(完整版)东北大学单色仪定标实验详细过程
大学物理实验---单色仪的定标和光谱测量.docx
实验题目:单色仪的定标和光谱测量实验目的:了解光栅单色仪的原理,结构和使用方法,通过测量钨灯和汞灯的光谱了解单色仪的特点。
实验原理:一.光栅单色仪的结构和原理如下图所示,光栅单色仪由三部分组成:1、光源和照明系统,2、分光系统,3、接受系统。
单色仪的光源有:火焰、电火花、激光、高低压气体灯(钠灯、汞灯等)、星体、太阳等。
如下图所视,当入射光与光栅面的法线N的方向的夹角为©(见图)时,光栅的闪耀角为a取一级衍射项时,对于入射角为©而衍射角为e时,光栅方程式为:d(sin H sin 0)=入式中N 为光栅的总线数,在本实验中 N 为64 *200=76800, m 为所用的光的衍射级次,本实验中m 二雹实验中由于光学系统的象差和调整误差,杂散光和噪声的影响, 加上光源的谱线由于各种效应而发生增 宽,所以实际的谱线半角宽度远远大于理论值, 因此光谱仪的实际分辨本领远远小于 76800。
实验数据及数据处理:(数据以文本文档中为准)■ ■ » 11、 光栅单色仪的定标 ----- 钠灯光谱与标准值之间误差:??= --------------- =0.00%入Nd cos=d 9 = m d 入 d cos 9R= d x =mNFigure 1钠灯光谱主线系峰值数据: 1、589.0002、589.625实验报告589 .0BY 王有识页3实验报告?? =0.004%-|589 .625-589 .6|Figure 2钠灯光谱锐线系峰值数据: 1 、615.413 2 、616.050 与标准值之间误差:??=--------------- =0.002%1615 413-615 .4|?? —6154---------- =0.008%1616.050-616 ,0|2 = 616.0Figure 3钠灯光谱漫线系1页4 BY王有识?? = ------------------ =0.006%1497.812-497 .78|?? 49778 =0.01%|498 .250-498 .2| 2=498.22、 低压汞灯光谱测量峰值数据:1、568.250 、568.825与标准值之间误差:??= =0.009%1568 .250-568 .3|与标准值之间误差:??568・3 ------ =0.006% |568 .7-568 .86|22=568 .86Figure 4钠灯光谱漫线系2峰值数据:1、497.812 2 、498.250实验报告Figure 5低压汞灯黄光强峰值数据:1、576.925 2 、579.050与标准值之间误差:??= =0.006%1576 .925-576 .96|?? 576・96------- =0.003%|579 .050-579 ,07|2二579.07Figure 6低压汞灯蓝绿光强峰值数据:1、491.637 与标准值之间误差:??二 ------------- =0.008%|491 .637-491 .60|峰值数据: 1 、585.925ure 7低压汞灯2黄光589.000与标准值之间误差:??==0.0009%1585 .925-585 .92| ?? —585.92 =0.003%1589 .000 -589 .021本组实验由于测蓝绿光的弱光谱,而实验环境中并不是完全黑暗,难免会有光对实验产生干扰, 所以实验所得的图像很不理想, 但是还 是可以分辨出波峰。
单色仪的定标和光谱测量实验(1321室)
单色仪的定标和光谱测量实验(1321室)实验要求:实验前准备认真预习(1)认真阅读实验讲义或实验教材(2)准备预习报告注明:1、加入自己对实验原理的理解;2、实验课时必须带来,作为当堂打实验操作分的依据;3、认真预习者方可进入实验室进行操作准时进入实验室(1)不准迟到,请假需要提前上交书面申请(2)注意保持实验室卫生(3)严禁携带零食,注重仪表!例如:不穿拖鞋等行为(4)雨天请将雨伞放置在实验室门外仔细阅读听讲(1)认真听讲每个仪器的名称,作用及使用方法(2)阅读实验指导书实验进行时严肃认真,不得在实验室内打闹、嬉戏!严格遵守操作规程,严禁手碰透镜等光学仪器的光学面不得直视激光,以免损伤视网膜!严禁损坏仪器经指导老师签字或同意后,并清洁整理完毕方可离开!实事求是(1)认真观察、分析实验现象(2)如实记录实验数据,不得抄袭勇于创新积极思考并提出自己的建议或意见实验结束后及时认真完成实验报告!(实验目的、内容、实验原理、实验仪器、实验操作步骤、实验结果(包括数据处理分析和现象分析)、回答思考题)下次上课时必须交上,不得延误!单色仪的定标和光谱测量实验(1321室)实验目的:(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解;(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
实验简介单色仪(monochromator)是指从一束电磁辐射中分离出波长范围极窄单色光的仪器。
按照色散元件的不同可分为两大类:以棱镜为色散元件的棱镜单色仪和以光栅为色散元件的光栅单色仪。
单色仪的构思萌芽可以追述到1666年,牛顿在研究三棱镜时发现将太阳光通过三棱镜时被分解成七色光的彩色光光谱,牛顿首先将此分解现象称为色散。
1814年夫琅和费设计了包括狭缝、棱镜和视窗的光学系统并研究发现了太阳光谱中的吸收谱线(夫琅和费谱线)。
单色仪定标实验报告
棱镜单色仪的定标【实验目的】1、了解单色仪的结构,分光原理和使用方法;2、做出单色仪的定标曲线。
【实验仪器】反射式棱镜单色仪,高压汞灯、读数显微镜、会聚透镜仪器介绍:单色仪----能够从复合光源中分解出独立的、足够狭窄的、波长连续可调的单色光的仪器。
按波长来分,有红外单色仪、紫外单色仪、可见光单色仪;按分光元件来分,有光栅单色仪和棱镜单色仪;在棱镜单色仪中按物镜的形式来分,有透射式单色仪和反射式单色仪。
我们这个实验用的是:反射式玻璃棱镜单色仪,分光波段在可见光范围内。
反射式玻璃棱镜单色仪反射式玻璃棱镜单色仪的光学系统由三部分组成:1、入射准直系统-----狭缝和凹面镜1S 1M ,恰好处在1S 2M 的焦平面上。
其作用是将进入狭缝的光变为平行光。
1S 2、色散系统----平面镜M 和三棱镜P,二者作为一个整体安装在转台上。
平行入射的复合光经过平面镜M 反射到三棱镜P 上,分解成按波长排列向不同方向偏折的单色光。
随着棱镜的转动,只有满足最小偏向角条件的入射光,才能从出射狭缝射出。
棱镜转了,出射光的波长也就发生了变化。
3、出射聚光系统----出射狭缝和聚焦凹面镜2S 2M 。
恰好处在2S 2M 的焦平面上。
将棱镜P 分解出的不同方向的单色光中的一束(哪一束?)汇聚到狭缝上。
2S 单色仪的机械部分包括狭缝和读数鼓轮。
狭缝的调节要仔细,不要挤坏。
读数鼓轮与万向接头转动杆及把手相连。
转动把手,棱镜就转,输出光的波长就在变。
读数鼓轮的数值与棱镜的位置相对应,也就是与出射光的波长相对应。
【实验原理】三色仪不是直接用波长分度定标而是用鼓轮读数来表示,因在使用单色仪之前要定 标:利用已知波长的光谱线标定鼓轮的读数,做出鼓轮读数与波长之间的关系曲线。
这 个过程称之为单色仪的定标。
单色仪的定标要借助于已知波长的线光谱光源来进行。
本实验选用的光源为高压汞灯。
在可见光波段内,用读数显微镜可以观察到30多条谱线。
其相对强度和波长参考 P323和P324。
单色仪的调节与定标
一.实验题目:单色仪的调节与定标二.实验目的:1.掌握棱镜单色仪的构造原理和使用方法2.掌握调节光路准直的基本方法和技巧3.以汞灯的主要谱线为基准,对单色仪在可见光区域进行定标三.实验仪器:反射式棱镜单色仪,低压汞灯(带镇流器),读数照明反射镜,读数照明小电珠(带变压器),聚光透镜(带底座),读数显微镜(带支架),长曲线绘图设备四.实验原理:单色仪是一种分光仪器,它通过色散元件的分光作用,能输出一系列独立的、光谱区间足够狭窄的单色光,且所输出的单色光的波长可根据需要调节.主要有三部分组成:由入射缝S1和凹面镜M1组成入射准直系统,以产生平行光束;由玻璃棱镜 P组成色散系统,在它的旁边还附一块平面反射镜M,由凹面镜M2和出射缝S2组成出射聚光系统,将棱镜分出的单色平行光汇聚在出射缝上。
随着棱镜台绕O轴转动,以最小偏向角通过棱镜的光束的波长也跟着改变,当最小偏向角由小变大时,从S2输出的单色光的波长将依次由长变短.单色仪能输出不同波长的单色光,是依赖于棱镜台的转动才得以实现的.棱镜台的位置是由鼓轮刻度标志的,而鼓轮刻度的每一数值都是和一定波长的单色光输出相对应.因此,必须制作单色仪的鼓轮读数和对应光波波长的关系曲线——定标曲线(又称色散曲线),一旦鼓轮读数确定,便可从定标曲线上查知输出单色光的中心波长.单色仪定标曲线的定标是借助于波长已知线光谱光源来进行的.本实验用汞灯来做为已知线光谱的光源,在可见光区域(400 nm 760nm)进行定标.五.实验步骤:1. 汞灯光源与入射狭缝S1之间放一会聚透镜L1.调节光源与透镜的位置、高低和左右,使光源成像在S1上.2. 出射狭缝S2处直接用眼观察出射光,并转动鼓轮,可看到红、黄、蓝、紫色光依次通过.调节光源的高低、左右,使出射光位于S2的中央.3. 置显微镜于出射狭缝S2处,调节显微镜的高低、左右和前后位置,对出射狭缝S2聚焦,先清楚地看到出射狭缝S2,然后转动鼓轮再细调到出现细锐的光谱线,调显微镜中十字叉丝的竖丝位于S2缝中心.4.在正式测定校准曲线前,应先定性地观察全过程,以便认准谱线,即转动鼓轮,从红光到紫光再从紫光到红光,观察汞灯所有的谱线,认准谱线,然后再定量测量.5.测定校准曲线,以显微镜的竖丝为标准,缓慢转动鼓轮,使汞灯的各条谱线依次通过,记下鼓轮的读数R与其对应的波长λ.在坐标纸上作出单色仪的R-λ曲线.检验方法:1.光路调整∙用水平仪调整单色仪水平。
单色仪的定标实验报告
单色仪的定标实验报告单色仪的定标实验报告引言:单色仪是一种常用的光学仪器,用于分离出光束中的不同波长的光线。
在实际应用中,单色仪的准确性和精度对于研究光学现象和进行光谱分析非常重要。
本实验旨在通过定标实验,确定单色仪的波长刻度,从而提高其测量的精度和可靠性。
实验装置和原理:本次实验使用的单色仪是基于光栅原理的,其主要组成部分包括光源、光栅、光电二极管和波长选择装置。
光源发出的光经过光栅的衍射作用,被分离成不同波长的光线,然后通过波长选择装置选择特定波长的光线,最后被光电二极管接收并转化为电信号。
实验步骤:1. 准备工作:将单色仪放置在稳定的平台上,确保其与其他光学仪器保持一定的距离,以避免干扰。
打开电源,对单色仪进行预热。
2. 调整光源:根据实验要求选择合适的光源,如汞灯或氢氖激光器。
调整光源的位置和亮度,使其发出稳定的光束。
3. 调整光栅:将光栅安装在单色仪上,并调整其倾斜角度,使得光束通过光栅时能够发生衍射。
同时,调整光栅的位置,使得衍射的光线能够尽可能平行地通过波长选择装置。
4. 定标实验:选择一个已知波长的光源,如氢氖激光器,将其光线通过单色仪,并调整波长选择装置,使得光电二极管接收到该波长的光线。
记录下此时波长选择装置的位置,并标记为该波长的波长刻度。
5. 重复步骤4,使用不同波长的光源进行实验,记录下不同波长对应的波长刻度。
6. 分析数据:根据实验结果,绘制出波长与波长刻度的关系曲线。
可以使用线性回归等方法,拟合出波长刻度的数学表达式。
实验结果与讨论:根据实验数据,我们得到了波长与波长刻度的关系曲线。
通过拟合曲线,我们可以得到单色仪的波长刻度的数学表达式。
在实际应用中,我们可以根据该表达式,通过读取波长刻度,确定光线的波长,从而进行精确的光谱分析。
然而,需要注意的是,单色仪在实际使用中可能存在一定的误差。
这些误差可能来自于光源的不稳定性、光栅的制造误差、波长选择装置的精度等因素。
因此,在进行实际测量时,我们需要对单色仪进行定期的校准和维护,以确保其测量结果的准确性和可靠性。
单色仪定标实验报告
单色仪定标实验报告实验目的,通过单色仪定标实验,掌握单色仪的使用方法,了解光的色散规律,掌握用单色仪测定光的波长的方法。
实验仪器,单色仪、汞灯、钠灯、氢灯、汞镁灯、透射光栅、测微目镜、波长计。
实验原理,单色仪是一种用来分离和测定光谱的仪器。
当白光通过单色仪时,不同波长的光被分散成不同的角度,形成光谱。
利用透射光栅,可以将光谱中的各个波长分离开来,然后用测微目镜和波长计来测定各个波长的位置,从而得到光的波长。
实验步骤:1. 调整单色仪,将单色仪放在实验台上,调整仪器使得入射光垂直射入单色仪的入射口,并使得出射光垂直射向透射光栅。
2. 测定汞灯谱线,打开汞灯,调整单色仪使得汞灯的光谱线通过透射光栅,用测微目镜和波长计测定各个谱线的波长。
3. 测定钠灯谱线,同样的方法,测定钠灯的光谱线的波长。
4. 测定氢灯谱线,同样的方法,测定氢灯的光谱线的波长。
5. 测定汞镁灯谱线,同样的方法,测定汞镁灯的光谱线的波长。
实验结果:汞灯的谱线位置及波长:谱线1,位置 450 波长 579.1nm。
谱线2,位置 550 波长 576.9nm。
谱线4,位置 750 波长 491.6nm。
谱线5,位置 850 波长 435.8nm。
钠灯的谱线位置及波长:谱线1,位置 460 波长 590.0nm。
谱线2,位置 560 波长 589.4nm。
谱线3,位置 660 波长 588.9nm。
谱线4,位置 760 波长 587.1nm。
谱线5,位置 860 波长 589.6nm。
氢灯的谱线位置及波长:谱线1,位置 470 波长 656.3nm。
谱线2,位置 570 波长 486.1nm。
谱线3,位置 670 波长 434.0nm。
谱线4,位置 770 波长 410.1nm。
谱线5,位置 870 波长 397.0nm。
汞镁灯的谱线位置及波长:谱线1,位置 480 波长 435.8nm。
谱线2,位置 580 波长 404.7nm。
谱线3,位置 680 波长 365.0nm。
单色仪的定标
单色仪的定标物理学院华远杰实验目的1.了解棱镜单色仪的构造、原理和使用方法;2.以汞灯的主要谱线为基准,对单色仪在可见光区进行定标;3.掌握用单色仪测定滤光片光谱透射率的方法。
仪器和用具反射式棱镜单色仪、汞灯、光电池、灵敏电流计、(移测)显微镜、滤光片、会聚透镜、电源、自耦变压器、钨合金灯泡。
实验原理简而言之,单色仪的工作原理是通过棱镜对光的色散作用,使不同波长的光随着棱镜的转动依次从单色仪的孔中射出,并在显微镜中被观察到。
棱镜的转动由单色仪的一个鼓轮控制,鼓轮上有类似螺旋测微器的刻度,不同的刻度可对应不同波长的光射出时的棱镜的位置,即满足光的波长与鼓轮读数的一一对应关系。
当测得足够多的谱线的波长与鼓轮读数时,即可在坐标纸上绘出单色仪的定标曲线(色散曲线)。
关于光谱半宽度的测定,让连续光源发出的光经过凸透镜后再由一绿色滤光片进入单色仪。
将上面提到过的显微镜换成一光电池,并将光电池两极连接在调平后的检流计上。
光线从单色仪中射出照到光电池时,光电池将产生电流,使检流计发生偏转。
通过检流计偏转的格数来反映光强度。
因为同一滤光片对不同频率的光的透射能力不同,所以检流计的偏转存在一个最大值,最大值的二分之一对应有两个波长,这两个波长的差值即为该光的半宽度。
实验内容1.调节汞灯,凸透镜,单色仪的单缝等高同轴,适当调整凸透镜和光源的位置,使光源在单缝处成清晰的,指甲盖大小的像,并均匀分布于单缝两侧;2.调整单缝宽度,转动鼓轮使单色仪的出光口能看到光线;3.调整显微镜的位置,使视野中出现入射光色散形成的亮场,调整目镜焦距和单缝宽度,直至出现分离的,清晰的谱线;4.对比汞发射光谱,确认可计数的谱线的数量,若数量不足,重复上述实验步骤;5.调整鼓轮位置,使显微镜的叉丝位于光谱最外侧的一条谱线的中心处,记录此时鼓轮的位置;6.沿同一方向转动鼓轮,分别记录每一条谱线对应的鼓轮的位置;7.绘制单色仪的定标曲线;8.在单缝前加一块滤光片,撤去显微镜,接上光电池并将光电池与调平的检流计连接;9.转动鼓轮,记录检流计偏转最大的时刻鼓轮的位置和偏转在最大值的一半时的鼓轮位置。
单色仪的定标
f
=
r
2(n −1)
(5―13―1)
式中, n 为透镜材料的折射率,它随着光波的波长不同而不同,波长 λ 越长,折
射率 n 就越小,焦距f就越大,反之亦然。所以由三棱镜分解出来各种不同波长的光波
通过凸透镜折射后所成的像不是在此透镜的单一焦平面上,而是在与主光轴有倾斜的
准焦平面上。
凹面反射镜的焦距为
f =r 2
缝S1对准凸透镜和汞灯所发出的光线。适
当调节透镜和汞灯的位置,使汞灯发出的
光成像在入射狭缝S1上。
3
S1
2
1
2.观测装置的调整
在出射狭缝S2前放一测微目镜或读数 显微镜,调节测微目镜,直至看清叉丝。 然后调节其物镜,看清出射狭缝S2和狭缝
S2
1 .汞灯 2 .短焦距凸透镜 4 3 .单色仪 4 .测微目镜
隐若现。这时,只有定下心来,耐心观察,才能看清楚。如汞灯的红谱线有三条,其
中一条波长为725.00纳米的暗谱线,看起来非常朦胧。(2)对于颜色的界定不明确, 特别是从一种颜色向另一种颜色过渡的过渡色很难分辨。如橙色与红色,初次接触难 于分清,只能边看边学,边认识。(3)观察光谱与个人眼睛的好坏有很大关系,好的 眼力,可多看出一些谱线,眼力差一些,就只能少Байду номын сангаас出一些谱线。
4.测量 为了准确测量,我们可以转动鼓轮,将汞灯光谱从红到紫来回多看几遍,并且将 鼓轮的读数范围确定下来。在基本辨认和熟悉全部23条谱线颜色特征以后,调节器观 测装置,把测微目镜的叉丝对准出射缝中央,向一个方向缓慢转动鼓轮,从红到紫, 读出每一条谱线所对应的鼓轮读数,重复读两次,并将数据填入下面的表5—13—1 中。 数据处理
2.单色仪(WDF型)的设计思路和实际光路图 为了使谱线像差小、成像清晰、集光本领强、体积小等技术指标更趋完善和使用 方便,人们在实际制造单色仪时,对某些具体结构作了重要改进。
大学物理实验---单色仪的定标和光谱测量
G
M2 M1
S2 PMT
S1:入射狭缝 G:闪耀光栅 S2:出射狭缝 M2:反光镜 M1:离轴抛物镜 PMT:光电倍增管
如下图所视,当入射光与光栅面的法线N 的方向的夹角为φ(见图) 时,光栅的闪耀角为θ 。 取一级衍射项时,对于入射角为φ,而衍射角 为θ时,光栅方程式为: d(sinφ+sinθ)= λ
������2 =
|497.812−497.78| 497.78 498.2
2、498.250 =0.006% =0.01%
|498.250−498.2|
2、
低压汞灯光谱测量
页 5
BY 王有识
实 验 报 告
Figure 5 低压汞灯 黄光 强
峰值数据:1、576.925 与标准值之间误差:������1 =
λf
D;
= a= W0 0.86 a = n
Hale Waihona Puke λfD 时最佳 (D 为光栅的宽度, f 为等效会聚透
镜的焦距) 3、
单色仪的理论分辨本领如何计算?实际分辨本领如何测量和 计算?
答:理论分辨本领 R 的 R = λ = mN 计算: dλ m=1, 为光栅的总线条数。 N
m 为干涉级次,
实际分辨本领的测量和计算,原理和操作如下:
页 11
BY 王有识
实 验 报 告
LED 灯能让很小的通过电流几乎全部转化成可见光。 LED 灯具有以下优点: 一、高光效 LED 光效达 50~200 流明/瓦,光谱窄,单色性好,
几乎所有发出的光都可利用,且无需过滤直接发出色光。 二、高节能 具有电压低、电流小、亮度高的特性。一个 10~
12 瓦的 LED 光源发出的光能与一个 35~150 瓦的白炽灯发出的光能 相当。同样照明效果 LED 比传统光源节能 80%~90%。 三、 光色多 可以选择白色或彩色光, 红色、 黄色、 蓝色、 绿色、
东北大学单色仪定标实验详细过程
首先是实验报告中的记录表格,那本书上并没有给出完整表格,只给了一个表头,我们画表格的时候则要画至少19行(推荐20行乃至21行会更好些),老师在检查完实验报告后说许多人的表格画的不合格,大都是因为行数画少了。
其次就是实验前预习,老师讲解的时候真的会提问的,不过没有扣分就是了。
问的问题大致是六个,分别是:1.单色仪的结构原理2.单色仪定标的原理3.单色仪定标的意义4.如何识别谱图5.单色仪鼓轮读数怎么读6.显微镜的使用方法前3个问题在书中都能找到,后三个问题稍后我会说明,这6个问题也就是整个实验的核心内容,弄懂了这6个问题整个实验操作就不会犯太大的错误。
进教室并将书包放好之后,老师会将实验报告收上来,然后让我们看一段幻灯片(自动播放的),同时她在那检查实验报告,幻灯片的内容就是上述的6个问题的答案,所以万一课前没来得及预习,将幻灯片里的内容记下来也可以。
幻灯片结束之后就是老师讲解了,这里我们略过,直接看实验过程吧。
注:单色仪的两狭缝宽度千万不要调!光谱、读数显微镜与单色仪透镜和汞灯以上就是我们实验时用到的仪器。
首先打开汞灯,刚开始不要急着观察,汞灯需要点亮一段时间才能达到最大亮度。
接着是调整单色仪鼓轮的位置注意:单色仪的鼓轮是配有一个反射镜的(让我拿下去了),单色仪鼓轮上主尺的读数是左大右小(老师可能会问到),和读数显微镜的主尺标示不一样,如上图所示。
而在实验时我们观察单色仪鼓轮读数是通过反射镜来观察,如下图:从反射镜中看主尺读数就是左小右大了,如此时的读数应为18.311mm左右(主尺上一个格1mm,测微鼓轮一个格0.01mm)。
我们通过拧动上图的杆来旋动鼓轮,鼓轮随着杆的转动而转动,不要把手伸到单色仪下方转鼓轮,拧动杆使得鼓轮的读数在18.000mm处,鼓轮的位置就调节好了。
然后是调整透镜的位置注意入射缝那有一个较亮的原点,那个原点就是入射光线,我们需要调节原点的亮度达到最大,前后移动透镜,观察原点的变化趋势,在原点达到最亮的时候停止,之后的实验中就不要动透镜了。
单色仪定标实验报告
单色仪定标实验报告一、实验目的。
本实验旨在通过对单色仪的定标实验,掌握单色仪的原理和使用方法,以及了解单色仪的定标原理和步骤。
二、实验仪器和设备。
1. 单色仪。
2. 光源。
3. 样品。
三、实验原理。
单色仪是一种用于测量物质吸收、发射或透射光谱的仪器。
它通过将光分解成各个波长的组成部分,从而可以得到样品对不同波长光的吸收、发射或透射情况。
在定标实验中,我们需要确定单色仪的分辨率和灵敏度,以确保后续实验的准确性和可靠性。
四、实验步骤。
1. 准备工作,将单色仪和光源连接好,调节单色仪的波长范围和光强度。
2. 定标前的准备,将样品放入单色仪中,调节单色仪使其只通过一种波长的光。
3. 定标实验,记录样品对该波长光的吸收、发射或透射情况,然后逐步改变波长,记录各个波长下的光谱数据。
4. 数据处理,根据实验数据绘制光谱图,并分析样品在不同波长下的特性。
五、实验结果与分析。
通过实验,我们得到了样品在不同波长下的光谱数据,根据这些数据我们可以分析出样品对不同波长光的吸收、发射或透射情况,从而了解其特性和结构。
同时,我们也可以根据实验数据对单色仪的性能进行评估,确保其在后续实验中的准确性和可靠性。
六、实验总结。
通过本次实验,我们掌握了单色仪的定标原理和步骤,了解了单色仪在光谱测量中的应用,提高了实验操作能力和数据处理能力。
同时,也加深了对光谱仪器的理解,为今后的实验工作打下了坚实的基础。
七、实验感想。
本次实验让我深刻体会到实验操作的重要性,只有严格按照操作规程进行实验,才能得到准确可靠的数据。
同时,也要注重数据处理和结果分析,才能得出科学的结论。
希望今后能够继续努力,提高实验能力,为科学研究做出更大的贡献。
八、参考文献。
1. 《光谱学原理与仪器》。
2. 《实验室光谱分析技术手册》。
以上为本次单色仪定标实验的实验报告,谢谢阅读。
单色仪的定标和光谱测量
光栅单色仪的定标和光谱测量实验实验目的:(1):了解光栅单色仪的结构以及工作原理并熟练掌握其使用方法;(2):掌握调节光路准直的基本方法和技巧,利用钠灯等标准光源对单色仪进行定标;(3):测量红宝石、稀土化合物的吸收和发射光谱,加深对物质发光光谱特性的了解。
(4):测量滤波片和溶液的吸收曲线,掌握测量其吸收曲线或透射曲线的原理和方法。
实验简介单色仪(monochromator)是指从一束电磁辐射中分离出波长范围极窄单色光的仪器。
按照色散元件的不同可分为两大类:以棱镜为色散元件的棱镜单色仪和以光栅为色散元件的光栅单色仪。
单色仪的构思萌芽可以追述到1666年,牛顿在研究三棱镜时发现将太阳光通过三棱镜时被分解成七色光的彩色光光谱,牛顿首先将此分解现象称为色散。
1814年夫琅和费设计了包括狭缝、棱镜和视窗的光学系统并研究发现了太阳光谱中的吸收谱线(夫琅和费谱线)。
棱镜的色散起源于棱镜材料折射率对波长的依赖关系,对多数材料而言,折射率随着波长的缩短而增加(正常色散),及波长越短的光,在介质中传播速度越慢。
1860年克希霍夫和本生为研究金属光谱设计完成较完善的现代光谱仪—这标志着现代光谱学的诞生。
由于棱镜光谱是非线性的,人们开始研究光栅光谱仪。
光栅光谱仪是利用衍射作为光学元件用光栅衍射的方法获得单色光的仪器,光栅光谱仪具有比棱镜单色仪更高的分辨率和色散率。
衍射光栅的可以工作于从数十埃到数百微米的整个光学波段,比色散棱镜的工作波长范围宽。
此外在一定范围内,光栅产生的是均排光谱,比棱镜光谱的线性要好的多。
它也可以从复合光的光源(即不同波长的混合光的光源)中提取单色光,即通过光栅一定的偏转的角度得到某个波长的光,并可以测定它的数值和强度。
因此可以进行复合光源的光谱质量分析。
实验原理光栅光谱仪是利用衍射作为色散元件,因此光栅作为分光器件就成为决定光栅光谱仪的性能的主要因素。
1、衍射光栅:现代衍射光栅的种类非常多,按照工作方式分为反射光栅和透射光栅;按照表面形状可分为平面光栅和球面光栅;按照制造方法可分为刻划光栅、复制光栅和全息光栅;按照刻划形状可分为普通光栅、闪耀光栅和阶梯光栅等。
单色仪的调节与定标
单⾊仪的调节与定标⼀.实验题⽬:单⾊仪的调节与定标⼆.实验⽬的:1.掌握棱镜单⾊仪的构造原理和使⽤⽅法2.掌握调节光路准直的基本⽅法和技巧3.以汞灯的主要谱线为基准,对单⾊仪在可见光区域进⾏定标三.实验仪器:反射式棱镜单⾊仪,低压汞灯(带镇流器),读数照明反射镜,读数照明⼩电珠(带变压器),聚光透镜(带底座),读数显微镜(带⽀架),长曲线绘图设备四.实验原理:单⾊仪是⼀种分光仪器,它通过⾊散元件的分光作⽤,能输出⼀系列独⽴的、光谱区间⾜够狭窄的单⾊光,且所输出的单⾊光的波长可根据需要调节.主要有三部分组成:由⼊射缝S1和凹⾯镜M1组成⼊射准直系统,以产⽣平⾏光束;由玻璃棱镜 P组成⾊散系统,在它的旁边还附⼀块平⾯反射镜M,由凹⾯镜M2和出射缝S2组成出射聚光系统,将棱镜分出的单⾊平⾏光汇聚在出射缝上。
随着棱镜台绕O轴转动,以最⼩偏向⾓通过棱镜的光束的波长也跟着改变,当最⼩偏向⾓由⼩变⼤时,从S2输出的单⾊光的波长将依次由长变短.单⾊仪能输出不同波长的单⾊光,是依赖于棱镜台的转动才得以实现的.棱镜台的位置是由⿎轮刻度标志的,⽽⿎轮刻度的每⼀数值都是和⼀定波长的单⾊光输出相对应.因此,必须制作单⾊仪的⿎轮读数和对应光波波长的关系曲线——定标曲线(⼜称⾊散曲线),⼀旦⿎轮读数确定,便可从定标曲线上查知输出单⾊光的中⼼波长.单⾊仪定标曲线的定标是借助于波长已知线光谱光源来进⾏的.本实验⽤汞灯来做为已知线光谱的光源,在可见光区域(400 nm 760nm)进⾏定标.五.实验步骤:1. 汞灯光源与⼊射狭缝S1之间放⼀会聚透镜L1.调节光源与透镜的位置、⾼低和左右,使光源成像在S1上.2. 出射狭缝S2处直接⽤眼观察出射光,并转动⿎轮,可看到红、黄、蓝、紫⾊光依次通过.调节光源的⾼低、左右,使出射光位于S2的中央.3. 置显微镜于出射狭缝S2处,调节显微镜的⾼低、左右和前后位置,对出射狭缝S2聚焦,先清楚地看到出射狭缝S2,然后转动⿎轮再细调到出现细锐的光谱线,调显微镜中⼗字叉丝的竖丝位于S2缝中⼼.4.在正式测定校准曲线前,应先定性地观察全过程,以便认准谱线,即转动⿎轮,从红光到紫光再从紫光到红光,观察汞灯所有的谱线,认准谱线,然后再定量测量.5.测定校准曲线,以显微镜的竖丝为标准,缓慢转动⿎轮,使汞灯的各条谱线依次通过,记下⿎轮的读数R与其对应的波长λ.在坐标纸上作出单⾊仪的R-λ曲线.检验⽅法:1.光路调整⽤⽔平仪调整单⾊仪⽔平。
单色仪定标实验报告
单色仪定标实验报告单色仪定标实验报告引言:单色仪是一种用于测量光的波长和光谱分布的仪器。
在光学实验中,单色仪的准确性和稳定性对于获得可靠的实验结果至关重要。
本次实验旨在对单色仪进行定标,以确保其测量结果的准确性。
实验装置:本次实验所使用的装置包括:单色仪、光源、光电二极管、计算机等。
其中,单色仪是实验的核心设备,用于分离和选择特定波长的光线。
光源则提供光线,光电二极管用于接收并转化光信号,计算机用于显示和记录实验数据。
实验步骤:1. 准备工作在进行实验之前,首先需要对实验装置进行检查和准备。
确保单色仪的光路调节良好,光源的亮度适中,光电二极管的接收面干净无污染。
2. 单色仪的定标a. 设置初始波长将单色仪调至初始波长,通常选择可见光谱范围内的某个波长,如红光的波长为650nm。
通过旋转单色仪上的波长选择旋钮,将波长调至设定值。
b. 光电二极管的校准将光电二极管与单色仪相连,并将其输出信号连接至计算机。
在计算机上打开数据采集软件,选择合适的采样频率和采样时间。
然后,将单色仪的波长逐渐调整,记录下对应的光电二极管输出信号。
c. 构建定标曲线将记录下的波长和对应的光电二极管输出信号绘制成散点图。
通过对散点图进行拟合,得到定标曲线的数学表达式。
常见的拟合方法包括线性拟合、二次拟合等。
根据实际情况选择最合适的拟合方法。
d. 验证定标曲线选择几个已知波长的光源,将其光线通过单色仪,测量其光电二极管的输出信号。
将测量得到的输出信号代入定标曲线中,计算出对应的波长值。
与已知波长进行比较,验证定标曲线的准确性。
实验结果与讨论:通过以上步骤,我们成功地对单色仪进行了定标,并得到了相应的定标曲线。
在实验中,我们选择了红光、绿光和蓝光作为已知波长的光源进行验证。
实验结果显示,当红光的波长为650nm时,光电二极管的输出信号为1.23V;当绿光的波长为532nm时,输出信号为0.89V;当蓝光的波长为470nm时,输出信号为0.72V。
单色仪的定标和滤光片光谱透过率的测定(精)
单色仪的定标和滤光片光谱透过率的测定(精)
《单色仪的定标和滤光片光谱透过率的测定》教案
实验方式:讲解与演示相结合(25-30分钟),学生实验(100-120分钟)
实验要求:
1、了解单色仪结构、原理和使用方法;
2、掌握单色仪的定标方法;
3、掌握用单色仪测定滤光片光谱透过滤的方法。
实验仪器:棱镜反射式单色仪、会聚透镜、滤光片、检流计、汞灯等。
讲解及演示主要内容:(20分钟)
1.单色仪的构造:入射准直系统、色散系统、出射系统。
2.单色仪的定标
要观察到清晰的光谱线,通过显微镜观察出射光谱线,适当减小入射狭缝宽度,增大出射狭缝宽度,使得双黄谱线分开。
3.滤光片光谱透过滤测定
此时,要适当增大入射狭缝宽度,减小出射狭缝宽度,同时要保证不放滤光片时,检流计偏转格数尽量大(2/3满偏)。
4.制作定标曲线和光谱透过率曲线。
5.实验中注意事项:
A.照明光路中,透镜的位置选取以均匀照亮入射狭缝为准;
B.定标时,显微镜中叉丝竖线要与被测谱线重合,且读数鼓轮向一个方向转动以防止回程差;
C.光谱透过率测定过程中,入射光波波长改变,入射和出射狭缝宽度要跟着变。
6.思考题:
A.三棱镜的分光原理是什么?单色仪为什么要用平行光通过三棱镜?它是如何实现的?B.什么叫三棱镜色散的最小偏向角?单色光实现最小偏向角的条件是什么?
C.如发现单色仪定标曲线上相对于已知波长λ的鼓轮刻度L偏离了ΔL,能否将原定标曲线平移ΔL后继续使用,为什么?
7.数据表格A.定标表格。
(完整版)东北大学单色仪定标实验详细过程
首先是实验报告中的记录表格,那本书上并没有给出完整表格,只给了一个表头,我们画表格的时候则要画至少19行(推荐20行乃至21行会更好些),老师在检查完实验报告后说许多人的表格画的不合格,大都是因为行数画少了。
其次就是实验前预习,老师讲解的时候真的会提问的,不过没有扣分就是了。
问的问题大致是六个,分别是:1.单色仪的结构原理2.单色仪定标的原理3.单色仪定标的意义4.如何识别谱图5.单色仪鼓轮读数怎么读6.显微镜的使用方法前3个问题在书中都能找到,后三个问题稍后我会说明,这6个问题也就是整个实验的核心内容,弄懂了这6个问题整个实验操作就不会犯太大的错误。
进教室并将书包放好之后,老师会将实验报告收上来,然后让我们看一段幻灯片(自动播放的),同时她在那检查实验报告,幻灯片的内容就是上述的6个问题的答案,所以万一课前没来得及预习,将幻灯片里的内容记下来也可以。
幻灯片结束之后就是老师讲解了,这里我们略过,直接看实验过程吧。
注:单色仪的两狭缝宽度千万不要调!光谱、读数显微镜与单色仪透镜和汞灯以上就是我们实验时用到的仪器。
首先打开汞灯,刚开始不要急着观察,汞灯需要点亮一段时间才能达到最大亮度。
接着是调整单色仪鼓轮的位置注意:单色仪的鼓轮是配有一个反射镜的(让我拿下去了),单色仪鼓轮上主尺的读数是左大右小(老师可能会问到),和读数显微镜的主尺标示不一样,如上图所示。
而在实验时我们观察单色仪鼓轮读数是通过反射镜来观察,如下图:从反射镜中看主尺读数就是左小右大了,如此时的读数应为18.311mm左右(主尺上一个格1mm,测微鼓轮一个格0.01mm)。
我们通过拧动上图的杆来旋动鼓轮,鼓轮随着杆的转动而转动,不要把手伸到单色仪下方转鼓轮,拧动杆使得鼓轮的读数在18.000mm处,鼓轮的位置就调节好了。
然后是调整透镜的位置注意入射缝那有一个较亮的原点,那个原点就是入射光线,我们需要调节原点的亮度达到最大,前后移动透镜,观察原点的变化趋势,在原点达到最亮的时候停止,之后的实验中就不要动透镜了。
单色仪的定标
随着棱镜台绕O轴转动,以最小偏向角通 过棱镜的光束的波长也跟着改变,当最小偏 向角由小变大时,从S2输出的单色光的波长将 依次由长变短.
单色仪能输出不同波长的单色光,是依 赖于棱镜台的转动才得实现.棱镜台的位置 是由鼓轮刻度标志的,而鼓轮刻度的每一数 值都和一定波长的单色光输出相对应。因此 必须制作单色仪的鼓轮读数和对应光波波长 的关系曲线——定标曲线(又称色散曲线),一 旦鼓轮读数确定,便可从定标曲线上查知输 出单色光的中心波长.
3.将移测显微镜置于出射狭缝处,对出 射狭缝S2的刀口进行调焦,使显微镜视场中 观察到的汞谱线最清晰.为使谱线尽量最细 锐并有足够的亮度,应使入射缝S1尽可能小, 出射缝S2可适当大些.根据可见光区汞灯主 要谱线的波长、颜色、相对强度和谱线间距 辨认谱线.并选表1中打“*”者为定标谱 线.
4.使显微镜的十字叉丝对准出射狭缝 的中心位置,缓慢地转动鼓轮,直到各谱线 中心依次对准显微镜的叉丝时,分别记下鼓 轮读数(L)与其所对应的波长(λ ),测量几 次,取其平均值。 5.以光谱线波长(λ )为横坐标,以鼓 轮读数(L)为纵坐标画曲线即得单色仪的定 标曲线. L
图2汞灯主要谱线的相对强度和波长
颜色
波长(nm) *404.66 *407.78 410.81 433.92 434.75 *435.84 *491.60 *496.03 535.41 536.51 *546.07 567.59 *576.96 *579.07 585.92 589.02 *607.26 *612.33 *623.44 *671.62 *690.72 708.19
0
λ
λ
第一次 第二次 第三次
404.66
407.78
435.84
491.6
单色仪的定标及对钠光波长的测定
选十六单色仪的定标及对钠光波长的测定一、目的要求完成单色仪的定标工作,并测定钠光的波长。
实验要求:1.了解单色仪的光路结构及工作原理;2.掌握单色仪的正确定标方法;3.弄懂整个实验中各步调节的目的及达到此目的所需的视域特征;4.学会实验图线的正确绘制(要求定标曲线图应是一张符合精度要求的实用图线);5.寻找定标公式并据此求出钠光波长;6.钠光波长测量正确度达到1%。
二、仪器设备WDF反射式单色仪、高压汞灯及镇流器、钠光灯、聚光透镜、JXD—2型读数显微镜。
三、参考书目l. 杨之昌《几何光学实验》P.185—195。
2.WDF反射式单色仪使用说明书。
四、基本原理1.单色仪的光路结构及工作原理WDF反射式单式仪由入射准直管、色散系统和出射聚光管三部份组成。
它是以玻璃棱镜作为色散元件(亦有用光栅作为色散元件的单色仪),故又称为棱镜单色仪,其光路结构如图1所示。
S1:入射狭缝;S2:出射狭缝M1:球面反射镜(准直物镜)P:顶角为60°的三棱镜M2:平面镜,与P固定在一起M3:球面反射镜(聚光物镜)入射准直管:S1、M1组成平面镜色散系统:P与M2固定在一起组成恒偏向棱镜。
图 1出射聚光管:M3、S2组成。
外部光源发出的光经透镜(单色仪外)会聚在入射狭缝Sl后进入单色仪,直射准直物镜M1,经M1反射成平行光入射至平面反射镜M2,此光再经平面反射镜M2反射而进入三棱镜P,经棱镜色散,各种波长的光将以不同的角度射到聚光镜M3上,这些光经聚光物镜M3反射造像(入射狭缝S1的像)于一个曲面上。
在这个曲面上装有出射狭缝S2,其刃口中心定位于通λ的光线通过棱镜时具有过棱镜时具有最小偏向角的光线会聚成象的位置上。
如图l中的1λ的光线通过棱镜不处于最小最小偏向角,所以会聚成象于S2的刃口中心出射,而波长2λ就不能出偏向状态,所以它经M3成象后其象必定不在S2刃口中心,当狭缝S2较小时,2射。
只有具最小偏向角的光线才会聚成象于S2刃口中心(这是定标前必须将读数显微镜十字线调整到S2刃口中心的原因,它确定了一个标准位)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先是实验报告中的记录表格,那本书上并没有给出完整表格,只给了一个表头,我们画表格的时候则要画至少19行(推荐20行乃至21行会更好些),老师在检查完实验报告后说许多人的表格画的不合格,大都是因为行数画少了。
其次就是实验前预习,老师讲解的时候真的会提问的,不过没有扣分就是了。
问的问题大致是六个,分别是:
1.单色仪的结构原理
2.单色仪定标的原理
3.单色仪定标的意义
4.如何识别谱图
5.单色仪鼓轮读数怎么读
6.显微镜的使用方法
前3个问题在书中都能找到,后三个问题稍后我会说明,这6个问题也就是整个实验的核心内容,弄懂了这6个问题整个实验操作就不会犯太大的错误。
进教室并将书包放好之后,老师会将实验报告收上来,然后让我们看一段幻灯片(自动播放的),同时她在那检查实验报告,幻灯片的内容就是上述的6个问题的答案,所以万一课前没来得及预习,将幻灯片里的内容记下来也可以。
幻灯片结束之后就是老师讲解了,这里我们略过,直接看实验过程吧。
注:单色仪的两狭缝宽度千万不要调!
光谱、读数显微镜与单色仪
透镜和汞灯
以上就是我们实验时用到的仪器。
首先打开汞灯,刚开始不要急着观察,汞灯需要点亮一段时间才能达到最大亮度。
接着是调整单色仪鼓轮的位置
注意:单色仪的鼓轮是配有一个反射镜的(让我拿下去了),单色仪鼓轮上主尺的读数是左大右小(老师可能会问到),和读数显微镜的主尺标示不一样,如上图所示。
而在实验时我们观察单色仪鼓轮读数是通过反射镜来观察,如下图:
从反射镜中看主尺读数就是左小右大了,如此时的读数应为18.311mm左右(主尺上一个格1mm,测微鼓轮一个格0.01mm)。
我们通过拧动上图的杆来旋动鼓轮,鼓轮随着杆的转动而转动,不要把手伸到单色仪下方转鼓轮,拧动杆使得鼓轮的读数在18.000mm处,鼓轮的位置就调节好了。
然后是调整透镜的位置
注意入射缝那有一个较亮的原点,那个原点就是入射光线,我们需要调节原点的亮度达到最大,前后移动透镜,观察原点的变化趋势,在原点达到最亮的时候停止,之后的实验中就不要动透镜了。
接下来是调节读数显微镜
显微镜的位置一般不需移动,需要调节的主要是1,有可能用到2、3、4。
首先从显微镜里寻找出射狭缝的刀口,通过最右侧的鼓轮来左右移动寻找,找到以后旋动1,使得看到的刀口最为清晰。
2是锁紧螺钉,松开2以后就可以调节4了,3调节目镜中分划板的叉丝的清晰程度,旋转3使得叉丝最清晰,4为分划板,如果发现叉丝有些倾斜可以旋转4调节(不过老师说将叉丝调成X形并非十字形会看的更方便一些),调好后拧紧锁紧螺钉。
接下来是找谱线,先转动鼓轮至刀口的一侧,然后旋转鼓轮使得叉丝与其中一个刀口相切,记下显微镜读数(主尺1mm,侧位鼓轮0.01mm),然后继续向同一个方向转动鼓轮,与另一个刀口相切,记下读数,计算两读数的平均值,接着将鼓轮转到最初的位置,
最后转动鼓轮使显微镜沿与刚才同一个方向直至转到刚才算出的平均值的位置为止,显微镜调节完毕后,之后的实验就不要动显微镜了。
做几个模拟图(本来是段动画的,无奈人人不让上传动态图片⋯⋯):
小圆内为显微镜的视野。
整个流程大概就是这样,之所以这样操作是因为鼓轮向左转和向右转的时候是有空程差的,做过牛顿环实验的应该知道,所以为了消除误差,就要保证整个实验过程中鼓轮向着一个方向转动。
显微镜也调好了以后就该辨认光谱了。
步骤就是根据显微镜中看到的光谱,到光谱图中找到对应的光的波长,然后再读出单色仪鼓轮上的数据,一组数就结束了。
由于实验时忘了照光谱图,这里只能拿模拟图来介绍一下,还望将要做实验的同学做完后提供张照片
先贴几张显微镜内的图像吧
红、橙光区
黄光区
黄、绿光区
绿、蓝光区(注意眼睛实际看到的光与照出来的效果不是完全一样的,如右边的两条蓝光我当时看的时候就没有那么蓝,不过颜色什么的不用讲究太细,老师也说看着是什么颜色就写什么颜色就行)。
紫光区那么光谱怎么读呢?我们主要看的是光谱的颜色、强度(即亮度)、间距(通过各个谱线距离的关系推知)
我们如何得出的三条红光的波长的呢?看图,根据实际谱图可以得知,第一条红光最亮,第二条次之,第三条最暗,从间距上看,第一条与第二条的距离比第二条与第三条的距离要大,通过这两个特征,我们就可以找到波长为623.4、612.3、607.2的三条红光谱线满足要求,从而得出波长,将叉丝中心依次对准每条谱线的中心,测得鼓轮读数,我们就得到了三个数据了。
其他的谱线识别方法同理,有兴趣的可以照着实物谱图找其他的波长。
刚看到谱线的时候不要急着马上测量数据,将所有谱线从左到右(或者从右到左)全部扫一遍(通过转动单色仪鼓轮),辨认出你所看到的每一条谱线(太暗的就不要辨认了),要能确定出他们的波长,红色的谱线至少要能看出5条,否则数据会不够,如果看不到5条,调节一下透镜的亮度,第一遍不要测量数据。
第二遍将单色仪鼓轮转到第一遍初始的位置,按照与刚才相同的方向转动,这遍开始要读取鼓轮读数了,所以这一遍鼓轮不要反转,整个过程均向一个方向转动,将你看到的所有谱线的数据全部记录下来。
第三遍就是重复第二遍的过程,整个实验只测两组数据即可。
注意:如果同一条谱线,第三遍与第二遍的结果不一样的话,一定不要就那么放着,也不要立刻就转回去重新测量,将不同的数据标记一下,第三遍测量结束后,将鼓轮转回初始位置再次测量差别较大的数据,如果第三遍的数据与前两遍都不同的话,再次测量吧⋯⋯数据差太多了老师肯定会扣分的⋯⋯
书上说鼓轮的范围应在17~23mm之间,不过在最后测量紫光时鼓轮的读数很可能超过23mm,老师说这个是没问题的,只要不超过24.500mm都允许。
单色仪是两人一组的实验,不过如果赶上是15个人做实验的话则有可能单出来,两人一组的话是前一个人测第二遍数据,后一个人测第三遍的数据,数据交给老师检查的时候是两个人一起交,如果错了的话分也是两个人一起扣。
一个人的话就要自己测两遍数据,虽然累了点,不过由于两次数据都是自己测的所以心里更有数。
数据差别一定不要太大,一般前三位都是相同的。
数据的话真的是最好有多少谱线测多少数据,难免哪组数据就不准呢,而且测的数据多一点的话给老师的印象会好一些,画图的时候也会更轻松一些。
至此单色仪的整个实验过程就结束了,实验的时候可以看看教室前面的黑板,有一些提示的。
(3)实验结束喽
接下来就是实验数据的处理,这个实验要求画图表的(用坐标纸),可以采取以下步骤:
1.选择分度值
最小不必从0开始
2.画两轴、标出方向、名称、单位
3.描点
点可用O、X、∆标在坐标纸上,点一定要标的准确,不要差太大,老师真的是一个点一个点检查的,相差太大了肯定会扣分。
4.连成光滑曲线
注意要舍弃坏点,这就是为什么要测量多余18组数据的原因。
5.标出图名
思考题做2、3题
至此单色仪的实验就结束了,总体来说操作方面需要谨慎一些,转动幅度不要过大,数据处理就是个画图的事,相信只要细心一些谁都可以画好,重点就是识谱和两组数据的误差不要太大,只要做实验的时候足够认真,老师不会为难你的(不过据说那个孙晶老师特别极品,在此对被虐的人表示同情)。
最后感谢大家,让我们下期再见!
最新更新!数据处理部分
今天见到了一些单色仪的实验报告,看到的扣分点有四个,一个是比较普遍的是实验原理中单色仪定标的意义如果没写的话会扣0.1分。
第二个是定标曲线的横坐标波长的单位误写成了mm了(应该是nm),这个如果不太仔细的话可能会犯。
第三个就是点描的不太准,之前已经说过了。
最后一个比较诡异的扣分点是线画的太粗⋯⋯所以画线的时候要注意。
单色仪的报告发下来了,扣分点又增加了两个,一个是实验原理那,原理图要好好画,平行线一定要画好,如果老师发现不平行会扣0.1分的。
另一个是作图,曲线不够光滑的话也会扣0.1分。