历届高考中的二项式定理试题汇编大全

合集下载

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃1、(1+2x)5的展开式中x2的系数是10.2、已知展开式为,求a+b=2+3=5.3、已知展开式为,求n=6.4、(1+2x2)(1+x8)的展开式中常数项为1.5、展开式中含的整数次幂的项的系数之和为63.6、(1+2x2)(x-1)8的展开式中常数项为-256.7、(1+x)8的二项展开式中常数项是1.8、(x2+1)6的展开式中常数项是1.9、若展开式中系数为5,则n=3.10、若(2x3+1)n的展开式中含有常数项,则最小的正整数n等于3.11、(x+1)9展开式中x3的系数是84.12、若展开式的各项系数之和为32,则n=5,其展开式中的常数项为1.13、(1+2x)6的展开式中的系数为1,12,48,96,80,32,6,1.14、a1=-32,a2=80,a3=-80,a4=40,a5=-10.15、(1+2x)3(1-x)4展开式中x2的系数为-12.16、展开式为1+7x+21x2+35x3+35x4+21x5+7x6+x7,常数项为1,各项系数之和为119.17、(x+1)5的二项展开式中x2的系数是10.18、(1+x3)(x+1)6展开式中的常数项为1.19、若x>0,则(2+x)(2-x)-4(x-1)=0.20、已知展开式中x8的系数小于120,则k=2.21、b3=2b4,n=7.22、(x+1)5的二项展开式中x3的系数为10.23、已知(1+x+x2)(x+1)n的展开式中没有常数项,n=4.24、展开式中x的系数为0,∴(1+2x)2展开式中常数项为-4.解析:1.将数字和符号之间加上空格,使得文章更加清晰易读。

2.删除明显有问题的第3段,因为其中的公式无法正确显示。

3.对每段话进行小幅度改写,使得表达更加准确简洁。

改写后的文章如下:3、-256解析:$(1-x)^5=a_2^3+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5$。

(完整版)二项式定理高考题(带答案)

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A. 2B.C.D.【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C.情况,尤其是两个二项式展开式中的r 不同.7.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为 A .80-B .40-C .40D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________.【答案计数.9.【2017山东,理11】已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】试题分析:由二项式定理的通项公式()1C 3C 3rr r r r r n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n ab -+T =. 11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144r rr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5-的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.20.(2016年山东高考)若(a x 25的展开式中x 5的系数是—80,则实数a =_______. 【答案】-221.(2016年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4 【答案】A23.(2016年天津高考)281()x x-的展开式中x 2的系数为__________.(用数字作答) 【答案】56-24.(2016年全国I 高考)5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10。

二项式定理高考试题及其答案总

二项式定理高考试题及其答案总

二项式定理历年高考试题荟萃(一)一、选择题 ( 本大题共 58 题)1、二项式的展开式中系数为有理数的项共有………()A.6项B.7项C.8项D.9项2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…()①存在n∈N,展开式中有常数项;②对任意n∈N,展开式中没有常数项;③对任意n∈N,展开式中没有x的一次项;④存在n∈N,展开式中有x的一次项.上述判断中正确的是(A)①与③(B)②与③(C)②与④(D)④与①3、在(+x2)6的展开式中,x3的系数和常数项依次是…………()(A)20,20 (B)15,20(C)20,15 (D)15,154、(2x3-)7的展开式中常数项是………………………………………………………()A.14B.-14 C.42 D.-425、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………()(A)28 (B)38 (C)1或38 (D)1或286.若(+)n展开式中存在常数项,则n的值可以是…………()A.8B.9C.10D.127 .(2x+)4的展开式中x3的系数是……………………………………()A.6B.12C.24D.488、(-)6的展开式中的常数项为…………………………………()A.15B.-15 C.20 D.-209、(2x3-)7的展开式中常数项是…………………………………………()A.14B.-14 C.42 D.-4210、若(+)n展开式中存在常数项,则n的值可以是………………()A.8B.9C.10D.1211、若展开式中含项的系数与含项的系数之比为-5,则n等于A.4 B.6 C.8D.1012、的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项13.(x-y)10的展开式中x6y4项的系数是(A)840 (B)-840 (C)210 (D)-21014.的展开式中,含x的正整数次幂的项共有()A.4项 B.3项 C.2项 D.1项15、若展开式中含的项的系数等于含x的项的系数的8倍,则n等于()A.5B.7C.9D.1116、3.若的展开式中的系数是( )A B C D17、在的展开式中的系数是()A.-14B.14C.-28 D.2818、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)19、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)20、设k=1,2,3,4,5,则(x+2)5的展开式中x k的系数不可能是(A)10 (B)40 (C)50 (D)8021、7.在()n的二项展开式中,若常数项为60,则n等于A.3B.6C.9D.1222、已知()的展开式中第三项与第五项的系数之比为,则展开式中常数项是(A)-1 (B)1 (C)-45 (D)4523、的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项24、在二项式(x+1)6的展开式中,含x3的项的系数是(A)15 (B)20 (C)30 ( D)4025、(若多项式,则(A)9 (B)10 (C)-9 (D)-1026、(的值为()A.61 B.62 C.63D.6427、在(x-)2006的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于A.23008B.-23008C.23009D.-2300928.在()24的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项29、的展开式中含x的正整数指数幂的项数是(A)0 (B)2 (C)4 (D)630、在(x-)的展开公式中,x的系数为(A)-120 (B)120 (C)-15 (D)1531、(2x-3)5的展开式中x2项的系数为(A)-2160 (B)-1080 (C)1080 (D)216032.若(ax-1)5的展开式中x3的系数是80,则实数a的值是A.-2 B.2 C.D.233、的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B)-162 (C)162 (D)54034、已知的展开式中第三项与第五项的系数之比为-,其中i2=-1,则展开式中常数项是(A)-45i (B)45i (C)-45(D)4535.若对于任意的实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为A.3B.6C.9D.136、在的二项展开式中,若只有的系数最大,则A.8B. 9C.10 D.1137、.的展开式中,常数项为15,则n=A.3B.4C.5D.638、若(x+)n展开式的二项式系数之和为64,则展开式的常数项为A.10B.20C.30D.12039、.已知(+)n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于A.4B.5C.6D.740、设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为A.-2B.-1 C.1 D.241、展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 8442、如果的展开式中含有非零常数项,则正整数n的最小值为A.3B.5C.6D.1043、如果的展开式中含有非零常数项,则正整数n的最小值为A.10B.6C.5D.344、((2x+1)6展开式中x2的系数为(A)15 (B)60 (C)120(D)24045、(-)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)220 46、在的展开式中,含的项的系数是(A)-15 (B)85 (C)-120 (D)274 47、展开式中的常数项为A.1 B.C.D.48、在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是(A)-15 (B)85 (C)-120 (D)27449、设则中奇数的个数为()A.2 B.3 C.4D.550、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1251、展开式中的常数项为A.1 B.46 C.4245 D.424652、的展开式中的系数是()A. B. C.3 D .453、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1254、的展开式中的系数为()A.10 B.5 C.D.155、的展开式中的系数是()A. B. C.3 D .456、设则中奇数的个数为()A.2 B.3 C.4D.557、若(x+)n的展开式中前三项的系数成等差数列,则展开式中x4项的系数为( )A.6B.7C.8D.958、的展开式中常数项是A.210B.C.D.-105二项式定理历年高考试题荟萃(二)一、填空题 ( 本大题共 55 题)1、在二项式(x-1)11的展开式中,系数最小的项的系数为.(结果用数值表示)2、展开式中的常数项是.3、在二项式(x-1)11的展开式中,系数最小的项的系数为 .(结果用数值表示)4、在代数式(4x2-2x-5)(1+)5的展开式中,常数项为______________.5、在(x-)6的二项展开式中,常数项为 .6、.(x+1)10的二项展开式中x3的系数为.7、若在()n的展开式中,第4项是常数项,则n= .8、(x2+1)(x-2)7的展开式中x3项的系数是.12、(x2-)9展开式中x9的系数是.17.若(1-2x)2004=a0+a1x+a2x2+…+a2004x2004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)= .(用数字作答)18、已知a为实数,(x+a)10展开式中x7的系数是-15,则a= .19、若在(1+ax)5展开式中x3的系数为-80,则a= .20、的展开式中各项系数的和是128,则展开式中x5的系数是 .(以数字作答)21.(x2+)9的展开式中的常数项为(用数字作答).22、若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 .(结果用分数表示)23、(x-)8展开式中x5的系数为 .24、若在(1+ax)5展开式中x3的系数为-80,则a= .25、若(x3+)n的展开式中的常数项为84,则n= .26、若(x+-2)n的展开式中常数项为-20,则自然数n=.27、(x-)8展开式中x5的系数为 .28、如图,在由二项式系数所构成的杨辉三角形中,第行中从左至右第14与第15个数的比为2∶3.29、.在(1+x)+(1+x)2+…+(1+x)6的展开式中,x2项的系数是.(用数字作答)30、二项式的展开式中常数项为__________(用数字作答).31、. 若,且,则.32、(展开式中的常数项是(用数字作答).33、的展开式中,常数项为。

5.二项式定理--全国卷2013-2017年高考汇编

5.二项式定理--全国卷2013-2017年高考汇编

全国卷2013-2017年高考汇编---5.二项式定理
5.二项式定理
【2017全国1,理6】621(1)(1)x x +
+展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 【2017全国3,理4】()()52x y x y +-的展开式中x 3y 3的系数为( )
A .80-
B .40-
C .40
D .80
【2016全国1,理14】
5(2x 的展开式中,x 3的系数是 .(用数字填写答案)
【2015全国1,理10】25()x x y ++的展开式中,52x y 的系数为( )
(A )10 (B )20 (C )30(D )60
【2015全国2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.
【2014全国1,理13】8()()x y x y -+的展开式中22x y 的系数
为 .(用数字填写答案)
【2014全国2,理13】()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)
【2013全国1,理9】设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).
A .5
B .6
C .7
D .8
【2014全国2,理5】已知(1+ɑx )(1+x)5的展开式中x 2的系数为5,则ɑ=
(A )-4
(B )-3 (C )-2 (D )-1。

二项式定理 高考题(含答案)

二项式定理 高考题(含答案)

3.(2012·天津高考理科·T5)在 2x2-⎪的二项展开式中,x的系数为(D)5.(2012·重庆高考理科·T4)⎛x+1⎫⎪的展开式中常数项为(B)(A)35二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同(1+x)7的展开式中x2的系数是(D)(A)42(B)35(C)28(D)212.(2011·福建卷理科·T6)(1+2x)5的展开式中,x2的系数等于(B)(A)80(B)40(C)20(D)10⎛1⎫5⎝x⎭(A)10(B)-10(C)40(D)-404.(2011.天津高考理科.T5)在(x-2)6的二项展开式中,x2的系数为(C)2x(A)-15153(B)(C)-(D)448388⎝2x⎭3535(B)(C)(D)10516846.(2012·重庆高考文科·T4)(1-3x)5的展开式中x3的系数为(A)(A)-270(B)-90(C)90(D)2707.(2013·大纲版全国卷高考理科·T7)(1+x)8(1+y)4的展开式中x2y2的系数是(D)8.(2011·新课标全国高考理科·T8)⎛ x + a ⎫⎪⎛ 2x - 1 ⎫⎪的展开式中各项系数的和为 2,则该展开式中常 ( 12.(2011·湖北高考理科·T11) x - ⎪ 的展开式中含 x 15的项的系数为 17 .)16.(2011·安徽高考理科·T12)设(x - 1)21 = a + a x + a x 2 + + a x 21 ,则17.(2011·广东高考理科·T10) x( x - )7的展开式中, x 4 的系数是___84___ (用数字作答)A.56B.84C.112D.1685 ⎝x ⎭⎝ x ⎭数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4) (1 + 3x) n (其中 n ∈ N 且 n ≥ 6 )的展开式中 x 5 与 x 6 的系数相等,则 n =( B)(A) 6 (B) 7 (C) 8 (D) 910. 2011·陕西高考理科·T4) (4 x - 2- x )6 ( x ∈ R )展开式中的常数项是 (C )(A ) -20(B ) -15(C )15 (D )20二、填空题11. ⎛ 1 ⎫6(2013·天津高考理科·T10) x - ⎪ 的二项展开式中的常数项为 15 .⎝ x ⎭⎛ 1 ⎫18⎝ 3 x ⎭13.(2011·全国高考理科·T13)(1- x )20 的二项展开式中,x 的系数与 x 9 的系数之差为0 .14.(2011·四川高考文科·T13 (x + 1)9 的展开式中 x 3的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11) (1 + 2 x) 6的展开式中 x 4 的系数是240 .0 1 2 21a +a =0 .10112x18.(2011·山东高考理科·T14)若 x-x2⎪⎭19.(2012·大纲版全国卷高考理科·T15)若(x+)n的展开式中第3项与第7项的二项式系数相等,120.(2013·安徽高考理科·T11)若 x+3x⎭x4的系数为7,则实数a=_________。

二项式定理-高考题(含答案)精选全文

二项式定理-高考题(含答案)精选全文

3.(2012·天津高考理科·T5)在 2x2-⎪的二项展开式中,x的系数为(D)5.(2012·重庆高考理科·T4)⎛x+1⎫⎪的展开式中常数项为(B)(A)35精选全文完整版(可编辑修改)学习好资料欢迎下载二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同(1+x)7的展开式中x2的系数是(D)(A)42(B)35(C)28(D)212.(2011·福建卷理科·T6)(1+2x)5的展开式中,x2的系数等于(B)(A)80(B)40(C)20(D)10⎛1⎫5⎝x⎭(A)10(B)-10(C)40(D)-404.(2011.天津高考理科.T5)在(x-2)6的二项展开式中,x2的系数为(C)2x(A)-15153(B)(C)-(D)448388⎝2x⎭3535(B)(C)(D)10516846.(2012·重庆高考文科·T4)(1-3x)5的展开式中x3的系数为(A)(A)-270(B)-90(C)90(D)2707.(2013·大纲版全国卷高考理科·T7)(1+x)8(1+y)4的展开式中x2y2的系数是(D)8.(2011·新课标全国高考理科·T8)⎛ x + a ⎫⎪⎛ 2x - 1 ⎫⎪的展开式中各项系数的和为 2,则该展开式中常 ( 12.(2011·湖北高考理科·T11) x - ⎪ 的展开式中含 x 15的项的系数为 17 .)16.(2011·安徽高考理科·T12)设(x - 1)21 = a + a x + a x 2 + + a x 21 ,则17.(2011·广东高考理科·T10) x( x - )7的展开式中, x 4 的系数是___84___ (用数字作答)A.56B.84C.112D.1685 ⎝x ⎭⎝ x ⎭数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4) (1 + 3x) n (其中 n ∈ N 且 n ≥ 6 )的展开式中 x 5 与 x 6 的系数相等,则 n =( B)(A) 6 (B) 7 (C) 8 (D) 910. 2011·陕西高考理科·T4) (4 x - 2- x )6 ( x ∈ R )展开式中的常数项是 (C )(A ) -20(B ) -15(C )15 (D )20二、填空题11. ⎛ 1 ⎫6(2013·天津高考理科·T10) x - ⎪ 的二项展开式中的常数项为 15 .⎝ x ⎭⎛ 1 ⎫18⎝ 3 x ⎭13.(2011·全国高考理科·T13)(1- x )20 的二项展开式中,x 的系数与 x 9 的系数之差为0 .14.(2011·四川高考文科·T13 (x + 1)9 的展开式中 x 3的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11) (1 + 2 x) 6的展开式中 x 4 的系数是240 .0 1 2 21a +a =0 .10112x18.(2011·山东高考理科·T14)若 x-x2⎪⎭19.(2012·大纲版全国卷高考理科·T15)若(x+)n的展开式中第3项与第7项的二项式系数相等,120.(2013·安徽高考理科·T11)若 x+3x⎭x4的系数为7,则实数a=_________。

二项式定理 高考题(含答案)

二项式定理 高考题(含答案)

二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-404.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C ) (A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n( B ) (A)6 (B)7 (C)8 (D)910.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11.(2013·天津高考理科·T10)6x⎛- ⎝的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18x ⎛- ⎝的展开式中含15x 的项的系数为17.13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为0.14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是84(用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是240.16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则 1110a a +=0.17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛⎫- ⎪ ⎪⎝⎭的展开式的常数项为60,则常数a 的值为4. 19.(2012·大纲版全国卷高考理科·T15)若nx x )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。

二项式定理高考题(含答案)

二项式定理高考题(含答案)

二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D )(A)10 (B)-10 (C)40 (D)-404.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154 (C )38- (D )385.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435(D)1056.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )8.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8 (D)9 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x⎛ ⎝的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 .16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若nx x )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。

二项式定理高考试题汇编

二项式定理高考试题汇编

二项式定理高考试题汇编一、填空题 ( 本大题共 24 题, 共计 120 分)1、 (1+2x)5的展开式中x2的系数是。

(用数字作答)2、nxx⎪⎭⎫⎝⎛-1的展开式中的第5项为常数项,那么正整数的值是 .3、已知,则(的值等于。

4、的展开式中常数项为。

(用数字作答)5、展开式中含的整数次幂的项的系数之和为。

(用数字作答)6、的展开式中常数项为。

(用数字作答)7、921⎪⎭⎫ ⎝⎛+x x 的二项展开式中常数项是 。

(用数字作答).8、621⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是 。

(用数字作答)9、若的二项展开式中的系数为25,则。

(用数字作答)10、若(2x 3+)n 的展开式中含有常数项,则最小的正整数n 等于 。

11、91⎪⎭⎫ ⎝⎛+x x 展开式中3的系数是 。

(用数字作答)12、若nxx⎪⎭⎫⎝⎛+221展开式的各项系数之和为32,则n= 。

其展开式中的常数项为。

(用数字作答)13、721⎪⎭⎫⎝⎛-x的展开式中21x的系数为。

(用数字作答)14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x,则a1+a2+a3+a4+a5= 。

15、(1+2x)(1-x)展开式中x2的系数为 .16、的展开式中常数项为 ; 各项系数之和为.(用数字作答)17、52⎪⎭⎫⎝⎛-xx的二项展开式中的系数是____________.(用数字作答)18、()62311⎪⎭⎫ ⎝⎛++x x x 展开式中的常数项为_____________.19、若x >0,则(412x +233)(412x -233)-214-x (x -21x )=______________.20、已知(1+kx 2)6(k 是正整数)的展开式中,x 8的系数小于120,则k=______________.21、记nx x ⎪⎭⎫ ⎝⎛+12的展开式中第m 项的系数为b m ,若b 3=2b 4,则n = .22、52⎪⎭⎫ ⎝⎛+x x 的二项展开式中的系数为_____________.(用数字作答)23、已知(1+x+x2)(x+n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.24、展开式中x的系数为_____________.。

二项式定理 高考题(含答案)

二项式定理 高考题(含答案)

二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-404.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C ) (A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )8.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n( B ) (A)6 (B)7 (C)8 (D)9 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x⎛ ⎝的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 .16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=-Λ(,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若6x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若nx x )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a =____12_____。

历届高考中的二项式定理试题汇编大全(最全)word资料

历届高考中的二项式定理试题汇编大全(最全)word资料

8.(2004 湖北文)已知 ( x x 1 2 1 2 n 的展开式中各项系数的和是128,则展开式中 x5 的系数是。

. (以数字作答) 9.(2004 全国Ⅱ卷文)已知 a 为实数,(x+a10 展开式中 x7 的系数是-15,则 a= 10.(2004 全国Ⅳ卷文、理)( x 1 x 8 展开式中 x 5 的系数为 . (2003--2000 年) 1.(2003 广东) ( x 212x9 展开式中 x 的系数是 9 9 2.(2003 全国文、理,天津文、理) ( x 2 1 9 的展开式中 x 系数是 2x ___ 1 3.(2002 春招上海)若在 5 x 的展开式中,第 4 项是常数项,则 n = x 2 7 3 n . 4. (2002 年广东、江苏、河南,全国文、理 (x +1(x-2 的展开式中 x 项的系数是_______. 1 5.(2001 春招上海)二项式 ( x 6 的展开式中常数项的值为________. x 6.(2001 全国文) ( 1 x 1 10 的二项展开式中 x 3 的系数为 2 王新敞奎屯新疆 7.(2001 上海文)在代数式 (x- 的展开式中,常数项为 5 . 8.(2001 上海理)在代数式(4x -2x-5(1+ 2 的展开式中,常数项为 5 . 9.(2000 春招北京、安徽文、理) ( x - 3 11 1 x 10 . 展开式中的常数项是__________ 。

(结果用数值表示) 10.(2000 上海文、理)在二项式( x 1 的展开式中,系数是小的项的系数为三、解答题:(2006 年—2000 年)1.(2003 上海文)已知数列 {an } (n 为正整数)是首项是 a1,公比为 q 的等比数列. 0 1 2 0 1 2 3 (1)求和: a1C2 a2C2 a3C2 , a1C3 a2C3 a3C3a4C3 ; (2)由(1)的结果归纳概括出关于正整数 n 的一个结论,并加以证明. (3)设q≠1,Sn 是等比数列 {an } 的前 n 项和,求:0 1 2 3 n S1Cn S 2Cn S3Cn S 4Cn ( 1 n S n1Cn二项式定理一、知识点1. ⑴二项式定理:nn n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点: ① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大. ③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C二、典型例题例1.已知(1-3x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于A.29B.49C.39D.1例2.(2x +x )4的展开式中x 3的系数是 A.6B.12C.24D.48例3.(2x 3-x1)7的展开式中常数项是A.14B.-14C.42D.-42例4.已知(x 23+x 31-)n 的展开式中各项系数的和是128,则展开式中x 5的系数是_____________.(以数字作答)例5.若(x +1)n =x n +…+ax 3+bx 2+cx +1(n ∈N *),且a ∶b =3∶1,那么n =_____________. 例6 如果在(x +421x)n 的展开式中,前三项系数成等差数列,求展开式中的有理项.例7求式子(|x |+||1x -2)3的展开式中的常数项.例8设a n =1+q +q 2+…+q 1-n (n ∈N *,q ≠±1),A n =C 1n a 1+C 2n a 2+…+C nn a n .(1)用q 和n 表示A n ;(2)(理)当-3<q <1时,求lim ∞→n nn A 2.例9 求(a -2b -3c )10的展开式中含a 3b 4c 3项的系数.三、练习题1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为A.20B.219C.220D.220-12.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 A.28B.38C.1或38D.1或283.(x -x1)8展开式中x 5的系数为_____________.4.若(x 3+xx 1)n 的展开式中的常数项为84,则n =_____________5.已知(x x lg +1)n 展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x 的值.第二十三讲排列组合与二项式定理●知点考点答点(1)加法乘法原理深化计数的基本依据是加法原理,乘法原理是加法原理的简化.小学生的加法是“同类加法”,3个苹果加上5个苹果,这8个苹果是一样的“同类苹果”. 而计数原理中的加法则强调了“分类相加”. 30个男生加上20个女生,这班上的50个学生按性别分成了2类.相加并不难,分类要注意统一标准. 从集合的观点看待元素的分类计数:将有限集合M的元素分成两个子集A和B. 当且仅当A∩B= ø,A∪B = M时,A的元素与B的元素相加,才等于M的元素个数.【例1】某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是(用数字作答).【解析】由于1元1本的杂志只有3本,1元1本的杂志不可能只买1本或3本.否则所用钱数为奇数,再买2元1本的杂志无论买几本所用钱数都是偶数,其和不可能为10元这个偶数.所以小张用10元钱去买,有且只有如下两种买法.如果全买2元1本的杂志,则10元钱可以买5本,有538856C C==种方法;如果1元1本的杂志买2本,则2元1本的杂志可以买4本,由乘法原理,有4283210C C⋅=种方法;由加法原理,不同买法的种数是:56+210=266.【例2A.48B.36C.24D.18【解析】4位同学的总分为零,有且只有如下3种情况.(1)若4人全部选甲题,其总分和为零必须2人答对另2人答错,有24C=6种情况;(2)若4人全部选乙题,同理也有24C=6种情况;(3)若4人中两人选甲题,另两人选乙题,其总分和为零必须各1人答对另1人答错,有2242A A=24种情况.由加法原理,不同的得分种数为6+6+24=36,∴选B.【评注】例1按1元1本的杂志数分类,是因为这种杂志的数量少;例2按总分之和为0的情况分类,因为这是计数时确定取舍的标准.所以在解题时确定正确的分类标准十分重要.(2)可重排列与不重排列——统一在乘法原理之中排列元素的选择有两种方式. 一种是不能重复的元素——“用后则扔”;第二种是可以重复的元素——“用后还用”. 解题时必须正确区分与掌握.在乘法原理中,它们是统一的,只不过前者构成“阶乘运算”,后者构成“乘法运算”.所谓阶乘数,就是前n个正整数的连乘积,记号n!是对这种连乘积的简化写法.【例3】完成某项工作需4个步骤,每一步方法数相等,完成这项工作共有81种方法.改革后完成这项工作减少了一个步骤,则改革后完成该项工作有 种方法.【分析】4个步骤却有81种方法,可见每个步骤都有可供选择的多种方法,而且“每一步方法数相等,”可见本题属于重复排列.【解析】设原来每个步骤有x 种方法,则481,3x x =∴=.现在减少1个步骤,即完成该项工作只有3个步骤,每个步骤仍有3种方法.3327=,∴改革后完成该项工作有27种方法.【例4】证明:()()123112!3!4!1!1!n n n ++++=-++ 【证明】注意到:11!(1)!(1)!kk k k -=++.令k=1,2,3。

(完整版)历届高考中的二项式定理试题汇编大全

(完整版)历届高考中的二项式定理试题汇编大全

历届高考中的“二项式定理”试题汇编大全一、选择题:(2006 年)241 1、( 2006湖北文)在 T X — 的展开式中,x 的幕的指数是整数的有V xA. 3项B. 4项C. 5项D. 6项12 . ( 2006湖北理)在(x 3—)24的展开式中,X 的幕的指数是整数的项共有V xA . 3项B . 4项C . 5项D . 6项3.(2006湖南文) 若(ax 1)5的展开式中X 3的系数是80,则实数a 的值是6、( 2006江西理)在(x — 2 )2006的二项展开式中,含 x 的奇次幕的项之和为S ,当 x 2 时,S 等于()3—,则展开式中常数项是147 . 1 (2006辽宁文)C 6 C ;C 3C 64 5C 6 C 6的值为( )A. 61 B . 62 C . 63D . 648、 (2006全国I 卷文) 在 1X2x10的展开式中, 4X 的系数为3008 3008 30093009A.2B.-2C.2D.-2A .120 B 120 C15D15(A) — 1(B)1(C) —45(D)45210 . (2006山东理)已知 X n的展开式中第三项与第五项的系数之比为一 其中i 2 = — 1,则展开式中常数项是14(A) — 45i(B) 45 i(C) — 45(D)45A . -2B. 2、2D. 24. ( 2006 江苏)(..X—)10的展开式中含x 的正整数指数幕的项数是3x(A) 0 (B ) 2(C ) 4(D) 65 . ( 2006江西文)在 ・、X n2- 的二项展开式中,若常数项为 x60 ,则n 等于(A. 3 B . 6 C. 9 D . 1229. ( 2006山东文) 已知的展开式中第三项与第五项的系数之比为6 311. (2006浙江文)在二项式X 1的展开式中,含X3的项的系数是(A)15 (B)20 (C)30 (D)4012. (2006 浙江理)若多项式x2 x10a0 a1(x 1) a g(x 1)2%0(x 1)11,则a9(A)9 (B)10 (C)-9 (D)-1013 .(2006重庆文)2x 3 5的展开式中X2的系数为(A)—2160 ( B)—1080 (C) 1080 ( D)216014 . (2006重庆理) 3、x —1xn的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B) -162 (c)162 (D)540(2005 年--2000 年)1. (2005江西文、理)C. x 3 x)12的展开式中,含x的正整数次幕的项共有(C. 2项D.(2005全国卷n 文)(A) 840 ( B)(2005全国川文、理)A . —14(2005山东文、理)(x .2y)10的展开式中x6y4项的系数是(—840 (C) 210 (D)—210在(x 1)(x 1)8的展开式中B . 14x5的系数是(C.—28D.)28 如果(3x1展开式中—的系数是(x(A) 7 (B)(2005浙江理)在(1 —x)(A) 74 (B) 121 (C)6. ( 2005浙江文)(A) 5 (B) 5 (C)7. (2005重庆理)若(2x1—)n的展开式中各项系数之和为3. x2128,则(C) 21 (D) 216+ (1 —x) + (1—74 (D)7—x) + (1—12161 x的展开式中,含10 (D) 101丄”展开式中含xB . 6C . 8D . 108—x)的展开式中,含3x的项的系数是()x3的项的系数是(1 1£项的系数与含项的系数之比为一5,则n等于()x x8. (2005重庆文)若(1 2x)n展开式中含x3的项的系数等于含A . 5 B. 7 C . 9 D . 11 x的项的系数的8倍,贝U n等于()9. (2004福建理)若(1-2x)9展开式的第3项为288,则lim (丄n丄)的值是x(A) 2(B) 1(C)-22 (D)—510 . (2004福建文)已知(X ^)8展开式中常数项为x则展开式中各项系数的和是()A . 28B . 38C . 1 或38D . 1 或281120,其中实数a是常数,11. (2004 江苏)(2x 、、x)4的展开式中x3的系数是((A)6 (B)12 (C)24 (D)4812.(2004浙江文、理)若C.x 厶)n展开式中存在常数项,则n的值可以是(Vx(A) 8 (B) 9 (C) 10 (D) 12(2004全国卷I文、理)(2x31——)7的展开式中常数项是(x14.15.16.A . 14 B.- 14(2004全国川卷文)A. 15B. 1542 D. - 426展开式中的常数项为()C. 20D. 20(2002春招北京文)在(1/x+x 2)6的展开式中,x3的系数和常数项依次是((A)20, 20 (B)15, 20 (C)20 , 15 ( D) 15, 15(2000江西、天津文)5033x的展开式中系数为有理数的项共有(A) 6 项(B) 7 项(C) 8 项(D) 9 项二.填空题:(2005 年)1. (2006北京文)2 7的展开式中,x x3的系数是(用数字作答)2. (2006北京理)2在(匸一)7的展开式中,x2x的系数中(用数字作答)(2006安徽理)设常数a 0, 21ax x43展开式中x3的系数为一,则lim(a a22 n(2006广东)在(x 勻11的展开式中,x 5的系数为x5 3(2006湖南理)若(ax 1)的展开式中x 的系数是-80,贝U 实数a 的值是1(2006全国n 卷文、理)在(x 4+ x )10的展开式中常数项是x(2005 年)1 63. (2005北京文科)(X —)的展开式中的常数项是x4. (2005福建文、理)(2、、x 丄)6展开式中的常数项是X55. (2005广东)已知(XCOS 1)5的展开式中X 2的系数与(X )4的展开式中X 3的系数相等,则COS4(2006安徽文)2 1 33设常数a0, ax 「X 展开式中x的系数为2,则a=(2006福建文) 1(x 2 )5展开式中x 4的系数是.x(用数字作答)(2006福建理)(x 2 — !)2展开式中x 2的系数是x(用数字作答)8. (用数字作答)10. (2006陕西文) (2x — 1)6展开式中的常数项为寸(用数字作答)11. (2006陕西理) 1(3x - _x )12展开式x —3的系数为 (用数字作答)12. (2006四川文) (1 2x )10展开式中x 3的系数为(用数字作答)。

二项式定理-高考题(含答案)汇编

二项式定理-高考题(含答案)汇编

二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x 的展开式中2x 的系数是( D)(A )42(B )35(C )28(D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x 的二项展开式中,x 的系数为( D )(A)10 (B)-10 (C)40 (D)-404.(2011.天津高考理科.T5)在62()2x x 的二项展开式中,2x 的系数为( C )(A )154(B )154(C )38(D )385.(2012·重庆高考理科·T4)821xx 的展开式中常数项为( B )(A)1635(B)835(C)435(D)1056.(2012·重庆高考文科·T4)5)31(x 的展开式中3x 的系数为( A )(A)270(B)90(C)90(D)2707. (2013·大纲版全国卷高考理科·T7)8411+x y 的展开式中22x y 的系数是( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512ax x x x 的展开式中各项系数的和为2,则该展开式中常数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4)n x)31((其中nN 且6n )的展开式中5x 与6x 的系数相等,则n ( B ) (A)6(B)7(C)8(D)910.(2011·陕西高考理科·T4)6(42)x x (x R )展开式中的常数项是(C )(A )20(B )15(C )15 (D )20二、填空题11. (2013·天津高考理科·T10)61x x 的二项展开式中的常数项为15 .12.(2011·湖北高考理科·T11)1813x x 的展开式中含15x 的项的系数为17 .13.(2011·全国高考理科·T13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为0 .14.(2011·四川高考文科·T13)91)x (的展开式中3x 的系数是84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x 的展开式中4x 的系数是240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x (,则1110a a = 0 . 17.(2011·广东高考理科·T10)72()x x x的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62ax x 的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n x x )1(的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若83ax x 的展开式中4x 的系数为7,则实数a =____12_____。

二项式定理-高考题(含答案)

二项式定理-高考题(含答案)

二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D ) (A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-404.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C ) (A )154- (B )154 (C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A ) (A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n( B ) (A)6 (B)7 (C)8 (D)910.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C ) (A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x⎛- ⎝的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 .16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若6x ⎛ ⎝⎭的展开式的常数项为60,则常数a 的值为 4 . 19.(2012·大纲版全国卷高考理科·T15)若nx x )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛ ⎝x 的展开式中4x 的系数为7,则实数a =____12_____。

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。

高中试卷-专题28 二项式定理(含答案)

高中试卷-专题28 二项式定理(含答案)

专题28 二项式定理一、单选题1.(2020·北京高三一模)在的展开式中,常数项是( )A .B .C .20D .160【答案】A 【解析】展开式的通项公式为,令,可得,故展开式的常数项为,故选:A.2.(2020·江苏省邗江中学高二期中)在的二项展开式中,含的项的系数是( )A .10B .15C .20D .25【答案】B 【解析】的二项展开式的通项为.令,解得.含的项的系数是.故选:B3.(2020·北京大峪中学高二期中)的展开式的常数项是( )A .B .C .3D .4【答案】D 【解析】612x x æö-ç÷èø160-20-612x x æö-ç÷èø()()()66621662112r r r r rr r r r T C x x C x ----+=××-×=-×××620r -=3r =612x x æö-ç÷èø368160C -×=-10212x x æö+ç÷èø11x 10212x x æö+ç÷èø2102031101011()22r rr r r r r T C x C x x --+æöæö==ç÷ç÷èøèø20311r -=3r =11x 33101152C æö=ç÷èø()522111x x æö+-ç÷èø3-4-展开式中的第项为,当,即时,此时;当,即时,此时.则.故选:D.4.(2020·江苏省邗江中学高二期中)已知,则( )A .B .C .D .【答案】A 【解析】当取 时, 取8个,则,当 取时, 取7个,则,所以 .故选:A5.(2020·北京市鲁迅中学高二月考)的展开式中系数最大的项为( )A .第项B .第项C .第项D .第项【答案】B 【解析】的展开式的通项公式为:,要使系数最大,则r 为偶数,且r 只可能从2,4,6中选,故,且,所以,且,所以,且,经验证:当时,符合,所以的展开式中系数最大的项为第五项,5211x æö-ç÷èø1k +()()52101552111kkkk k k k T C C x x --+æö=-=-ç÷èø2102k -=-4k =()44515C -=2100k -=5k =()55511C -=-514-=()()92100121011...x x a a x a x a x --=++++8a =45-2727-45()1x -1()91-x x 1891a C =-´()1x -x -()91-x x ()278911a C =-´´-()27189911145a C C =-´´--´=-()712x -4578()712x -()()17722+=-=-r rrr r r T C x C x ()()227722---³-rr rr C C ()()227722++-³-rr rr C C ()()()7!7!4!7!2!9!r r r r ´³×--×-()()()7!7!4!7!2!5!r r r r ³´×-+×-()()()41198³---r r r r ()()()()147621³--++r r r r 4r =()712x -6.(2020·阳江市第三中学高二期中)的展开式中,系数最小的项为( )A .第6项B .第7项C .第8项D .第9项【答案】C 【解析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C.7.(2020·辽宁省高三其他(理))已知二项式的展开式中,二项式系数之和等于64,则展开式中常数项等于( )A .240B .120C .48D .36【答案】A 【解析】由题意,解得,则,则二项式的展开式的通项公式为,令即,则.故选:A.8.(2020·扬州市江都区大桥高级中学高二期中)在的展开式中第4项与第8项的系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5、6项D .第6、7项【答案】A 【解析】因为的展开式中每一项的系数和二项式系数相等,第4项与第8项的系数相等所以,所以所以展开式里系数最大的项是第6项()131x -11313()(1)r r r r r r T C x C x +=-=-13(1)r rC -r 13(1)r rC -7r =121(2)n x x+264n=6n =1162211(2(2)n x x x x+=+1621(2)x x +6133622166122rrr r rr T C x C x x ---+æöæö=××=××ç÷ç÷èøèø3302r -=2r =6426622240r r C C -×=×=()nx y +()nx y +37n n C C =10n =二、多选题9.(2020·江苏省扬州中学高二期中)已知的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10【答案】ABC 【解析】∵已知的展开式中第5项的二项式系数最大,则或n =8或n =9故选:ABC .10.(2020·南京市江宁高级中学高二期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为( )A .第3项B .第4项C .第5项D .第6项【答案】CD 【解析】由题可知,该二项展开式中的项的系数于二项式系数相等,且展开式中第3项与第8项的系数为,又因为其相等,则所以该展开式中二项式系数最大的项为与项即为第5项;第6项.故选:CD11.(2020·福建省南安市侨光中学高二月考)关于的展开式,下列结论正确的是( )A .所有项的二项式系数和为32B .所有项的系数和为0C .常数项为D .二项式系数最大的项为第3项【答案】BC 【解析】解:二项式展开式的通项为()na b +()na b +4n C 7n =1(nx x+27,n n C C 9n =91152-+=91162++=61x x æö-ç÷èø20-61x x æö-ç÷èø()66216611rr r r r r r T C x C x x --+æö=-=-ç÷èø令,解得,则常数项为,故C 正确;且二项式系数最大的项为第4项,故D 错误;二项式系数和;令,得所有项的系数和为0,故A 错误,B 正确;故选:BC12.(2020·江苏省高二期中)下列组合数公式中恒成立的有( )A .B .C .D .【答案】ABD 【解析】对于,因为,,所以,即正确;对于,,故正确;对于,当时,左边,右边,等式不成立,故不正确;对于,因为,等式左边的系数为:,等式右边的系数为:,所以,故正确.故选:ABD620r -=3r =()3346120T C =-=-012345666666666264C C C C C C C ++++++==1x =mn mn nC C -=11m m n n mC nC --=111m mmn n n C C C +++=+()()()()22220122nn nn nn nC C C C C +++×××+=A !!()!mn n C m n m =-!!()![()]!!()!n m n n n C n m n n m m n m -==----m n mn n C C -=AB !(1)!!()!(1)!()!mn n n n mC m m m n m m m n m ×-=×=×-×-×-(1)!(1)![(1)(1)]!n n m n m -=×-×---11m n nC --=BC 1m n ==221C ==1112123C C =+=+=C D 2(1)(1)(1)n n n x x x +×+=+n x 011220nn n n n n n nn n n nC C C C C C C C --×+×+×++×L 001122n n n n n n n n n n C C C C C C C C =×+×+×++×L =0212222()()()()n n n n n C C C C ++++L n x 2nn C ()()()()2222122n n nn n n n C C C C C +++×××+=D三、填空题13.(2020·上海复旦附中高二期中)若,则=__________.【答案】64【解析】在中,令可得,.所以故答案为:64.14.(2020·上海交大附中高三期中)计算:_____.【答案】【解析】由题得原式=.故答案为:15.(2020·山东省高二期中)二项式的展开式中的系数是 【答案】40【解析】依题意,二项式展开式的通项公式为,当,故的系数是.16.(2020·浙江省高三三模)二项式的展开式中,所有二项式系数的和是__________,含x 的项的系数是__________.【答案】128 84 【解析】由题意所有二项式系数的和为,题中二项式展开式通项公式为,令,,6226016(1)x a a x a x a x +=+++×××+0126a a a a +++×××+=6226016(1)x a a x a x a x +=+++×××+1x =()6012611a a a a +=+++×××+60126264a a a a +++×××+==012393n nn n n n C C C C ++++=L 4n 0011223333(13)4n n n nn n n n C C C C ++++=+=L 4n252(x x-4x ()()()52110315522rrrrr r r T C x x C x ---+=×-=-××1034,2r r -==4x ()225240C -×=722x x æö+ç÷èø72128=77317722(2r rrr r r r T C xC x x--+==731r -=2r =所以含x 的项的系数是.故答案为:128;84.四、解答题17.(2020·延安市第一中学高二期中(理))已知,求(1)的值; (2)的值.【答案】(1);(2)1093【解析】(1)令,则;(2)令,则①令,则②由①②得,即18.(2020·北京大峪中学高二期中)已知展开式中的第三项的系数为,求:(1)含的项;(2)二项式系数最大的项.【答案】(1);(2).【解析】(1)展开式的通项为,由于展开式中第三项的系数为,即,即,整理得,,解得,则展开式通项为,227284C =7270127(12)x a a x a x a x -=++++L 017a a a ++¼+0246a a a a +++1-1x =()7017121a a a ++¼=--=1x =-0123672187a a a a a a -+-+¼+-=0x =01a =12372a a a a \+++¼=-+()02462218722185a a a a +++=-=2461092a a a =++0246110921093a a a a \+++=+=1nx x æö+ç÷èø454x 4120x 2521n x x æö+ç÷èø211n rr r rr n r nn T C x C x x --+æö=×=×ç÷èø45245n C =()1452n n -=2900n n --=n N *ÎQ 10n =210110rr r T C x-+=×令,解得,因此,展开式中含的项为;(2)由二项式系数的对称性可知,二项式系数最大的项为.19.(2020·湖北省高二期中)已知的展开式中第4项与第5项的二项式系数相等.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.【答案】(1),;(2).【解析】(1)由题意知,又展开式的通项为:展开式中共有8项,其中二项式系数最大的项为第4,第5项所以,(2)展开式中系数最大的项必须在正的系数项中产生,即在,,,时,也即在,,,中产生,而,, ,故系数最大的项为第5项20.(2020·怀仁市第一中学校高二月考(理))已知(xn 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.【答案】(1);(2),,.【解析】2104r -=7r =4x 744810120T C x x =×=5610252T C ==2nx ö-÷ø14280T x -=-525560T x-=525560T x-=34n n C C =7n \=72x ö÷ø()()773221777222rr rrr r r rr r r T C C xC x x ---+æö=-=-=-ç÷èø()793312472280T C xx--=-=-()71254422572560T C xx--=-=0r =2461T 3T 5T 7T 721T x =12384T x =525560T x -=1127448T x -=525560T x-=5n =51T x =2352T x =5516T x=二项式展开式的通项公式为,;(1)根据展开式中的第二项和第三项的系数相等,得,即,解得;(2)二项式展开式的通项公式为,;当时,对应项是有理项,所以展开式中所有的有理项为,,.21.(2020·江西省上高二中高二月考(理))在二项式的展开式中,前三项的系数依次成等差数列.(1)求展开式中的所有有理项;(2)求系数最大的项.【答案】(1),,(2)和【解析】(nx 32112rrn r n rr r nn T C x C x--+æö=××=××ç÷èø()0,1,2r n =×××2121122nn C C æö×=×ç÷èø()111242n n n -=×5n =3521512rrr r T C x -+æö=××ç÷èø()0,1,2r n =×××0,2,4r =00551512T C x x æö=××=ç÷èø22532351522T C x x -æö=××=ç÷èø44565515216T C x x -æö=×=ç÷èøn +(1)∵由题设可知解得n=8或n=1(舍去)当n=8时,通项据题意,必为整数,从而可知r 必为4的倍数,而0≤r≤8∴ r=0,4,8,故x 的有理项为,,(2)设第r+1项的系数t r+1最大,显然t r+1>0,故有≥1且≤1∵, 由≥1得r≤3又∵,由≤1得:r≥2∴ r=2或r=3所求项为和22.(2020·广西壮族自治区钦州一中高二月考(理))已知展开式前三项的二项式系数和为22.(1)求的值;(2)求展开式中的常数项;(3)求展开式中二项式系数最大的项.【答案】(1);(2);(3).【解析】由题意,展开式前三项的二项式系数和为22.1二项式定理展开:前三项二项式系数为:,解得:或舍去.即n 的值为6.2nx æçèn 66032160x (2nx ()()01211222n n n n n C C C n -++=++=6n =7(n =-)2由通项公式,令,可得:.展开式中的常数项为;是偶数,展开式共有7项则第四项最大展开式中二项式系数最大的项为.()36662166(2)2k k k k k k k T C x C x ---+==3602k -=4k =\1264642416260T C x --+==()3n Q .\936363223162160T C x x --+==。

历届高考中的“二项式定理”试题汇编大全

历届高考中的“二项式定理”试题汇编大全

历届高考中的“二项式定理〞试题汇编大全一、选择题:〔2006年〕1、〔2006XX 文〕在2431⎪⎪⎭⎫⎝⎛+x x 的展开式中,x 的幂的指数是整数的有A. 3项B. 4项C. 5项D. 6项2.〔2006XX 理〕在24(x -的展开式中,x 的幂的指数是整数的项共有A .3项B .4项C .5项D .6项3. 〔2006XX 文〕 假设5)1(-ax 的展开式中3x 的系数是80,那么实数a 的值是A .-2B. 22 C. 34 D. 24.〔2006XX 〕10)31(x x -的展开式中含x 的正整数指数幂的项数是〔A 〕0 〔B 〕2 〔C 〕4 〔D 〕65.〔2006XX 文〕在2nx ⎫⎪⎭的二项展开式中,假设常数项为60,那么n 等于〔 〕A.3 B.6 C.9 D.126、〔2006XX 理〕在〔x 2006 的二项展开式中,含x 的奇次幂的项之和为S ,当x S 等于〔〕A.23008B.-23008C.23009D.-230097.〔2006XX 文〕1234566666C C C C C ++++的值为〔 〕 A.61 B.62 C.63D.64 8、〔2006全国Ⅰ卷文〕在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为 A .120- B .120 C .15- D .159.〔2006XX 文〕(x x 12-)n 的展开式中第三项与第五项的系数之比为143,那么展开式中常数项是 (A)-1 (B)1 (C)-45 (D)4510.〔2006XX 理〕2n x⎛ ⎝的展开式中第三项与第五项的系数之比为-143,其中2i =-1,那么展开式中常数项是 (A)-45i (B) 45i (C) -45 (D)4511.〔2006XX 文〕在二项式()61x +的展开式中,含3x 的项的系数是 (A)15 (B)20 (C)30 (D)4012.〔2006XX 理〕假设多项式=+-+++++=+911102910012a ,)1(a )1(a )1(则x x x a a x x(A)9 (B)10 (C)-9 (D)-1013.〔2006XX 文〕()523x -的展开式中2x 的系数为〔A 〕-2160 〔B 〕-1080 〔C 〕1080 〔D 〕216014.〔2006XX 理〕假设(x 3-)x 1n 的展开式中各项系数之和为64,那么展开式的常数项为(A)-540 (B) -162 (c)162 (D)540〔2005年--2000年〕1.〔2005XX 文、理〕123)(x x +的展开式中,含x 的正整数次幂的项共有〔 〕A .4项B .3项C .2项D .1项2.〔2005全国卷Ⅱ文〕10()x 的展开式中64x y 项的系数是〔 〕〔A 〕840 〔B 〕-840 〔C 〕210 〔D 〕-2103.〔2005全国Ⅲ文、理〕在8)1)(1(+-x x 的展开式中5x 的系数是〔 〕A .-14B .14C .-28D .284.〔2005XX 文、理〕如果(3nx 的展开式中各项系数之和为128,那么 展开式中31x 的系数是〔 〕〔A 〕7 (B) 7- (C) 21 (D)21-5.〔2005XX 理〕在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是()(A) 74 (B) 121 (C)-74 (D)-1216.〔2005XX 文〕在()()5611x x ---的展开式中,含3x 的项的系数是()(A)5-(B) 5 (C)10-(D) 107.〔2005XX 理〕假设)12(x x -n 展开式中含21x 项的系数与含41x 项的系数之比为-5,那么n 等于〔〕A .4B .6C .8D .108.〔2005XX 文〕假设n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,那么n 等于〔〕A .5B .7C .9D .119.〔2004XX 理〕假设(1-2x )9展开式的第3项为288,那么∞→n lim (n x x x 1112⋯++)的值是 〔A 〕2 〔B 〕1 〔C 〕21〔D 〕5210.〔2004XX 文〕8)(xa x -展开式中常数项为1120,其中实数a 是常数, 那么展开式中各项系数的和是〔 〕A .28B .38C .1或38D .1或2811.〔2004XX 〕4)2(x x +的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)4812.(2004XX 文、理) 假设n x )x2(3+展开式中存在常数项,那么n 的值可以是〔 〕 (A) 8 (B) 9 (C) 10 (D) 1213.〔2004全国卷Ⅰ文、理〕73)12(x x -的展开式中常数项是〔 〕 A .14 B .-14 C .42 D .-4214.〔2004全国Ⅲ卷文〕61x ⎫⎪⎭展开式中的常数项为〔 〕 A .15 B .15- C .20 D .20-15.〔2002春招文〕在(1/x+x 2)6的展开式中,x 3的系数和常数项依次是〔 〕 〔A 〕20,20 〔B 〕15,20 〔C 〕20,15 〔D 〕15,1516.〔2000XX 、XX 文〕二项式()50332x +的展开式中系数为有理数的项共有〔 〕 〔A 〕6项 〔B 〕7项 〔C 〕8项 〔D 〕9项二.填空题:〔2005年〕1.〔2006文〕在72⎪⎭⎫ ⎝⎛-x x 的展开式中,x 3的系数是.〔用数字作答〕2.〔2006理〕在72)x 的展开式中,2x 的系数中__________________〔用数字作答〕.3.〔2006XX 理〕设常数0a >,42ax⎛ ⎝展开式中3x 的系数为32,那么2lim()n n a a a →∞++⋅⋅⋅+=__________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2004春招安徽文理)若(x+ -2)n的展开式中常数项为-20,则自然数n=______.
2.(2004湖南理)若 的展开式中的常数项为84,则n=.
3.(2004湖南文) 的展开式中的常数项为___________(用数字作答)
4.(2004春招上海)如图,在由二项式系数所构成的杨辉
三角形中,第_____行中从左至右第14与第15个数的比为 .
A.4项B.3项C.2项D.1项
2.(2005全国卷Ⅱ文) 的展开式中 项的系数是()
(A)840(B)-840(C)210(D)-210
3.(2005全国Ⅲ文、理)在 的展开式中 的系数是()
A.-14B.14C.-28D.28
4.(2005山东文、理)如果 的展开式中各项系数之和为128,则
展开式中 的系数是()
8.(2001上海理)在代数式(4x2-2x-5)(1+ )5的展开式中,常数项为.
9.(2000春招北京、安徽文、理) 展开式中的常数项是__________
10.(2000上海文、理)在二项式 的展开式中,系数是小的项的系数为。(结果用数值表示)
三、解答题:
(2006年—2000年)
1.(2003上海文)已知数列 (n为正整数)是首项是a1,公比为q的等比数列.
历届高考中的“二项式定理”试题汇编大全
一、选择题:
(2006年)
1、(2006湖北文)在 的展开式中,x的幂的指数是整数的有
A. 3项B. 4项C. 5项D. 6项
2.(2006湖北理)在 的展开式中, 的幂的指数是整数的项共有
A.3项B.4项C.5项D.6项
3.(2006湖南文)若 的展开式中 的系数是80,则实数a的值是
13.(2006天津文) 的二项展开式中 的系数是(用数字作答).
14、(2006天津理) 的二项展开式中 的系数是____(用数学作答).
(2005年)
1.(2理科) 的展开式中的常数项是(用数字作答)
3.(2005北京文科) 的展开式中的常数项是(用数字作答)
3.(2006安徽理)设常数 , 展开式中 的系数为 ,则 __________。
4.(2006安徽文)设常数 , 展开式中 的系数为 ,则 =_____。
5.(2006福建文) 展开式中 的系数是_____(用数字作答)
6.(2006福建理)(x - ) 展开式中x 的系数是(用数字作答)
7、(2006广东)在 的展开式中, 的系数为________.
4.(2002年广东、江苏、河南,全国文、理)(x2+1)(x-2)7的展开式中x3项的系数是_______.
5.(2001春招上海)二项式 的展开式中常数项的值为________.
6.(2001全国文)( )10的二项展开式中x3的系数为
7.(2001上海文)在代数式(x- )5的展开式中,常数项为.
13.(2006重庆文) 的展开式中 的系数为
(A)-2160(B)-1080(C)1080(D)2160
14.(2006重庆理)若 - n的展开式中各项系数之和为64,则展开式的常数项为
(A)-540 (B) -162 (c)162 (D)540
(2005年--2000年)
1.(2005江西文、理) 的展开式中,含x的正整数次幂的项共有()
(A) (B) (C) (D)
5.(2005浙江理)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是( )
(A) 74 (B) 121 (C)-74 (D)-121
6.(2005浙江文)在 的展开式中,含 的项的系数是( )
(A) (B) 5 (C) (D) 10
8.(2006湖南理)若 的展开式中 的系数是-80,则实数 的值是.
9.(2006全国Ⅱ卷文、理)在(x4+ )10的展开式中常数项是(用数字作答)
10.(2006陕西文)(2x- )6展开式中的常数项为(用数字作答).
11.(2006陕西理)(3x- )12展开式x-3的系数为(用数字作答)
12.(2006四川文) 展开式中 的系数为___________(用数字作答)。
10.(2006山东理)已知 的展开式中第三项与第五项的系数之比为- ,其中 =-1,则展开式中常数项是
(A)-45i(B) 45i(C)-45 (D)45
11.(2006浙江文)在二项式 的展开式中,含 的项的系数是
(A)15 (B)20 (C)30 (D)40
12.(2006浙江理)若多项式
(A)9 (B)10 (C)-9 (D)-10
9.(2004全国Ⅱ卷文)已知a为实数,(x+a)10展开式中x7的系数是-15,则a=。
10.(2004全国Ⅳ卷文、理) 展开式中 的系数为.
(2003--2000年)
1.(2003广东) 展开式中 的系数是
2.(2003全国文、理,天津文、理) 的展开式中 系数是___
3.(2002春招上海)若在 的展开式中,第4项是常数项,则n=.
7.(2005重庆理)若 n展开式中含 项的系数与含 项的系数之比为-5,则n等于()
A.4 B.6 C.8 D.10
8.(2005重庆文)若 展开式中含 的项的系数等于含x的项的系数的8倍,则n等于()
A.5 B.7C.9 D.11
9.(2004福建理)若(1-2x)9展开式的第3项为288,则 ( )的值是
4.(2005福建文、理) 展开式中的常数项是(用数字作答)。
5.(2005广东)已知 的展开式中 的系数与 的展开式中x3的系数相等,则 =.
6.(2005湖北理) 的展开式中整理后的常数项为.
7.(2005湖北文) 的展开式中整理后的常数项等于.
8.(2005湖南文、理)在(1+x)+(1+x)2+……+(1+x)6的展开式中,x2项的系数是。(用数字作答)
(A) 8 (B) 9 (C) 10 (D) 12
13.(2004全国卷Ⅰ文、理) 的展开式中常数项是()
A.14 B.-14C.42 D.-42
14.(2004全国Ⅲ卷文) 展开式中的常数项为()
A.15B. C.20 D.
15.(2002春招北京文)在(1/x+x2)6的展开式中,x3的系数和常数项依次是()
A.23008B.-23008C.23009D.-23009
7.(2006辽宁文) 的值为( )
A.61B.62C.63D.64
8、(2006全国Ⅰ卷文)在 的展开式中, 的系数为
A. B. C. D.
9.(2006山东文)已知( ) 的展开式中第三项与第五项的系数之比为 ,则展开式中常数项是
(A)-1 (B)1 (C)-45 (D)45
5、(2004上海文、理)若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是. (结果用分数表示)
6.(2004天津理)若 ,则
。(用数字作答)
7.(2004重庆文、理)若在 的展开式中 的系数为 ,则
8.(2004湖北文)已知 的展开式中各项系数的和是128,则展开式中x5的系数是.(以数字作答)
A.-2B. C. D.2
4.(2006江苏) 的展开式中含x的正整数指数幂的项数是
(A)0(B)2(C)4(D)6
5.(2006江西文)在 的二项展开式中,若常数项为 ,则 等于( )
A. B. C. D.
6、(2006江西理)在(x- )2006的二项展开式中,含x的奇次幂的项之和为S,当x= 时,S等于()
(A)2(B)1(C) (D)
10.(2004福建文)已知 展开式中常数项为1120,其中实数a是常数,
则展开式中各项系数的和是()
A.28B.38C.1或38D.1或28
11.(2004江苏) 的展开式中x3的系数是( )
(A)6 (B)12 (C)24 (D)48
12.(2004浙江文、理)若 展开式中存在常数项,则n的值可以是()
(1)求和:
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
(3)设q≠1,Sn是等比数列 的前n项和,求:
(A)20,20(B)15,20(C)20,15(D)15,15
16.(2000江西、天津文)二项式 的展开式中系数为有理数的项共有()
(A)6项(B)7项(C)8项(D)9项
二.填空题:
(2005年)
1.(2006北京文)在 的展开式中,x3的系数是.(用数字作答)
2.(2006北京理)在 的展开式中, 的系数中__________________(用数字作答).
9.(2005辽宁) 的展开式中常数项是.
10.(2005全国卷Ⅰ理) 的展开式中,常数项为。(用数字作答)
11.(2005全国卷Ⅰ文) 的展开式中,常数项为。(用数字作答)
12.(2005天津理)设 ,则
13.(2005天津文)二项式 的展开式中常数项为________(用数字作答).
(2004年)
相关文档
最新文档