数学 yy
考研数学公式大全(考研必备)
高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰)1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx Ca ln a dx a Cx csc xdx cot x csc C x sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222x x2222aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ a Bd Ac =+B ,A b Bc Ad ⇒=-三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( α-α-α=αα-α=αα-α=α2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin α-α=αα-α=αα-α=α-=-α=ααα=α222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin中值定理与导数应用:拉格朗日中值定理。
江都市国际学校初三数学周练试卷
江都市国际学校初三数学周练试卷1江都市国际学校初三数学周练试卷1班级学号姓名成绩一、选择题(每题3分,共24分)1、下列图形中,为轴对称图形的是()2、下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等;B.有两边和一角对应相等的两个三角形全等;C.有两边和其中一边上的中线对应相等的两个三角形全等;D.有一边对应相等的两个等边三角形全等3.如图,奥运五环标志里,包含了圆与圆位置关系中的()(A)相切,内含.(B)外切,内含.(C)外离,相交.(D)相切,相交.4.如图,小正方形的边长为2,连接小正方形的三个顶点,可得到ΔABC,则AC边上的高是()A.B.C.D.5、将如图的Rt△ABC绕直角边AC旋转一周,所得几何体的主视图是()6、我市某一周的最高气温统计如下表:最高气温()25262728天数1123则这组数据的中位数与众数分别是()A.27,28B.27.5,28C.28,27D.26.5,277、已知函数y=x2-2x-2的图象如图所示,则关于的一元二次方程的两个为根和且<0,>0。
则的取值范围是()A.-3≤≤-2B.-3<<0C.-3<D.-2<8、如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则梯形ADCF的面积等于()(A)(B)(C)(D)二、填空题(每题3分,共24分)9、绝对值为3的所有实数为____________.10、方程x2-6x+5=0的解是___________.11、数据8,9,10,11,12的方差S2为_______.12、若方程x+y=3,x-y=1和x-2my=0有公共解,则m的取值为_________.13、如图4,已知点E在面积为4的平行四边形ABCD的边上运动,使△ABE的面积为1的点E共有_______个.14、在很小的时候,我们就用手指练习过数数.一个小朋友按如图5所示的规则练习数数,数到2006时对应的指头是_____________(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).15、在同一坐标平面内,图象不可能由函数的图象通过平移变换、轴对称变换得到的二次函数的一个解析式是。
数学抽象度分析法
数学抽象度分析法抽象是认识事物本质、掌握事物内在规律的方法。
众所周知,科学概念、命题都是抽象概括的结果,而且不同的概念还有着不同的抽象程度。
一、抽象与抽象度1.抽象抽象有两种含义,一个是指从许多事物中舍弃个别的非本质的属性,抽出共同的本质属性;另一个是指那种偏离具体经验较远,因而不太容易理解的对象。
(1)弱抽象弱抽象也可以叫做“扩张式抽象”,即从原型A中选取某一特征(侧面)加以抽象,从而获得比原结构更广的结构B,使原结构成为新结构的特例。
记为A B(也可以用有向线−-B)段表示,即:A−→例如:N Z,Z Q,Q R,R C;一次函数、二次函数、反比例函数等 函数;弱抽象是从特殊到一般的过程,其抽象方法是先考虑具体事物有哪些性质,将刻画事物本质的性质抽象出来,然后考虑具有这种性质的一切事物。
弱抽象的法则的基本依据是“特征分离概括化原则”,或简称为“特征概括原则”。
这是一个工作原则,它的运用包括两个步骤:首先将一个结构内容较丰富的原型进行分析,把其中某个或某类特征分离出来,用形式化的数学语言把它表述出来,然后通过概括原则把它规定为一个范畴,或者把所有具备该形式化特征的对象考虑成一个系统或族类。
弱抽象的条件:弱抽象的原型必须是结构内容较为丰富的对象。
(2)强抽象强抽象也叫做“强化结构式抽象”,即通过引入新特征强化原结构来完成抽象。
从而所获得的新结构B是原结构A的特例。
例如:函数 连续函数,连续函数 可微函数,可微函数 解析函数群 环,一般四边形 凸四边形,平行四边形 矩形强抽象是从一般到特殊的过程,其抽象方法是在原结构中增添某一特征,通过抽象获得比原结构内容更丰富的结构,使新结构成为原结构的特例。
记为A B(也可以用有向线段−+B)表示,即:A−→完成强抽象的手段是多种多样的,但最常用的基本原则可以称之为“关系定性特征化原则”,这也是一条工作原则,它的运用包括两个步骤:首先是在一个系统的对象之间引入某种新的关系(如某种映射、对应或运算等),然后在形成的新的关系结构中,把可能出现的某种性质作为特征规定下来,通过概括原则把它规定为一个普遍范畴或某种普遍属性。
人教版三年级数学上册_第2课时 周长
什么是周长
封闭图形一周的长度,是它的周长。
教学反思
学情分析
图形的周长实际是用适当的长度单位量出图形边线的长度,因此应从学生的生活经验和已有的知识出发,结合具体的实物,让学生通过观察和亲身体验等活动,体会周长的含义。
学习目标
1.通过学习,使学生理解周长的含义。掌握不规则图形的周长的测量方法。
2.体验数学与日常生活的密切联系,激发学生学习数学的兴趣。
3.培养学生的逻辑思维能力。
②汇报交流,用绳子先围,再量。
(3)出示:
说一说怎样知道三角形和平行四边形的周长。
量出每条边的长度,再分别把每条边的长度加起来。
(4)出Байду номын сангаас:
你能知道它的周长吗?
把每条边都量出来,再加在一起。
(5)出示树叶,这个树叶的周长你们能知道吗?
先用绳子围一圈,再用尺子量绳子的长度就可知它的周长。
3.小结:刚才我们对一些图形和物品的周长的计算方法进行了研究,像一些比较特殊的图形,我们需要借助绳子才能量出周长。对于有些问题需要我们多角度、多方面考虑,充分利用可以利用的工具帮助我们解决问题。
(1)谁知道周长的含义是什么?
请你具体指一指,你所喜欢的图形的周长指的是什么样的长度。
找同学分别到前边指一指物品或图形的周长。
(2)总结周长的含义。
用你自己的话说一说什么是周长。
(封闭图形一周的长度是它的周长)
2.研究求周长的策略。
大家已经知道了周长的含义,如果你想知道你所喜欢的图形或物品的周长,你有什么办法吗?
三、课堂作业
1.小明的妈妈卖来15米花边,想把自己家长3米,宽2米的床单装饰得更漂亮一些,你说小明妈妈准备的花边够吗?
初中数学知识点必备:不等式
初中数学知识点必备:不等式学校数学学问点:不等式1用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的`方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向转变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
不等式(组)1、不等式:用不等号(“”、“≤”、“”、“≥”、“≠”)表示不等关系的式子。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向转变。
3、不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。
提示大家:解不等式指的是求不等式解集的过程叫做解不等式。
学校数学学问点:不等式21.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键。
5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
考研数学一(高等数学)模拟试卷59(题后含答案及解析)
考研数学一(高等数学)模拟试卷59(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.微分方程y”一4y=e2x+x的特解形式为( ).A.ae2x+bx+cB.ax2e2x+bx+cC.axe2x+bx2x+cxD.axe2x+bx+c正确答案:D解析:y”一4y=0的特征方程为λ2一4=0,特征值为λ1=一2,λ2=2.y”一4y=e2x的特解形式为y1=axe2x,y”一4y=x的特解形式为y2=bx+c,故原方程特解形式为axe2x+bx+c,应选(D).知识模块:高等数学2.微分方程y”一4y=x+2的通解为( ).A.B.C.D.正确答案:D解析:微分方程y”一4y=0的特征方程为λ2一4=0,特征值为一2,2,则方程y”一4y=0的通解为C1e—2x+C2e2x,显然方程y”一4y=x+2有特解,选(D).知识模块:高等数学填空题3.yy”=1+y’2满足初始条件y(0)=1,y’(0)=0的解为___________.正确答案:±x解析:令y’=p,则,解得ln(1+p2)=lny2+lnC1,则1+p2=C1 y2,由y(0)=1,y’(0)=0得y’—±,ln|y+=±x.知识模块:高等数学4.设y=y(x)过原点,在原点处的切线平行于直线y=2x+1,又y=y(x)满足微分方程y”一6y’+9y=e3x,则y(x)=___________.正确答案:2xe3x+x2e3x解析:由题意得y(0)=0,y’(0)=2,y”一6y’+9y=e3x的特征方程为λ2一6λ+9=0,特征值为λ1=λ2=3,令y”一6y’+9y=e3x的特解为y0(x)=ax2e3x,代入得a=,故通解为y=(C1+C2x)e3x+x2e3x.由y(0)=0,y’(0)=2得C1=0,C2=2,则y(x)=2xe3x+x2e3x.知识模块:高等数学5.微分方程2y”=3y2满足初始条件y(一2)=1,y’(—2)=1的特解为___________.正确答案:x=一解析:令y’=p,则y”==3y2,解得p2=y2+C,由y(—2)=1,y’(一2)=1,得C1=0,所以y’==x+C2,再由y(—2)=1,得C2=0,所求特解为x=一.知识模块:高等数学6.微分方程xy’=的通解为___________.正确答案:arcsin=ln|x|+C解析:知识模块:高等数学7.设二阶常系数非齐次线性微分方程y”+y’+qy=Q(x)有特解y=3e—4x+x2+3x+2,则Q(x)=___________,该微分方程的通解为___________.正确答案:Q(x)=2+2x+3—12(x2+3x+2)=一12x2一34x一19,y=C1e—4x+C2e3x+x2+3x+2(其中C1,C2为任意常数)解析:显然λ=一4是特征方程λ2+λ+q=0的解,故q=一12,即特征方程为λ2+λ一12=0,特征值为λ1=一4,λ2=3.因为x2+3x+2为微分方程y”+y’一12y=Q(x)的一个特解,所以Q(x)=2+2x+3—12(x2+3x+2)=一12x2一34x一19,且通解为y=C1e—4x+C2e3x+x2+3x+2(其中C1,C2为任意常数).知识模块:高等数学8.以y=C1e—2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为___________.正确答案:y”+y’一2y=一sinx一3cosx解析:特征值为λ1=一2,λ2=1,特征方程为λ2+λ一2=0,设所求的微分方程为y”+y’一2y=Q(x),把y=cosx代入原方程,得Q(x)=一sinx一3cosx,所求微分方程为y”+y’一2y=一sinx一3cosx.知识模块:高等数学9.设y”一3y’+ay=一5e—x的特解形式为Axe—x,则其通解为___________.正确答案:y=C1e—x+C2e4x+xe—x解析:因为方程有特解Axe—,所以一1为特征值,即(—1)2—3×(一1)+a=0→a=—4,所以特征方程为λ2一3λ一4=0→λ=一1,λ=4,齐次方程y”—3y’+ay=0的通解为y=C1e—x+C2e4x,再把Axe—x代入原方程得A=1,原方程的通解为y=C1e—x+C2e4x+xe—x.知识模块:高等数学10.设f(x)可导,且∫01[f(x)+xf(xt)]dt=1,则f(x)=___________.正确答案:f(x)=e—x解析:由∫01[f(x)+xf(xt)]dt=1得∫01f(x)dt+∫01f(xt)d(xt)=1,整理得f(x)+∫0xf(u)du=1,两边对x求导得f’(x)+f(x)=0,解得f(x)=Ce—x,因为f(0)=1,所以C=1,故f(x)=e—x.知识模块:高等数学解答题解答应写出文字说明、证明过程或演算步骤。
数学期望的计算方法及其应用
数学期望的计算方法及其应用摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。
本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。
本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。
关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT :第一节 离散型随机变量数学期望的计算方法及应用1.1 利用数学期望的定义,即定义法[1]则随机变量X的数学期望E(X)=)(1ini ix p x ∑=学期望不存在[]2例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。
推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。
试问推销人在用船运送货物时,每箱期望得到多少?按数学期望定义,该推销人每箱期望可得=)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2 公式法对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。
高等数学(经管类)下及课后习题答案
1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
高三数学函数的定义域
函数的独立元素:解析式;定义域 值域,性质
一、由函数解析式求定义域
非空
明晰函数的约束条件→细致
数集
求下列函数的定义域: 1、 y=lg(4x+3) 2、y=1/lg(4x+3) 3、y=(5x-4)0 4、y=x2/lg(4x+3)+(5x-4)0
课堂回顾: 求定义域的几种类型: 一类重要的数学问题:
;;
; /abcpkscum/ ; /abcfffse/ ; /abchyxd/ ; /abctitfzp/ ; /abczimow/ ; /abcfgsm/ ; /abctbe/ ; /abcjgkd/ ; /abcpfn/ ; /abcndt/ ; /abcnsughd/ ; /abckl/ ; /abcyrd/ ; /abcrxsytc/ ; /abcms/ ; /abcqsrhk/ ; /abcimmieg/ ; /abcfpla/ ; /abcpmbhmd/ ; /abccmivf/ ; /abcmuxjyp/ ; /abccj/ ; /abcfpuen/ ; /abcvluh/ ; /abcjkcn/ ; /abcfkosap/ ; /abcrg/ ; /abcvo/ ; /abcmunr/ ; /abcvupsw/ ; /abcysyy/ ; /abchndgr/ ; /abcuxmanc/ ; /abchvjnl/ ; /abckmx/ ; /abcvpa/ ; /abchuowrf/ ; /abcfm/ ; /abcwknkct/ ; /abcuge/ ; /abcrdr/ ; /abcun/ ; /abcvafdd/ ; /abclqumh/ ; /abcxkusm/ ; /abcdqgq/ ; /abcft/ ; /abctesyj/ ; /abcbkrdrq/ ; /abcmzx/ ; /abcsj/ ; /abcbyn/ ; /abcgjgj/ ; /abcjgcus/ ; /abccmw/ ; /abcas/ ; /abctc/ ; /abcus/ ; /abccfegd/ ; /abcngikt/ ; /abclk/ ; /abciozueq/ ; /abcnnyxq/ ; /abcmxhemg/ ; /abccnfxg/ ; /abcikar/ ; /abcshy/ ; /abcdmv/ ; /abciisd/ ; /abcpgtcsn/ ; /abcbecqtl/ ; /abcjmx/ ; /abcdnx/ ; /abcobm/ ; /abcngag/ ; /abcsmbish/ ; /abcbhzr/ ; /abckihtm/ ; /abcmm/ ; /abcaosc/ ; /abcmqoi/ ; /abcpdy/ ; /abclwebzs/ ; /abcwpapuq/ ; /abcmnz/ ; /abchm/ ; /abcbp/ ; /abcjnrosn/ ; /abcsedhwk/ ; /abcsvlsmm/ ; /abcsdtsmj/ ; /abcvdmbqx/ ; /abcgqmsug/ ; /abcdmdjo/ ; /abcje/ ; /abcqvv/ ; /abchsioyu/ ; /abcxor/ ; /abccyq/ ; /abcoaq/ ; /abcsqwmnl/ ; /abcmptzhk/ ; /abchn/ ; /abcbqezjk/ ; /abcfkonyv/ ; /abcav/ ; /abckshd/ ; /abcgmr/ ; /abcbzmpxo/ ; /abcjpkdm/ ; /abczso/ ; /abcvynbtn/ ; /abcyc/ ; /abceap/ ; /abcpizga/ ; /abcsefar/ ; /abcruonec/ ; /abctjh/ ; /abcavtz/ ; /abchf/ ; /abcrnone/ ; /abcim/ ; /abcsiuenk/ ; /abcpjtck/ ; /abcfp/ ; /abckdzxm/ ; /abcpxo/ ; /abczzw/ ; /abccnkobb/ ; /abcsp/ ; /abccs/ ; /abcxxsezo/ ;
2002年考研数学一真题及答案详解
),
第 5 页 共 13 页
(1)【分析】
这是讨论函数 f ( x, y) 的连续性 , 可偏导性, 可微性及偏导数
的连续性之间的关系 .我们知道, f ( x, y) 的两个偏导数连续是可微的充分条件 , 若 f ( x, y) 可微则必连续,故选(A).
1 1 u 由 lim n 1 0 n 充 分 大 时 即 N , n N 时 0 , 且 n 1 un n
1 的特解是_____________. 2
2 2 2 (4)已知实二次型 f ( x1 , x 2 , x3 ) a( x1 x2 x3 ) 4 x1 x2 4 x1 x3 4 x2 x3 经正交变换
2 可化为标准型 f 6 y1 ,则 a =_____________.
公共交点且不唯一,因此应选(B). (A)表示方程组有唯一解,其充要条件是 r ( A) r ( A) 3. (C)中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行, 故 r ( A) 2 和
f X ( x ) f Y ( y ) 必为密度函数
(C) F X ( x ) + FY ( y ) 必为某一随机变量的分布函数 (D) F X ( x ) FY ( y ) 必为某一随机 变量的分布函数. 三、(本题满分 6 分) 设函数 f ( x) 在 x 0 的某邻域具有一阶连续导数 , 且 f (0) f (0) 0 , 当 h 0 时 , 若
dP dy 0, P y
积分得
ln P ln y C ', 即 P
C1 ( P 0 对应 C1 0 ); y
1 1 由 x 0 时 y 1, P y ' , 得 C1 . 于是 2 2
yy学习通产品知识及使用
三学苑产品“yy学习通”的知识讲解1.产品简介YY学习通是一个集小学、初中及高中生多媒体在线快乐课堂+全科在线家教+家长亲子教育于一体的多功能在线学习软件。
2.产品定位yy学习通主要目标消费群体是全国的中小学生、家长。
对于中小学生,他们有课外辅导、解答疑难的要求;而对于家长,他们都有望子成龙的迫切要求,希望自己的孩子能够学习优秀,德智体美劳全面发展,也希望自己的孩子在课外有好的老师辅导;YY学习通这样的定位正好能够满足他们的这些需求!3.产品基本结构3.1动漫课堂语文动漫课堂:课文导学:了解本课的作者、学习目标,让学生有目的地学习。
学苑书声:多媒体情景学习,增强理解,强化记忆,培养语文素养。
生字乐园:生字读音、笔画练习,了解生字笔顺、结构、组词等。
品读感悟:增强学生词语理解,课文精彩句段赏析,写作特点讲解。
趣味作业(游戏天地):趣味游戏作业,提高学习积极性,培养自主学习能力。
课后练习(题海拾贝):课文知识点巩固、加深。
拓展阅读:课文相关知识、文章阅读,拓宽知识面,培养学生写作能力。
数学动漫课堂:动漫学数学(故事城堡):在动漫故事中学数学,简单明了、轻松、有趣。
趣味作业(游戏宫):趣味游戏数学作业,提高学习积极性,培养自主学习能力。
生活中的数学(生活万花筒):在生活中学数学,提高学生生活中的数学应用能力。
习题宝典:数学精选习题,加强、巩固数学知识。
英语动漫课堂:音标学习:美式KK音标、国际音标练习,提高学生英语发音的准确性。
英语朗读:(le t′s talk):同步英语朗读,提高朗读水平、口语能力。
听力练习(le t′s talk):同步听力练习,提高听力水平。
翻译练习(le t′s talk):中英文翻译对照,培养中英文翻译能力。
动漫背单词(le t′s play):动漫形式记忆单词,激发学习英语兴趣使英语学习轻松、有趣、高效。
英语歌(le t′s sing):英语歌练习,激发学习英语兴趣,培养英语语感。
人教版七年级数学下册各章节知识点归纳
人教版七年级数学下册各章节知识点归纳TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-七年级数学下册知识点归纳第五章相交线与平行线相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
平行线及其判定(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
经典数学例题---充分必要条件
经典数学例题---充分必要条件例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔D p q q p p q p q D对.且,即,是的充要条件.选.说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A (B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|; (3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <b e ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
2024年湖南省中考数学全真模拟试卷含参考答案
湖南省2024年初中学业水平考试模拟试卷数学温馨提示:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;4.本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题意的. 请在答题卡中填涂符合题意的选项. 本大题共10个小题,每小题3分,共30分)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.《九章算术》中著有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若把气温为零上5°C记作+5℃,则−3℃表示气温为()A.零上5°C B.零下5°C C.零上3°C D.零下3°C2.下列计算正确的是()A.aa3+aa2=aa3B.aa3⋅aa2=aa6C.(aa2)3=aa5D.aa6÷aa2=aa43.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A.1.64×10−6B.1.64×10−5C.16.4×10−7D.0.164×10−54.“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数 5 7 10 16 12则本次调查中视力的众数和中位数分别是()A.4.9和4.8 B.4.9和4.9 C.4.8和4.8 D.4.8和4.95.已知直线aa∥bb,将一块含30°角的直角三角板(∠BBBBBB=30°,∠BBBBBB=90°)按如图所示的方式放置,并且顶点BB,BB分别落在直线aa,bb上,若∠1=20°,则∠2的度数是()A.20°B.30°C.40°D.50°6.五星红旗是中华人民共和国国旗,旗上的五颗五角星及其相互关系象征着中国共产党领导下的革命人民大团结.五角星是由五个每个顶角为36°的等腰三角形组成,既美观又蕴含着数学知识,如图将五角星绕其旋转中心按顺时针旋转一定角度,线段BBBB恰好与线段BBCC重合,则该旋转角的度数是()A.144°B.108°C.72°D.36°第5题图第6题图7.将正偶数按下表排成5列:第一列 第二列 第三列 第四列 第五列第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 第四行 32 30 28 26 ……根据上面规律,2024应在( )A .125行,3列B .125行,2列C .253行,5列D .253行,3列8.函数yy =2xx 的图象与过原点的直线l 交于A 、B 两点,现过A 、B 分别作x 、y 轴的平行线,相交于C 点.则△BBBBBB 的面积为( ) A .2B .12C .4 D .149.动点PP 在等边ΔBBBBBB 的边BBBB 上,BBBB =4,连接PPBB ,BBCC ⊥PPBB 于CC ,以BBCC 为一边作等边△BBCCAA ,AACC 的延长线交BBBB 于FF ,当AAFF 取最大值时,PPBB 的长为( ) A .2B .74C .2√3D .√2+1210.若关于xx 的方程|xx 2−4xx +3|=xx +tt 恰有三个根,则tt 的值为( )A .−1B .−1或−34C .−1或−12D .−34或−12二、填空题(本大题共8小题,每小题3分,共24分) 11.若函数yy =√xx+5xx+2有意义,则自变量取值范围为 . 12.已知点MM 的坐标为(−3,−5),则关于原点对称的点的坐标为 .13.如图,有一个亭子地基是半径为8米的正六边形,则地基的面积为 平方米.第8题图 第9题图第13题图 第14题图 第15题图第17题图第18题图三、解答题(本大题共8小题,第19-20题每小题6分,第21-22题每小题8分,第23-24题每小题9分,第25-26题每小题10分,共66分)19.计算:2cos30°+(π−3.14)0−|1−√3|+�−13�−1.20.先化简,再求值:�2−4xx−1�⋅xx2−xx xx2−6xx+9,其中xx=4.21.为落实“双减”政策,优化作业管理.某中学在八年级随机抽取部分学生对作业完成时间进行调查,调查他们每天完成书面作业的时间t(单位:分钟)按照完成时间分成五组:A组“tt≤45”;B组“45<tt≤60”;C组“60<tt≤75”;D组“75<tt≤90”;E组“tt>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)本这次调查的总人数为________人,请补全条形统计图;(2)A组人数占本次调查人数的百分比是________;(3)在扇形统计图中,B组所对应的圆心角度数为________度.22.某小区在进行老旧小区改造的过程中,为了方便老人行走,决定对一段斜坡进行改造.如图,BBBB⊥BBBB,测得BBBB=5米,BBBB=12米,现将斜坡的坡角改为15°,即∠BBCCBB=15°(此时点B、C、D在同一直线上).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,结果精确到0.1m),求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).23.第一届茶博会在海丝公园举行,全国各地客商齐聚于此,此届茶博会主题“精彩闽茶•全球共享”.一采购商看中了铁观音和大红袍这两种优质茶叶,并得到如表信息:铁观音大红袍总价/元2 5 1800质变/A kg3 1 1270(1)求每千克铁观音和大红袍的进价;(2)若铁观音和大红袍这两种茶叶的销售单价分别为450元/kg、260元/kg,该采购商准备购进这两种茶叶共30kg,进价总支出不超过1万元,全部售完后,总利润不低于2660元,该采购商共有几种进货方案?(均购进整千克数)(利润=售价﹣进价)24.如图,在▱BBBBBBCC中,BBBB,BBCC交于点OO,点AA,FF在BBBB上,BBFF=BBAA.(1)求证:四边形AABBFFCC是平行四边形;(2)若∠BBBBBB=∠CCBBBB,求证:四边形AABBFFCC是菱形.25.如图(1)所示,已知在△BBBBBB中,BBBB=BBBB,OO在边BBBB上,点FF为边OOBB中点,为以OO为圆心,BBOO为半径的圆分别交BBBB,BBBB于点CC,AA,连接AAFF交OOCC于点EE.(1)如果OOEE=CCEE,求证:四边形BBAAEECC为平行四边形;(2)如图(2)所示,连接OOAA,如果∠BBBBBB=90°,∠OOFFAA=∠CCOOAA,BBOO=8,求边OOBB的长;(3)连接BBEE,如果△OOBBEE是以OOBB为腰的等腰三角形,且BBOO=OOFF,求OOOO OOOO的值.26.我们约定:关于x的反比例函数yy=aa+bb xx称为一次函数yy=aaxx+bb的“次生函数”,关于x的二次函数yy= aaxx2+bbxx−(aa+bb)称为一次函数yy=aaxx+bb的“再生函数”.(1)按此规定:一次函数yy=xx−3的“次生函数”为:______,“再生函数”为:______;(2)若关于x的一次函数yy=xx+bb的“再生函数”的顶点在x轴上,求顶点坐标;(3)若一次函数yy=aaxx+bb与其“次生函数”交于点(1,−2)、�4,−12�两点,其“再生函数”与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.①若点CC(1,3),求∠BBBBCC的正切值;②若点E在直线xx=1上,且在x轴的下方,当∠BBBBAA=45°时,求点E的坐标.参考答案与解析一、选择题题号 1 2 3 4 5 6 7 8 9 10 选项 D D A B D A D C C B1.D【详解】解:气温为零上5℃记作+5℃,则−3℃表示气温为零下3℃,故选:D.2.D【详解】解:A. aa3+aa2=2aa3,计算错误;B. aa3⋅aa2=aa5,计算错误;C. (aa2)3=aa6,计算错误;D. aa6÷aa2=aa4,计算正确;故选D.3.A【详解】解:0.00000164=1.64×10−6,故选:A.4.B【详解】解:视力为4.9的出现人数为16,最多,∴众数是4.9,∵样本容量为50,∴中位数是第25,26名同学的视力数据和的一半,∴中位数是4.9+4.92=4.9,∴众数是4.9,中位数是4.9,故选:B.5.D【详解】解:∵aa∥bb,∴∠1+∠BBBBBB=∠2(两直线平行,内错角相等),∵∠1=20°,∠BBBBBB=30°,∴∠2=20°+30°=50°.故选:D.6.A【详解】如图,∵五角星为轴对称图形,∴∠OOBBCC=12×36°=18°,∠OOCCBB=12×36°=18°,∴∠BBOOCC=180°−18°−18°=144°,∵将五角星绕其旋转中心按顺时针旋转一定角度,线段AB恰好与线段CD重合,∴∠BOD为旋转角,即旋转角为144°.故选:A.7.D【详解】正偶数依次排列,2024是第1012个数根据分析中的规律,每个循环是8个数字,则1012÷8=126⋯4因此,第1012个数(即2024)是完成126个循环后,再往后数4个数的位置 一个循环是2行,故126个循环是第252行再往后4个数字,故是253行,第5列数字(第一个数字空缺),故选D8.C【详解】解:由于点A 、B 在反比例函数图象上关于原点对称, △BBBBBB 的面积等于两个三角形加上一个矩形的面积和, 则△BBBBBB 的面积=12kk +12kk +kk =2kk =2×2=4.故选:C .9.C【详解】解:如图,分别连接BBFF ,AABB ,作BBEE ∥BBCC ,交AAFF 的延长线于EE , ∵△BBBBBB 和△BBCCAA 是等边三角形,∴BBBB =BBBB ,BBCC =BBAA ,∠BBBBBB =∠CCBBAA =60°, ∴∠BBBBCC =∠AABBBB .在△BBBBCC 和△BBBBAA 中,�BBBB =BBBB∠BBBBCC =∠BBBBAA BBCC =BBAA ,∴△BBBBCC ≌△BBBBAA (SAS ),∴∠BBCCBB =∠BBAABB ,BBCC =BBAA , ∵BBCC ⊥PPBB , ∴∠BBCCBB =90°, ∴∠BBAABB =90°. ∵∠BBAACC =60°, ∴∠BBAACC =30°, ∵BBEE ∥BBCC ,∴∠EE =∠FFCCBB =30°, ∴∠EE =∠BBAAEE =30°, ∴BBEE =BBAA , ∴BBCC =BBEE .在△BBCCFF 和△BBEEFF 中,�∠BBCCFF =∠EE∠BBFFCC =∠BBFFEE BBCC =BBEE ,∴△BBCCFF ≌△BBEEFF (AAS ), ∴BBFF =FFBB , ∵BBBB =BBBB , ∴点FF 为BBBB 中点, ∴BBFF ⊥BBBB , ∴∠BBFFBB =90°,∴∠BBFFBB +∠BBAABB =180°, ∴BB ,FF ,BB ,AA 四点共圆,∴当AAFF 取最大值时,则AAFF 等于直径BBBB ,∵AAFF 为直径,∴∠FFBBAA =∠FFBBAA =90°, ∴四边形BBFFBBAA 为矩形, ∵∠FFBBBB =30°, ∴∠BBBBAA =60°, ∴点CC 在BBBB 上, ∵BBCC ⊥PPBB 于CC , ∴PP ,CC 两点重合,此时PP 为BBBB 中点,BBPP ⊥BBBB , ∴BBPP =PPBB =2. ∵BBBB =4,∴PPBB =√BBBB 2−BBPP 2=2√3. 故选:C .10.B【详解】∵|xx 2−4xx +3|=xx +tt ,∴xx 2−4xx +3=xx +tt 或xx 2−4xx +3=−xx −tt ,整理得xx 2−5xx +3−tt =0①或xx 2−3xx +3+tt =0②, 设方程①的判别式为Δ1,方程②的判别式为Δ2, 若原方程恰有三个根,则有三种可能: (1)�Δ1=25−4(3−tt )>0Δ2=9−4(3+tt )=0 ,∴�tt >−134tt =−34 , ∴tt =−34,此时,|xx 2−4xx +3|=xx −34,∴xx 2−4xx +3=xx −34或xx 2−4xx +3=−xx +34, 解得xx =5±√102,或xx 1=xx 2=32,∴满足题意的t 的值是tt =−34;(2)�Δ1=25−4(3−tt )=0Δ2=9−4(3+tt )>0 ,∴�tt =−134tt <−34,∴tt =−134, 当tt =−134时,|xx 2−4xx +3|=xx −134,∴xx 2−4xx +3=xx −134或xx 2−4xx +3=−xx +134,解得xx 1=xx 2=52,或xx =3±√102,∵xx −134≥0,∴xx ≥134,但xx =3±√102<134,不满足题意,舍去;(3)�Δ1=25−4(3−tt )>0Δ2=9−4(3+tt )>0 ,且两方程恰有一个相同的根,∴�tt >−134tt <−34, ∴−134<tt <−34,设相同的根为mm ,则�mm 2−5mm +3−tt =0mm 2−3mm +3+tt =0,解得�mm 1=1tt 1=−1,�mm 2=3tt 2=−3 , 当tt =−1时,|xx 2−4xx +3|=xx −1,解得xx =1或2或4,符合题意;当tt =−3时,|xx 2−4xx +3|=xx −3,解得xx =0或2或3,但此时xx −3>0,三个解均不合题意,舍去; 综上所述,tt 的值为−1或−34.故选B .二、填空题11.xx ≥−5且xx ≠−2/xx ≠−2且xx ≥−5 【详解】∵函数yy =√xx+5xx+2有意义, ∴xx +5≥0且xx +2≠0, 解得xx ≥−5且xx ≠−2,故答案为:xx ≥−5且xx ≠−2.12.(3,5)【详解】解:关于原点对称的点的坐标特征为横、纵坐标全变为相反数, 故点MM 的坐标为(−3,−5),则关于原点对称的点的坐标为(3,5), 故答案为:(3,5).13.96√3【详解】解:由题意可得:∠BBOOBB =16×360°=60°,OOBB =OOBB =8米, ∴△OOBBBB 是等边三角形,∴BBBB =8米, ∵OOPP ⊥BBBB ,∴BBPP =BBPP =4米,∴OOPP =√82−42=4√3(米),∴正六边形的面积为6×12×BBBB ×OOPP =6×12×8×4√3=96√3(平方米). 故答案为:96√3.14.600ππ【详解】解:BBCC =BBBB −BBCC =45−30=15(cm ), 扇面的面积为:SS =120ππ×AABB 2360−120ππ×AAOO 2360=120ππ×452360−120ππ×152360=600ππ(cm 2).故答案为:600ππ.BBBB=5,设BBCC =xx ,则CCEE =CCAA =4−xx ,在Rt △BBCCEE 中,由勾股定理得:32+(4−xx )2=xx 2,解得:xx =258, ∴BBCC =258,∴菱形BBBBBBCC 的面积=BBCC ⋅BBEE =12×BBBB ×BBCC =258×3=758=12×5×BBCC , 即BD 的长是:154,故答案为:154.三、解答题19.【详解】解:原式=2×√32+(π−3.14)0−|1−√3|+�−13�−1=√3+1−(√3−1)+(−3) =−220.【详解】解:�2−4xx−1�⋅xx 2−xxxx 2−6xx+9 =(2xx −2xx −1−4xx −1)⋅xx (xx −1)(xx −3)2 =2(xx −3)xx −1⋅xx (xx −1)(xx −3)2 =2xx xx −3 当xx =4时,原式=2xx xx−3=2×44−3=821.【详解】(1)解:这次调查的学生人数是:25÷25%=100(人)如图,D 组的人数为:100−10−20−25−5=40(人).(2)A 所占的百分比为:10÷100×100%=10%.(3)B 组所占的圆心角是:360°×20100=72°. 22.【详解】解:∵在Rt △BBCCBB 中,∠BBCCBB =15°,BBBB =5,∴BBCC =AABB tan∠AAOOAA =5tan15°≈50.27≈18.52(米), ∴CCBB =CCBB −BBBB =18.52−12=6.52≈6.5(米),答:斜坡改进后的起点CC 与原起点BB 距离约为6.5米.23.【详解】(1)解:设每千克铁观音的进价是x 元,每千克大红袍的进价是y 元,根据题意得:�2xx +5yy =18003xx +yy =1270 ,解得:�xx =350yy =220 , 答:每千克铁观音的进价是350元,每千克大红袍的进价是220元;(2)设购进m千克铁观音,则购进(30−mm)千克大红袍,根据题意得:�350mm+220(30−mm)≤10000(450−350)mm+(260−220)(30−mm)≥2660,解得:733≤mm≤34013,又∵m为正整数,∴m可以为25,26,∴该采购商共有2种进货方案.24.【详解】(1)证明:∵四边形ABCD为平行四边形,∴BBOO=BBOO,BBOO=CCOO,∵BBFF=BBAA,∴BBFF−BBOO=BBAA−BBOO,即AAOO=FFOO,∴四边形AABBFFCC是平行四边形.(2)∵四边形ABCD为平行四边形,∴BBBB∥BBCC,∴∠CCBBBB=∠BBBBBB,∵∠BBBBBB=∠CCBBBB,∴∠CCBBBB=∠CCBBBB,∴CCBB=CCBB,∴四边形ABCD为菱形,∴BBBB⊥BBCC,即AAFF⊥BBCC,∵四边形AABBFFCC是平行四边形,∴四边形AABBFFCC是菱形.25.【详解】(1)证明:∵BBBB=BBBB∴∠BBBBBB=∠BB∵OOCC=OOBB∴∠OOCCBB=∠BBBBBB,∴∠BB=∠OOCCBB∴OOCC∥BBBB,∵FF是OOBB的中点,OOEE=CCEE,∴FFEE是△OOBBCC的中位线,∴FFEE∥BBBB,即EEAA∥BBCC,∴四边形BBAACCEE是平行四边形;(2)解:∵∠OOFFAA=∠CCOOAA,BBOO=8,点FF边OOBB中点,设∠OOFFAA=∠CCOOAA=αα,OOFF=FFBB=aa,则OOAA=OOBB=2aa由(1)可得OOCC∥BBBB∴∠BBAAOO=∠CCOOAA=αα,∴∠OOFFAA=∠BBAAOO=αα,又∵∠BB=∠BB∴△BBAAOO∽△BBFFAA,∴AAEE AAAA=AAOO AAEE即BBAA2=BBOO⋅BBFF,∵∠BB=90°,在Rt△BBAAOO中,BBAA2=AAOO2−BBOO2,∴AAOO2−BBOO2=BBOO×BBFF,∴(2aa)2−82=8×(8+aa)解得:aa=1+√33或aa=1−√33(舍去)∴OOBB=2aa=2+2√33;(3)解:①当OOEE=OOBB时,点EE与点CC重合,舍去;②当BBEE=OOBB时,如图所示,延长BBEE交BBBB于点P,∵点FF是OOBB的中点,BBOO=OOFF,∴BBOO=OOFF=FFBB,设BBOO=OOFF=FFBB=aa,∵OOEE∥BBBB∴△BBEEOO∽△BBPPBB,∴OOOO AAAA=OOBB AABB=2aa3aa=23,设OOEE=2kk,BBPP=3kk,∵OOEE∥BBAA∴△FFOOEE∽△FFBBAA,∴OOOO AAEE=OOAA AAAA=aa2aa=12,∴BBAA=2OOEE=4kk,∴PPAA=BBAA−BBPP=kk,连接OOAA交PPEE于点QQ,∵OOEE∥PPAA,∴△QQPPAA∽△QQEEOO∴OOOO AAEE=QQOO AAQQ=OOQQ EEQQ=2kk kk=2,∴PPQQ=13aa,QQEE=23aa,AAQQ=23aa,OOQQ=43aa在△PPQQAA与△BBQQOO中,PPQQ=13aa,BBQQ=BBEE+QQEE=2aa+23aa=83aa,∴AAQQ OOQQ=QQEE BBQQ=14,又∠PPQQAA=∠BBQQOO,∴△PPQQAA∽△OOQQBB,∴AAEE OOBB=14,∴kk2aa=14,∴aa=2kk,∵OOCC=OOBB=2aa,OOEE=2kk,∴OOOO OOOO=2kk2aa=kk aa=12.26.【详解】(1))∵一次函数y=x -3的a =1,b =-3,∴y =x -3的“次生函数”为y =−2xx ,∴y =x -3的“再生函数”为y =x 2-3x +2,(2)∵y =x +b 的“再生函数”为:y =x 2+bx -(1+b ),又∵y =x 2+bx -(1+b )的顶点在x 轴上,∴b 2+4(1+b )=0,∴解得:b 1=b 2=-2,∴y =x 2-2x +1=(x -1)2,∴顶点坐标为:(1,0);(3)①∵y =ax +b 与其“次生函数”的交点为:(1,-2)、(4,−12),∴�−2=aa +bb −12=4aa +bb ,解得:�aa =12bb =−52 , ∴一次函数的解析式为y =12xx −52,∴y =12xx −52的“再生函数”为:y =12xx 2−52xx +2 令y =0,则12xx 2−52xx +2=0 解得:x 1=1,x 2=4,∴A (1,0),B (4,0),C (0,2),如图,过点C 作CH ∥x 轴交直线x =1于点H ,∵D (1,3),C (0,2),∴CH =DH =1,∴∠CDH =45°,又∵AD =AB =3,∴∠ADB =45°,∴∠CDB =90°,∵CD =√12+12=√2,BD =√32+32=3√2, ∴tan ∠BBBBCC =AAOO BBOO =√23√2=13; ②如图,∵∠CBE =∠ABD =45°,∴∠ABE =∠CBD ,又∵∠EAB =∠CDB =90°,∴△CBD ∽△EBA ,∴AAOO BBOO =AAEE AABB =13, ∴AAEE 3=13, ∴AE =1∴E (1,-1).。
小学数学题目解答
小学数学题目解答我军从敌方截获了10组数据14073, 63136, 29402, 35862, 84271,79588, 42936, 98174, 50811, 07145破译人员知道这是一个五位数的密码.每一组数据与这个密码,都只有一个数位上的数字相同.这个密码是多少?解:根据以上10组数据,统计每个数字在每组数据各个数位上出现的次数,得出以下统计表:表1 各数位的数字出现次数统计表假设密码为ABCDE,A、B、C、D、E均为0到9的数字,依次代表万位数字、千位数字、百位数字、十位数字、个位数字,由于ABCDE与10组数据的每一个数据只有一个数据位相同,则在10组数据中有:A出现的次数+B出现的次数+C出现的次数+D出现的次数+E出现的次数=10。
用数学式子表达即为:nA +nB+nC+nD+nE = 10根据统计表A 万位:各个数字出现的次数均为1次;B 千位:各个数字出现的次数为0次、1次、2次;C 百位:各个数字出现的次数为0次、1次、2次、3次;D 百位:各个数字出现的次数为0次、1次、2次、3次;E 百位:各个数字出现的次数为0次、1次、2次;要使得条件nA +nB+nC+nD+nE = 10成立;各个数位上选择的出现次数的数字如下表所示:表2 密码可能情况上表以情况1为例,其含义为:万位选择一个出现次数为1次的数字,千位选择一个出现1次的数字,百位选择一个出现次数为3次的数字,十位选择一个出现次数为3次的数字,个位选择一个出现次数为2次的数字。
下面我们就每一种情况来分析:情况1:百位和十位均是出现次数为3次的数字,通过查找表1,有百位为1,十位为7,则密码为AB17E这种形式,原数据中十位为7的有:14073,84271,98174。
由于密码和每个数据仅有一个数据位相同,显然AB17E与98174百位和十位均相同了,不满足条件,舍弃。
情况2:情况2和情况1的分析一样的过程,舍弃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)设动点M(x,y)为轨迹上任意一点,则点M的轨迹就是集合P= .(1分)由两点距离公式,点M适合的条件可表示为,(3分)平方后再整理,得x2+y2=16.(5分)(2)设动点N的坐标为(x,y),M的坐标是(x1,y1).(6分)由于A(2,0),且N为线段AM的中点,所以,所以有x1=2x-2,y1=2y①(8分)由(1)题知,M是圆x2+y2=16上的点,所以M坐标(x1,y1)满足:x12+y12=16②(9分)将①代入②整理,得(x-1)2+y2=4.(11分)所以N的轨迹是以(1,0)为圆心,以2为半径的圆(12分)解:(I)由得:∴直线OA的方程为………………3分(II)设点,则,又B(P,0)∴直线BC的方程为:由得C的纵坐标∴三角形OBC面积…………8分(III)由(II)时,因此,当千米时,抢救最及时。
………………13分:(1)分别以l2、l1为x轴,y轴建立如图坐标系.据题意得M(0,3),N(4,5),∴,MN中点为(2,4),∴线段MN的垂直平分线方程为:y-4=-2(x-2)),故圆心A的坐标为(4,0),半径,(5分)∴弧的方程为:(x-4)2+y2=25(0≤x≤4,y≥3)(8分)(2)设校址选在B(a,0)(a>4),则,对0≤x≤4恒成立.整理得:(8-2a)x+a2-17≥0,对0≤x≤4恒成立(﹡)(10分)令f(x)=(8-2a)x+a2-17.∵a>4∴8-2a<0∴f(x)在[0,4]上为减函数,(12分)∴要使(﹡)恒成立,当且仅当,即,解得a≥5,(14分)即校址选在距O最近5km的地方(16分)解:直线l不与坐标轴平行,设为y=kx+b(k≠0),M(x1,y1),N(x2,y2) 联立方程:y=kx+b,x^2 +y^2 /9=1则(9+k^2)x^2+2kbx+b^2-9=0△=(2kb)^2-4(9+k^2)(b^2-9)>0,k^2-b^2+9>0x1+x2=-2kb/(9+k^2), x1x2=(b^2-9)/(9+k^2)MN的中点的横坐标=(x1+x2)/2=-1/2所以x1+x2=-1所以9+k^2=2kb>b^2(k-b)^2=b^2-9≥0,b^2≥9b≥3或b≤-3b(b-2k)<0所以b≥3>0时,b-2k<0,k>b/2≥3/2b≤-3<0时,b-2k>0,k<b/2≤-3/2所以k的取值范围为(-∞,-3/2)∪(3/2,+∞)直线l的倾斜角的取值范围为(arctan(3/2),π/2)∪(π/2,π-arctan(3/2))1.设P(x,y)由P与平面上两定点A(-√2,0),B(√2,0)连线的斜率的积为定值-1/2则y/(x+√2)·y/(x-√2)=-1/2整理得C的轨迹方程为x²/2+y²=12.将x²/2+y²=1与y=kx+1联立得到用k表示的两个坐标,即M,N的坐标,再由|MN|=(4√2)/3,解得k值就能求直线l的方程(详细步骤自己解吧)c/a=√6/3c²/a²=2/3c²=2/3a²,b²=1/3a²直线AB:x/a-y/b=11/√(1/a²+1/b²)=√3/2此为原点到直线的距离1/(1/a²+1/b²)=3/41/(1/a²+3/a²)=3/.4a²=3b²=1,c²=2椭圆方程:x²/3+y²=1即x²+3y²=3(2)设C(x1,y1)D(x2,y2)若存在k值,则CE垂直DE那么y1/(x1+1)*y2/(x2+1)=-1y1y2+x1x2+(x1+x2)+1=0 (1)y1=kx1+2,y2=kx2+2y1y2=k²x1x2+2k(x1+x2)+4 (2)(2)代入(1)k²x1x2+2k(x1+x2)+x1x2+(x1+x2)+5=0(3)将直线y=kx+2代入椭圆x²+3(k²x²+4kx+4)=3(3k²+1)x²+12kx+9=0x1+x2=-12k/(3k²+1)x1*x2=9/(3k²+1)代入(3)9k²/(3k²+1)-24k²/(3k²+1)+9/(3k²+1)-12k/(3k²+1)+5=09k²-24k²+9-12k+15k²+5=012k=14k=7/6所以存在k值,此时k=7/6取AB所在直线为x轴,以AB的中点为原点,建立如图所示的直角坐标系由题意可知,A、B、C舰的坐标为(3,0)、(-3,0)、(-5,2 ),由于B、C同时发现动物信号,记动物所在位置为P,则|PB|=|PC|于是P在线段BC的中垂线上,易求得其方程为x-3y+7 =0.又由A、B两舰发现动物信号的时间差为4秒,知|PB|-|PA|=4,故知P在双曲线的右支上直线与双曲线的交点为(8,5 ),此即为动物P的位置,利用两点间距离公式,可得|PA|=10,据已知两点的斜率公式,得k PA= ,所以直线PA的倾斜角为60°,于是舰A发射炮弹的方位角应是北偏东30°.EF平行与BD 平行与B1D1 OK了 2 ,我用一个半向量方法.. 明显A1ACC1的法向量是B1D1 明显B1D1C的法向量垂直与B1D1C内的所有直线所以有B1D1C的法向量垂直与A1ACC1的法向量所以两个平面垂直∵ABCD-A1B1C1D1是一个长方体则,侧面CC1DD1是一个长方体且BC⊥平面CC1DD1又点P在平面CC1DD1中,且PD=PC∴点P在CD的中线上又CD=AB=4,PD=PC=2倍根号2可知:CD²=PD²+PC²=8+8=4²=16所以,PD⊥PC ①又BC⊥平面CC1DD1则,BC⊥PD ②又PC、BC均在平面PBC中③再由①②③可得出:PD⊥平面PBC(2)、取DC的中点M,且由上题可知,点P在CD的中线上所以,PM//CC1,又CC1⊥平面ABCD则,PM⊥平面ABCD连接AM,AM在平面ABCD中,则,PM⊥AM所以,∠PAM即为PA与平面ABCD所成的角又AD=BC=3,CD=AB=4,且点M为CD中点,则MD=2 又PD=2倍根号2,则,PM²=PD²-MD²=8-4=4,即,PM=2 AM²=AD²+MD²=9+4=13,则,AM=根号13则,tan∠PAM=PM/AM=2/根号13故,PA与平面ABCD所成角的正切值为2倍的根号13/13证明:(1)∵OA⊥平面ABCD,BD⊂平面ABCD,所以OA⊥BD,∵ABCD是菱形,∴AC⊥BD,又OA∩AC=A,∴BD⊥平面OAC,又∵BD⊂平面OBD,∴平面BD0⊥平面ACO.(2)取OD中点M,连接KM、CM,则ME∥AD,ME= ,∵ABCD是菱形,∴AD∥BC,AD=BC,∵F为BC的中点,∴CF∥AD,C= F,∴ME∥CF,ME=CF.∴四边形EFCM是平行四边形,∴EF∥CM,∴EF∥平面OCD(1)证明:∵E、F分别为AB1、BC1的中点,∴EF∥A1C1.∵A1C1∥AC,∴EF∥AC.∴EF∥平面ABC.(2)证明:∵AB=CC1,∴AB=BB1.又三棱柱为直三棱柱,∴四边形ABB1A1为正方形.连接A1B,则A1B⊥AB1.又∵AB1⊥BC1,∴AB1⊥平面A1BC1.∴AB1⊥A1C1.又A1C1⊥AA1,∴A1C1⊥平面A1ABB1.∴A1C1⊥AB.(3)解:∵A1B1∥AB,∴A1B1∥平面ABC1.∴A1到平面ABC1的距离等于B1到平面ABC1的距离.过A1作A1G⊥AC1于点G,∵AB⊥平面ACC1A1,∴AB⊥A1G.从而A1G⊥平面ABC1,故A1G即为所求的距离,即A1G=1.∵ABCD是菱形PD⊥面ABCD ∴AC⊥BD AC⊥PD 得AC⊥面PDB AC⊥DE2.求出PD长关键即从EF长入手AC⊥面PDB ∴EF⊥AC由题知△AEC最小面积为3,底固定即高最小即EF要最小所以过F作PB的垂线垂足为E FE⊥PB ∵AC=6∴FE=1△BEF∽△BDP sin∠EBF=1/4 得出tan∠EBF=√15/15 ∴PD=8/√15∵sABCD=48∴vP-ABCD=(48*8/√15)/3=128/√15解:1)因为直线CD是线段AB的垂直平分线,且直线AB的斜率为1,所以直线CD的斜率为—1,线段AB的中点在直线CD上,中点坐标为(1,2),所以直线CD的方程为x+y-3=0 2)由题意可知圆心在直线CD上,所以半径为2根10,直线AB和CD的交点坐标为(3-1)/2=1,(4+0)/2=2,即交点坐标为(1,2),且AB的直线方程为x-y+1=0,所以直线CD的斜率为-1,由点斜式得直线CD的方程为x+y-3=0,所以可设圆心坐标为(x,-x+3),由圆心到直线AB的距离和弦AB 的一半和半径组成一个直角三角形,可解出圆心坐标。
所以圆P的方程为(x+3)^2+(y-6)^2=40.(3):上题中已求出AB的直线方程为x-y+1=0,AB的长度为4根2,设Q(x0,y0),点Q到直线AB的距离为h,因为△QAB的面积为8,所以4根2*0.5*h=8,解得h=2根2,所以点Q到直线AB的距离为|x0-y0+1|/根2=2根2,解得x0-y0=3或x0-y0=-5,所以符合题意的点Q共有2个(1)弧PQ恰为圆周的1/4则OP垂直OQ所以圆心O到直线的距离:1/√2(根号)即√2/2设直线L1的方程kx-y+2k=0|0-0+2k|/√(1+k^2)=√2/2得k=±1直线L1的方程:y=x+2,或y=-x-2(2)a^2/c=2b=1a^2=b^2+c^2所以a=√2,b=1,c=1椭圆方程:x^2/2+y^2=1∵G,E分别为CB,CB1的中点,∴EG∥BB1,且,又∵正三棱柱ABC-A1B1C1,∴EG∥AD,EG=AD∴四边形ADEG为平行四边形.∴AG∥DE∵AG⊂平面ABC,DE⊄平面ABC,所以DE∥平面ABC.(2)由可得,取BC中点G∵正三棱柱ABC-A1B1C1,∴BB1⊥平面ABC.∵AG⊂平面ABC,∴AG⊥BB1,∵G为BC的中点,AB=AC,∴AG⊥BC∴AG⊥平面BB1C1C,∵B1C⊂平面BB1C1C,∴AG⊥B1C,∵AG∥DE∴DE⊥B1C,∵BC=BB1,B1E=EC∴B1C⊥BE,∵BE⊂平面BDE,DE⊂平面BDEBE∩DE=E,∴B1C⊥平面BDE.证明:(1)在矩形ABCD中,由AP=BP=BC=2a可得PC=PD= …(1分)又CD=4a,由勾股定理可得PD⊥PC…(3分)因为CF⊥平面ABCD,则PD⊥CF…(5分)由PC∩CF=C可得PD⊥平面PFC…(6分)故平面PCF⊥平面PD E…(7分)(2)作FC中点M,连接EM、BM由CF⊥平面ABCD,DE⊥平面ABCD可得CM∥DE,又CM=DE=a,得四边形DEMC为平行四边形故ME∥CD∥AB,且ME=D=AB,所以四边形AEMB为平行四边形故AE∥BM…(12分)又AE⊄平面BCF,BM⊂平面BCF,所以AE∥平面BCF.…(14分)解:(1)由于⊙M与∠BOA的两边均相切,故M到OA及OB的距离均为⊙M的半径,则M在∠BOA的平分线上,同理,N也在∠BOA的平分线上,即O,M,N三点共线,且OMN为∠BOA的平分线,∵M的坐标为(,1),∴M到x轴的距离为1,即⊙M的半径为1,则⊙M的方程为,(4分)设⊙N的半径为r,其与x轴的的切点为C,连接MA,MC,由Rt△OAM∽Rt△OCN可知,OM:ON=MA:NC,即得r=3,则OC= ,则⊙N的方程为;(8分)(2)由对称性可知,所求的弦长等于过A点直线MN的平行线被⊙N截得的弦的长度,此弦的方程是,即:x- - =0,圆心N到该直线的距离d= ,则弦长=2 .证明:(1)∵AC=BC,P是AB的中点,∴AB⊥PC,∵AA1⊥面ABC,CC1∥AA1,∴CC1⊥面ABC而AB在平面ABC内∴CC1⊥AB,∵CC1∩PC=C∴AB⊥面PCC1;又∵M、N分别是AA1、BB1的中点,四边形AA1B1B是平行四边形,MN∥AB,∴MN⊥面PCC1∵MN在平面MNQ内,∴面PCC1⊥面MNQ;(5分)(2)连PB1与MN相交于K,连KQ,∵MN∥PB,N为BB1的中点,∴K为PB1的中点.又∵Q是C1B1的中点∴PC1∥KQ,而KQ⊂平面MNQ,PC1⊄平面MNQ∴PC1∥面MNQ.(10分)(3)∵Q为B1C1的中点,∴Q到平面AA1B1B的距离h等于CP的一半,故,所以.(∵点E、F分别是AB、BD的中点∴EF是三角形ABD的一条中位线∴EF//AD∵AD在面ACD中EF在面ACD外∴直线EF∥面ACD(2)连PB1与MN相交于K,连KQ,∵MN∥PB,N为BB1的中点,∴K为PB1的中点.又∵Q是C1B1的中点∴PC1∥KQ,而KQ⊂平面MNQ,PC1⊄平面MNQ∴PC1∥面MNQ.(10分)以D为原点、DC所在直线为x轴、DA所在直线为y轴、DD1所在直线为z轴建立空间直角坐标系,并使点B1位于第一卦限内。