了“点定律”,即:电势差绕任意一电路回路理论上其未知部分的总和为零。

叠加定理是1929年由英国物理学家K.波普特提出的,它规定:对于电路中任意两点之间的电路电势,它们相等的那段路线上的电势差等于这线路的所有分支的电势差的累加和。

3、实验过程(1)首先按照实验要求,准备好电路和元件,连接成实验电路。

实验电路中的电阻可以通过额定的值调节,从而在不同的实验中可以调整出不同的抗性。

(2)用万用表测量电阻R1和R2之间的电压和电流,以计算两个抗性之间的电阻。

(3)计算在实验电路上电位差V1和V2之间的电压和电流,以验证基尔霍夫和叠加定理的有效性。

(4)在实验室实验中,将R1的电阻值逐步增加,结合实验数据,计算出随着R1变化时,V1和V2之间的关系。

(5)将实验数据绘制到V-R图上,比较实验数据与基尔霍夫定律和叠加定理的理论图是否一致,看看它们是否有准确性。

4、实验结果在V-R图上可以看出,实验数据与基尔霍夫定律和叠加定理的理论图近似一致,并且他们之间的误差很小,说明基尔霍夫定律和叠加定理在实验中是有效的。

2.基尔霍夫定律及叠加原理的验证[实验报告答案解析]435

2.基尔霍夫定律及叠加原理的验证[实验报告答案解析]435

南昌大学电工学实验报告学生姓名:王学瑞学号 61 专业班级:本硕111班实验时间: 16 时 00 分第三周星期二指导老师:郑朝丹成绩:基尔霍夫定律和叠加原理的验证实验目的:1.验证基尔霍夫定的正确性,加深对基尔霍夫定律的理解。

2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。

3.进一步掌握仪器仪表的使用方法。

实验原理:1.基尔霍夫定律基尔霍夫定律是电路的基本定律。

它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。

(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。

(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。

基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。

当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。

基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。

2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个南昌大学电工学实验报告学生姓名:王学瑞学号 61 专业班级:本硕111班实验时间: 16 时 00 分第三周星期二指导老师:郑朝丹成绩:独立电源单独作用时在该支路中所产生的电流或电压的代数和。

某独立源单独作用时,其它独立源均需置零。

(电压源用短路代替,电流源用开路代替。

)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。

实验设备与器件:1.基尔霍夫定律电路板 1 块;导线若干2.直流稳压电源两路3.直流数字电压表,电流表4.万用表实验内容:1.基尔霍夫定律实验(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方南昌大学电工学实验报告学生姓名:王学瑞学号 61 专业班级:本硕111班实验时间: 16 时 00 分第三周星期二指导老师:郑朝丹成绩:向。

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定理的验证实验报告(含数据处理)基尔霍夫定律的验证实验报告⼀、实验⽬的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。

2、进⼀步学会使⽤电压表、电流表。

⼆、实验原理基本霍夫定律是电路的基本定律。

1)基本霍夫电流定律对电路中任意节点,流⼊、流出该节点的代数和为零。

即∑I=02)基本霍夫电压定律在电路中任⼀闭合回路,电压降的代数和为零。

即∑U=0 三、实验设备序号名称型号与规格数量备注1 可调直流稳压电源0~30V 12 直流数字电压表 13 直流数字毫安表 1四、实验内容实验线路如图2-1所⽰图2-11、实验前先任意设定三条⽀路的电流参考⽅向,2、按原理的要求,分别将两路直流稳压电源接⼊电路。

3、将电流插头的两端接⾄直流数字毫安表的“+,-”两端。

4、将电流插头分别插⼊三条⽀路的三个电流插座中,记录电流值于下表。

5、⽤直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。

被测量I1(mA)I2(mA)I3(mA)E1(V)E2(V)U FA(V)U AB(V)U AD(V)U CD(V)U DE(V)计算值 1.93 5.99 7.92 6.00 12.00 0.98 -5.99 4.04 -1.97 0.98测量值 2.08 6.38 8.43 6.00 11.99 0.93 -6.24 4.02 -2.08 0.97相对误差7.77% 6.51% 6.43% 0% -0.08% -5.10% 4.17% -0.50% -5.58% -1.02%五、基尔霍夫定律的计算值:I1 + I2 = I3 (1)根据基尔霍夫定律列出⽅程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 =0.00193A I2 =0.0059A I3 =0.00792AU FA=0.98V U BA=5.99V U AD=4.04V U DE=0.98VU DC=1.98V六、相对误差的计算:E(I1)=(I1(测)- I1(计))/ I1(计)*100%=(2.08-1.93)/1.93=7.77%同理可得:E(I2)=6.51% E(I3)=6.43% E(E1)=0% E(E1)=-0.08%E(U FA)=-5.10% E(U AB)=4.17% E(U AD)=-0.50% E(U CD)=-5.58% E(U DE)=-1.02%七、实验数据分析根据上表可以看出I1、I2、I3、U AB、U CD的误差较⼤。

基尔霍夫和叠加原理实验报告

基尔霍夫和叠加原理实验报告

实验一(一)基尔霍夫定律一、实验目的1.对基尔霍夫电压定律和电流定律进行验证,加深对两个定律的理解。

2.学会用电流插头、插座测量各支路电流的方法。

二、原理说明KCL和KVL是电路分析理论中最重要的的基本定律,适用于线性或非线性电路、时变或非变电路的分析计算。

KCL和KVL是对于电路中各支路的电流或电压的一种约束关系,是一种“电路结构”或“拓扑”的约束,与具体元件无关。

而元件的伏安约束关系描述的是元件的具体特性,与电路的结构(即电路的接点、回路数目及连接方式)无关。

正是由于二者的结合,才能衍生出多种多样的电路分析方法(如节点法和网孔法)。

KCL指出:任何时刻流进和流出任一个节点的电流的代数和为零,即Σi(t)=0或ΣI=0KVL指出:任何时刻任何一个回路或网孔的电压降的代数和为零,即Σu(t)=0或ΣU=0运用上述定律时必须注意电流的正方向,此方向可预先任意设定。

实验线路如图1所示。

图11.实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路结构,掌握各开关的操作使用方法。

2.分别将两路直流稳压源接入电路,令E1=6V,E2=12V,其数值要用电压表监测。

3.熟悉电流插头和插孔的结构,先将电流插头的红黑两接线端接至数字毫安表的“+、-”极;再将电流插头分别插入三条支路的三个电流插孔中,读出相应的电流值,记入表1中。

4.用直流数字电压表分别测量两路电源及电阻元件上的电压值,数据记入表1中。

五、实验注意事项1.两路直流稳压源的电压值和电路端电压值均应以电压表测量的读数为准,电源表盘指示只作为显示仪表,不能作为测量仪表使用,恒压源输出以接负载后为准。

2.谨防电压源两端碰线短路而损坏仪器。

3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。

当电表指针出现反偏时,必须调换电流表极性重新测量,此时读得的电流值必须冠以负号。

六、预习思考题1.根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定毫安表和电压表的量程。

2.基尔霍夫定律及叠加原理的验证[实验报告答案解析]

2.基尔霍夫定律及叠加原理的验证[实验报告答案解析]

实验基尔霍夫定律和叠加原理的验证一、实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。

3.进一步掌握仪器仪表的使用方法。

二、实验原理1.基尔霍夫定律基尔霍夫定律是电路的基本定律。

它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。

(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。

(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。

基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。

当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。

基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。

2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。

某独立源单独作用时,其它独立源均需置零。

(电压源用短路代替,电流源用开路代替。

)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。

三、实验设备与器件1.直流稳压电源 1 台2.直流数字电压表 1 块3.直流数字毫安表 1 块4.万用表 1 块5.实验电路板 1 块四、实验内容1.基尔霍夫定律实验按图2-1接线。

图2-1 基尔霍夫定律实验接线图(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。

图2-1中的电流I1、I2、I3的方向已设定,三个闭合回路的绕行方向可设为ADEFA、BADCB和FBCEF。

(2)分别将两路直流稳压电源接入电路,令U1=6V,U2=12V。

电路实验二 基尔霍夫定律和叠加定理的验证

电路实验二 基尔霍夫定律和叠加定理的验证

实验二基尔霍夫定律和叠加定理的验证一、实验目的1.验证基尔霍夫定律和叠加定理的正确性,加深对基尔霍夫和叠加定理的理解。

2.学会用电流插头、插座测量各支路电流。

二、实验原理1.基尔霍夫定律是电路的基本定律。

测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。

即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。

2.在线性网络中,多个激励同时作用时的总响应等于每个激励单独作用时引起的响应之和。

所谓某一激励单独作用,就是除了该激励外,其余激励为零值。

为零值的激励若是电压源,则相应的电压源处用短路替代,若为电流源,则在相应的电流源处用开路替代,而它们的内阻或内电导必须保留在原电路中。

3.线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

实验线路如图2—1所示,用KHDL—1型电路原理实验箱验证“基尔霍夫定律/叠加原理”。

(一)基尔霍夫定律1.实验前先任意设定三条支路和三个闭合回路的电流正方向(参考方向)。

图2—1中的I1、I2、I3的方向已设定。

2.同时将两路直流稳压源接入电路,令U1=6V,U2=12V3.熟悉电流表的结构,将电流表插头的两端接至数字毫安表的“+、-”两端。

4.将电流表分别接入三条支路的三个电流测量端,读出并记录电流值。

图2-1验证“基尔霍夫定律/叠加原理”电路5.用直流数字电压表分别测量两路电源及电阻元件上的电压值,记录表中。

(二)叠加原理;实验线路如图2—1,参考方向在图中已设定。

五、实验注意事项1.同实验五的注意1,但需用到电流插座。

2.所有需要测量的电压值,均以电压表测量的读数为准。

U1、U2也需测量,不应取电源本身的显示值。

3.防止稳压电源两个输出端碰线短路。

实验一-验证叠加定理的验证和基尔霍夫定律的验证

实验一-验证叠加定理的验证和基尔霍夫定律的验证

实验1.2 叠加原理的验证一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

三、实验内容测得三组数据,实验截图如下:(1)总电路:各电源单独作用时:由图得:2+0+4+(-4)=2 A =2 A 因此满足叠加定理。

(2)总电路:各电源单独作用时电路:由图得:6.664+0+1.666+(-3.332)=4.998 A= 4.998 A 因此满足叠加定理。

(3)总电路:各电源单独作用时电路:由图得:2.857+0+2.857+(-2.143) =3.571 A=3.571 A因此满足叠加定理。

四、实验体会这次的电路比较复杂,因此在连接的时候经常会有貌似连接上了,其实并没有连接好的情况出现。

当电流表电压表读数为“-0.0000”或者“E”时,便可以确定是电路图的连接出了问题。

电流表和电压表的正负极的正确连接也让我困惑了很久,最终找到了“深色一端为电流流出端”这样一种判断方法。

通过使用这个软件对课本上题目的验证,可以非常直观的证明:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

这让我对叠加定理有了更深刻的理解。

实验1.1 验证基尔霍夫定律一、实验原理1、电荷守恒定律:电荷既不能创造也不能消失。

2、能量守恒定律:能量既不会凭空产生,也不会凭空消失。

3、基本霍夫定律是电路的基本定律。

(1)基本霍夫电流定律对电路中任意节点,流入、流出该节点的代数和为零。

即∑I=0。

(2)基本霍夫电压定律在电路中任一闭合回路,电压降的代数和为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 基尔霍夫定律和叠加原理的验证一、实验目的1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2. 验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加 性和齐次性的认识和理解。

3. 进一步掌握仪器仪表的使用方法。

二、实验原理1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。

它包括基尔霍夫电流定律(KCL)和基尔霍 夫电压定律(KVL)。

(1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即 ΣI =0。

(2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即 ΣU =0。

基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假 定电流和电压的参考方向。

当电流和电压的实际方向与参考方向相同时,取值为 正;相反时,取值为负。

基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还 是含源的或无源的电路,它都是普遍适用的。

2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中 每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。

某独立源单 独作用时,其它独立源均需置零。

(电压源用短路代替,电流源用开路代替。

)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加 或减小 K 倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压 值)也将增加或减小 K 倍。

三、实验设备与器件1. 直流稳压电源 12. 直流数字电压表 13. 直流数字毫安表 14. 万用表 15. 实验电路板1四、实验内容1.基尔霍夫定律实验 按图 2-1 接线。

台块块块块(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。

图2-1 中的电流I1、I2、I3 的方向已设定,三个闭合回路的绕行方向可设为ADEFA、BADCB 和FBCEF。

(2)分别将两路直流稳压电源接入电路,令U1=6V,U2=12V。

(3)将电路实验箱上的直流数字毫安表分别接入三条支路中,测量支路电流,数据记入表2-1。

此时应注意毫安表的极性应与电流的假定方向一致。

(4)用直流数字电压表分别测量两路电源及电阻元件上的电压值,数据记入表2-1。

2.叠加原理实验(1)线性电阻电路按图2-2 接线,此时开关K 投向R5(330Ω)侧。

图2-2 叠加原理实验接线图①分别将两路直流稳压电源接入电路,令U1=12V,U2=6V。

②令电源U1单独作用,BC短接,用毫安表和电压表分别测量各支路电流及各电阻元件两端电压,数据记入表2-2。

③令U2单独作用,此时FE短接。

重复实验步骤②的测量,数据记入表2-2。

④令U1和U2共同作用,重复上述测量,数据记入表2-2。

⑤取U2=12V,重复步骤③的测量,数据记入表2-2。

(2)非线性电阻电路按图2-2 接线,此时开关K 投向二极管IN4007 侧。

重复上述步骤①~⑤的测量过程,数据记入表2-3。

(3)判断电路故障按图2-2 接线,此时开关K投向R5(330Ω)侧。

任意按下某个故障设置按键,重复实验内容④的测量。

数据记入表2-4 中,将故障原因分析及判断依据填入表2-5 。

故障二12.05 6.0711.67 4.3516.02-4.35-1.420 5.97 5.97故障三12.03 6.027.8107.810-2.02 3.98 3.98 3.98故障原因判断依据原因和依据故障内容故障一FA 之间开路I1=0 ;U F A=10.34 V故障二AD之间电阻短路UAD = 0 ;I3 =16.02 mA故障三CD 之间电阻开路I2 = 0 ;U AB = 0 ;U CD =2.02V五、实验预习1.实验注意事项(1)需要测量的电压值,均以电压表测量的读数为准。

U1、U2 也需测量,不应取电源本身的显示值。

(2)防止稳压电源两个输出端碰线短路。

(3)用指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。

此时指针正偏,可读得电压或电流值。

若用数显电压表或电流表测量,则可直接读出电压或电流值。

但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流参考方向来判断。

(4)仪表量程的应及时更换。

2.预习思考题(1)根据图2-1 的电路参数,计算出待测的电流I1、I2、I3 和各电阻上的电压值,记入表2-1 中,以便实验测量时,可正确地选定毫安表和电压表的量程。

答:基尔霍夫定律的计算值根据基尔霍夫定律列方程如下:(1)I1 + I2 = I3 (KCL)(2)(510+510)I1 + 510 I3 = 6 (KVL)(3)(1000+330)I3 + 510 I3 = 12 (KVL)由方程(1)、(2)、(3)解得:I1 = 0.00193A= 1.93 mAI2 = 0.00599A= 5.99 mAI3 = 0.00792A= 7.92mAU FA =5100.00193=0.98 VU AB = -10000.00599 = -5.99VU AD =5100.00792=4.04VU DE =5100.00193=0.98 VU CD =-330 0.00599 =-1.97V(2)实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示呢?答:指针式万用表万用表作为电流表使用,应串接在被测电路中。

并注意电流的方向。

即将红表笔接电流流入的一端(“ + ”端),黑表笔接电流流出的一端(“ - ”端)。

如果不知被测电流的方向,可以在电路的一端先接好一支表笔,另一支表笔在电路的另—端轻轻地碰一下,如果指针向右摆动,说明接线正确;如果指针向左摆动(低于零点,反偏),说明接线不正确,应把万用表的两支表笔位置调换。

记录数据时应注意电流的参考方向。

若电流的实际方向与参考方向一致,则电流取正号,若电流的实际方向与参考方向相反,则电流取负号。

若用直流数字毫安表进行测量时,则可直接读出电流值。

但应注意:所读得电流值的正、负号应根据设定的电流参考方向来判断。

(3)实验电路中,若有一个电阻器改为二极管,试问叠加原理的叠加性与齐次性还成立吗?为什么?答:电阻改为二极管后,叠加原理不成立。

因为二极管是非线性元件,含有二极管的非线性电路,不符合叠加性和齐次性。

六、实验报告1. 根据实验数据,选定实验电路图2.1中的结点A,验证KCL 的正确性。

答:依据表2-1 中实验测量数据,选定结点A,取流出结点的电流为正。

通过计算验证KCL的正确性。

I1 = 2. 08 mA I2 = 6. 38 mA I3 = 8. 43mA即8.43-2.08-6.38= -0.03 0结论:I3-I1 -I2 = 0 ,证明基尔霍夫电流定律是正确的。

2. 根据实验数据,选定实验电路图2.1 中任一闭合回路,验证KVL 的正确性。

答:依据表2-1 中实验测量数据,选定闭合回路ADEFA,取逆时针方向为回路的绕行方向电压降为正。

通过计算验证KVL的正确性。

U AD = 4.02 V U DE = 0. 97 V U FA= 0. 93 V U1= 6. 05V6.05-0.97-4.02-0.93= 0.030结论:U1-U DE-U AD-U AF =0,证明基尔霍夫电压定律是正确的。

同理,其它结点和闭合回路的电流和电压,也可类似计算验证。

电压表和电流表的测量数据有一定的误差,都在可允许的误差范围内。

3.根据实验数据,验证线性电路的叠加性与齐次性。

答:验证线性电路的叠加原理:(1)验证线性电路的叠加性依据表2-2的测量数据,选定电流I1 和电压U AB 。

通过计算,验证线性电路的叠加性是正确的。

验证电流I1 :U1单独作用时:I1 (U1单独作用)= 8.69mA U2单独作用时:I1(U2单独作用)= - 1.19mA U1、U2共同作用时:I1 (U1、U2共同作用)= 7.55mA7.558.69+(-1.19)=7.50即结论:I1 (U1、U2共同作用)= I1 (U1单独作用)+ I1(U2单独作用)验证电压U AB:U1单独作用时:U AB(U1单独作用)= 2. 42 V U2单独作用时:U AB(U2单独作用)= - 3.59V U1、U2共同作用时:U AB(U1、U2共同作用)= -1.16V -1.16 2.42 + (-3.59)= -1.17即结论:U AB(U1、U2共同作用)= U AB(U1单独作用)+ U AB(U2单独作用)因此线性电路的叠加性是正确的。

(2)验证线性电路的齐次性依据表2-2的测量数据,选定电流I1 和电压U AB 。

通过计算,验证线性电路的齐次性是正确的。

验证电流I1 :U2单独作用时:I1(U2单独作用)= - 1.19mA 2U2单独作用时:I1 (2U2单独作用)= - 2. 39mA-2.39 2(-1.19)= -2.38即结论:I1 (2U2单独作用)= 2 I1(U2单独作用)验证电压U AB:U2单独作用时:U AB(U2单独作用)= - 3. 59 V 2U2单独作用时:U AB(U2单独作用)= - 7. 17V-7.17 2(-3.59) = -7.18结论:U AB(2U2单独作用)= 2 U AB(U2单独作用)因此线性电路的齐次性是正确的。

同理,其它支路电流和电压,也可类似计算。

证明线性电路的叠加性和齐次性是正确的。

(3)对于含有二极管的非线性电路,表2-3 中的数据。

通过计算,证明非线性电路不符合叠加性和齐次性。

4.实验总结及体会。

附:(1)基尔霍夫定律实验数据的相对误差计算I =(I-I )I100=(2.08-1.93) 1.93=7.77同理可得:I = 6.51I=6.43U = 0.8U = -0.08U= -5.10U = 4.17U= -0.50U = -5.58U= -1.02由以上计算可看出:I1、I2、I3 及U AB 、U CD 误差较大。

(2)基尔霍夫定律实验数据的误差原因分析产生误差的原因主要有:1)电阻值不恒等电路标出值,以510Ω电阻为例,实测电阻为515Ω,电阻误差较大。

2)导线连接不紧密产生的接触误差。

3)仪表的基本误差。

(3)基尔霍夫定律实验的结论数据中绝大部分相对误差较小,基尔霍夫定律是正确的。

附:叠加原理的验证实验小结(1)测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

(2)在实际操作中,开关投向短路侧时,测量点F延至 E 点,B 延至C 点,否则测量出错。

相关文档
最新文档