实验八 集成运算放大电路的应用

合集下载

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

一、实验目的1. 了解集成运算放大器的基本特性和工作原理。

2. 掌握集成运算放大器的基本应用电路的设计与调试方法。

3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。

二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。

三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。

(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。

(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。

2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。

(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。

(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。

3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。

集成运算放大电路的应用

集成运算放大电路的应用

集成运算放大电路的应用设计方案2. 各子框图的作用1. 低通信号源由稳压电压提供。

2. 三角波产生器由函数信号发生器产生一个f=2KHZ 的三角波,幅度为2V 。

3. 加法器由低频信号源产生U i1=0.1sin2πf 0t (V ),f 0=500HZ 的正弦波信号,加到加法器的输入端,加法器的另一端加到振荡器产生信号U o1,使之产生一个U i2=10U i1+U o1的U i2信号。

4. 滤波器则将f =2KHZ 的三角波滤掉,并使得到的正弦波具有一定的放大倍数。

5. 比较器是通过电压比较使输出波形的幅值为2V 。

3.各模块电路原理和电路分析(1)加法器电路同相求和运算电路的一般形式如图其中,,…,为输入信号,为输出信号,,…,同相输入端电阻,为反馈电阻,为平衡电阻本次电路取n=2。

同相输入端的电位为U p =Rp (U 1R 1+U2R2),其中R p =R 1//R 2同相求和运算电路的一般形式u u ou u所以输出电压U i2=R f(U1R1+U2R2)电路图波形图(2)滤波电路本模块电路设计采用二级滤波。

其中第一级是低通滤波,第二级是高通滤波。

低通滤波的作用是用来通过低频信号衰减或抑制高频信号;高频滤波的作用则相反,通过高频信号衰减或抑制低频信号。

通过二次滤波,来实现得出的波形频率更稳定。

传递函数通带内的电压放大倍数高通的原理跟低通的原理大体相同。

电路图波形图(3)比较器电路本模块电路采用的电路是一般单限比较电路本电路的稳压管采用四个1N4007二极管相反并联接入电路,以达到压降的效果。

电路图波形图通过波形图观察可知,电路基本实现了输出波形的幅值为2V(在误差范围内)。

3.总体电路图。

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。

它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。

在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。

实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。

它通过将输入信号与放大倍数相乘,输出一个放大后的信号。

我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。

而相位方面,输出信号与输入信号的相位保持一致。

这说明非反相放大器能够有效放大输入信号,并且不改变其相位。

实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。

它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。

我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。

但是相位方面,输出信号与输入信号相差180度。

这说明反相放大器能够有效放大输入信号,并且改变其相位。

实验三:积分器积分器是Op-Amp的另一个重要应用。

它可以将输入信号进行积分运算,输出一个积分后的信号。

我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。

这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。

实验四:微分器微分器是Op-Amp的又一个重要应用。

它可以将输入信号进行微分运算,输出一个微分后的信号。

我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验8 集成运算放大器的基本应用

实验8 集成运算放大器的基本应用

实验八集成运算放大器的基本应用(I)——模拟运算电路班级:姓名:集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

图8-1 反相比例运算电路图8-2 反相加法运算电路图8-3(a) 同相比例运算电路图8-3(b) 电压跟随器图8-4 减法运算电路图8-5 积分运算电路1、反相比例运算电路1) 按图8-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。

2) 输入f=100Hz,U i=0.5V的正弦交流信号,测量相应的U O,并用示波器观察u O和u i 的相位关系,记入表8-1。

表8-1U i=0.5V,f=100HzU i(V)U0(V)u i波形u O波形A V实测值计算值2、同相比例运算电路1) 按图8-3(a)连接实验电路。

实验步骤同内容1,将结果记入表8-2。

2) 将图8-3(a)中的R1断开,得图8-3(b)电路重复内容1)。

表8-2U i=0.5V f=100HzU i(V)U O(V) u i波形u O波形A V实测值计算值3、反相加法运算电路1)按图8-2连接实验电路。

调零和消振。

2) 输入信号采用直流信号。

实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性区。

用直流电压表测量输入电压U i1、U i2及输出电压U O,记入表8-3。

表8-3U i1(V)U i2(V)U O(V)4、减法运算电路1) 按图8-4连接实验电路。

调零和消振。

2) 采用直流输入信号,实验步骤同内容3,记入表8-4。

表8-4U i1(V)U i2(V)U O(V)5、积分运算电路1)实验电路如图8-5所示。

打开K2,闭合K1,对运放输出进行调零。

2)调零完成后,再打开K1,闭合K2,使u C(o)=0。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告【摘要】: 本题目关于放大器设计的基本目标:使用一片通用四运放芯片LM324组成预设的电路,电路包括三角波产生器、加法器、滤波器、比较器四个设计模块,每个模块均采用一个运放及一定数目的电容、电阻搭建,通过理论计算分析,最终实现规定的电路要求。

【关键字】:运算放大器LM324、三角波信号发生器、加法器、滤波器、比较器一、设计任务使用一片通用四运放芯片LM324 组成电路框图见图1(a ),实现下述功能:使用低频信号源产生 , 的正弦波信号, 加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号uo1, uo1 如图1(b )所示, T1=0.5ms ,允许T1有±5%的误差。

(a )(b )图中要求加法器的输出电压ui2=10ui1+uo1。

ui2 经选频滤波器滤除uo1 频率分量,选出f0 信号为uo2,uo2 为峰峰值等于9V 的正弦信号,用示波器观察无明显失真。

uo2 信号再经比较器后在1k Ω 负载上得到峰峰值为2V 的输出电压uo3。

电源只能选用+12V 和+5V 两种单电源,由稳压电源供给。

不得使用额外电源和其它型号运算放大器。

要求预留ui1、ui2、uo1、uo2 和uo3 的测试端子。

二、设计方案1、 三角波发生器由于用方波发生器产生方波,再经过积分电路电路产生三角波需要运用两个运算放大器,而LM324只有四个运算放大器,每个电路运用一个,所以只能用一个运算放大器产生三角波。

同时由于器件不提供稳压二极管,所以电阻电容的参数必须设计合理,用直流电压源代替稳压管。

对方波放生电路进行分析发现,如果将输出端改接运放的负输入端,出来的波形近似为三角波。

电路仿真如下图所示:2、 加法器由于加法器输出11210o i i u u u += ,根据《模拟电子技术》书上内容采用求和电路,电路如下所示:3、 滤波器由于正弦波信号1i u 的频率为500Hz ,三角波1o u 的频率为2KHz ,滤波器需要滤除1o u ,所以采用二阶的有源低通滤波器。

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。

实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。

实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。

在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。

常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。

各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。

实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。

实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。

集成运放电路应用及调测

集成运放电路应用及调测

集成运放电路应用及调测1. 集成运放电路的应用集成运放电路是一种非常常见而且非常有用的电子元器件。

它主要用于放大和信号过滤,它的主要优势是高增益、低失真和高输入阻抗。

这些优势让它成为许多电子应用领域的首选元件。

1.1 放大器集成运放电路最常用的应用是作为放大器。

它可以将输入信号的电压放大并输出到负载。

这样可以扩大信号的幅度,以便更轻松地对其进行处理。

放大器在音频放大器、视频放大器、传感器和天线放大器中被广泛使用。

1.2 滤波器另一种常见的应用是作为滤波器。

在此应用中,集成运放电路通常作为一个有源滤波器来实现。

有源滤波器比被动滤波器的优点在于它不会影响信号的输入阻抗,同时可以在滤波器的输出端提供高增益。

集成运放电路在低通滤波器、带通滤波器和高通滤波器中都有用。

1.3 比较器集成运放电路还可以作为比较器。

在此应用中,在两个输入信号之间进行比较,并输出高电平或低电平。

这对于数字电路和控制电路非常有用。

1.4 可调放大器集成运放电路还可以实现可调放大器。

这种应用中,运放的放大增益可以通过控制电压来实现,使其非常适合在可调放大器和音量控制电路中使用。

2. 集成运放电路的调试2.1 输电阻抗集成运放电路的输入阻抗是非常高的,所以在调试前必须考虑信号源的传递阻抗。

当信号源的传输阻抗低于运放输入阻抗时,会出现信号失真和干扰。

2.2 输入偏置电压集成运放电路的输入偏置电压可能会影响其性能。

在调试时,必须测量输入偏置电压,并确保其在可接受的范围内。

如果输入偏置电压过高,则可能会影响电路的输出。

2.3 输出电平在调试集成运放电路时,必须注意输出电平。

输出电平应与预期输出相匹配。

如果输出电平不正确,则可能需要调整运放电路的增益。

2.4 反馈电路集成运放电路的反馈电路对其性能的影响非常大。

反馈电路的选择和调节是确保电路正常工作的关键。

在调试集成运放电路时,必须考虑反馈电路,以确定其是否正确运作。

总之,集成运放电路的应用非常广泛,是许多电子应用中必不可少的元器件。

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告一、实验目的。

本实验旨在通过对集成运算放大器的基本应用进行实验操作,加深对集成运算放大器的工作原理和基本应用的理解,掌握集成运算放大器的基本特性和应用技巧,提高实验操作能力和动手能力。

二、实验仪器与设备。

1. 集成运算放大器实验箱。

2. 示波器。

3. 直流稳压电源。

4. 电阻、电容等元器件。

5. 万用表。

6. 示波器探头。

三、实验原理。

集成运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的差动放大器,具有输入阻抗高、输出阻抗低、增益稳定、频率响应宽等特点,广泛应用于模拟电路中。

在本实验中,我们将学习集成运算放大器的基本特性和应用技巧,包括集成运算放大器的基本参数、基本电路和基本应用。

四、实验内容。

1. 集成运算放大器的基本参数测量。

a. 输入失调电压的测量。

c. 增益带宽积的测量。

2. 集成运算放大器的基本电路实验。

a. 非反相放大电路。

b. 反相放大电路。

c. 比较器电路。

d. 电压跟随器电路。

3. 集成运算放大器的基本应用实验。

a. 信号运算电路。

b. 信号滤波电路。

c. 信号调理电路。

五、实验步骤。

1. 连接实验仪器与设备,按照实验要求进行电路连接。

2. 分别测量集成运算放大器的输入失调电压、输入失调电流和增益带宽积。

3. 搭建集成运算放大器的基本电路,观察输出波形并记录实验数据。

4. 进行集成运算放大器的基本应用实验,观察输出波形并记录实验数据。

六、实验数据与分析。

1. 输入失调电压测量数据。

输入失调电压,0.5mV。

平均输入失调电压,0.55mV。

2. 输入失调电流测量数据。

输入失调电流,10nA。

输入失调电流,12nA。

平均输入失调电流,11nA。

3. 增益带宽积测量数据。

增益带宽积,1MHz。

4. 实验数据分析。

通过测量数据的分析,我们可以得出集成运算放大器的输入失调电压较小,输入失调电流也较小,增益带宽积较大,符合集成运算放大器的基本特性。

集成运算放大器应用

集成运算放大器应用

01
人工智能和机器学习
随着人工智能和机器学习技术的发展,集成运算放大器有望在这些领域
发挥更大的作用。例如,用于数据采集和处理、信号处理和模式识别等
应用。
02
物联网和智能传感器
随着物联网和智能传感器技术的发展,集成运算放大器在智能传感器和
物联网节点中的应用将更加广泛。例如,用于环境监测、智能家居和工
业自动化等领域。
详细描述
集成运算放大器作为核心器件,在信号运算处理中发挥着关键作用。通过配置适当的反馈网络,集成 运算放大器可以实现加法、减法、积分、微分等运算功能,广泛应用于信号调理、控制系统等领域。
有源滤波器
总结词
集成运算放大器可用于构建有源滤波器,对信号进行频率选 择和噪声抑制。
详细描述
有源滤波器是一种能够实现特定频率范围通过或抑制的电路 ,利用集成运算放大器的高开环增益和低噪声特性,可以构 建多种有源滤波器,如低通、高通、带通、带阻滤波器等, 广泛应用于信号提取、噪声抑制等领域。
总结词
集成运算放大器可以实现电流-电压转换和 电压-电流转换,将不同类型的信号进行相 互转换。
详细描述
集成运算放大器具有高输入阻抗和低输出阻 抗的特点,可以利用其输入和输出特性实现 电流-电压转换和电压-电流转换。在传感器 信号采集、电子测量等领域,这种转换功能 非常有用,可以将不同类型的信号进行相互 转换,便于后续处理或传输。
降低功耗
随着便携式电子设备的需求增加,集成运算放大器的功耗也受到了越来越多的关注。因此,低功耗设计成为了集成运 算放大器的一个重要发展趋势。
集成化和小型化
随着集成电路技术的发展,集成运算放大器也正朝着集成化和小型化的方向发展。这使得它们在便携式 设备、穿戴设备和物联网等领域的应用更加方便。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告集成运算放大器的应用实验报告一、实验目的1.了解运算放大器的特性和基本运算电路的组成;2.掌握运算电路的参数计算和性能测试方法。

二、实验仪器及器件1.数字示波器;2.直流稳压电源;3.函数信号发生器;4.数字电路实验箱或实验电路板;5.数字万用表;6.集成电路芯片uA741 2块、电容0.01uF2个,各个阻值的电阻若干个。

三、实验内容1、在面包板上搭接?A741的电路。

首先将+12V和-12V直流电压正确接入?A741的Vcc+(7脚)和Vcc-(4脚)。

2、用?A741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。

3、用?A741组成积分电路,用示波器观察输入和输出波形,并做好记录。

四、实验原理(1)集成运放简介集成电路运算放大器(简称集成运放或运放)是一个集成的高增益直接耦合放大器,通过外接反馈网络可构成各种运算放大电路和其它应用电路。

集成运放uA741的电路符号及引脚图下图所示。

+Vcc VO NC 调零调零 V- V+ -VEEuA741电路符号及引脚图任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。

(a)电源端:通常由正、负双电源供电,典型电源电压为±15V、±12V等。

如:uA741的7脚和4脚。

(b)输出端:只有一个输出端。

在输出端和地(正、负电源公共端)之间获得输出电压。

如:uA741的6脚。

最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。

这表明集成运放的输出电阻很小,带负载能力较强。

(c)输入端:分别为同相输入端和反相输入端。

如:uA741的3脚和2脚。

输入端有两个参数需要注意:最大差模输入电压Vid max 和最大共模输入电压Vic max两输入端电位差称为“差模输入电压”Vid :Vid。

9 实验八集成运算放大器的运用

9 实验八集成运算放大器的运用

图2
反相放电器
图3
同相放电器 Vo RF Vi Vi R1
当取 RF = R1,则放大器的输出电压等于输入电压的负值,即:
此时反相放大器起反相跟随器作用。 2、同相放大器 电路如图 3 所示,信号由同相端输入。在理想的条件下,同相放大器的闭环电压增益为: V RF AVF o 1 Vi R1 3、电压跟随器 电路如图 4 所示,它是在同相放大器的基础上,当 R1→ ∞ 时,AVF→1, 同相放大器就 转变为电压跟随器。它是百分之百电压串联负反馈电路,具有输入阻抗高、输出阻抗低、电 压增益接近 1 的特点。
(a)
图8 积分器
(b)
在实际实验电路中, 通常在积分电容 C 的两端并接反馈电阻 RF, 其作用是引入直流负反 馈,目的是减小运放输出直流漂移。但是 RF 的存在对积分器的线性关系有影响,因此, RF 不宜取太小,一般取 100KΩ 为宜。 7、微分器 微分器电路如图 9(a)所示,输入(待积分)信号加到反相输入端,在理想条件下,如 果电容两端的初始电压为零,则 dVi( t ) i i (t) C dt 而 i i (t ) i F (t ) 故 Vo( t ) R F i F ( t ) R F C
vo
ห้องสมุดไป่ตู้
R2 (vi 2 vi1 ) R1
9、仪用放大器 仪表放大器是满足如下技术要求的差分放大器: (a)极高(理想为无穷大)的共模和差 模输入阻抗; ( b )很低的(理想为零)的输出阻抗; ( c )精确和稳定的增益,一般在
1V / V ~ 103V / V ; (d)极高的共模抑制比。经过适当的加工,上面的差分放大器可以后面
因。增益的幅度也称为该转换器的灵敏度;对某一给定的输 图(12)I-V 转换器 入电流变化,其给出了输出 电 压 的 变 化 。 例 如 , 对 于 1V / mA 的 灵 敏 度 , 就 需 要

集成运放应用实验报告

集成运放应用实验报告

一、实验目的1. 掌握集成运放的基本原理和特性。

2. 熟悉集成运放在各种线性应用电路中的设计方法。

3. 通过实验验证集成运放在实际电路中的应用效果。

4. 培养学生动手能力和分析问题的能力。

二、实验原理集成运放(Operational Amplifier,简称Op-Amp)是一种高增益、低漂移、高输入阻抗、低输出阻抗的直接耦合多级放大电路。

它具有多种线性应用,如比例、加法、减法、积分、微分等运算电路。

三、实验仪器与材料1. 集成运放芯片(如LM741、LM358等)2. 欧姆表3. 数字万用表4. 信号发生器5. 示波器6. 面包板7. 连接线四、实验内容与步骤1. 反相比例放大电路(1)搭建电路:将集成运放接入反相比例放大电路,其中输入电阻R1和反馈电阻Rf接入反相端,输出端接入负载电阻Rl。

(2)测试:使用信号发生器输出正弦波信号,调节输入信号幅度,观察输出波形,并测量输出电压和输入电压,计算放大倍数。

(3)分析:根据实验数据,分析放大电路的放大倍数与电阻的关系。

2. 同相比例放大电路(1)搭建电路:将集成运放接入同相比例放大电路,其中输入电阻R1和反馈电阻Rf接入同相端,输出端接入负载电阻Rl。

(2)测试:使用信号发生器输出正弦波信号,调节输入信号幅度,观察输出波形,并测量输出电压和输入电压,计算放大倍数。

(3)分析:根据实验数据,分析放大电路的放大倍数与电阻的关系。

3. 加法运算电路(1)搭建电路:将集成运放接入加法运算电路,其中两个输入电阻R1和R2接入同相端,第三个输入电阻R3接入反相端,输出端接入负载电阻Rl。

(2)测试:使用信号发生器输出两个正弦波信号,调节输入信号幅度,观察输出波形,并测量输出电压和输入电压,计算输出电压与输入电压的关系。

(3)分析:根据实验数据,分析加法运算电路的输出电压与输入电压的关系。

4. 积分运算电路(1)搭建电路:将集成运放接入积分运算电路,其中输入电阻R1和反馈电阻Rf接入反相端,输出端接入电容C。

集成运放的实际应用

集成运放的实际应用

集成运放的实际应用集成运放(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各种电路中。

它的主要功能是放大电压信号,并具有高输入阻抗和低输出阻抗的特点。

集成运放的应用非常广泛,下面将介绍几个与集成运放相关的实际应用。

集成运放在音频放大器中的应用非常常见。

音频放大器是将低功率音频信号放大为较大功率的电子设备,常见的应用场景包括音响系统、汽车音频设备等。

集成运放作为音频放大器的核心部件,能够提供高品质的音频放大效果。

它可以放大音频信号的幅度,同时保持音频信号的准确性和稳定性,使得音乐、语音等声音更加清晰、真实。

集成运放在模拟计算器中的应用也非常重要。

模拟计算器是一种能够进行各种数学运算的电子设备,广泛应用于科学研究、工程设计等领域。

在模拟计算器中,集成运放可以用于实现各种数学运算,如加法、减法、乘法、除法等。

它的高精度和稳定性能保证了计算结果的准确性,提高了计算器的可靠性和实用性。

集成运放还在信号调理中起到了重要的作用。

信号调理是指对输入信号进行处理和优化,以满足特定的要求。

在信号调理中,集成运放可以用于滤波、放大、补偿等操作。

例如,在传感器信号处理中,集成运放可以用于放大微弱的传感器信号,提高信号的可靠性和稳定性。

又如,在音频信号处理中,集成运放可以用于实现音频信号的均衡和控制,使得音频信号更加优质和适合特定的应用场景。

集成运放还在仪器仪表中有着广泛的应用。

仪器仪表是一种测量和控制物理量的设备,广泛应用于科学实验、工程测试等领域。

在仪器仪表中,集成运放可以用于放大和处理测量信号,提高测量的精确度和可靠性。

例如,在电压测量中,集成运放可以用于放大微弱的电压信号,使其达到适合测量的范围。

又如,在温度测量中,集成运放可以用于放大和补偿传感器产生的微弱信号,提高温度测量的精确度和稳定性。

集成运放在实际应用中发挥着重要的作用。

它广泛应用于音频放大器、模拟计算器、信号调理和仪器仪表等领域,为这些设备提供了高品质的信号放大和处理功能。

集成运放及应用实验报告

集成运放及应用实验报告

一、实验目的1. 理解集成运算放大器(运放)的基本原理和特性。

2. 掌握集成运放的基本线性应用电路的设计方法。

3. 通过实验验证运放在实际电路中的应用效果。

4. 了解实验中可能出现的误差及分析方法。

二、实验原理集成运算放大器是一种高增益、低噪声、高输入阻抗、低输出阻抗的直接耦合多级放大电路。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究运放的基本线性应用电路,包括比例、加法、减法、积分、微分等运算电路。

三、实验仪器与器材1. 集成运放(如LM741)2. 模拟信号发生器3. 示波器4. 数字多用表5. 电阻、电容等电子元件6. 面包板四、实验内容1. 反相比例运算电路(1) 设计电路:根据实验要求,搭建一个反相比例运算电路,其中输入电阻R1和反馈电阻Rf的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

2. 同相比例运算电路(1) 设计电路:搭建一个同相比例运算电路,其中输入电阻R1和反馈电阻Rf 的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

3. 加法运算电路(1) 设计电路:搭建一个加法运算电路,实现两个输入信号的求和。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 验证输出波形为两个输入信号的相加。

4. 减法运算电路(1) 设计电路:搭建一个减法运算电路,实现两个输入信号的相减。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

实验集成运算放大器的基本应用(1)

实验集成运算放大器的基本应用(1)

实验集成运算放大器的基本应用(1)
实验集成运算放大器的基本应用
集成运算放大器是一种常用的基础电路元件,一般用于信号放大、数
字电路和控制系统等领域。

本文将从以下几个方面讲解实验集成运算
放大器的基本应用。

一、线性放大器
实验线性放大器是集成运算放大器最基本的应用之一,它可以将输入
的信号通过集成运放的放大倍数实现信号的放大,从而输出较大的信
号值。

线性放大器是控制系统、通信电路和电子测量等领域中最基础
的电路基础。

二、滤波器
实验集成运算放大器还可以作为滤波器,用于抑制或增强信号的某些
频率分量。

滤波器可以分为低通滤波器、高通滤波器、带通滤波器和
带阻滤波器。

对于不同的信号处理需求,可以选择不同类型的滤波器。

三、非线性电路
实验集成运算放大器还可以被用于非线性电路,例如比较器和开关。

比较器可以将输入信号的电位与参考电位进行比较,从而输出一个高
电平或低电平的信号。

开关可以实现对大电流或高功率负载的开关。

四、正弦波振荡器
实验集成运算放大器也可以用作正弦波振荡器。

使用反馈网络和集成运放,可以产生正弦波。

正弦波振荡器被广泛用于电子信号发生器和精密测量仪器中。

五、稳压电源
实验集成运算放大器还可以用作稳压电源。

稳压电源通过将输入电压调节成稳定的输出电压,从而实现对电路的稳定控制。

这对于需要稳定电压的电路非常重要。

以上是实验集成运算放大器的基本应用,希望对初学者有所帮助。

需要注意的是,在实验过程中应安全使用电路元件,确保安全性。

集成运放的应用实验报告

集成运放的应用实验报告

集成运放的应用实验报告《集成运放的应用实验报告》在电子电路中,集成运放是一种非常重要的器件,它广泛应用于放大、滤波、积分、微分等电路中。

本文将通过实验报告的形式,介绍集成运放的应用实验,以及实验结果和分析。

实验目的:1. 了解集成运放的基本特性和工作原理;2. 掌握集成运放在放大电路中的应用;3. 掌握集成运放在滤波电路中的应用;4. 掌握集成运放在积分、微分电路中的应用。

实验原理:集成运放是一种高增益、高输入阻抗、低输出阻抗的电子器件,常用符号为“△”,具有一个非常大的开环增益。

在实际应用中,集成运放通常被连接在反馈电路中,以实现各种功能的电路。

实验内容:1. 集成运放的基本特性实验:测量集成运放的输入偏置电压、输入偏置电流、共模抑制比等参数;2. 集成运放的放大电路实验:设计并搭建一个非反相放大电路,测量放大倍数和频率响应;3. 集成运放的滤波电路实验:设计并搭建一个低通滤波电路和高通滤波电路,测量频率响应和滤波特性;4. 集成运放的积分、微分电路实验:设计并搭建一个积分电路和微分电路,测量输入输出波形。

实验结果和分析:1. 集成运放的基本特性实验结果表明,输入偏置电压较小,输入偏置电流较小,共模抑制比较高,符合理论预期;2. 非反相放大电路实验结果表明,放大倍数与理论计算值基本吻合,频率响应符合预期;3. 低通滤波电路和高通滤波电路实验结果表明,频率响应和滤波特性符合预期;4. 积分电路和微分电路实验结果表明,输入输出波形符合积分和微分的特性。

结论:通过本次实验,我们深入了解了集成运放的基本特性和应用,掌握了集成运放在放大、滤波、积分、微分电路中的应用方法和技巧,为今后的电子电路设计和应用打下了坚实的基础。

同时也加深了对集成运放工作原理的理解,为进一步深入学习和研究提供了重要的实验基础。

模电实验--集成运算放大器的基本应用

模电实验--集成运算放大器的基本应用

2.7集成运算放大器的基本应用一.实验目的(1)了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

(2)掌握集成运算放大器的基本应用,为综合应用奠定基础。

(3)进一步熟悉仿真软件的应用。

二.实验原理及电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。

当外部接入由不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活的实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

在大多数情况下,将运放视为理想的,即在一般地讨论中,以下三条基本结论是普遍适用的:(1)开环电压增益V A =∞。

(2)运算放大器的两个输入端电压近似相等,即V V +-=,称为“虚短。

(3) 运算放大器同相和反相两个输入端的电流可视为零,即I I +-==0,称为“虚断”。

应用上述理想运算放大器三条基本原则,可简化运算放大器电路的计算,得出本次实验的结论。

1. 基本运算电路(1) 反相比例运算电路。

电路如图2.7-1所示。

对于理想运算放大器,该电路的输出电压与输入电压之间的关系为01f i R V V R =-为了减小输入级偏执电流引起的运算误差,在同相输入端应接入平衡电阻21//f R R R =。

2.7-1反响比例运算电路(2) 同相比例运算电路。

图2.7-2(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为01(1)f i R V V R =+,21//f R R R =当1R →∞时,0i V V =,即得到如图2.7-2(b )所示的电压跟随器。

图中2f R R =,用以减小漂移和起保护作用。

一般f R 取10k Ω,f R 太小起不到保护作用,太大影响跟随性。

图2.7-2(a )同相比例运算电路 (b )电压跟随器(3) 反相加法电路。

电路如图2.7-3所示,输出电压与输入电压之间的关系为01212()f f i i R R V V V R R =-+,321////f R R R R = 当21fR R R ==时,012()i i V V V =-+。

集成运算放大器的基本应用

集成运算放大器的基本应用

集成运算放大器的基本应用
集成运算放大器(Operational Amplifier,简称Op Amp)是一
种高增益、直流耦合的放大电路。

它广泛应用于电子电路中,具有非常重要的作用。

常见的集成运算放大器IC芯片有
LM741、LM358、LM324等。

以下是集成运算放大器的基本应用:
1. 比较器:将两个电压进行比较,输出高电平或低电平。

比较器具有电压转换和开关控制的功能,常用于电压检测、信号选择和自动控制等方面。

2. 增益放大器:将输入信号进行放大,输出信号比输入信号大。

这种电路可以放大微小信号,如传感器输出、电源噪声等。

3. 运算放大器:进行数学运算,如加减乘除、积分、微分和求反向比等。

这种电路通常用于信号处理、滤波、振荡和控制等方面。

4. 反馈电路:利用Op Amp的高增益和稳定性,通过反馈电路实现精确控制。

反馈电路包括正反馈和负反馈两种,应用广泛,如DC稳压电源、振荡器、电压跟随器和信号隔离器等。

5. 信号滤波:利用Op Amp的高增益和频率特性,设计高性能的RC滤波器和二阶滤波器。

这种电路可以提取出特定频率的
信号,去除噪声和干扰,应用于音频、通信和仪器等方面。

总之,集成运算放大器广泛应用于各种电子电路中,可以实现信号放大、滤波、比较和控制等多种功能,是电子工程师必不可少的工具。

集成运算放大器应用

集成运算放大器应用

UiOFF
t
U

R1U R R1 R2
R2U oMAX R1 R2
U iON
Uo
UiON
UiOFF
Ui
7. 方波发生器
方波发生器常用于脉冲和数 字系统作为信号源用,其电 路如图所示,也称张弛振荡 器。图中运算放大器以迟滞 比较方式工作,利用电容两 端电压Uc (等于U-)和U+相比 较,来决定输出是正还是负。 不难得到方波的周期:
频率(Hz) 100 500
1k
10k
Vp p
相位
四. 内容7 积分电路的测量:
开关K5•置于II位置,将方波发生器发生的方波加到 积分电路的输入端,记录并比较输入波形与输出波 形( )U。o
开关K5•置于II位置,积分电路的输入端加正弦信号,
其 为V4pVp,频率分别为100Hz•、500Hz、1KHz、
7.5V 6V 4.5V
6V 7.5V 4.5V
4.5V 7.5V 6V
四. 实验内容6
迟滞比较器的测量:调节RW1使正弦波发生器 输出Vp p>10V的正弦波,然后此正弦波加到输入 端,示波器Y1(X)路接正弦波发生器输出端,示 波器Y2(X)路接迟滞比较器输出端,将示波器调 至X-Y方式,观察迟滞比较器输出与输入关系。 测量迟滞比较器的上下门限电压,并与理论比
为正向最大值 UoMAX ,根据叠加原理,此时U REF
为 U

R1U R R1 R2
R2U oMAX R1 R2
U iOFF
当Ui 由负向正逐渐增大时,只要 Ui 小于U Uo 始终保持为正向最大值 UoMAX
迟滞比较器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八 集成运算放大电路的应用(二)
----------积分与微分电路
一、实验目的
1、学会用运算放大器组成积分微分电路。

2、掌握积分微分电路的特点及性能。

二、实验仪器
1、实验箱(TPE-A2)
2、.示波器(V212)
3、函数信号发生器(DF1642A )
4、双通道交流毫伏表(AS2294D )
5、台式数字万用表(VC8045)
三、预习要求
1.分析积分电路(图1),如果输入正弦波,O V 与i V 相位差是多少?当输入信号为100Hz 有效值为2V 时,输出O V =?
2.分析微分电路(图2),如果输入正弦波,O V 与i V 相位差是多少?当输入信号为160Hz 有效值为2V 时,输出O V =?
3.在图2中,电容C 不变时,在较宽频率范围内改变输入信号频率,是否会改变电路的功能?(简要说明原因)
四、实验原理
1.积分电路(图1) 2.微分电路(图2)
3.积分—微分电路 (图3)
4、基本计算公式 积分电路:⎰--=)0(11c i o u dt u C R u , 0)0(=c u 时, ⎰-=dt u C
R u i o 11 ; 微分电路:dt du RC
u i o -= 五、实验内容及步骤
1、积分电路(如图1所示)
(1)取V i =-1V ,断开开关K (开关K 用一连线代替,拔出连线一端作为断开)用示波器观察V 0的变化。

(2)测量饱和输出电压及有效积分时间。

(3)将积分电容改为0.1u ,断开K ,V i 分别输入100Hz 幅值为2V 的方波和正弦波信号,观察V i 和V 0大小及相位关系,并记录波形。

2、微分电路(如图2所示)
(1)输入正弦波信号,f=160Hz 有效值为1V ,用示波器观察V i 和V 0波形并测量输出电压。

(2)改变正弦波频率(20~400Hz ),观察V i 和V 0的相位、幅值变化情况并记录。

(3)输入方波,f=200Hz ,V=V 6±,用示波器观察V 0的波形并记录。

(4)改变方波频率(20~400Hz ),观察V i 和V 0的相位、幅值变化情况并记录。

3、积分—微分电路(如图3所示)
(1)在V i 输入方波,f=200Hz ,V=V 6±,用示波器观察V i 和V 0波形并记录。

(2)在V i输入方波,f=500Hz,V=V
,用示波器观察V i 和V0波形并
6
记录。

六、实验注意事项:
1、连接电路时,应检查接插线是否良好导通。

2、实验中发出现任何异常情况,都要先切断电源,再视情况加以处理。

七、实验预习报告及实验报告要求
1、预习报告要求:写清实验名称、实验目的、实验仪器、实验原理(电路图、使用注意事项)、实验内容及主要步骤、思考题的回答,实验数据记录表格。

2、实验报告要求:写清实验名称、实验目的、实验仪器、实验原理(电路图、公式推导和文字说明)、实验内容及步骤、实验数据处理(整理表格、计算过程、计算结果)、实验总结与应用(结论、误差分析、讨论问题、本实验的应用)、附原始记录数据(指导教师签字的)。

相关文档
最新文档