Strong and electroweak NLO corrections to Higgs-boson production in vector-boson fusion at
常用分析化学专业英语词汇.
常用分析化学专业英语词汇absorbance 吸光度absorbent 吸附剂absorption curve 吸收曲线absorption peak 吸收峰absorptivity 吸收系数accident error 偶然误差accuracy 准确度acid-base titration 酸碱滴定acidic effective coefficient 酸效应系数acidic effective curve 酸效应曲线acidity constant 酸度常数activity 活度activity coefficient 活度系数adsorption 吸附adsorption indicator 吸附指示剂affinity 亲和力aging 陈化amorphous precipitate 无定形沉淀amphiprotic solvent 两性溶剂amphoteric substance 两性物质amplification reaction 放大反应analytical balance 分析天平analytical chemistry 分析化学analytical concentration 分析浓度analytical reagent (AR) 分析试剂apparent formation constant 表观形成常数aqueous phase 水相argentimetry 银量法ashing 灰化atomic spectrum 原子光谱autoprotolysis constant 质子自递常数auxochrome group 助色团back extraction 反萃取band spectrum 带状光谱bandwidth 带宽bathochromic shift 红移blank 空白blocking of indicator 指示剂的封闭bromometry 溴量法buffer capacity 缓冲容量buffer solution 缓冲溶液burette 滴定管calconcarboxylic acid 钙指示剂calibrated curve 校准曲线calibration 校准catalyzed reaction 催化反应cerimetry 铈量法charge balance 电荷平衡chelate 螯合物chelate extraction 螯合物萃取chemical analysis 化学分析chemical factor 化学因素chemically pure 化学纯chromatography 色谱法chromophoric group 发色团coefficient of variation 变异系数color reagent 显色剂color transition point 颜色转变点colorimeter 比色计colorimetry 比色法column chromatography 柱色谱complementary color 互补色complex 络合物complexation 络合反应complexometry complexometric titration 络合滴定法complexone 氨羧络合剂concentration constant 浓度常数conditional extraction constant 条件萃取常数conditional formationcoefficient 条件形成常数conditional potential 条件电位conditional solubility product 条件溶度积confidence interval 置信区间confidence level 置信水平conjugate acid-base pair 共轭酸碱对constant weight 恒量contamination 沾污continuous extraction 连续萃取continuous spectrum 连续光谱coprecipitation 共沉淀correction 校正correlation coefficient 相关系数crucible 坩埚crystalline precipitate 晶形沉淀cumulative constant 累积常数curdy precipitate 凝乳状沉淀degree of freedom 自由度demasking 解蔽derivative spectrum 导数光谱desiccant; drying agent 干燥剂desiccator 保干器determinate error 可测误差deuterium lamp 氘灯deviation 偏差deviation average 平均偏差dibasic acid 二元酸dichloro fluorescein 二氯荧光黄dichromate titration 重铬酸钾法dielectric constant 介电常数differential spectrophotometry 示差光度法differentiating effect 区分效应dispersion 色散dissociation constant 离解常数distillation 蒸馏distribution coefficient 分配系数distribution diagram 分布图distribution ratio 分配比double beam spectrophotometer 双光束分光光度计dual-pan balance 双盘天平dual-wavelength spectrophotometry 双波长分光光度法electronic balance 电子天平electrophoresis 电泳eluent 淋洗剂end point 终点end point error 终点误差enrichment 富集eosin 曙红equilibrium concentration 平衡浓度equimolar series method 等摩尔系列法Erelenmeyer flask 锥形瓶eriochrome black T (EBT) 铬黑Terror 误差ethylenediamine tetraacetic acid (EDTA) 乙二胺四乙酸evaporation dish 蒸发皿exchange capacity 交换容量extent of crosslinking 交联度extraction constant 萃取常数extraction rate 萃取率extraction spectrphotometric method 萃取光度法Fajans method 法杨斯法ferroin 邻二氮菲亚铁离子filter 漏斗filter 滤光片filter paper 滤纸filtration 过滤fluex 溶剂fluorescein 荧光黄flusion 熔融formation constant 形成常数frequency 频率frequency density 频率密度frequency distribution 频率分布gas chromatography (GC) 气相色谱grating 光栅gravimetric factor 重量因素gravimetry 重量分析guarantee reagent (GR) 保证试剂high performance liquid chromatography (HPLC) 高效液相色谱histogram 直方图homogeneous precipitation 均相沉淀hydrogen lamp 氢灯hypochromic shift 紫移ignition 灼烧indicator 指示剂induced reaction 诱导反应inert solvent 惰性溶剂instability constant 不稳定常数instrumental analysis 仪器分析intrinsic acidity 固有酸度intrinsic basicity 固有碱度intrinsic solubility 固有溶解度iodimetry 碘滴定法iodine-tungsten lamp 碘钨灯iodometry 滴定碘法ion association extraction 离子缔合物萃取ion chromatography (IC) 离子色谱ion exchange 离子交换ion exchange resin 离子交换树脂ionic strength 离子强度isoabsorptive point 等吸收点Karl Fisher titration 卡尔•费歇尔法Kjeldahl determination 凯氏定氮法Lambert-Beer law 朗泊-比尔定律leveling effect 拉平效应ligand 配位体light source 光源line spectrum 线状光谱linear regression 线性回归liquid chromatography (LC) 液相色谱macro analysis 常量分析masking 掩蔽masking index 掩蔽指数mass balance 物料平衡matallochromic indicator 金属指示剂maximum absorption 最大吸收mean, average 平均值measured value 测量值measuring cylinder 量筒measuring pipette 吸量管median 中位数mercurimetry 汞量法mercury lamp 汞灯mesh [筛]目methyl orange (MO) 甲基橙methyl red (MR) 甲基红micro analysis 微量分析mixed constant 混合常数mixed crystal 混晶mixed indicator 混合指示剂mobile phase 流动相Mohr method 莫尔法molar absorptivity 摩尔吸收系数mole ratio method 摩尔比法molecular spectrum 分子光谱monoacid 一元酸monochromatic color 单色光monochromator 单色器neutral solvent 中性溶剂neutralization 中和non-aqueous titration 非水滴定normal distribution 正态分布occlusion 包藏organic phase 有机相ossification of indicator 指示剂的僵化outlier 离群值oven 烘箱paper chromatography(PC) 纸色谱parallel determination 平行测定path lenth 光程permanganate titration 高锰酸钾法phase ratio 相比phenolphthalein (PP) 酚酞photocell 光电池photoelectric colorimeter 光电比色计photometric titration 光度滴定法photomultiplier 光电倍增管phototube 光电管pipette 移液管polar solvent 极性溶剂polyprotic acid 多元酸population 总体postprecipitation 后沉淀precipitant 沉淀剂precipitation form 沉淀形precipitation titration 沉淀滴定法precision 精密度preconcentration 预富集predominance-area diagram 优势区域图primary standard 基准物质prism 棱镜probability 概率proton 质子proton condition 质子条件protonation 质子化protonation constant 质子化常数purity 纯度qualitative analysis 定性分析quantitative analysis 定量分析quartering 四分法random error 随机误差range 全距(极差)reagent blank 试剂空白Reagent bottle 试剂瓶recording spectrophotometer 自动记录式分光光度计recovery 回收率redox indicator 氧化还原指示剂redox titration 氧化还原滴定referee analysis 仲裁分析reference level 参考水平reference material (RM) 标准物质reference solution 参比溶液relative error 相对误差resolution 分辨力rider 游码routine analysis 常规分析sample 样本,样品sampling 取样self indicator 自身指示剂semimicro analysis 半微量分析separation 分离separation factor 分离因数side reaction coefficient 副反应系数significance test 显著性检验significant figure 有效数字simultaneous determination of multiponents 多组分同时测定single beam spectrophotometer 单光束分光光度计single-pan balance 单盘天平slit 狭缝sodium diphenylamine sulfonate 二苯胺磺酸钠solubility product 溶度积solvent extraction 溶剂萃取species 型体(物种)specific extinction coefficient 比消光系数spectral analysis 光谱分析spectrophotometer 分光光度计spectrophotometry 分光光度法stability constant 稳定常数standard curve 标准曲线standard deviation 标准偏差standard potential 标准电位standard series method 标准系列法standard solution 标准溶液standardization 标定starch 淀粉stationary phase 固定相steam bath 蒸气浴stepwise stability constant 逐级稳定常数stoichiometric point 化学计量点structure analysis 结构分析supersaturation 过饱和systematic error 系统误差test solution 试液thermodynamic constant 热力学常数thin layer chromatography (TLC) 薄层色谱titrand 被滴物titrant 滴定剂titration 滴定titration constant 滴定常数titration curve 滴定曲线titration error 滴定误差titration index 滴定指数titration jump 滴定突跃titrimetry 滴定分析trace analysis 痕量分析transition interval 变色间隔transmittance 透射比tri acid 三元酸true value 真值tungsten lamp 钨灯ultratrace analysis 超痕量分析UV-VIS spectrophotometry 紫外-可见分光光度法volatilization 挥发V olhard method 福尔哈德法volumetric flask 容量瓶volumetry 容量分析Wash bottle 洗瓶washings 洗液water bath 水浴weighing bottle 称量瓶weighting form 称量形weights 砝码working curve 工作曲线xylenol orange (XO) 二甲酚橙zero level 零水平异步处理dispatch_async(dispatch_get_gl obal_queue(0, 0), ^{// 处理耗时操作的代码块... [self test1];//通知主线程刷新dispatch_async(dispatch_get_ main_queue(), ^{//回调或者说是通知主线程刷新,NSLog(............);});。
液相色谱词汇中英文对照
液相色谱词汇中英文对照液相色谱词汇中英文对照高效毛细管电泳high-performance capillary electrophoresis归一化法normalization method毛细管等电聚焦capillary isoelectric focusing毛细管等速电泳isotachophoresis毛细管电色谱capillary electrochromatography毛细管电泳capillary electrophoresis毛细管电泳电喷雾质谱联用capillary electrophoresis – electr芯片电泳microchip electrophoresis色谱法chromatography色谱峰chromatographic peak色谱峰区域宽度peak width色谱富集过样samt injection of chromatography色谱工作站chromatographic working station色谱图chromatogram色谱仪chromatograph色谱柱chromatographic column色谱柱column色谱柱切换技术switching column technique毛细管超临界流体色谱法capillary supercritical fluid chromat…毛细管电泳基质辅助激光解吸电离质谱离线检测off-line capillar…毛细管电泳离子分析capillary ion analysis毛细管电泳免疫分析immunity analysis of capillary electropho…毛细管胶束电动色谱micellar electrokinetic chromatography毛细管凝胶电泳capillary gel electrophoresis毛细管凝胶柱capillary gel column毛细管亲和电泳affinity capillary electrophoresis毛细管区带电泳capillary zone electrophoresis毛细管有效长度the effective length of capillary electrophor…间接检测indirect detection间接荧光检测indirect fluorescence detection间接紫外检测indirect ultraviolet detection检测器detector检测器检测限detector detectability检测器灵敏度detector sensitivity检测器线性范围detector linear range阴离子交换剂anion exchanger阴离子交换色谱法anion exchange chromatography, AEC高速逆流色谱法high speed counter-current chromatography高温凝胶色谱法high temperature gel chromatography高效液相色谱-付里叶变换红外分析法high performance liquid ch…高效液相色谱法high performance liquid chromatography高效柱high performance column高压流通池技术high pressure flow cell technique高压输液泵high pressure pump高压梯度high-pressure gradient高压液相色谱法high pressure liquid chromatography阴离子交换树脂anion exchange resin荧光薄层板fluorescent thin layer plate荧光检测器fluorescence detector荧光色谱法fluorescence chromatography迎头色谱法frontal chromatography迎头色谱法frontal method硬(质)凝胶hard gel有机改进剂organic modifier有机相生物传感器Organic biosensor有效峰数effective peak number EPN有效理论塔板数number of effective theoretical plates有效塔板高度effective plate height有效淌度effective mobility淤浆填充法slurry packing method予柱pre-column在线电堆集on-line electrical stacking在柱电导率检测on-column electrical conductivity detection噪声noise噪信比noise –signal ratio增强紫外-可见吸收检测技术UV-visible absorption enhanced det…窄粒度分布narrow particle size distribution折射率检测器refractive index detector, RID真空脱气装置vacuum degasser阵列毛细管电泳capillary array electrophoresis蒸发光散射检测器evaporative light-scattering detector, ELSD整体性质检测器integral property detector正相高效液相色谱法normal phase high performance liquid chro…正相离子对色谱法normal phase ion-pair chromatography正相毛细管电色谱positive capillary electrokinetic chromatog…直接化学离子化direct chemical ionization GC-MS直接激光在柱吸收检测on-column direct laser detection纸色谱法paper chromatography置换色谱法displacement chromatography制备色谱preparative chromatography制备色谱仪preparative chromatograph制备柱preparation column智能色谱chromatography with artificial intelligence质量色谱mass chromatography质量型检测器mass detector质量型检测器mass flow rate sensitive detector中压液相色谱middle-pressure liquid chromatography重建色谱图reconstructive chromatogram重均分子量weight mean molecular weight轴向扩散longitudinal diffusion轴向吸收池absorption pool of axial direction轴向压缩柱axial compression column柱端电导率检测out-let end detection of electrical conductiv…柱负载能力column loadability柱后衍生化post-column derivatization柱老化condition (aging) of column柱流出物(column) effluent柱流失column bleeding柱内径column internal diameter柱前衍生化pro-column derivatization柱切换技术column switching technique柱清洗column cleaning柱容量column capacity柱入口压力column inlet pressure柱色谱法column chromatography柱上检测on-line detection柱渗透性column permeability柱寿命column life柱头进样column head sampling柱外效应extra-column effect柱温箱column oven柱效column efficiency柱压column pressure柱再生column regeneration柱中衍生化on-column derivatization注射泵syringe pump转化定量法trans-quantitative method紫外-可见光检测器ultraviolet visible detector, UV-Vis紫外吸收检测器ultraviolet absorption detector自动进样器automatic sampler自由溶液毛细管电泳free solution capillary electrophoresis总分离效能指标over-all resolution efficiency总交换容量total exchange capacity总渗透体积total osmotic volume纵向扩散longitudinal diffusion组合式仪器系统building block instrument最佳流速optimum flow rate最佳实际流速optimum practical flow rate最小检测量minimum detectable quantity最小检测浓度minimum detectable concentration萃取色谱法extraction chromatography脱气装置degasser外标法external standard method外梯度outside gradient网状结构reticular structure往复泵reciprocating pump往复式隔膜泵reciprocating diaphragm pump微分型检测器differential detector微孔树脂micro-reticular resin微库仑检测器micro coulometric detector微量进样针micro-syringe微量色谱法micro-chromatography微乳液电动色谱microemulsion electrokinetic chromatography微生物传感器Microbial sensor微生物显影bioautography微填充柱micro-packed column微吸附检测器micro adsorption detector微型柱micro-column涡流扩散eddy diffusion无机离子交换剂inorganic ion exchanger无胶筛分毛细管电泳non-gel capillary electrophoresis无孔单分散填料non-porous monodisperse packing无脉动色谱泵pulse-free chromatographic pump物理钝化法physical deactivation吸附等温线adsorption isotherm吸附剂adsorbing material吸附剂活性adsorbent activity吸附平衡常数adsorption equilibrium constant吸附溶剂强度参数adsorption solvent strength parameter吸附色谱法adsorption chromatography吸附型PLOT柱adsorption type porous-layer open tubular colum…吸附柱adsorption column吸光度比值法absorbance ratio method洗脱强度eluting power显色器color-developing sprayer限制扩散理论theory of restricted diffusion线速度linear velocity线性梯度linear gradient相比率phase ratio相对保留值relative retention value相对比移值relative Rf value相对挥发度relative volatility相对灵敏度relative sensitivity相对碳(重量)响应因子relative carbon response factor相对响应值relative response相对校正因子relative correction factor相交束激光诱导的热透镜测量heat lens detection of intersect …相似相溶原则rule of similarity响应时间response time响应值response小角激光散射光度计low-angle laser light scattering photomet…小内径毛细管柱Microbore column校正保留体积corrected retention volume校正曲线法calibration curve method校正因子correction factor旋转薄层法rotating thin layer chromatography旋转小室逆流色谱rotational little-chamber counter-current c…选择性检测器selective detector循环色谱法recycling chromatography压电晶体piezoelectric crystal压电免疫传感器Piezoelectric Immunosensor压电转换器piezoelectric transducer压力保护pressure protect压力上限pressure high limit压力梯度校正因子pressure gradient correction factor压力下限pressure low limit衍生化法derivatization method衍生化试剂derivatization reagent阳离子交换剂cation exchanger阳离子交换色谱法cation exchange chromatography, CEC氧化铝色谱法alumina chromatography样品环sample loop样品预处理sample pretreatment液-液分配色谱法liquid-liquid partition chromatography液-液色谱法liquid-liquid chromatography液滴逆流色谱drop counter-current chromatography液固色谱liquid-solid chromatography液晶固定相liquid crystal stationary phase液态离子交换剂liquid ion exchanger液相传质阻力resistance of liquid mass transfer液相色谱-傅里叶变换红外光谱联用liquid chromatography-FTIR 液相色谱-质谱分析法liquid chromatography-mass spectrometry 液相色谱-质谱仪liquid chromatography-mass spectrometer液相色谱法liquid chromatography液相载荷量liquid phase loading溶剂效率solvent efficiency溶解度参数solubility parameter溶液性能检测器solution property detector溶胀swelling溶质性质检测器solute property detector容量因子capacity factor渗透极限分子量permeation limit molecular weight生物色谱biological chromatography生物特异性柱biospecific column生物自显影法bioautography升温速率temperature rate湿法柱填充wet column packing十八烷基键合硅胶octadecyl silane石墨化碳黑graphitized carbon black示差折光检测器differential refraction detector试剂显色法reagent color-developing method手动进样器manual injector手性氨基酸衍生物GC固定相chiral amino aci d derivatives stat…手性拆分试剂chiral selectors手性固定相chiral stationary phase手性固定相拆分法chiral solid phase separation手性环糊精衍生物GC固定相chiral cyclodextrin der GC手性金属络合物GC固定相chirametal stationary phase in GC 手性流动相chiral mobile phase手性流动相拆分法chiral mobile phase separation手性色谱chiral chromatography手性试剂chiral reagent手性衍生化法chiral derivation method疏溶剂理论solvophobic theory疏溶剂色谱法solvophobic chromatography疏溶剂作用理论solvophobic interaction principle疏水作用色谱hydrophobic interaction chromatography树脂交换容量exchange capacity of resin数均分子量number mean molecular weight双保留机理dual reservation mechanism双活塞往复泵two-piston reciprocating pump双束差分检测器detector of dual-beam difference双柱色谱法dual column chromatography水凝胶hydragel水系凝胶色谱柱aqua-system gel column死区域dead zone死体积dead volume塔板理论方程plate theory equation碳分子筛carbon molecular sieve特殊选择固定液selective stationary phase梯度洗脱gradient elution梯度洗脱装置gradient elution device梯度液相色谱gradient liquid chromatography体积排斥理论size exclusion theory体积排斥色谱size exclusion chromatography体积色谱法volumetric chromatography填充柱packed column填料packing material停流进样stop-flow injection通用型检测器common detector涂层毛细管coated capillary拖尾峰tailing peak拖尾因子tailing factor流动分离理论separation by flow流动相mobile phase流动相梯度eluent gradient流体动力学进样hydrostatic pressure injection流体力学体积hydrodynamic volume流型扩散dispersion due to flow profile脉冲阻尼器pulse damper酶传感器Enzyme sensor酶联免疫传感器Enzyme linked immunosensor酶免疫分析enzyme immnunoassay内标法internal standard method内标物internal standard内梯度inside gradient逆流色谱法counter-current chromatography逆流色谱仪counter current chromatograph凝胶过滤色谱gel filtration chromatography凝胶内体积gel inner volume凝胶色谱法gel chromatography凝胶色谱仪gel chromatograph凝胶渗透色谱gel permeation chromatography凝胶外体积gel interstitial volume凝胶柱gel column浓度梯度成像检测器concentration gradient imaging detector 浓度型检测器concentration detector排斥极限分子量exclusion limit molecular weight排斥体积exclusion volume排阻薄层色谱法exclusion TLC漂移drift迁移时间migration time迁移时间窗口the window of migration time前延峰leading peak前沿色谱法frontal chromatography强碱性阴离子交换剂strong-base anion exchanger强酸性阳离子交换剂strongly acidic cation exchanger切换时间switching time去离子水deionized water全多孔硅胶macro-reticular silica gel全多孔型填料macro-reticular packing material全二维色谱Comprehensive two-dim ensional gas chromatography…全硅烷化去活complete silylanization deactivation溶剂强度solvent strength激光解吸质谱法laser desorption MS, LDMS激光色谱laser chromatography激光诱导光束干涉检测detection of laser-induced light beam I…激光诱导毛细管振动测量laser-reduced capillary vibration det…激光诱导荧光检测器laser-induced fluorescence detector记忆峰memory peak记忆效应memory effect夹层槽sandwich chamber假峰ghost peak间断洗脱色谱法interrupted-elution chromatography间接光度(检测)离子色谱法indirect photometric ion chromato…间接光度(检测)色谱法indirect photometric chromatography减压液相色谱vacuum liquid chromatography键合固定相bonded stationary phase键合型离子交换剂bonded ion exchanger焦耳热joule heating胶束薄层色谱法micellar thin layer chromatography胶束液相色谱法micellar liquid chromatography交联度crosslinking degree阶梯梯度stagewise gradient进样阀injection valve进样量sample size进样器injector聚苯乙烯PSDVB聚硅氧烷高温裂解去活high-temperature pyrolysis deactivation…聚合物基质离子交换剂polymer substrate ion exchanger绝对检测器absolute detector可见光检测器visible light detector可交换离子exchangable ion空间性谱带加宽band broadening in space空穴色谱法vacancy chromatography孔结构pore structure孔径pore diameter孔径分布pore size distribution控制单元control unit快速色谱法high-speed chromatography理论塔板高度height equivalent to a theoretical plate(HETP)理论塔板数number of theoretical plates峰面积peak area峰面积测量法measurement of peak area峰面积校正calibration of peak area峰容量peak capacity固定相stationary phase固定液stationary liquid固定液的相对极性relative polarity of stationary liquid固定液极性stationary liquid polarity固相扩散solid diffusion固相荧光免疫分析solid phase fluorescence immunoassay固有粘度intrinsic viscosity光散射检测器light scattering detector硅胶silica gel硅烷化法silanization硅烷化法silanizing硅烷化载体silanized support过压液相色谱法over pressured liquid chromatography,OPLC恒流泵constant flow pump恒温操作constant temperature method恒压泵constant pressure pump红色载体red support红外检测器infrared detector红外总吸光度重建色谱图total infrared absorbance reconstruct…化合物形成色谱compound-formation chromatography化学发光检测器chemiluminescence detector化学发光检测器Chemiluminescence detector, SCD化学键合固定相bonded stationary phase化学键合相色谱bonded phase chromatography化学色谱法chemi-chromatography环糊精电动色谱cyclodextrin electrokinetic chromatography环形展开比移值circular development Rf value环形展开法circular development缓冲溶液添加剂buffer additives辉光放电检测器glow discharge detector混合床离子交换固定相mixed-bed ion exchange stationary phase 混合床柱mixed bed column活塞泵piston pump活性activation活性硅胶activated silica gel活性氧化铝activated aluminium oxide基流background current or base current基线baseline基线宽度baseline width基质substrate materials基质隔离技术matrix isolation technique电歧视效应the effect of electrical discrimination电迁移进样electrophoretic injection电渗流electroendosmotic flow电渗流标记物electroendosmotic flow marker电渗流淌度electroendosmotic mobility电泳淌度electrophoretic mobility调整保留时间adjusted retention time调整保留体积adjusted retention volume叠加内标法added internal standard method二极管阵列检测器diode-array detector, DAD二维色谱法two-dimensional chromatography二元溶剂体系dual solvent system反冲洗back wash反吹技术back flushing technique反峰negative peak反离子counter ion反相高效液相色谱法reversed phas e high performance liquid ch…反相离子对色谱reversed phase ion pair chromatography反相离子对色谱法reversed phase ion-pair chromatography反相毛细管电色谱reverse capillary electrokinetic chromatogr…反相柱reversed phase column反应色谱reaction chromatography反圆心式展开anti-circular development反转电渗流reverse electroendosmotic flow范第姆特方程式van Deemter equation仿生传感器Biomimic electrode放射性检测器radioactivity detector放射自显影autoradiography非极性固定相non-polar stationary phase非极性键合相non-polar bonded phase非水系凝胶色谱柱non-aqua-system gel column非水相色谱nonaqueous phase chromatography非吸附性载体non-adsorptive support非线性分流non-linearity split stream非线性色谱non-linear chromatography非线性吸附等温线non-linear adsorption isotherm酚醛离子交换树脂phenolic ion exchange resin分离-反应-分离展开SRS development分离数separation number分离因子separation factor分离柱separation column分配等温线distribution isotherm分配色谱partition chromatography分配系数partition coefficient分析型色谱仪analytical type chromatograph分子扩散molecular diffusion封尾endcapping峰高peak heightpH梯度动态分离dynamic separation of the pH gradient pH值梯度洗脱pH gradient elutionZata电势Zata potentialZ形池Z-form pool氨基键合相amino-bonded phase氨基酸分析仪amino acid analyzer安培检测器ampere detector白色载体white support半微柱semimicro-column半制备柱semi-preparation column包覆型离子交换剂coated ion exchanger包覆型填料coated packing material保护柱guard column保留间隙retention gap保留时间retention time保留体积retention volume保留温度retention temperature保留值定性法retention qualitative method保留值沸点规律boiling point rule of retention保留值碳数规律carbon number rule of retention保留指数retention index保留指数定性法retention index qualitative method背景电导background conductance苯酚磺酸树脂phenol sulfonic acid resin苯乙烯styrene比保留体积specific retention volume比例阀proportional valve比渗透率specific permeability比移值Rf value便携式色谱仪portable chromatograph标准偏差standard deviation表观电泳淌度apparent electrophoretic mobility表观交换容量apparent exchange capacity表面电位检测器surface potential detector表面多孔硅胶superficially porous silica gel表面多孔填料superficially porous packing material表面多孔型离子交换剂superficially porous ion-exchanger玻璃球载体glass beads support不分流进样splitless sampling参比柱reference column场放大进样electrical field magnified injection场流分离field-flow fractionation场流分离仪field-flow fractionation场效应生物传感器Field effect transistor based Biosensor常压液相色谱法common-pressure liquid chromatography超声波脱气ultrasonic degas程序变流色谱法programmed flow (gas) chromatography程序升温进样programmed temperature sampling程序升温色谱法programmed temperature (gas) chromatography 程序升温蒸发器programmed temperature vaporizer ,PTV程序升压programmed pressure大孔树脂macro-reticular resin大孔填料macro-reticular packing material大内径毛细管柱Megaobore column单活塞往复泵single piston reciprocating pump单相色谱仪single phase chromatograph单向阀one-way valve单柱离子色谱法single column ion chromatography等度洗脱isocratic elution等离子体色谱法plasma chromatography等途电泳-毛细管区带电泳耦合进样isotachophoresis injection-c…低负荷柱low load column低容量柱low capacity column低压梯度low-pressure gradient低压液相色谱low-pressure liquid chromatography电导池conductance cell电导检测法conductance detection电荷转移分光光度法charge transfer spectrophotometry电化学检测器electrochemical detector电解抑制器electrolyze suppressor。
多孔电极 低温电解质
多孔电极低温电解质英文回答:Porous electrodes are essential components in electrochemical cells, such as batteries, fuel cells, and electrolyzers. They provide a large surface area for electrochemical reactions to occur, which increases the efficiency and performance of the cell. Porous electrodes are typically made of carbon or metal materials, and their structure and properties can be tailored to optimize performance for specific applications.In recent years, there has been growing interest in the development of porous electrodes for low-temperature electrolyzers. Low-temperature electrolyzers are attractive for a number of reasons, including their higher efficiency, lower cost, and reduced environmental impact. However, the development of porous electrodes for low-temperature electrolyzers is a challenging task, as the materials must be able to withstand the harsh conditions of theelectrolysis process.One approach to developing porous electrodes for low-temperature electrolyzers is to use a combination of carbon and metal materials. Carbon materials are excellent electrical conductors and have a high surface area, while metal materials are resistant to corrosion and can provide mechanical support. By combining these two materials, it is possible to create porous electrodes that have the desired properties for low-temperature electrolysis.Another approach to developing porous electrodes for low-temperature electrolyzers is to use a hierarchical structure. Hierarchical structures consist of a combination of pores of different sizes, which can improve the mass transport and electrochemical performance of the electrode. By carefully designing the hierarchical structure of the electrode, it is possible to optimize the performance of the electrolyzer for specific applications.The development of porous electrodes for low-temperature electrolyzers is a promising area of research.By optimizing the materials and structure of the electrodes, it is possible to improve the efficiency and performance of low-temperature electrolyzers, which could lead to the widespread adoption of this technology.中文回答:多孔电极是电化学电池的关键组成部分,如电池、燃料电池和电解槽。
大学化学课件-国外原版教材-3
Metathesis Reactions
Metathesis reactions involve swapping ions in solution: AX + BY AY + BX. Metathesis reactions will lead to a change in solution if one of three things occurs:
Copyright 1999, PRENTICE HALL
Chapter 4
4
Properties of Solutes in Aqueous Solution
Strong and Weak Electrolytes
Strong electrolytes: completely dissociate in solution. For example:
Copyright 1999, PRENTICE HALL Chapter 4 10
Acids, Bases, and Salts
Strong and Weak Acids and Bases
Strong acids and bases are strong electrolytes.
They are completely ionized in solution.
Copyright 1999, PRENTICE HALL
Chapter 4
12
Acids, Bases, and Salts
Strong and Weak Acids and Bases
Copyright 1999, PRENTICE HALL
[能源化工]包覆电荷反转聚电解质的金纳米粒子对增强基
包覆电荷反转聚电解质的金纳米粒子对增强基因传递和沉默siRNA的作用中科院纳米材料和纳米安全生物医学效果重点实验室,中国纳米科学与技术国家中心,北京100190,中国,中国化学工程与技术学院,材料科学与工程学院,天津大学,天津300072,中国,核酸技术实验室,分子医学研究所,北京大学,北京100871,中国。
这些作者也同样对这项工作做出贡献。
摘要:电荷反转功能型金纳米粒子,是通过层层叠加技术制备的,作用于传递小分子RNA干扰和质粒DNA进入癌细胞。
聚丙烯酰胺凝胶电泳的siRNA测量证实了金纳米粒子的功能电荷性质发生逆转。
在与电荷反转功能型金纳米粒子的辅助转染下,增强型绿色荧光蛋白的表达效率(EGFP)有所增强,同时对细胞增殖毒性大大降低。
核层蛋白A / C,一种重要的核包膜蛋白,在核层蛋白的A / C -电荷反转功能的纳米金作用下能够有效地沉默,其拆装效率比2000年的商业脂质体的siRNA更好。
共聚焦激光扫描显微镜图像显示,有更多的用Cy5 - siRNA分布细胞质,花青素,聚乙烯亚胺。
这些结果表明,电荷反转功能型金纳米粒子用于提高核酸传递效率的可行性。
关键词:金纳米粒子·反转电解质·毒性传递层层组装· siRNA的传递在过去的十年中,由于具有良好的生物相容性,易合成,单分散性,现成的功能化,纳米金已经成为一个有吸引力的提供各种有效负荷进入细胞的物质,如小分子药物或DNA和siRNA一类的生物大分子。
谷胱甘肽(GSH)pH值,或外部(如光)的刺激可以引发细胞内释放。
近来出现的siRNA,不仅是一项颇具前景的生物研究方法,也对人类疾病的治疗具有极大的潜力。
核酸的负荷主要是通过纳米金硫醇键合或阳离子纳米金与静电作用。
Elbakry等人首次开发了聚乙烯亚胺/ RNA干扰/ PEIAuNP系统,利用自组装层技术,传递siRNA进入细胞并减缓目标基因的表达。
聚乙烯亚胺,因其“质子海绵”效应而具有强大的核内体逃逸能力,通常是聚合转染介质的黄金准则,也可以附着在金纳米粒子上与siRNA结合。
上海电解质标准团体标准归口单位
上海电解质标准团体标准归口单位1.电解质是指在溶液中能够导电的离子性物质。
Electrolyte refers to ionic substances that can conduct electricity in solution.2.电解质的浓度对细胞功能和健康状态非常重要。
The concentration of electrolytes is crucial for cellular function and overall health.3.血液中的电解质平衡对心脏和肌肉功能至关重要。
The balance of electrolytes in the blood is crucial for heart and muscle function.4.电解质失衡可能导致肌肉抽筋和疲劳。
Imbalance of electrolytes can lead to muscle cramping and fatigue.5.运动员应该保持良好的电解质平衡以提高体能和减少抽筋风险。
Athletes should maintain proper electrolyte balance to enhance performance and reduce the risk of cramping.6.柠檬水和椰子水都是天然的补充电解质的饮料。
Lemon water and coconut water are natural beverages that can replenish electrolytes.7.电解质标准团体标准归口单位正在制定电解质摄入量的指南。
The electrolyte standardization group is developing guidelines for electrolyte intake.8.这些指南将有助于确保人们摄入足够的电解质以维持身体健康。
These guidelines will help ensure that people consume enough electrolytes to maintain overall health.9.盐在体内起着维持电解质平衡的重要作用。
半导体、微电子专业英语单词汇总
半导体、微电子专业英语单词汇总引导语:有关半导体、微电子的专业都有哪些呢?以下是店铺整理的半导体、微电子专业英语单词汇总,欢迎参考!1. acceptance testing (WAT: wafer acceptance testing)2. acceptor: 受主,如B,掺入Si中需要接受电子3. ACCESS:一个EDA(Engineering Data Analysis)系统4. Acid:酸5. Active device:有源器件,如MOS FET(非线性,可以对信号放大)6. Align mark(key):对位标记7. Alloy:合金8. Aluminum:铝9. Ammonia:氨水10. Ammonium fluoride:NH4F11. Ammonium hydroxide:NH4OH12. Amorphous silicon:α-Si,非晶硅(不是多晶硅)13. Analog:模拟的14. Angstrom:A(1E-10m)埃15. Anisotropic:各向异性(如POLY ETCH)16. AQL(Acceptance Quality Level):接受质量标准,在一定采样下,可以95%置信度通过质量标准(不同于可靠性,可靠性要求一定时间后的失效率)17. ARC(Antireflective coating):抗反射层(用于METAL等层的光刻)18. Antimony(Sb)锑19. Argon(Ar)氩20. Arsenic(As)砷21. Arsenic trioxide(As2O3)三氧化二砷22. Arsine(AsH3)23. Asher:去胶机24. Aspect ration:形貌比(ETCH中的深度、宽度比)25. Autodoping:自搀杂(外延时SUB的浓度高,导致有杂质蒸发到环境中后,又回掺到外延层)26. Back end:后段(CONTACT以后、PCM测试前)27. Baseline:标准流程28. Benchmark:基准29. Bipolar:双极30. Boat:扩散用(石英)舟31. CD: (Critical Dimension)临界(关键)尺寸。
纳米材料修饰电极
f-MWCNTs /GCESWCNH/GCE (单臂碳纳米管) graphe ne /GCEGR -CS/GCE,(石墨烯-壳聚糖)chitosan-graphene-GCE (壳聚糖-石墨烯) nano-Cu/PPy/GCE (聚吡咯) CPB/chitosan/GCE 溴化十六烷基吡啶 Chitosa n-CTAB /GCE亚硝酸盐MnO2/QPVP-Os/GCE (联吡啶锇取代的 聚乙烯吡啶) nano-Au/Ch/GCE (氯化胆碱)CR-GO/GCE (还原型氧化石墨烯) Nano-AI2O3 /GCEDAB /GCE (双十二烷基溴化铵) 对乙酰氨基酚 f-MWCNTs /GCE MWNT or SWNT/EPPGMWCNTs:graphite/GCE 多臂碳纳米管和石墨混合 Carbon nano tubes paste electrodes 碳纳米管糊电极 graphene /GCE (石墨烯)PAMAMPAMAM/Fe3O4 /GCE PAMAM/CoTe /GCE纳米AI2O3,对有机磷分子有较好的氧化还原活性。
其氮原子上一对孤对电子易于从溶液中结合一个氢质子•。
人们充分利用生物高分子壳聚糖的生物相容性、低 不断开发它的应用领域。
在分析化学上,己用于分离富Kazunori 等用壳聚糖修饰电极测定 北京大学叶宪曾研究组曾用壳聚糖修饰玻Au (lll ),Ag (l ),Pt (ll )和 Pd (ll )。
尿酸和乙酰氨基酚对葡萄糖检测的干扰。
多巴胺花状 ZnO/GCE多巴胺传感器同时检测多巴胺和对乙酰氨基酚 同时检测尿酸、多巴胺和抗坏血酸 抗坏血酸存在下检测多巴胺 抗坏血酸存在下检测多巴胺 同时检测抗坏血酸、多巴胺、尿酸 同时测定多巴胺和尿酸 同时检测多巴胺和抗坏血酸 同时检测多巴胺和抗坏血酸亚硝酸盐传感器 亚硝酸盐传感器亚硝酸盐传感器 对亚硝酸盐的检测检测水样中的亚硝酸盐同时检测多巴胺和对乙酰氨基酚 测定对乙酰基氨基酚 对乙酰氨基酚(扑热息痛) 对乙酰氨基酚对乙酰氨基酚的检测,不受多巴 胺和抗坏血酸的干扰测定牛奶中的双酚 A 测定水中的双酚A壳聚糖分子链上有许多游离的氨基, 而使壳聚糖成为带正电荷的聚电解质 毒性、生物可降解性以及可食用性, 集痕量Ni (ll ) , Cu (ll ) , Cd (ll )。
一种用于脑脊液钙离子原位检测的电位型微电极的制备方法及应用
一种用于脑脊液钙离子原位检测的电位型微电极的制备方法及应用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!脑脊液是一种充满脑室系统、蛛网膜下腔和脊髓中央管的无色透明液体,它含有大量的生物化学物质,如蛋白质、离子、代谢产物等,这些物质在维持人体正常的生理功能中起着至关重要的作用。
骨骼肌中钙离子检测方法
骨骼肌中钙离子检测方法荧光钙指示剂荧光钙指示剂是一种广泛用于检测骨骼肌中钙离子浓度的技术。
这些指示剂与钙离子结合后会释放荧光,荧光强度与钙离子浓度成正比。
常用的荧光钙指示剂包括:Fluo-4:一种紫外激发的指示剂,具有快速的响应时间和高灵敏度。
Fura-2:一种双波长возбуждения指示剂,可以区分自由钙离子和结合钙离子。
Indo-1:一种紫外激发的指示剂,具有较长的波长发射,减少了自发荧光干扰。
电化学传感器电化学传感器可以检测钙离子的电位变化。
最常用的电化学传感器是钙离子选择性电极。
当电极浸入含有钙离子的溶液中时,电极表面会产生一个电位,该电位与钙离子浓度成对数关系。
显微镜成像技术显微镜成像技术可以提供骨骼肌中钙离子空间分布的信息。
常用的显微镜成像技术包括:共聚焦激光扫描显微镜 (CLSM):使用聚焦激光束扫描样品,产生高分辨率的图像。
双光子显微镜:使用双光子激发,允许更深的组织穿透和减少光损伤。
荧光寿命成像显微镜 (FLIM):测量荧光寿命,这可以提供钙离子浓度和环境信息。
光纤记录光纤记录技术使用光纤将荧光指示剂输送到骨骼肌中。
然后,使用光纤收集荧光信号,该信号与钙离子浓度成正比。
钙闪烁探针钙闪烁探针是由钙离子结合蛋白连接的化学发光基团组成。
当钙离子与蛋白结合时,化学发光基团会发出光,光强度与钙离子浓度成正比。
原子发射光谱法原子发射光谱法是一种分析技术,通过测量元素在激发后释放的光的波长和强度来确定元素的浓度。
对于钙离子检测,骨骼肌样本被激发,释放的钙离子光被检测和定量。
选择合适的方法选择合适的钙离子检测方法取决于具体的研究要求。
荧光钙指示剂最常用于测量骨骼肌中的钙离子,因为它们具有高灵敏度、快速响应时间和空间分辨率。
电化学传感器和显微镜成像技术也提供valuable information,特别是当需要空间信息或长时间记录时。
超高效液相色谱-三重四极杆质谱法测定化妆品中环吡酮胺含量
DOI:10.13822/ki.hxsj.2021007370 化学试剂,2021,43(3),345~349超高效液相色谱-三重四极杆质谱法测定化妆品中环批酮胺含量李晓宇\曹海荣\王思怿(1.上海化工研究院有限公司,上海200062;2.上海应用技术大学化学与环境工程学院,上海201418)摘要:建立了一种超高效液相色谱-串联质谱(U P L C-M S/M S)的方法用来测定化妆品中环吡酮胺的含量。
使用沃特世超高效液相色谱C l8色谱柱(1.7 ^111X2. 1m m x50m m),以甲醇/水(含0. 1%甲酸)溶液为流动相进行梯度洗脱,流速设定为0.5 m L/r n i n,进样量设置为2 p L,在电喷雾正离子模式下(E S I+),采用多反应监测(M R M)模式进行定性和定量测定。
结果表明,建立的分析方法在所研究的范围内浓度和峰面积具有良好的线性关系,相关系数为0.999 6,平均加标回收率为107.9%(n=3),平均相对标准偏差(R S D)为4.80%U=6),检出限浓度为0.066 8 m g/k g,定量限浓度为0.223 m g/k g,该 方法方便、灵敏、准确,适用于化妆品中环吡酮胺的含量检测与质量监督。
关键词:环吡酮胺;化妆品;超高效液相色谱-串联质谱法;检出限;定量限;线性相关系数中图分类号:0657.63 文献标识码:A文章编号:0258-3283(2021)03-0345-05Determination of Ciclopirox Olamine in Cosmetics by Ultra Performance Liquid Chromatography-triplequadrupole Mass Spectrometry LI Xiao-yu ,C A0Hai-rong2 ,WANG S i-y i*\ 1.Shanghai Research Institute of C h e m i c a l Industry Co., Ltd., Shanghai 200062, C h i n a; 2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418,C h i n a),H u a x u e Shiji,2021 ,43(3) ,345 〜349Abstract: A n U P L C-M S/M S m e t h o d for the determination of ciclopirox olamine in cosmetic samples has b e e n developed. T h e U P L C separation w a s carried out on a Waters Acquity U P L C® B E H C l g c o l u m n(1.7(xmx2. 1m m x50 m m)by gradient elution using methanol/water (containing 0. 1%formic acid) system.The flow rate is 0. 5 m L/m i n a n d sa m p l e injection a m o u n t is 2 jxL. T h e electrospray ionization source in positive ion m o d e( E S I+ )w a s used for qualitative analyzing a n d quantitative analyzing of ciclopirox olamine in the multiple reaction monitoring ( M R M)m o d e.T h e developed m e t h o d has a good linear relationship between concentration a n d p e a k area in the corresponding concentration range.The linear correlation coefficient is 0. 999 6,a n d the average recoveries of standard addition is 107. 9%(n = 3) ,and the average relative standard deviation is 4. 80%(m=6) ,the limit of d etection is 0. 066 8 m g/k g,a n d the limit of quantification is 0. 223m g/k g.T h e m e t h o d is convenient,sensitive and accurate, a n d the good analytical features of the proposed met h o d m a k e i t useful to carry out the quality control of cosmetic products a n d raw materials to assure the safety of users.Key words :ciclopirox o l a m i n e;cosmetics;U P L C-M S/M S;limit of detection;limit of quantification;linear correlation coefficient环吡酮胺是一种抗菌谱广、毒性低、渗透力强的抗真菌剂[|’2],对皮肤真菌(一种生长在皮肤、头发和指甲上的真菌)、酵母菌、放线菌、双相真菌等有较强的抑菌和杀菌作用[3]。
高精度原子力显微镜用于超顺磁性氧化铁纳米粒子的表征
( 庆 医 科 大 学 基 础 医学 院 放射 医 学教 研 室 , 庆 重 重 ( 庆 大 学 数 理 学 院 纳 米 技 术 工作 站 , 庆 重 重 ( 庆医科大学药学院 , 庆 重 重
4o4 ) oo4
40 1) 00 6
摘
要 :目的 : 高 精 度 原 子 力 显 微 镜 用 于葡 聚糖 包 被 的超 顺 磁 性 氧 化铁 (PO) 米 粒 子 表 征 , 讨 它 作 为 载 体 用 将 SI 纳 探
W E Mi g N n
B AI We i
L h oL n I S a - i 孙
YANG e He g Xu o n
L iBo IB . 4
T ANG T iGu a. o
S a — ig U Xi o P n
‘ D p r e tfR do g ,te it f l t o i l h n q gM d a U nv s y h n qn 0 0 6 ( e a m n o a i o y h r ia dH s t ,C o g i t l F sA ie pa n ei l ui rt ,C og i 4 0 1 ) c ei g ( eate t fR d t n,C lg o B s e dc e,C og i Dpr n o ai i m ao oee l f ai cM ii n h n q gMei lU n e i ,C o g i 0 0 6 n dc u i rt a v sy h n q g 4 0 1 ) n
胶原蛋白在电镀铜中的作用
胶原蛋白在电镀铜中的作用英文回答:Collagen has demonstrated promising potential in enhancing the properties of electroplated copper for various applications. Its unique properties provide several advantages, including:1. Enhanced Adhesion: Collagen's inherent biocompatibility and ability to adhere to various substrates make it an ideal material for improving the adhesion of electroplated copper. It acts as an intermediate layer between the substrate and the copper deposit, facilitating strong bonding and preventing delamination.2. Reduced Porosity: Collagen can fill surface imperfections and voids in the substrate, reducing the porosity of the electroplated copper. This results in a more uniform and dense deposit with improved corrosionresistance and mechanical properties.3. Improved Conductivity: Collagen is an electrically conductive material, which can enhance the electrical conductivity of the electroplated copper. This is particularly beneficial in applications where highelectrical conductivity is crucial, such as in electrodes and electronic devices.4. Biocompatibility and Corrosion Resistance: Collagen is a biocompatible material that exhibits excellent corrosion resistance. It can protect the underlying substrate from corrosive environments and prevent copper oxidation, extending the lifespan of the electroplated component.5. Flexibility and Flexibility: Collagen is a flexible material that can withstand bending and deformation without compromising its properties. This makes it suitable for applications where flexibility is required, such as in flexible electronics and wearable devices.中文回答:胶原蛋白在电镀铜中的作用。
基于多孔粗糙金纳米管阵列电极直接电化学测定抗坏血酸和尿酸
基于多孔粗糙金纳米管阵列电极直接电化学测定抗坏血酸和尿酸杨光明【期刊名称】《保山学院学报》【年(卷),期】2012(031)005【摘要】利用循环伏安法(CV)和模板(阳极氧化铝模板(AAO),制备出多孔粗糙金纳米管,壳聚糖将(AAO制备所得)其固定在玻碳电极上,然后将模板溶解,制得金纳米管修饰的传感器,并将其用于抗坏血酸(AA)和尿酸(UA)的直接电化学测定.利用电子扫描电镜(SEM)分析了金纳米管的微观形貌,通过微分差示脉冲伏安(DPV)和循环伏安法考察了抗坏血酸和尿酸在修饰电极上的电化学行为.结果表明,该传感器检测抗坏血酸和尿酸的线性范围分别为1.02×10-7~5.23×10-4mol.L-1和1.43×10-7~4.64×104mo l.L-1,检测下限分别为1.12×10-8mol.L-1和2.24×10-8mol.L-1.该传感器具有稳定性好,制作简单,使用寿命长等特点,为实际样品中抗坏血酸和尿酸的测定提供了一种新的简便手段.【总页数】6页(P6-11)【作者】杨光明【作者单位】保山学院资源环境学院,云南保山678000【正文语种】中文【中图分类】O646【相关文献】1.介孔碳/纳米金修饰电极同时测定多巴胺、抗坏血酸和尿酸 [J], 张钱丽;肖昕;张蓉;戴鹏;周帅;冯刚2.苝酐-纳米金修饰电极同时检测抗坏血酸、多巴胺和尿酸的研究 [J], 归国风;宋鹏;孙小媛3.聚1H-咪唑-4-甲酸-纳米氧化锌复合膜修饰电极的制备及其对抗坏血酸、多巴胺和尿酸的同时测定 [J], 赵丹; 张雷4.LiFePO4改性电极同时测定抗坏血酸、多巴胺和尿酸 [J], 梁亚鸣;袁红雁5.纳米金/硫堇/科琴黑修饰玻碳电极同时检测抗坏血酸和尿酸 [J], 张飞翔;金葆康因版权原因,仅展示原文概要,查看原文内容请购买。
【高分子专业英语翻译】
【高分子专业英语翻译】第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。
乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。
水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。
在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。
乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。
单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。
单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。
更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。
这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。
第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。
构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。
以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。
这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。
大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。
和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。
冷原子光谱法 英语
冷原子光谱法英语Okay, here's a piece of writing on cold atom spectroscopy in an informal, conversational, and varied English style:Hey, you know what's fascinating? Cold atom spectroscopy! It's this crazy technique where you chill atoms down to near absolute zero and study their light emissions. It's like you're looking at the universe in a whole new way.Just imagine, you've got these tiny particles, frozen in place almost, and they're still putting out this beautiful light. It's kind of like looking at a fireworks display in a snow globe. The colors and patterns are incredible.The thing about cold atoms is that they're so slow-moving, it's easier to measure their properties. You can get really precise data on things like energy levels andtransitions. It's like having a super-high-resolution microscope for the quantum world.So, why do we bother with all this? Well, it turns out that cold atom spectroscopy has tons of applications. From building better sensors to understanding the fundamental laws of nature, it's a powerful tool. It's like having a key that unlocks secrets of the universe.And the coolest part? It's just so darn cool! I mean, chilling atoms to near absolute zero? That's crazy science fiction stuff, right?。
电化学脱合金的英文
电化学脱合金的英文Electrochemical Dealloying: Principles, Applications, and Challenges.Introduction.Electrochemical dealloying is a process that involves the selective removal of one or more constituent metalsfrom a multicomponent metallic alloy by electrochemical means. This process, often referred to as "dealuminization" in the context of aluminum-based alloys, has found widespread applications in materials science, nanotechnology, and energy conversion and storage systems. The primary advantage of electrochemical dealloying lies in its ability to create nanostructured materials with unique physical and chemical properties, such as high surface area, porosity, and conductivity.Principles of Electrochemical Dealloying.The electrochemical dealloying process occurs when an alloy is immersed in an electrolyte solution and apotential is applied between the alloy and a counter-electrode. The applied potential drives the electrochemical reactions at the alloy surface, resulting in thedissolution of one or more constituent metals. The dissolution rate of each metal depends on its electrochemical properties, such as the redox potential and electrochemical activity in the given electrolyte.During the dealloying process, the alloy is typically the anode, and the counter-electrode is the cathode. The anode is connected to the positive terminal of the power source, while the cathode is connected to the negative terminal. When the potential is applied, the alloy begins to dissolve, and the dissolved metal ions migrate towards the cathode. At the cathode, the metal ions are reduced and deposited on the surface, forming a new metal layer.The rate of metal dissolution during electrochemical dealloying is controlled by several factors, including the electrolyte composition, applied potential, temperature,and alloy composition. By optimizing these parameters, researchers can precisely control the morphology, porosity, and composition of the resulting nanostructured materials.Applications of Electrochemical Dealloying.Electrochemical dealloying has found numerous applications in materials science and engineering. Some of the key applications are discussed below:1. Nanoporous Metals: Electrochemical dealloying is widely used to create nanoporous metals with high surface area and porosity. These materials exhibit unique physical and chemical properties that are beneficial in various applications, such as catalysis, sensors, and energy storage.2. Battery Materials: Nanoporous metals produced by electrochemical dealloying have been explored as anode materials for lithium-ion batteries. The high porosity and surface area of these materials enhance the lithium storage capacity and improve the battery's performance.3. Fuel Cells: Electrochemical dealloying has also been used to create nanostructured catalysts for fuel cells. These catalysts exhibit enhanced activity and durability, which are crucial for efficient fuel cell operation.4. Biomedical Applications: Nanoporous metals produced by electrochemical dealloying have potential applicationsin biomedicine, such as drug delivery, tissue engineering, and implant materials. The porous structure of these materials allows for controlled drug release and improved cell adhesion and growth.Challenges and Future Directions.Despite the significant progress made inelectrochemical dealloying, several challenges remain to be addressed. One of the primary challenges is the control of the dealloying process at the nanoscale, as it is crucialfor achieving the desired material properties. Additionally, the development of new electrolytes and optimization of dealloying parameters are ongoing research efforts.Future research in electrochemical dealloying could focus on exploring new alloy systems, optimizing the dealloying process for specific applications, and understanding the fundamental mechanisms underlying metal dissolution and nanostructure formation. Furthermore, the integration of electrochemical dealloying with other nanotechnology approaches, such as lithography and templating, could lead to the development of even more advanced materials with tailored properties.Conclusion.Electrochemical dealloying is a powerful technique for creating nanostructured materials with unique physical and chemical properties. Its applications span multiple fields, including materials science, energy conversion and storage, and biomedicine. While significant progress has been madein this field, there are still numerous challenges and opportunities for further research and development. With the advancement of nanotechnology and materials science, electrochemical dealloying holds promise for enabling thecreation of next-generation materials with improved performance and functionality.。
仪器分析英文缩写1
仪器分析方法英文缩写AAS 原子吸收光谱法Atomic Absorption SpectrometryAES 原子发射光谱法Atomic Emission SpectroscopyAFS 原子荧光光谱法Atomic Fluorescence SpectrometryASV 阳极溶出伏安法anodic stripping voltammetryATR 衰减全反射法Attenuated Total ReflectionAUES 俄歇电子能谱法Auger electron spectroscopyCEP 毛细管电泳法capillary electrophoresisCGC 毛细管气相色谱法capillary gas chromatographyCIMS 化学电离质谱法chemical ionization mass spectrometryCIP 毛细管等速电泳法capillaryisotachor-phoresisCLC 毛细管液相色谱法capillary liquid chromatographyCSFC 毛细管超临界流体色谱法Capillary supercritical fluid chromatography CSFE 毛细管超临界流体萃取法Capillary of supercritical fluid extractionCSV 阴极溶出伏安法cathodic stripping voltammetryCZEP 毛细管区带电泳法capillary zone electrophoresisDDTA 导数差热分析法Derivative differential thermal analysisDIA 注入量焓测定法Determination of enthalpy injection quantity DPASV 差示脉冲阳极溶出伏安法Differential pulse anodic stripping voltammetry DPCSV 差示脉冲阴极溶出伏安法Differential pulse cathodic stripping voltammetry DPP 差示脉冲极谱法differential pulse polarographyDPSV 差示脉冲溶出伏安法Differential pulse stripping voltammetryDPV A 差示脉冲伏安法Differential pulse voltammetryDSC 差示扫描量热法differential scanning calorimetryDTA 差热分析法differential thermal analysisDTG 差热重量分析法differential thermogravimetric analysis EAAS 电热或石墨炉原子吸收光谱法Electric heating or graphite furnace atomic absorptionspectrometryETA 酶免疫测定法enzyme immunoassayEIMS 电子碰撞质谱法The electron impact mass spectrometry ELISA 酶标记免疫吸附测定法Enzyme labeled immunosorbent assay EMAP 电子显微放射自显影法electron microscope autoradiographyEMIT 酶发大免疫测定法Enzyme immune assay hairEPMA 电子探针X射线微量分析法Electron probe X ray trace analysisESCA 化学分析用电子能谱学法Spectral method by electron chemical analysis ESP 萃取分光光度法extraction spectrophotometryFAAS 火焰原子吸收光谱法flame atomic absorption spectrometry FABMS 快速原子轰击质谱法Fast atom bombardment mass spectrometryFAES 火焰原子发射光谱法flame atomic emission spectrometryFDMS 场解析质谱法Field desorption mass spectrometryFIA 流动注射分析法flow injection analysisFIMS 场电离质谱法Field ionization mass spectrometryFNAA 快中心活化分析法Analysis of fast activation centerFT-IR 傅里叶变换红外光谱法Fourier Transform Infrared SpectrometryFT-NMR 傅里叶变换核磁共振谱法fourier transform-nmr spectrometryFT-MS 傅里叶变换质谱法fourier transform mass spectrometryGC 气相色谱法gas chromatographyGC-IR 气相色谱-红外光谱法gas chromatography-infrared spectroscopyGC-MS 气相色谱-质谱法gas chromatography-mass-spectrographyGD-AAS 辉光放电原子吸收光谱法Glow discharge atomic absorption spectrometryGD-AES 辉光放电原子发射光谱法Glow discharge atomic emission spectrometryGD-MS 辉光放电质谱法glow discharge mass spectrometryGFC 凝胶过滤色谱法gel filtration chromatographyGLC 气相色谱法gas chromatographyGLC-MS 气相色谱-质谱法gas chromatography/mass spectrometryHAAS 氢化物发生原子吸收光谱法hydride generation-atomic absorption spectrometryhg-aas HAES 氢化物发生原子发射光谱法Atomic emission spectrometry with Hydride Generation HPLC 高效液相色谱法high performance liquid chromatography HPTLC 高效薄层色谱法Atomic Absorption SpectrometryIBSCA 离子束光谱化学分析法Ion beam spectroscopy for chemical analysis IC 离子色谱法Ion chromatographyICP 电感耦合等离子体Inductively coupled plasmaICP-AAS 电感耦合等离子体原子吸收光谱法Inductively coupled plasma atomic absorptionspectrometryICP-AES 电感耦合等离子体原子发射光谱法Inductively coupled plasma atomic emission spectrometry ICP-MS 电感耦合等离子体质谱法Inductively coupled plasma mass spectrometryIDA 同位素稀释分析法Isotope dilution analysisIDMS 同位素稀释质谱法Isotope dilution mass spectrometryIEC 离子交换色谱法Ion exchange chromatographyINAA 仪器中子活化分析法Instrumental neutron activation analysisIPC 离子对色谱法Ion pair chromatographyIR 红外光谱法Infrared spectroscopyISE 离子选择电极法Ion selective electrode methodISFET 离子选择场效应晶体管Ion selective field effect transistorLAMMA 激光微探针质谱分析法Analysis of laser microprobe mass spectrometry LC 液相色谱法Liquid chromatographyLC-MS 液相色谱-质谱法Liquid chromatography - mass spectrometry MECC 胶束动电毛细管色谱法Micellar electrokinetic capillary chromatographyMEKC 胶束动电色谱法Micellar electrokinetic chromatographyMIP-AES 微波感应等离子体原子发射光谱法Microwave induced plasma atomic emission spectrometry MS 质谱法mass-spectrographyNAA 中子活化法neutron activationNIRS 近红外光谱法near infrared spectroscopyNMR 核磁共振波谱法nuclear magnetic resonance spectroscopyPAS 光声光谱法photoacoustic spectrometryPC 纸色谱法paper chromatographyPCE 纸色谱电泳法paper chromatoelectrophoresisPE 纸电泳法paper electrophoresisPGC 热解气相色谱法pyrolysis gas chromatographyPIGE 粒子激发Gamma射线发射光谱法Particle excitation Gamma ray emission spectrometry PIXE 粒子激发X射线发射光谱法Particle excitation X-ray emission spectrometry RHPLC 反相高效液相色谱法reversed-phase high performance liquid chromatography RHPTLC 反相液相薄层色谱法Reversed phase thin layer chromatography RIA 发射免疫分析法RadioimmunoassayRPLC 反相液相色谱法reversed phase liquid chromatographySEM 扫描电子显微镜法scanning electron microscopySFC 超临界流体色谱法supercritical fluid chromatographySFE 超临界流体萃取法supercritical fluid extractionSIMS 次级离子质谱法Secondary-ion mass spectrometrySIQMS 次级离子四极质谱法Secondary-ion quadrupole mass spectrometry SP 分光光度法spectrophotometrySP(M)E 固相(微)萃取法Solid-phase extraction (micro)STM 扫描隧道电子显微镜法scanning tunneling microscopySTEM 扫描投射电子显微镜法Scanning transmission electron microscopy SV 溶出伏安法stripping voltammetryTEM 投射电子显微镜法Transmission ElectronMicroscopeTGA 热重量分析法Thermal Gravity AnalysisTGC 薄层凝胶色谱法thin layer gel chromatographyTLC 薄层色谱法Thin-Layer ChromatographyUPS 紫外光电子光谱法Ultraviolet Photoelectron SpectroscopyUVF 紫外荧光光谱法Ultraviolet FluorescenceUVS 紫外光谱法Ultraviolet SpectrometerXES X射线发射光谱法X-ray emission spectroscopyXPS X射线光电子光谱法X-ray photoelectron spectroscopXRD X射线衍射光谱法X-Ray DiffractionXRF X 射线荧光光谱法X-ray fluorescence。
薄膜电池英文术语
薄膜电池材料及术语(中英文对照) AAcetone-丙酮Adjustment-调整,调节Aluminium(Al)-铝Arqon(Ar)-氩气Alternating current(AC)-交流电Ammonia(NH3)-氨气Amorphous-非晶的Anneal-退火Assembly-组装average power-平均功率BBackplane 背板Back conductor-背电极Back electrode-背电极balance gas-平衡气B2H6-硼烷Bouding-绑定Buffer-缓冲器built-in voltage-内建电压Building Integrated Photovoltaic-建筑一体化CCable-电缆Carrier-运送者,搬运器Cover glass-覆盖玻璃Chemical Vapor Deposition(CVD)-化学气相沉积Commit-提交,答应负责Copper(Cu)-铜Contamination-污染,玷污Conversion -转换,转化Cumulate-adj.累积的;v.累积Cathode-阴极Crystalline-晶体的Crystallite-微晶Chamber-室,房间Curve-曲线DDenser-密集的,浓厚的Deviation-背离,偏离Diffusion-扩散,传播,漫射Diode-二极管Double side sticking tape-双边粘结带Deposition-沉积Drill-钻孔Dielectric-电介质,绝缘体Direct current(DC)-直流电Dilution-稀释drift current-漂移电流EEdge-边缘,边EVA-乙烯-醋酸乙烯共聚物Evaporation-蒸发,蒸镀Etch-蚀刻efficiency-效率Encapsulation-封装Energy-能量FFast glue-快干胶Feature-特征,特色Flux-流量Foil-金属薄片Flaming-烧结Fabrication-制作,构成Furnace-熔炉,炉子GGlass washing detergent-玻璃清洗液Guarantee-保证,担保HHydrogen(H2) -氢气Helium(He)-氦气Ii-layer-i-层,本征层Infra-red(IR)-红外线I-V -电流-电压Incidence Waves-入射波initial-初始的,最初的Installation-安装,装置JJunction-结KLLaser-Scribing-镭射分层,激光划线Lay out-平面图Lamination-层压,迭片Laminators层压机Lift-升距Liquid nitroqen-液氮MMagnetron-磁电管Maintenance-维修,维护Masking tape-包装带Masking paper-包装纸Methane(CH4) -甲烷Micromorph-微晶Module-模组Modify-更改,修改Metal organic Chemical Vapor Deposition(MOCVD)-金属有机化学气相沉积NNitrogen(N2)-氮气NF3-三氟化氮n-layer-n-层,含电子较多,掺N或POon-grid-并网organization-组织,机构,团体Oven-烤箱, 烤炉Output-产量Outdoor-户外的PPattern -V.形成,图案化;n.模式,图案PBS-聚(丁二烯-苯乙烯)PBT-聚对苯二甲酸丁二酯peak watt-峰瓦Plasma-等离子Plasma Enhance Chemical Vapor Deposition(PECVD)-等离子增强化学气相沉积p-layer-p层,空穴较多,掺硼Pilot-试生产Phosipine(PH3)-膦烷Power-功率potted component-密封元件Preheat预热Preliminary-初步的Pressure-压力PVB-聚乙烯醇缩丁醛树脂Physical Vapor Deposition(PVD)—物理气相沉积PESC电池-发射结钝化太阳电池QQuality assessment(QA)-质量评价Quality control(QC)-质量控制,质量管理Qualification-资格,资质RRadio frequency(RF)-射频Recombination-复合Rise-升程Reliability-可靠性SSandblasting material-喷沙材料Seal -密封Seal belt-密封带Seal gum-密封胶Sealing arrangement-密封装置Semiconductor-半导体Silane(SiH4) -硅烷Silicon rubber -硅胶Silver(Ag)-银Single junction-单结Solar-太阳的,太阳能的Solar cell-太阳能电池Solar simulator-太阳光模拟器Solder-焊料,焊接Sputter -溅射Sodium bisulfide-硫化钠Sodium cloride-氯化钠SF6-六氟化硫Substrate-底物,基板Specify-指定,详细说明TTandem-叠层Target-靶材Tedlar-聚乙烯氟化物薄膜Temperature Coefficient-温度系数Thin film-薄膜TPT-太阳能背膜TPE-磷酸三苯酯,薄膜电池封装材料之一Transparent Conductive Oxide (TCO) -透明导电氧化层Trap-诱捕Trimethyl borate <B(CH3)3> -三甲基硼Trimmer -整理,清理Texturing-织构turn-key solution-交钥匙工程UUV-紫外Ultravacuum-超中空Vgloves-手套Vacuum-真空,空间Very High Freqency(VHF)-甚高频Vertical-垂直的WWafer-晶片,圆片,硅片Wiring-配线ZZinc(Zn)-锌常用符号Js-反向饱和电流密度R-反射系数T-透射系数α-吸收系数λ-波长Voc-开路电压:在p-n开路情况下(R=∞),p-n结两端的电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0806.3624v 1 [h e p -p h ] 23 J u n 2008Strong and electroweak NLO corrections to Higgs-boson production in vector-boson fusion at the LHCMariano Ciccolini a ,Ansgar Denner a and Stefan Dittmaier b ∗a Paul Scherrer Institut,W¨u renlingen und Villigen,CH-5232Villigen PSI,Switzerland bMax-Planck-Institut f¨u r Physik (Werner-Heisenberg-Institut),D-80805M¨u nchen,GermanyWe present results on the strong and electroweak NLO corrections to the production of a Higgs boson plus two hard jets via weak interactions at the LHC.The calculation includes all weak-boson fusion and quark–antiquark annihilation diagrams as well as all related interferences.We discuss corrections of different origin (QCD corrections of vector-boson-fusion type and interferences,electroweak corrections induced by quark or photonic initial states,heavy-Higgs-boson effects,etc.)and give some new results for distributions for a Higgs-boson mass of 200GeV.The electroweak corrections are of the same size as the QCD corrections,viz.typically at the level of 5−10%for a Higgs-boson mass up to ∼700GeV.In general,they do not simply rescale differential distributions,but induce distortions at the level of 10%.The discussed corrections have been implemented in a flexible Monte Carlo event generator.1.IntroductionThe electroweak (EW)production of a Stan-dard Model Higgs boson in association with two hard jets in the forward and backward regions of the detector—frequently quoted as “vector-boson fusion”(VBF)—is a cornerstone in the Higgs-boson search both in the ATLAS [1]and CMS [2]experiments at the LHC and also plays an im-portant role in the determination of Higgs-boson couplings at this collider.Higgs+2jets production in pp collisions pro-ceeds through two different channels.The first channel corresponds to a pure EW process.It comprises the scattering of two (anti-)quarks me-diated by t -and u -channel W-or Z-boson ex-change,with the Higgs boson radiated offthe vir-tual weak boson.It also involves Higgs-boson ra-diation offa W-or Z-boson produced in s -channel quark–antiquark annihilation (Higgs-strahlung process),with the weak boson decaying hadron-ically.The second channel proceeds through strong interactions,the Higgs boson being radi-2M.Ciccolini,A.Denner and S.Dittmaiercome available[10,11].This calculation includes, for thefirst time,the complete set of EW and QCD diagrams,namely the t-,u-,and s-channel contributions,as well as all interferences at NLO. Higher-order loop-induced interference effects be-tween VBF and gluon–gluon fusion have been examined in Refs.[12]and turn out to be com-pletely negligible.Very recently,also the addi-tional supersymmetric QCD and EW corrections within the MSSM have been evaluated[13]and found to be typically below or at the1%level. In these proceedings we briefly summarize the calculation of the NLO EW and QCD corrections presented in Refs.[10,11]and give new results on distributions for a Higgs-boson mass of200GeV.2.Brief outline of the NLO calculation We have calculated the complete QCD and EW NLO corrections to Higgs-boson production via weak VBF at the LHC.At LO,this process re-ceives contributions from the partonic processes qq→H qq,q¯q→H q¯q,and¯q¯q→H¯q¯q.All LO and one-loop NLO diagrams are related by crossing symmetry to the corresponding decay amplitude H→q¯q q¯q.The QCD and EW NLO corrections to these decays were discussed in Ref.[14].In our calculation of the corrections,which is described in detail in Refs.[10,11],we partially made use of the results on the related Higgs decays.The electroweak NLO corrections have been supple-mented by the leading two-loop heavy-Higgs-boson effects[15]proportional to G2µM4H.In the s-channel diagrams intermediate W and Z bosons can become resonant,corresponding to WH/ZH production with subsequent gauge-boson decay.In order to consistently include these resonances,we use the“complex-mass scheme”at the one-loop level[16],which respects all relations that follow from gauge invariance. In this approach the W-and Z-boson masses are consistently considered as complex quanti-ties,defined as the locations of the propagator poles in the complex plane.The tensor integrals are evaluated using the reduction techniques of Refs.[17,18],which include direct reductions of pentagon integrals to boxes and specific methods to treat exceptional phase-space configurations in a numerically stable way.Real corrections consist of gluon and photon emission and processes with gq andγq initial states.The mass singularities from collinear initial-state splittings are absorbed via factoriza-tion by the usual PDF redefinition both for the QCD and photonic corrections.Technically,the soft and collinear singularities are isolated in the dipole subtraction method following Refs.[19,20], and the result was checked with the phase-space slicing method.Each part of the whole calculation has been worked out twice and independently,and all cor-rections are implemented in aflexible Monte Carlo event generator based on multi-channel in-tegration.3.Numerical resultsNumerical results for the Higgs-mass depen-dence and the scale dependence of the total cross section with and without VBF cuts as well as distributions for M H=120GeV have been pre-sented in Refs.[10,11].Some distributions for M H=200GeV have been published in Ref.[21]. Here we summarize the size of the different contri-butions to the total cross section and show some more distributions for M H=200GeV.All presented results are based on the input parameters as given in Ref.[11].Since quark-mixing effects are suppressed,the CKM matrix is set to the unit matrix.The electromagnetic coupling isfixed in the Gµscheme,i.e.it is set toαGµ=√NLO corrections to Higgs-boson production in vector-boson fusion at the LHC3in detail in Ref.[11].In Table1we summarize the impact of differ-ent contributions to the integrated cross sections with and without VBF cuts for Higgs masses be-tween120and200GeV,for M H=400GeV,and for M H=700GeV in per cent of the correspond-ing LO cross section.Previous calculations of the VBF process[5,7, 8,9]have consistently neglected s-channel contri-butions(“Higgs strahlung”),which involve dia-grams where one of the vector bosons can become resonant,as well as the interference between t-and u-channel fusion diagrams.For small Higgs-boson masses the contributions of s-channel dia-grams,∆s−channel,range between10%and30% when no cuts are applied.With VBF cuts,the s-channel contributions are strongly suppressed, yielding less than0.6%of the cross section for all the studied Higgs-boson masses.The contribu-tions from interferences between t-and u-channel diagrams,∆t/u−int,are below1%with or without VBF cuts and thus negligible.Consequently,ap-plying typical experimental VBF cuts,the contri-butions from s-channel diagrams and t/u-channel interferences can be safely neglected.Next,we list in Table1the contributions aris-ing at LO from processes that include b-quarks in the initial and/orfinal states.These are included in our programs but not in the default set-up.For Higgs-boson masses below200GeV,they increase the total cross section without cuts by about4% and the one with cuts by about2%.For larger Higgs-boson masses their impact is smaller.In the lower part of Table1contributions of various NLO corrections are listed.Both elec-troweak and QCD corrections are at the level of 5–10%.The QCD corrections are dominated by the previously known diagonal contributions,i.e. by the vector-boson–quark–antiquark vertex cor-rections to squared LO diagrams,δQCD(diag).All other QCD contributions,i.e.QCD corrections to interferences between the different LO diagrams and interferences with gg-fusion and g-splitting diagrams(see Ref.[11]for a precise definition), summarized inδQCD(int),are at the per-mille level and even partially cancel each other.They are not enhanced by contributions of two t-or u-channel vector bosons with small virtuality and therefore even further suppressed when applying VBF cuts.For the electroweak corrections we give the impact of the quark–quark induced pro-cesses,δEW,qq,and the one of the photon induced processes,δEW,qγseparately.The latter turn out to be∼+1%and reduce the complete elec-troweak corrections for small Higgs-boson masses. The dominant two-loop correctionδG2µM4Hdue toHiggs-boson self-interaction,which is contained inδEW,qq,is completely negligible in the low-M H region,but becomes important for large Higgs-boson masses and yields+4%for M H=700GeV which constitutes about50%of the total EW cor-rections.Obviously for Higgs masses in this re-gion and above the perturbative expansion breaks down,and the two-loop factorδG2µM4Hmight serve as an estimate of the theoretical uncertainty.The EW corrections to distributions for M H= 200GeV are qualitatively similar to those forM H=120GeV presented in Ref.[11].The distributions in the transverse momentum p j1,T of the harder tagging jet j1(jet with highestp T passing all cuts)and the distribution in the azimuthal angle separation of the two tagging jets for M H=200GeV have been presented in Ref.[21].Here we show some additional distri-butions for M H=200GeV.In Figure1we provide the distribution in the transverse momentum p T,H of the Higgs boson. The differential cross section drops strongly with increasing p T,H.As for M H=120GeV both the relative EW and QCD corrections increase in size and reach−20%for p T,H=500GeV.Fig-ure2shows the rapidity distribution of the Higgs boson.While the QCD corrections distort this shape by about10%,the relative EW corrections turn out to to beflat where the distribution is sizeable.In Figure3,we depict the distribution in the rapidity of the harder tagging jet.It can be clearly seen that the tagging jets are forward and backward located.The EW corrections vary between−3%and−6%.The QCD corrections exhibit a strong dependence on the jet rapidity. They are about−10%in the central region but become positive for large rapidities,where they tend to compensate the EW corrections.Shape changes due to the full corrections reach10%.4M.Ciccolini,A.Denner and S.DittmaierTable 1Impact of specific corrections to the cross section without and with VBF cuts relative to LO.∆s −channel [%]30−1021<0.6<0.3<0.1∆t/u −int [%]<0.5<0.1<0.1<0.1<0.1<0.1δQCD(diag)[%]4−0.5−0+1≈−5−6−7δQCD(int)[%]<∼0.2−0.2−0.1<0.1<0.1<0.1δEW ,qq [%]≈−5−5+6≈−7−5+5δEW ,qγ[%]≈+1+2+2≈+1+1+2δG 2µM 4H[%]<0.1+0.4+4<0.1+0.4+4d p T ,Hfbd σLO−1[%]50040030020010000−5−10−15−20−25−30−35−40−45Figure 1.Distribution in the transverse momentum p T ,H of the Higgs boson (left)and corresponding relative corrections (right)for M H =200GeV.NLO corrections to Higgs-boson production in vector-boson fusion at the LHC 5LOEW+QCDM H =200GeVpp →Hjj +Xy Hd σd σLO−1[%]4321−1−2−3−420151050−5−10−15Figure 2.Distribution in the rapidity y H of the Higgs boson (left)and corresponding relative corrections (right)for M H =200GeV.LO EW+QCDM H =200GeVpp →Hjj +Xy j 1d σd σLO−1[%]420−2−41050−5−10−15Figure 3.Distribution in the rapidity y j 1of the harder tagging jet (left)and corresponding relativecorrections (right)for M H =200GeV.6M.Ciccolini,A.Denner and S.Dittmaier4.ConclusionsRadiative corrections of strong and electroweak interactions have been discussed at next-to-leading order for Higgs-boson production via vector-boson fusion at the LHC.All discussed ef-fects have been implemented into aflexible Monte Carlo generator.The electroweak corrections af-fect the cross section by5%,and are thus as important as the QCD corrections in this chan-nel.They do not simply rescale distributions but induce distortions at the level of10%.Effects from photon-induced processes,s-channel contri-butions,and interferences are small once vector-boson fusion cuts are applied.For intermediate Higgs-boson masses the remaining theoretical un-certainty is below the uncertainty from PDFs and expected experimental errors.REFERENCES1.S.Asai et al.,Eur.Phys.J.C32S2(2004)19[hep-ph/0402254].2.S.Abdullin et al.,Eur.Phys.J.C39S2(2005)41.3.V.Del Duca et al.,Nucl.Phys.B616(2001)367[hep-ph/0108030];J.M.Campbell,R.K.Ellis andG.Zanderighi,JHEP0610(2006)028[hep-ph/0608194].4.V.D.Barger,R.J.N.Phillips and D.Zep-penfeld,Phys.Lett.B346(1995)106 [hep-ph/9412276];D.L.Rainwater and D.Zeppenfeld,JHEP9712(1997)005[hep-ph/9712271];D.L.Rainwater,D.Zeppenfeld and K.Hagi-wara,Phys.Rev.D59(1999)014037 [hep-ph/9808468];D.L.Rainwater and D.Zeppenfeld,Phys.Rev.D60(1999)113004[Erratum-ibid.D 61(2000)099901][hep-ph/9906218];V.Del Duca et al.,JHEP0610(2006)016 [hep-ph/0608158].5.M.Spira,Fortsch.Phys.46(1998)203[hep-ph/9705337].6. A.Djouadi,Phys.Rept.457(2008)1[arXiv:hep-ph/0503172].7.T.Han,G.Valencia and S.Willen-brock,Phys.Rev.Lett.69(1992)3274 [hep-ph/9206246].8.T.Figy,C.Oleari and D.Zeppenfeld,Phys.Rev.D68(2003)073005[hep-ph/0306109];E.L.Berger and J.Campbell,Phys.Rev.D70(2004)073011[hep-ph/0403194].9.T.Figy and D.Zeppenfeld,Phys.Lett.B591(2004)297[hep-ph/0403297].10.M.Ciccolini, A.Denner and S.Dittmaier,Phys.Rev.Lett.99(2007)161803 [arXiv:0707.0381].11.M.Ciccolini, A.Denner and S.Dittmaier,Phys.Rev.D77(2008)013002 [arXiv:0710.4749[hep-ph]].12.J.R.Andersen,T.Binoth,G.Heinrichand J.M.Smillie,JHEP0802(2008)057 [arXiv:0709.3513[hep-ph]];A.Bredenstein,K.Hagiwara andB.J¨a-ger,Phys.Rev.D77(2008)073004 [arXiv:0801.4231[hep-ph]].13.W.Hollik,T.Plehn,M.Rauch and H.Rze-hak,arXiv:0804.2676[hep-ph].14.A.Bredenstein,A.Denner,S.Dittmaier andM.M.Weber,Phys.Rev.D74(2006)013004 [hep-ph/0604011];JHEP0702(2007)080 [hep-ph/0611234].15.A.Ghinculov,Nucl.Phys.B455(1995)21[hep-ph/9507240];A.Frink,B. A.Kniehl, D.Kreimer andK.Riesselmann,Phys.Rev.D54(1996)4548 [hep-ph/9606310].16.A.Denner,S.Dittmaier,M.Roth andL.H.Wieders,Nucl.Phys.B724(2005)247 [hep-ph/0505042].17.A.Denner and S.Dittmaier,Nucl.Phys.B658(2003)175[hep-ph/0212259].18.A.Denner and S.Dittmaier,Nucl.Phys.B734(2006)62[hep-ph/0509141].19.S.Dittmaier,Nucl.Phys.B565(2000)69[hep-ph/9904440].20.S.Dittmaier, A.Kabelschacht andT.Kasprzik,arXiv:0802.1405[hep-ph].21.M.Ciccolini, A.Denner and S.Dittmaier,arXiv:0712.2895[hep-ph].22.A.D.Martin et al.,Eur.Phys.J.C39(2005)155[hep-ph/0411040].。