2017-2018学年北京人大附中七年级(下)期末数学试卷
2017—2018学年七年级下期末考试数学试卷有答案
2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。
5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。
人大附中七年级下学期期末数学复习测验(含答案)
10. 图中直线 l 、n 分别截∠A 的两边,且 l ∥n,∠3=∠1+∠4。根据图中标示的角,判断下列各 角的度数关系中正确的是 ( )
A. ∠2+∠5>1#43;∠3<180° D. ∠3+∠4<180°
二、填空题(本题共 10 道小题,每空 2 分,共 24 分。) 11. 已知 A(2,0), B( a,0) ,且 AB 6 ,则 a=__________。 12. 如图,直线 a,b 被直线 c 所截,现给出四个条件:
4分
整理得
2a b 1, a 1, ,解得 a 2b 1. b 1.
5分
将
a 1, bx 3 2 ax 代入不等式 1, 2 3 b 1
x 3 2 x 1。 2 3 1 。 5
8分
得
化简得, 5 x 1, x 28. (6 分) 解:由题意: a 4 。
5
【参考答案】
一、选择题(本题共 30 分,每小题 3 分。) 1. B 2. D 3. D
[来源:]
4. C 5. B 6. D
7. A 8. A 9. C 10. A
[来源:学科网 ZXXK]
二、填空题(本题共 24 分,每空 2 分。) 11. 4 或-8 12. ①②③ 13. 2
15. 利用不等式的基本性质,用“>”或“<”号填空。若 a>b,则 4a _______ 4b 。 16. 对于点 A(2,b),若点 A 到 x 轴的距离是 5,那么点 A 的坐标是__________。 17. 如图,AB∥CD,AF 交 CD 于点 O,且 OF 平分∠EOD,如果∠A=38°,那么∠EOF=__°。
2017-2018学年度第二学期京改版七年级期末考试数学试卷
绝密★启用前2017-2018学年度第二学期 京改版七年级期末考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷24题,答卷时间100分,满分120分1.(本题3分)如果不等式组5{ x x m<>无解,那么m 的取值范围是( )A. m >5B. m ≥5C. m <5D. m ≤52.(本题3分)若()1232k k x y ---=是关于x ,y 的二元一次方程,那么k 2-3k-2的值为( ) A. 8 B. 8或-4 C. -8 D. -4 3.(本题3分)已知x m=6,x n=3,则x2m ―n的值为( )A. 9B. 34C. 12D. 434.(本题3分)若不等式组1{ 240x a x +>-≤有解,则a 的取值范围是()……外………………○A. a ≤3 B. a<3 C. a<2 D. a ≤2 5.(本题3分)化简:(﹣2)2003+(﹣2)2002所得的结果为( ) A. 22002B. ﹣22002C. ﹣22003D. 26.(本题3分)多项式﹣2a (x+y )3+6a 2(x+y )的公因式是( )A. ﹣2a 2(x+y )2B. 6a (x+y )C. ﹣2a (x+y )D. ﹣2a7.(本题3分)下列计算正确的是( ). A. 623a a a ÷= B. 44a a a ⋅= C. ()437a a = D. ()22124a a --=8.(本题3分)若△ABC 三边分别是a 、b 、c ,且满足 (b ﹣c )(a 2+b 2)=bc 2﹣c 3, 则△ABC 是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形9.(本题3分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是( )A. 16、10.5B. 8、9C. 16、8.5D. 8、8.5 10.(本题3分)在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书话动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是( )A. 中位数是2B. 众数是17C. 平均数是2D. 方差是2二、填空题(计32分)11.(本题4分)已知关于x 的不等式组{ 212x a b x a b-≥--<的解集为3≤x <5,则a=,b=.12.(本题4分)若关于x 的不等式(1﹣a )x >2可化为x >21a-,则a 的取值范围是____.13.(本题4分)已知方程8mx ny +=的两个解是3{2x y ==, 1{2x y ==-,则m =___________, n =___________14.(本题4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二含t 的代数式表示.)15.(本题4分)若4x 2+(m +1)xy +9y 2是完全平方式,则m 的值是___________.16.(本题4分)已知m 2﹣mn=2,mn ﹣n 2=5,则3m 2+2mn ﹣5n 2=________.17.(本题4分)因式分解:4x-x 3=___________. 18.(本题4分)观察下列等式:1×2+2=4=22;2×3+3=9=32;3×4+4=16=42;4×5+5=25=52;……由此,你得出的结论是______________.(用含n 的等式表示)三、解答题(计58分)19.(本题8分)化简求值:3x 2y ﹣[2xy 2﹣2(xy ﹣32x 2y )+xy]+3xy 2,其中x=3,y=﹣13.………________…………订20.(本题8分)解下列二元一次方程组(1)2{ 3100y x x y =+-= (2) 1{ 24x y x y +=-=-21.(本题8分)解不等式组: ()()3261{ 53123x x x x -≤+-+>,并把不等式组解集在数轴上表示出来.………订…………※※线※※内※※答※※题※※………22.(本题8分)已知:如图, CD AB ⊥于D ,点E 为BC 边上的任意一点, 128,228∠=︒∠=︒EF AB ⊥于F ,且62AGD ∠=︒,求ACB ∠的度数。
北京市2017-2018学年度七年级下册期末数学试卷及答案
学生人数/人 19 17 9 252015 10 2017-2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
【精选3份合集】2017-2018年北京市某中学七年级下学期期末考试数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知不等式组3010xx->⎧⎨+≥⎩,其解集正确的是()A.﹣1≤x<3 B.﹣1<x≤3C.x>3 D.x≤﹣1【答案】C【解析】由x-3>0得x>3,由x+1≥0得x≥-1,所以不等式组的解集是x>3;故选C.点睛:本题主要是求不等式组的解集,取解集的原则是“同大取大,同小取小,大小小大中间找,大大小小无处找”,熟记这些并会应用是解题的关键.2.在国际跳水比赛中,根据规则,需要有7位裁判对选手的表现进行打分.在裁判完成打分后,总裁判会在7位裁判的打分中,去掉一个最高分,再去掉一个最低分,将剩下5位裁判的平均分作为该选手的最终得分.在总裁判去掉最高分与最低分后,一定保持不变的统计量是()A.平均分B.众数C.中位数D.最高分【答案】C【解析】根据平均分、众数、中位数等的意义进行分析判断即可.【详解】去掉一个最高分,再去掉一个最低分,平均分、众数、最高分都有可能发生变化,只有中位数不变,故选C.【点睛】本题考查了平均分、众数、中位数,正确把握各自的含义是解题的关键.3.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.4 C.﹣3 D.﹣4【答案】B【解析】试题分析:在x轴上的点的纵坐标为零,则x-4=0,解得:x=4,故选B.点睛:本题主要考查的就是象限中点的特征,属于基础题型.点在第一象限,则点的横坐标和纵坐标都是正数;点在第二象限,则点的横坐标为负数,纵坐标为正数;点在第三象限,则点的横坐标和纵坐标都是负数;点在第四象限,则点的横坐标为正数,纵坐标为负数;x轴上的点的纵坐标为零;y轴上的点的横坐标为零.4.三角形两条边的长分别是4和10,下面四个数值中可能是此三角形第三边长的为()A.5 B.6 C.11 D.16【答案】C【解析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点睛】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.5.如图,点E在AC的延长线上,下列条件中:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D+∠ABD =180º,能判断AB∥CD的是()A.①③④B.①②③C.①②④D.②③④【答案】A【解析】根据平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可得出答案.【详解】①∵∠1=∠2,∴ AB∥CD,②∵∠ 3=∠4,∴BD∥AC,③∵∠ A=∠ DCE,∴AB∥CD,④∵∠ D+∠ ABD=180°,∴ AB∥ CD,综上所述:能判断AB∥CD的有①③④ .故答案为A.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180B.220C.240D.300【解析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.7.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个【答案】C【解析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠2,不能判定l1∥l2,故本小题错误;②∵∠4=∠5,∴l1∥l2,故本小题正确;③∵∠2+∠5=180°,不能判定l1∥l2,故本小题错误;④∵∠1=∠3,∴ l1∥l2,故本小题正确;⑤∵∠6=∠1+∠2=∠3+∠2,∴∠1=∠3 ∴l1∥l2,故本小题正确.故选C.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解题关键.8.计算:(8x3﹣12x2﹣4x)÷(﹣4x)=()A.﹣2x2+3x B.﹣2x2+3x+1 C.﹣2x2+3x﹣1 D.2x2+3x+1【答案】B【解析】用多项式的每一项分别处以﹣4x即可.【详解】(8x3﹣12x2﹣4x)÷(﹣4x)=﹣2x2+3x+1.【点睛】本题考察了多项式除以单项式,其运算法则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加.9.43在两个连续整数a 和b 之间,43a b <<,那么+a b 的值是( )A .11B .13C .14D .15 【答案】B【解析】首先用“夹逼法”确定a b 、的值,进而可得+a b 的值.【详解】解:6437<<,∴6,7a b ==,∴6713a b +=+=.故选:B.【点睛】此题主要考查了估算无理数的大小,关键是正确确定a b 、的值.10.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD ∆的面积是 ( )A .15B .30C .45D .60【答案】B 【解析】作DE ⊥AB 于E ,根据角平分线的性质得到DE =DC =4,根据三角形的面积公式计算即可.【详解】解:作DE ⊥AB 于E ,由基本尺规作图可知,AD 是△ABC 的角平分线,∵∠C =90°,DE ⊥AB ,∴DE =CD =4,∴△ABD 的面积=12AB×DE =12×15×4=30, 故选:B .本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题题11.一个正数a 的平方根分别是2m ﹣1和﹣3m+52,则这个正数a 为_____. 【答案】1【解析】直接利用平方根的定义得出2m-1+(-3m+52)=0,进而求出m 的值,即可得出答案. 【详解】解:根据题意,得:2m-1+(-3m+52)=0, 解得:m=32, ∴正数a=(2×32-1)2=1, 故答案为1.【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键.12.将一副三角板如图叠放,则图中∠α的度数为______.【答案】15°.【解析】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.13()23-3279324____________. 【答案】732-【解析】按顺序先分别进行算术平方根的运算、立方根的运算,绝对值的化简,然后再按运算顺序进行计算即可.【详解】原式=(333232---=333232--+ 732=- 故答案为:732- 【点睛】本题考查了实数的运算,熟练掌握实数运算的顺序并能正确化简各数是解题的关键.14.若不等式组21 4x axx-≥⎧⎪⎨+>-⎪⎩无解,则a的取值范围是_____.【答案】a≥1.【解析】根据解不等式组的方法可以解答此不等式组,再根据此不等式组无解,从而可以求得a的值.【详解】214x axx-≥⎧⎪⎨+>-⎪⎩①②由不等式①,得x≥a,由不等式②,得x<1,∵不等式组214x axx-≥⎧⎪⎨+>-⎪⎩无解,∴a≥1,故答案为:a≥1.【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.15.如图所示,直线,AB CD相交于点O,且110AOD BOC∠+∠=,则AOC∠的度数是__________.【答案】125°【解析】两直线相交,对顶角相等,即∠AOD=∠BOC,已知∠AOD+∠BOC=100°,可求∠AOD;又∠AOD 与∠AOC互为邻补角,即∠AOD+∠AOC=180°,将∠AOD的度数代入,可求∠AOC.【详解】∵∠AOD与∠BOC是对顶角,∴∠AOD=∠BOC,又∵∠AOD+∠BOC=110°,∴∠AOD=55°.∵∠AOD与∠AOC互为邻补角,∴∠AOC=180°−∠AOD=180°−55°=125°.故答案为:125°【点睛】此题考查对顶角、邻补角,解题关键在于两直线相交,对顶角相等16.如图,AB CD ⊥,垂足为O ,直线EF 经过点O ,126∠=︒,则2∠=__︒.【答案】64°【解析】已知∠1,且∠DOF 与∠1是对顶角,可求∠DOF ,再利用∠DOF 与∠1互余,求∠1.【详解】∵∠1=16°,∠DOF 与∠1是对顶角,∴∠DOF=∠1=16°,又∵∠DOF 与∠1互余,∴∠1=90°−∠DOF=90°−16°=64°.故答案为:64°【点睛】本题考查了垂线的定义及对顶角的性质,熟练掌握性质是解题的关键.17.将一直角三角板与两边平行的纸条如图放置,已知∠2﹣∠1=30°,则∠2的度数为______.【答案】60°【解析】根据平行线的性质得∠2=∠3,再根据互余得到∠2+∠1=90°,进而得出答案.【详解】解:如图所示:∵a ∥b ,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°-∠1=∠2,∴∠2+∠1=90°,∵∠2-∠1=30°,∴∠2=60°.故答案为:60°.【点睛】本题考查了平行线性质:两直线平行,同位角相等,是基础题,熟记性质是解题的关键.三、解答题18.(1)因式分解:2(2)(2)a b b -+-(2)已知x ≠y ,且210x x -=,210y y -=,则x +y 的值. 【答案】(1)(1)(1)(2)a a b +--或(2)(1)(1)b a a -+-;(2)1x y +=【解析】利用因式分解和平方差公式。
人大附中期末七下数学试卷
一、选择题(每题5分,共30分)1. 下列各数中,是负数的是()A. -3B. 3C. 0D. -2.52. 若 a < b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a - 2 < b - 2D. a + 2 > b + 23. 下列代数式中,同类项的是()A. 3x^2 + 2xB. 4xy + 5yzC. 2x^3 + 3x^2D. 7ab - 4ac4. 一个长方体的长、宽、高分别是3cm、4cm、5cm,则它的体积是()A. 60cm^3B. 48cm^3C. 15cm^3D. 12cm^35. 若等腰三角形的底边长为8cm,腰长为6cm,则该三角形的面积是()A. 24cm^2B. 30cm^2C. 36cm^2D. 48cm^2二、填空题(每题5分,共30分)6. (-2)^3 = ______7. 若 |a| = 5,则 a 的值可能是 ______ 或 ______8. 下列函数中,y = 2x - 3 是一次函数,因为它 ______ (填:正比例函数、一次函数、反比例函数)9. 圆的半径扩大2倍,其面积扩大 ______ 倍10. 若一个数的3倍与它的5倍之差为15,则这个数是 ______三、解答题(共40分)11. (10分)计算下列各式的值:(1)-3a + 2b - a + 5b(2)(4x - 3y) + (2x + 5y) - (x - 2y)12. (10分)解下列方程:(1)2x - 5 = 3x + 1(2)5y - 3 = 2y + 713. (10分)已知长方形的长是宽的3倍,长方形的周长是24cm,求长方形的长和宽。
14. (10分)已知等腰三角形的底边长为8cm,腰长为6cm,求该三角形的面积。
四、应用题(共20分)15. (10分)某市决定修建一条高速公路,全长120km,已知每天可以修建8km,问需要多少天才能完成修建?16. (10分)某商店进了一批商品,每件商品的成本是100元,售价是150元。
北京市人大附中七年级
北京市人大附中七年级(下)期末数学试卷1.下列图形中不是轴对称图形的是()A. B. C.D.2.在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是()A.1 B.2 C.3 D.42题图 4题图3.下列调查适合作普查的是()A.了解在校大学生的主要娱乐方式B.了解宁波市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢乘客进行医学检查4.已知:如图,AC、BD交于O点,OA=OC,OB=OD.则不正确的结果是()A.AB=CD B.AB∥CD C.∠A=∠D D.∠A=∠C5.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°6.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()A.BE=CD B.BE>CD C.BE<CD D.大小关系不确定6题图 7题图7.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=E D;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个8.小明将两个全等且有一个角为60°的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.19.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去8题图 9题图10.如图,已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是()A.只有乙B.只有丙 C.甲和乙 D.乙和丙11.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60° B.120° C.60°或150° D.60°或120°12.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个 C.2个D.3个12题图 13题图13.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一B,当△PAB的周长取最小值时,∠APB的度数是()A.40° B.100° C.140° D.50°二、填空:(每空2分,共26分)14.数据共50个,分别落在5个小组内,第一、二、三、四组的数据分别为2、8、15、14,则第五个小组的频数为______15.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为________16.如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有_____对16题图 21题图 22题图 23题图17.在角、线段、等边三角形、钝角三角形中,轴对称图形有_____个.18.在直角三角形中,如果一个锐角等于30°,它所对的直角边与斜边的和为12,则斜边的长为_____19.等腰三角形有一个角是60°,其中一边的长为a,其周长为______20.等腰三角形一个腰的垂直平分线过底边中点,则这个等腰三角形顶角是_____度.21.如图在△ABC中,AB=AC,BD平分∠ABC交AC于D,∠A=36°,则∠BDA= _____度.22.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C= ____度.23.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是 _____.24.如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是 _____度.25.已知,如图,△ABC中,AD平分∠BAC,∠B=∠ADB,CE⊥AD于E,AE=5,AC-AB=4,则AC和AB分别为 _______.26.已知,如图,四边形ABCD中,BD⊥CD,∠DAB=∠DBC=45°,△ABC的面积=4.5,则AB 的长为______24题图 25题图 26题图三、解答题(每题5分,共30分)27.作图题:(不要求写作法)如图,在10×10的方格纸中,有一个格点四边形ABCD(即四边形的顶点都在格点上).(1)在给出的方格纸中,画出四边形ABCD向下平移5格后的四边形;(2)在给出的方格纸中,画出四边形ABCD关于直线l对称的四边形.28.如图,已知点B、E、C、F在同一条直线上,AB∥DE,AC∥DF且BE=CF.求证:AB=DE.29.如图,AB=AD,∠C=∠E,∠EAB=∠CAD,求证:BC=DE.30.如图,在四边形ABCD中,E是AC上一点,AD=AB,CD=CB,求证:DE=BE.31.如图,在△ABC中,D是BC中点,E是CA延长线上一点,DE交AB于F,且AE=AF.求证:EC=BF.32.已知,BA⊥BD,CD⊥AC,AC=BD,求证:∠ECB=∠EBC.四、解答题(每题6分,共18分)33.已知:△ABC是等腰直角三角形,∠C是直角,直线NM过点C,BP⊥MN于P,AQ⊥MN 于Q,BP=3,AQ=4,求PQ的长.34.我国是发现和研究勾股定理最古老的国家之一,勾股定理如下:在直角三角形中,两直角边的平方和等于斜边的平方.如图1,△ABC是直角三角形,∠C是直角,则有,请解答下列问题:(1)如图2,△ABC是直角三角形,∠C是直角,直角边AC=4,斜边AB=5,请用勾股定理计算直角边CB的长.(2)如图2,在(1)的条件下,D是BC边上一点且2CD-3BD=1,求CD ,BD的长(3)如图2,在(2)的条件下,若∠DAB=α,用课堂学习过的知识求∠B(用α表示).35.已知,如图AB两侧是两个等腰三角形,其中等腰△ABC的底AB是等腰△ABD的腰,(1)若∠CAD=120°,∠CBD=150°,求∠C,∠D;(2)若∠CAD=90°,AC=AD,依题意画出符合条件的图形,并求∠C,∠D.36.选做题已知如图,△ABC为直角三角形纸片,∠C=90°,AC≤BC,将纸片沿EF折叠,使A点落在BC上D点,若△DCE和△FBD都是等腰三角形,(1)求∠B的度数;(2)若△DFE和△FBD都是等腰三角形,求∠B.37.选做题已知如图,E为等边△ABC内一点,△EDB也为等边三角形,(1)图中△ABD,△CBE全等吗?说明理由.(2)∠AEB等于多少度时,△EDA为等腰直角三角形;(3)若2∠AEB-∠BEC=40°,△EDA为等腰直角三角形,求∠AEB.。
人大附中七年级(下)期末复习数学试卷及参考答案与试题分析
人大附中七年级(下)期末复习数学一、精心选一选(共10个小题,每小题3分,共30分) 1.(3分)(2007•佛山)下列四个算式中,正确的个数有( )43125510553362.(3分)在数轴上表示不等式组的解集,正确的是( ).CD .3.(3分)(2007•济南)已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )4.(3分)已知一个样本:23,24,25,26,26,27,27,27,27,27,28,28,28,29,29,30,30,31,31,22得9.(3分)…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( ).CD .二.细心填一填(共10个小题,每小题2分,共20分)11.(2分)(2008•南平)因式分解:a 3+2a 2+a= _________.12.(2分)如图,直线l 1∥l 2,AB ⊥l1,垂足为D ,BC 与直线l 2相交于点C ,若∠1=30°,则∠2= _________ .13.(2分)若点P (2m+1,)在第四象限,则m 的取值范围是 _________ .14.(2分)如图,一个顶角∠A 为90°的直角三角形纸片,剪去这个角后得到一个四边形,则∠BEF+∠CFE 的度数是 _________ 度.15.(2分)(2010•崇左)将一副常规三角板拼成如图所示的图形,则∠ABC= _________ 度.16.(2分)已知的解是,则a= _________ ,b= _________ .17.(2分)用“※”定义新运算:对于任意实数a 、b ,都有a ※b=2a 2+b .例如3※4=2×32+4=22,那么(﹣5)※2= _________ . 18.(2分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是 _________ 边形.19.(2分)如果的值是非正数,则x的取值范围是_________.20.(2分)(2005•广东)如图,△ABC中,AC=BC,∠BAC的外角平分线交BC的延长线于点D,若∠ADC=∠CAD,则∠ABC=_________度.三.认真做一做(每小题5分,共30分)21.(5分)先化简,再求值:(a﹣2b)(a+2b)+ab3÷(﹣ab),其中,b=﹣1.22.(5分)(2009•德城区)解方程组:.23.(5分)解不等式组:.24.(5分)在平面直角坐标系中有四个点,它们的坐标分别是A(0,3),B(﹣2,﹣1),C(3,﹣1),D(5,3).(1)在坐标系中描出这四个点,并依次连接它们,画出所得图形;(2)将所得的图形向下平移2个单位长度,画出平移后的图形,写出平移后对应的四点A′,B′,C′,D′的坐标.25.(5分)(2008•齐齐哈尔)A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.26.(5分)已知有理数a,b满足a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.六.解答题(每小题5分,本题共20分)27.(5分)为改善办学条件,东海中学计划购买部分A品牌电脑和B品牌课桌.第一次,用9万元购买了A品牌电脑10台和B品牌课桌200张.第二次,用9万元购买了A品牌电脑12台和B品牌课桌120张.每台A品牌电脑与每张B品牌课桌的价格各是多少元?28.(5分)如图,CD平分∠ACB,DE∥AC,EF∥CD,EF平分∠DEB吗?请说明你的理由.29.(5分)已知:如图,∠B=34°,∠D=40°,AM,CM分别平分∠BAD和∠BCD.(1)求∠M的大小.(2)当∠B,∠D为任意角时,探索∠M与∠B,∠D间的数量关系,并对你的结论加以证明.参考答案与试题解析一、精心选一选(共10个小题,每小题3分,共30分)1.(3分)(2007•佛山)下列四个算式中,正确的个数有()43125510553362.(3分)在数轴上表示不等式组的解集,正确的是().C D.3.(3分)(2007•济南)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()4.(3分)已知一个样本:23,24,25,26,26,27,27,27,27,27,28,28,28,29,29,30,30,31,31,22得<﹣;x9.(3分)…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是().C D.二.细心填一填(共10个小题,每小题2分,共20分)11.(2分)(2008•南平)因式分解:a3+2a2+a=a(a+1)2.12.(2分)如图,直线l1∥l2,AB⊥l1,垂足为D,BC与直线l2相交于点C,若∠1=30°,则∠2=120°.13.(2分)若点P(2m+1,)在第四象限,则m的取值范围是﹣<m<.)在第四象限,,解得:﹣<14.(2分)如图,一个顶角∠A为90°的直角三角形纸片,剪去这个角后得到一个四边形,则∠BEF+∠CFE的度数是270度.15.(2分)(2010•崇左)将一副常规三角板拼成如图所示的图形,则∠ABC=135度.16.(2分)已知的解是,则a=2,b=﹣1.的解是∴代入得:17.(2分)用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么(﹣5)※2= 52.18.(2分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是六边形.19.(2分)如果的值是非正数,则x的取值范围是x≤1.解:根据题意,得两边都乘以20.(2分)(2005•广东)如图,△ABC中,AC=BC,∠BAC的外角平分线交BC的延长线于点D,若∠ADC=∠CAD,则∠ABC=36度.ADC=ADC=∠三.认真做一做(每小题5分,共30分)21.(5分)先化简,再求值:(a﹣2b)(a+2b)+ab3÷(﹣ab),其中,b=﹣1.(=+5=22.(5分)(2009•德城区)解方程组:.,∴原方程组的解为:23.(5分)解不等式组:.24.(5分)在平面直角坐标系中有四个点,它们的坐标分别是A(0,3),B(﹣2,﹣1),C(3,﹣1),D(5,3).(1)在坐标系中描出这四个点,并依次连接它们,画出所得图形;(2)将所得的图形向下平移2个单位长度,画出平移后的图形,写出平移后对应的四点A′,B′,C′,D′的坐标.25.(5分)(2008•齐齐哈尔)A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.口试90 80 85的成绩为的成绩为=98的成绩为=8426.(5分)已知有理数a,b满足a(a+1)﹣(a2+2b)=1,求a2﹣4ab+4b2﹣2a+4b的值.六.解答题(每小题5分,本题共20分)27.(5分)为改善办学条件,东海中学计划购买部分A品牌电脑和B品牌课桌.第一次,用9万元购买了A品牌电脑10台和B品牌课桌200张.第二次,用9万元购买了A品牌电脑12台和B品牌课桌120张.每台A品牌电脑与每张B品牌课桌的价格各是多少元?,.28.(5分)如图,CD平分∠ACB,DE∥AC,EF∥CD,EF平分∠DEB吗?请说明你的理由.29.(5分)已知:如图,∠B=34°,∠D=40°,AM,CM分别平分∠BAD和∠BCD.(1)求∠M的大小.(2)当∠B,∠D为任意角时,探索∠M与∠B,∠D间的数量关系,并对你的结论加以证明.(∠M=(∠(。
2017—2018学年北师大版七年级下册数学期末试卷及答案.docx
2017 —2018 学年下学期期末水平质量检测初一数学试卷(全卷满分: 120 分钟考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题 3 分,共计 24 分)1.算:(2x3y) 2=;(2a - b)( - b 2a)=.A2.如果x2kx1是一个完全平方式,那么k 的是.B3.温家宝理在十届全国人大四次会上到解决“三” E D, 2006 年中央政用于“三”的支出将达到33970000第 5万元,个数据用科学数法可表示万元 .C4.等腰三角形一是10 ㎝,一是 6 ㎝,它的周是.5.如,已知∠ BAC= ∠DAE=90°,AB=AD ,要使△ ABC ≌△ ADE ,需要添加的条件是.6.在定两种新的运算“ ”和“◎”: a b= a2b2;a◎b=2ab,如(2 3)(2◎3)=( 22+32)( 2× 2× 3)=156, [2( -1 ) ][2 ◎( -1 ) ]=.7.某物体运的路程s(千米)与运的t (小)关系如所示,当t=3 小,物体运所的路程千米 .8.某公路急弯立了一面大子,从子中看到汽的的号如所示,汽的号是.二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)9. 下列形中不是正方体的展开的是()..A B C D10. 下列运算正确的是()..A .a5a5a10B .a6 a 4a24C.a0 a 1a D .a4a4111. 下列中,正确的是()..A . 若a b, 则 a2 b 2 B. 若a b ,则 a2 b 2C. 若a2b2 ,则 a bD. 若a b , 则11Aa b D12.如,在△ ABC 中, D 、E 分是 AC 、 BC 上的点,若△ ADB ≌△ EDB ≌△ EDC,∠ C 的度数是 ()B CA .15 °B .20 ° C.25 ° D .30 °E13. 察一串数:0, 2,4, 6,⋯ . 第 n 个数()第 14A .2 (n- 1) B.2n - 1 C.2 ( n+ 1) D.2n + 1S(千米)30O2t(小)第814. 下列关系式中,正确的是()..A .a b C. a b 2a 2b 2 B. a b a b a2b2 2a2 b 2 D. a b2a22ab b 215.如图表示某加工厂今年前 5 个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()A .1月至 3 月每月产量逐月增加,4、5 两月产量逐月c(件)减小B.1 月至 3 月每月产量逐月增加,4、5 两月产量与 3 月持平C.1 月至 3 月每月产量逐月增加,4、 5 两月产量均停止生产D . 1月至 3 月每月产量不变, 4、5 两月均停止生产O 1 2 3 4 5t(月)16.下列图形中,不一定是轴对称图形的是()第 15题...A . 等腰三角形 B. 线段 C. 钝角 D. 直角三角形17.长度分别为 3cm, 5cm, 7cm, 9cm 的四根木棒,能搭成(首尾连结)三角形的个数为()A . 1 B. 2 C. 3 D . 4三、精心算一算( 18 题 5 分, 19 题 6 分,共计 11 分)18.2 y 6 2y 4319. 先化简2x 1 23x 1 3x 1 5x x 1 ,再选取一个你喜欢的数代替x,并求原代数式的值 .M四、认真画一画( 20 题 5 分, 21 题 5 分,共计 10 分)20.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)第 23 题理由是:21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)第一种第二种第三种第四种第 24 题五、请你做裁判(第22 题小 5 分,第 23 小题 5 分,共计 10 分)22. 在“五·四”青年节中,全校举办了文艺汇演活动. 小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成 6 份,如图所示 .游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去 . 若你是小芳,会同意这个办法吗?为什么?21334523. 一个长方形的养鸡场的长边靠墙,墙长小赵也打算用它围成一个鸡场,其中长比宽多14 米,其它三边用竹篱笆围成,现有长为2 米,你认为谁的设计符合实际?35 米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多按照他的设计,鸡场的面积是多少?5 米;六、生活中的数学(8 分),24. 某种产品的商标如图所示,O 是线段 AC 、BD 的交点,并且AC = BD , AB = CD. 小明认为图中的两个三角形全等,他的思考过程是:在△ ABO 和△ DCO 中A DAC BDAOBDOC ABO DCO OAB CD你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并B C说明你的思考过程. (请将答案写在右侧答题区)第 28 题七.探究拓展与应用满分30分,25.几何探究题( 30 分)请将题答在右侧区域。
2017-2018学年北师大七年级下期末数学试卷有答案【精编】
2017—2018学年下期期末考试八年级数学参考答案一、选择题1.B2.A3.B4.D5.A6.C7.C8.D9.A 10.B 二、填空题11.x=2;12.合理即可;13.24米;14.小丽家今年7月的用水量-小丽家去年12月的用水量=5m 3或小丽家今年7月份每立方米的水费=11+3(小丽家去年12月每立方米的水费;15.4或三、解答题16.原式可化简为x 2+1.……………………………3分当x =2时,原式=22+1=5(注:x 不能取1或-1)……6分17.(1)图略………………………………2分(2)图略………………………………4分(3)(-1,-2).…………………………6分18.图略.C 点有两个………………………………1分尺规作出AB 的垂直平分线………………………3分在垂直平分线上作出两个正确的C 点…………………5分能正确的给出∠ACB 是直角的理由.………………………………7分19.(1)①5-2;②1-2;………………………………2分(2)③54;………………………………3分(3)同意小英的说法.理由如下:求不等式25x x +∙+∙<的解集,就是在图象上找出直线1l 在2l 在下方时对应的x 的取值,两直线的交点C 的横坐标1-2能够使25=x x +∙+∙成立.在C 点的左侧直线1l 在2l 的下方,即满足y 1<y 2,故此不等式的解集为1x <-.(理由合理即可.)………………6分20.解:(1)AB =CD .四边形ABCD 是平行四边形.………………………………2分(2)证明:连接BD .在△ABD 和△CDB 中,,,,A B C D A D B C B D D B =⎧⎪=⎨⎪=⎩∴△ABD ≌△CDB (SSS ),∴∠ADB =∠DBC ,∠ABD =∠CDB ,∴AB ∥CD ,AD ∥CB.∴四边形ABCD 是平行四边形;………………………………7分(3)平行四边形两组对边分别相等.………………………………9分21.解:(1)设A ,B 两种型号的新能源汽车的销售单价分别为x 元、y 元,依题意得5+359,8596.4,x y x y =⎧⎨+=⎩解得 5.8,10.x y =⎧⎨=⎩答:A 型汽车的销售单价为5.8万元,B 型汽车的销售单价为10万元.…………………4分(2)设B 型号的新能源汽车a 辆,则采购A 型号的新能源汽车(30-a )辆,依题意得10a +5.8(30-a )≤200,解得:a ≤12.5.(a 取整数)答:4S 店最多采购B 型号的新能源汽车12辆.……………………7分(3)设4S 店销售完这30辆车,获得的利润是w 万元,()()()5.853010924+0.2w a a a=--+-=0.2012.5,12240.212=26.4.w a a w a a a w >∴∴≤∴==+⨯随的增大而增大最大时,最大又且是整数时,Q Q 答:A 型号采购18辆,B 型号采购12辆时,利润最大,最大利润是26.4万元.……10分22.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD =4;AB ∥CD.……………………2分∴∠B =∠DCE =90°.……………………3分∴Rt △DCE 中,DC =4,CE =3,∴根据勾股定理,得DE =5cm.……………………4分(2)9;根据题意,AP =2t ,PD =9-2t ,EQ =3t ,……………………6分∵四边形PQED 是平行四边形,∴PD=QE,∴9-2t =3t .……………………7分∴t =95.……………………8分。
2017--2018学年人教版七年级数学第二学期期末考试试题及答案
一、选择题(本题共 30 分,每小题 3 分)
第 1- 10 题均有四个选项,符合题意的选项只有 ..一个. 1.根据北京小客车指标办的通报,截至 2017 年 6 月 8 日 24 时,个人普通小客车指标的基
准中签几率继续创新低,约为 0.001 22,相当于 817 人抢一个指标,小客车指标中签难
C. 2a2
D. 3a2
6.如图,点 O 为直线 AB 上一点, OC⊥OD. 如果∠ 1=35 °,那么∠ 2 的度数是
A . 35° C. 55°
B. 45° D. 65°
C D
2
1
A
O
B
7.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示
. 如果
知道香草口味冰淇淋一天售出 200 份,那么芒果口味冰淇淋一天售出
过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买
. 三次
第 3 页 共 3页
的份数是
A .80
B. 40
C. 20
D. 10
抹茶味 15%
芒果味
巧克力 味 25%
香草味 50%
8.如果 ( x 1)2 2 ,那么代数式 x2 2x 7 的值是
A .8
B. 9
C. 10
D. 11
9.一名射箭运动员统计了 45 次射箭的成绩, 并绘制了如图
所示பைடு நூலகம்折线统计图 . 则在射箭成绩的这组数据中,众数
和中位数分别是
第 1 页 共 3页
次数
20 15 10
5
6 7 8 9 10
成绩(环)
A .18, 18 C. 8, 9
北京市2017-2018学年七年级数学下学期期末模拟试卷及答案(二)
北京市2017-2018学年七年级数学下学期期末模拟试卷及答案(二)一、选择题(共8个小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的.1.在广东东莞结束的2015年苏迪曼杯决赛中,中国队以3:0的大比分击败日本队,刷新了六届蝉联冠军记录的同时,更是第10次夺得苏迪曼杯世界羽毛球混合团体锦标赛冠军.目前国际比赛通用的羽毛球质量大约是0.005千克,把0.005用科学记数法表示为()A.0.5×10﹣2B.5×10﹣3 C.5×10﹣2 D.0.5×10﹣32.计算a3•a2的结果是()A.2a5B.a5C.a6D.a93.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒),则这组数据的众数为()A.37 B.35 C.32 D.285.已知是方程x+ay=3的解,则a的值为()A.0 B.1 C.2 D.36.如图,若AB∥CD,∠A=70°,则∠1的度数是()A.20°B.30°C.70°D.110°7.在足球、篮球、网球和垒球中,小张、小王、小李和小刘分别喜欢其中的一种,根据下面的提示,判断小刘喜欢的是()①小张不喜欢网球;②小王不喜欢足球;③小王和小李都是既不喜欢篮球也不喜欢网球.A.足球B.篮球C.网球D.垒球8.已知关于x的不等式组的解集为3≤x<5,则的值为()A.﹣2 B.﹣C.﹣4 D.﹣二、填空题(共4个小题,每小题4分,共16分)9.我区将对某校初一年级学生体质健康测试成绩进行抽查,检查组到校后随机从整个年级中抽取一个班进行测试,若该校初一年级共有6个班,则初一(1)班被抽到的概率是______.10.已知∠α=20°,那么∠α的余角的度数是______.11.写出二元一次方程x+3y=13的一个正整数解为______.12.如图,数轴上点A的初始位置表示的数为2,将点A做如下移动:第1次点A向左移动2个单位长度至点A1,第2次从点A1向右移动4个单位长度至点A2,第3次从点A2向左移动6个单位长度至点A3,…按照这种移动方式进行下去,点A5表示的数是______;如果点A n与原点的距离等于10,那么n的值是______.三、解答题(共6个小题,每小题5分,共30分)13.计算:.14.分解因式:(1)2m2﹣8;(2)ax2﹣(2ax﹣a).15.解方程组:.16.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.17.已知a=﹣1,b=2,求[(2a+b)2﹣(4a+b)(a﹣2b)]÷b的值.18.已知:如图,AB∥CD,∠B+∠D=180°.求证:BE∥DF.四、解答题(共4道小题,每小题5分,共20分)19.列方程或方程组解应用题:尼泊尔当地时间4月25日14时11分,发生8.1级地震,我国迅速做出反应,国航、东航、南航和川航等航空公司克服困难,安全接回近6000名在尼滞留的我国公民.我国红十字会以最快的速度准备了第一批救援物资,其中甲、乙两种帐篷共2000顶,甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,总共可以安置11000人.求甲、乙两种帐篷各准备多少顶?20.已知:如图,DE∥BC,CD平分∠ACB,∠A=68°,∠DFB=72°,∠AED=72°,求∠BDF和∠FDC的度数.21.昌平区为响应国家“低碳环保,绿色出行”的号召,基于“服务民生”理念,运用信息化管理与服务手段,为居住区、旅游景点等人流量集中的地区提供公共自行车服务的智能交通系统.七年级(1)班的小刚所在的学习小组对6月份昌平某站点一周的租车情况进行了调查,并把收集的数据绘制成下面的统计表和扇形统计图:6月份昌平某站点一周的租车次数(1)根据上面统计图表提供的信息,可得这个站点一周的租车总次数是______次;(2)补全统计表;(3)该站点一周租车次数的中位数是______;(4)周五租车次数所在扇形的圆心角度数为______;(5)已知小客车每百公里二氧化碳的平均排量约为25千克,如果6月份(30天)改开小客车为骑自行车,每次租车平均骑行4公里,估计6月份二氧化碳排量因此减少了______千克.22.我们知道用几何图形的面积可以解释多项式乘法的运算:(1)如图1,可知:(a+b)2=______;(2)如图2,可知:(a+b)2=(a﹣b)2+______;(3)计算:(a+b)(a+2b)=______;(4)在下面虚线框内画图说明(3)中的等式.五、解答题(23题7分,24题7分,25题8分,共3道小题,共22分)23.现场学习:我们学习了由两个一元一次不等式组成的不等式组的解法,知道可以借助数轴准确找到不等式组的解集,即两个不等式的解集的公共部分.解决问题:解不等式组并利用数轴确定它的解集;拓展探究:由三个一元一次不等式组成的不等式组的解集是这三个不等式解集的公共部分.(1)直接写出的解集为______;(2)已知关于x的不等式组无解,则a的取值范围是______.24.问题情境:如图1,AB∥CD,判断∠ABP,∠CDP,∠BPD之间的数量关系.小明的思路:如图2,过点P作PE∥AB,通过平行线性质,可得∠ABP+∠CDP+∠BPD=______°.问题迁移:AB∥CD,直线EF分别与AB,CD交于点E,F,点P在直线EF上(点P与点E,F不重合)运动.(1)当点P在线段EF上运动时,如图3,判断∠ABP,∠CDP,∠BPD之间的数量关系,并说明理由;(2)当点P不在线段EF上运动时,(1)中的结论是否成立,若成立,请你说明理由;若不成立,请你在备用图上画出图形,并直接写出∠ABP,∠CDP,∠BPD之间的数量关系.25.昌平区兴寿镇草莓种植户张强、李亮,均在自家的大棚里种植了丰香和章姬两个品种的草莓,两个种植户的草莓种植面积与纯收入如表:(说明:同类草莓每亩平均纯收入相等)(1)求丰香和章姬两类草莓每亩平均纯收入各是多少万元?(2)王刚准备租20亩地用来种植丰香和章姬两类草莓,为了使纯收入超过10万元,且种植章姬的面积不超过种植丰香的面积的2倍(两类草莓的种植面积均为整数),求种植户王刚所有的种植方案.参考答案与试题解析一、选择题(共8个小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的.1.在广东东莞结束的2015年苏迪曼杯决赛中,中国队以3:0的大比分击败日本队,刷新了六届蝉联冠军记录的同时,更是第10次夺得苏迪曼杯世界羽毛球混合团体锦标赛冠军.目前国际比赛通用的羽毛球质量大约是0.005千克,把0.005用科学记数法表示为()A.0.5×10﹣2B.5×10﹣3 C.5×10﹣2 D.0.5×10﹣3【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:把0.005用科学记数法表示为5×10﹣3.故选:B.2.计算a3•a2的结果是()A.2a5B.a5C.a6D.a9【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即可求得答案.【解答】解:a3•a2=a5.故选B.3.下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.从一副扑克牌中,随意抽出一张是大王C.通常情况下,抛出的篮球会下落D.三角形内角和为360°【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意掷一枚均匀的硬币,正面朝上是随机事件;从一副扑克牌中,随意抽出一张是大王是随机事件;通常情况下,抛出的篮球会下落是必然事件;三角形内角和为360°是不可能事件,故选:C.4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒),则这组数据的众数为()A.37 B.35 C.32 D.28【考点】众数.【分析】找到出现次数最多的数,即为众数;【解答】解:∵该组数据中出现次数最多的数是37,∴该组数据的众数是37,故选A.5.已知是方程x+ay=3的解,则a的值为()A.0 B.1 C.2 D.3【考点】二元一次方程的解.【分析】把代入方程x+ay=3,求出a的值为多少即可.【解答】解:∵是方程x+ay=3的解,∴﹣1+2a=3,∴a=2.故选:C.6.如图,若AB∥CD,∠A=70°,则∠1的度数是()A.20°B.30°C.70°D.110°【考点】平行线的性质.【分析】先根据平行线的性质求出∠2的度数,再由平角的定义即可得出结论.【解答】解:∵AB∥CD,∠A=70°,∴∠2=∠A=70°,∴∠1=180°﹣∠2=180°﹣70°=110°.故选D.7.在足球、篮球、网球和垒球中,小张、小王、小李和小刘分别喜欢其中的一种,根据下面的提示,判断小刘喜欢的是()①小张不喜欢网球;②小王不喜欢足球;③小王和小李都是既不喜欢篮球也不喜欢网球.A.足球B.篮球C.网球D.垒球【考点】推理与论证.【分析】由③可知小王喜欢足球、垒球,又由②可知小王喜欢垒球,所以小李喜欢足球,由此为突破口,找出小张和小刘喜欢的项目.【解答】解:由小王和小李都是既不喜欢篮球也不喜欢网球,得小王喜欢足球、垒球;小王不喜欢足球,得小王喜欢垒球,小李喜欢足球.由小张不喜欢网球,得小张喜欢篮球,只剩下网球,故小刘喜欢网球,故选:C.8.已知关于x的不等式组的解集为3≤x<5,则的值为()A.﹣2 B.﹣C.﹣4 D.﹣【考点】解一元一次不等式组;二元一次方程组的解.【分析】先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.【解答】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=﹣2.故选A.二、填空题(共4个小题,每小题4分,共16分)9.我区将对某校初一年级学生体质健康测试成绩进行抽查,检查组到校后随机从整个年级中抽取一个班进行测试,若该校初一年级共有6个班,则初一(1)班被抽到的概率是.【考点】概率公式.【分析】直接利用概率公式求出初一(1)班被抽到的概率.【解答】解:∵该校初一年级共有6个班,∴初一(1)班被抽到的概率是:.故答案为:.10.已知∠α=20°,那么∠α的余角的度数是70°.【考点】余角和补角.【分析】根据互余两角之和等于90°,求解即可.【解答】解:∵∠α=20°,∴∠α的余角的度数=90°﹣20°=70°.故答案为:70°.11.写出二元一次方程x+3y=13的一个正整数解为或或或(任意一个即可).【考点】解二元一次方程.【分析】直接利用二元一次方程分别得出符合题意的解.【解答】解:当x=1,y=4;当x=4时,y=3;当x=7时,y=2;当x=10时,y=1.故答案为:或或或(任意一个即可).12.如图,数轴上点A的初始位置表示的数为2,将点A做如下移动:第1次点A向左移动2个单位长度至点A1,第2次从点A1向右移动4个单位长度至点A2,第3次从点A2向左移动6个单位长度至点A3,…按照这种移动方式进行下去,点A5表示的数是﹣4;如果点A n与原点的距离等于10,那么n的值是8或11.【考点】规律型:图形的变化类;数轴.【分析】根据题意可以分别写出点A移动的规律,当点A奇数次移动后对应数的都是负数,偶数次移动对应的数都是正数,从而可知A n与原点的距离等于10分两种情况,从而可以解答本题.【解答】解:第一次点A向左移动2个单位长度至点A1,则A1表示的数,2﹣2=0;第2次从点A1向右移动4个单位长度至点A2,则A2表示的数为0+4=4;第3次从点A2向左移动6个单位长度至点A3,则A3表示的数为4﹣6=﹣2;第4次从点A3向右移动8个单位长度至点A4,则A4表示的数为﹣2+8=6;第5次从点A4向左移动10个单位长度至点A5,则A5表示的数为6﹣10=﹣4;…;第奇数次移动的点表示的数是:2+(﹣2)×,第偶数次移动的点表示的数是:2+2×,∵点A n与原点的距离等于10,∴当点n为奇数时,则﹣10=2+(﹣2)×,解得,n=11;当点n为偶数,则10=2+2×,解得n=8.故答案为:8或11.三、解答题(共6个小题,每小题5分,共30分)13.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=1+2﹣(﹣8)+(﹣1)=1+2+8﹣1=10.14.分解因式:(1)2m2﹣8;(2)ax2﹣(2ax﹣a).【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式整理后,提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(m2﹣4)=2(m+2)(m﹣2);(2)原式=ax2+2ax+a=a(x2+2x+1)=a(x+1)2.15.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3+②得:10x=20,即x=2,把x=2代入①得:y=1,则方程组的解为.16.解不等式5x﹣12≤2(4x﹣3),并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】解不等式5x﹣12≤2(4x﹣3),先去括号,5x﹣12≤8x﹣6,不等式两边同时减8x+12得﹣3x≤6,再化系数为1便可求出不等式的解集.【解答】解:去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6.系数化为1得,x≥﹣2.不等式的解集在数轴上表示如图:.17.已知a=﹣1,b=2,求[(2a+b)2﹣(4a+b)(a﹣2b)]÷b的值.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,多项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=(4a2+4ab+b2﹣4a2+8ab﹣ab+2b2)÷b=(11ab+3b2)÷b=11a+3b,当a=﹣1,b=2时,原式=﹣11+6=﹣5.18.已知:如图,AB∥CD,∠B+∠D=180°.求证:BE∥DF.【考点】平行线的判定与性质.【分析】利用平行线的性质,由AB∥CD易得∠B=∠CME,再利用对顶角的性质,可得∠B=∠BMD,易得∠BMD+∠D=180°,由平行线的判定定理可得结论.【解答】证明:∵AB∥CD,∴∠B=∠CME,∵∠CME=∠BMD,∴∠B=∠BMD,∵∠B+∠D=180°,∴∠BMD+∠D=180°,∴BE∥DF.四、解答题(共4道小题,每小题5分,共20分)19.列方程或方程组解应用题:尼泊尔当地时间4月25日14时11分,发生8.1级地震,我国迅速做出反应,国航、东航、南航和川航等航空公司克服困难,安全接回近6000名在尼滞留的我国公民.我国红十字会以最快的速度准备了第一批救援物资,其中甲、乙两种帐篷共2000顶,甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,总共可以安置11000人.求甲、乙两种帐篷各准备多少顶?【考点】二元一次方程组的应用.【分析】设准备甲种帐篷和乙种帐篷各x、y顶,根据准备捐助甲、乙两种型号的帐篷共2000顶可以方程x+y=2000,根据甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人可以列出方程6x+4y=11000,联立两个方程组成方程组即可解决问题.【解答】解:设准备甲种帐篷和乙种帐篷各x、y顶,依题意得,解之得,答:甲种帐篷和乙种帐篷分别是1500、500顶.20.已知:如图,DE∥BC,CD平分∠ACB,∠A=68°,∠DFB=72°,∠AED=72°,求∠BDF和∠FDC的度数.【考点】平行线的性质.【分析】由平行线的性质可求得∠AED=∠ACB=∠DFB,可判定DF∥AC,∠BDF=∠A,由平行线的性质可得∠FDC=∠FCD=∠DFB,可求得答案.【解答】解:∵DE∥BC,∴∠ACB=∠AED=72°,∵∠DFB=72°,∴∠ACB=∠DFB,∴DF∥AC,∴∠BDF=∠A=68°,∵CD平分∠ACB,∴∠ACD=∠FCD,∵DF∥AC,∴∠FDC=∠ACD,∴∠FDC=∠FCD,∵∠DFB=∠FDC+∠FCD,∴2∠FDC=∠DFB=72°,∴∠FDC=36°.21.昌平区为响应国家“低碳环保,绿色出行”的号召,基于“服务民生”理念,运用信息化管理与服务手段,为居住区、旅游景点等人流量集中的地区提供公共自行车服务的智能交通系统.七年级(1)班的小刚所在的学习小组对6月份昌平某站点一周的租车情况进行了调查,并把收集的数据绘制成下面的统计表和扇形统计图:6月份昌平某站点一周的租车次数(1)根据上面统计图表提供的信息,可得这个站点一周的租车总次数是700次;(2)补全统计表;(3)该站点一周租车次数的中位数是105次;(4)周五租车次数所在扇形的圆心角度数为72°;(5)已知小客车每百公里二氧化碳的平均排量约为25千克,如果6月份(30天)改开小客车为骑自行车,每次租车平均骑行4公里,估计6月份二氧化碳排量因此减少了3000千克.【考点】扇形统计图;用样本估计总体;统计表;中位数.【分析】(1)用周二租车次数除以其所占的百分比即可求得租车总次数;(2)用总次数减去周一至周六的次数即可求得周日的次数,从而不全统计表;(3)强所有租车次数排序后位于中间位置的数即为中位数;(4)用周五租车次数除以总次数后乘以360°即可;(5)算出总租车里程乘以平均排二氧化碳量即可得到答案.【解答】解:(1)∵周二租车84次,占12%,∴一周租车总次数为84÷12%=700次;故答案为:700;(2)周日的租车次数为700﹣56﹣84﹣126﹣105﹣140﹣84=161,统计表为:(3)排序为:56,84,84,105,126,140,161,位于中间位置的数为105,故中位数为105次,故答案为:105次.(4)周五租车次数所在扇形的圆心角为:×360°=72°,故答案为:72°.(5)租车次数的平均数为:700÷7=100次,所以6月份的总次数为100×30=3000次,∵每次租车平均骑行4公里,∴租车3000次总里程为3000×4=12000公里=120百公里,∵小客车每百公里二氧化碳的平均排量约为25千克,∴6月份二氧化碳排量因此减少了120×25=3000千克,故答案为:3000.22.我们知道用几何图形的面积可以解释多项式乘法的运算:(1)如图1,可知:(a+b)2=a2+2ab+b2;(2)如图2,可知:(a+b)2=(a﹣b)2+ 4ab;(3)计算:(a+b)(a+2b)=a2+3ab+2b2;(4)在下面虚线框内画图说明(3)中的等式.【考点】完全平方公式的几何背景.【分析】(1)根据图1中边长为a+b的大正方形的面积=边长为a的正方形的面积+两个长方形的面积+边长为b的正方形的面积,即可求解;(2)根据图2中边长为a+b的大正方形的面积=边长为a﹣b的正方形的面积+四个长方形的面积,即可求解;(3)根据多项式乘以多项式的法则计算即可求解;(4)画一个长为(a+2b),宽为(a+b)的矩形即可.【解答】解:(1)如图1,根据图形可得:(a+b)2=a2+2ab+b2.故答案为:a2+2ab+b2;(2)如图2,根据图形可得:(a+b)2=(a﹣b)2+4ab.故答案为:4ab;(3)(a+b)(a+2b)=a2+3ab+2b2.故答案为:a2+3ab+2b2;(4)如图所示:五、解答题(23题7分,24题7分,25题8分,共3道小题,共22分)23.现场学习:我们学习了由两个一元一次不等式组成的不等式组的解法,知道可以借助数轴准确找到不等式组的解集,即两个不等式的解集的公共部分.解决问题:解不等式组并利用数轴确定它的解集;拓展探究:由三个一元一次不等式组成的不等式组的解集是这三个不等式解集的公共部分.(1)直接写出的解集为﹣2<x<3;(2)已知关于x的不等式组无解,则a的取值范围是a≥2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】读懂材料所给信息,求出不等式的解集,找到公共部分,画出数轴,结合图形解答.【解答】解:,由①,得x<5;由②,得x≥3,不等式组的解集为3≤x<5.在数轴上表示为(1)如图所示:不等式组的解集为﹣2<x<3.(2)如图所示:若无解,则a≥2.故答案为﹣2<x<3,a≥2.24.问题情境:如图1,AB∥CD,判断∠ABP,∠CDP,∠BPD之间的数量关系.小明的思路:如图2,过点P作PE∥AB,通过平行线性质,可得∠ABP+∠CDP+∠BPD=360°.问题迁移:AB∥CD,直线EF分别与AB,CD交于点E,F,点P在直线EF上(点P与点E,F不重合)运动.(1)当点P在线段EF上运动时,如图3,判断∠ABP,∠CDP,∠BPD之间的数量关系,并说明理由;(2)当点P不在线段EF上运动时,(1)中的结论是否成立,若成立,请你说明理由;若不成立,请你在备用图上画出图形,并直接写出∠ABP,∠CDP,∠BPD之间的数量关系.【考点】平行线的性质.【分析】(1)过P作PQ∥AB,推出AB∥PQ∥CD,根据平行线性质得出∠BPQ=∠B,∠D=∠DPQ,求出即可;(2)过P作PQ∥AB,推出AB∥PQ∥CD,根据平行线性质得出∠BPQ=∠B,∠D=∠DPQ,求出即可.【解答】解:∵过点P作PE∥AB,则PE∥CD,∴∠B+∠BPE=∠D+∠DPE=180°,∴∠ABP+∠CDP+∠BPD=360°,故答案为:360;(2)∠ABP+∠CDP=∠BPD;证明:如图②,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠B=∠1,∠D=∠2,∴∠BPD=∠1+∠2=∠B+∠D;(3)不成立,关系式是:∠B﹣∠D=∠BPD,理由:如图4,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠BPQ=∠B,∠D=∠DPQ,∴∠B﹣∠D=∠BPQ﹣∠DPQ=∠BPD,∠BPQ=∠B﹣∠D.25.昌平区兴寿镇草莓种植户张强、李亮,均在自家的大棚里种植了丰香和章姬两个品种的草莓,两个种植户的草莓种植面积与纯收入如表:(说明:同类草莓每亩平均纯收入相等)(1)求丰香和章姬两类草莓每亩平均纯收入各是多少万元?(2)王刚准备租20亩地用来种植丰香和章姬两类草莓,为了使纯收入超过10万元,且种植章姬的面积不超过种植丰香的面积的2倍(两类草莓的种植面积均为整数),求种植户王刚所有的种植方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据等量关系:张强种植户总收入为1.8元,李亮种植户总收入为2.6元,列出方程组求解即可;(2)根据纯收入超过10万元,且种植章姬的面积不超过种植丰香的面积的2倍列出不等式组求解即可.【解答】解:(1)设丰香和章姬两类草莓每亩平均纯收入分别是x元,y元.由题意得:,解得:,答:丰香和章姬两类草莓每亩平均纯收入各是4000元,6000元.(2)设用来种植丰香的面积a亩,则用来种植章姬的面积为(20﹣a)亩.由题意得:,解得:9≤a≤.∵a取整数为:9,10,11、12、13.∴租地方案为:丰香9亩,章姬11亩;丰香10亩,章姬10亩;丰香11亩,章姬9亩;丰香12亩,章姬8亩;丰香13亩,章姬7亩.。
《试卷3份集锦》北京市2017-2018年七年级下学期数学期末学业质量监测试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式组{2131x x +≥-<-的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D 【解析】先求不等式组的解集,再在数轴上表示解集.【详解】解不等式组{2131x x +≥-<-,得, 12x x ≥-⎧⎨⎩, 不等式组的解集在数轴上表示为:故选D.【点睛】本题考核知识点:求不等式组的解集,并在数轴上表示解集. 解题关键点:解不等式组.2.若a>b ,则下列不等式变形正确的是( )A .a+5<b+5B .33a b <C .3a>3bD .-4a > -4b 【答案】C【解析】根据不等式的性质即可判断.【详解】∵a>b ,∴A. a+5>b+5,A 错误; B. 33a b >,B 错误; C. 3a>3b ,正确D. -4a < -4b ,D 错误,故选C.【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的基本性质判断.3.如图,从边长为+a b 的正方形纸片中剪去一个边长为-a b 的正方形(a b >),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A.4ab B.2ab C.2b D.2a【答案】A【解析】利用大正方形的面积减去小正方形的面积即可,解题时注意完全平方公式的运用.【详解】(a+b)2-(a-b)2=a2+2ab+b2-a2+2ab-b2=4ab.故选A.【点睛】本题主要考查了平方差公式的几何背景,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.4.经过点M(4,-2)与点N(x,y)的直线平行于x轴,且点N到y轴的距离等于5,由点N的坐标是()A.(5,2)或(-5,-2)B.(5,-2)或(-5,-2)C.(5,-2)或(-5,2)D.(5,-2)或(-2,-2)【答案】B【解析】根据“平行于x轴的直线上的点的纵坐标相同”可得y=-2,根据到y轴距离等于5的点分布在y轴两侧,可得x=5或x=-5,从而确定了点N的坐标.【详解】解:∵点M(4,-2)与点N(x,y)的直线平行于x轴,∴点M与点N的纵坐标相同,∴y=-2,∵点N到y轴的距离等于5,∴x=5或x=-5,∴点N的坐标为(5,-2)或(-5,-2).【点睛】本题考查了平面直角坐标系中特殊点的坐标特点.熟练掌握特殊点的坐标特点是解题关键.5.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.6.如图,宽为50cm的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.4000cm2【答案】A【解析】设小长方形的长为xcm,小长方形的宽为ycm,根据图示,找出等量关系,列方程组求解.【详解】解:设小长方形的长为xcm,小长方形的宽为ycm,由题意得,5024x yx x y+=⎧⎨=+⎩,解得:4010 xy=⎧⎨=⎩,小长方形的面积为:40×10=400(cm2).故选:A.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.7.下列命题中是真命题的是()A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.直角都相等D.三角形一个外角大于它任意一个内角【答案】C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A、错误,对顶角相等但相等的角不一定是对顶角;B、错误,当被截的直线平行时形成的同位角才相等;C. 正确,直角都相等,都等于90°;D、三角形的一个外角大于任何一个与之不相邻的内角,故错误.故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、三角形的外角的性质,难度不大.8.已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b -【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到a+b-c >0,b -a -c <0,再根据绝对值的性质进行化简计算.【详解】根据三角形的三边关系,得a+b-c>0,b -a -c <0.∴原式= a+b-c −(a +c−b)= 22b c -.故选择B 项.【点睛】本题考查三角形三边关系和绝对值,解题的关键是熟练掌握三角形三边关系.9.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,⋯,则第8个图形中花盆的个数为( )A .90B .64C .72D .56【答案】A 【解析】观察图形,得出花盆变化的规律作答即可.【详解】解:观察图形, 第一个图形, 三角形每边上有3盆花, 共计32-3盆花; 第二个图形, 正四边形每条边上有4盆花, 共计42-4盆花; 第三个图形, 正五边形每天边上有5盆花, 共计52-5盆花; ......第n 个图形, 正n+2边形每条边上有n+2盆花, 共计(n+2) 2-(n+2)盆花, 则第8个图形中花盆的个数为(8+2) 2-(8+2)=90盆.故本题正确答案为A.【点睛】本题主要考查多姿多彩的图形和整式探索与表达规律.10.如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则正方形ABCD 的面积为( )A .4B .5C .9D .243【答案】B【解析】分析:作EF ⊥l 2,交l 1于E 点,交l 4于F 点,然后证明出△ADE 和△DCF 全等,从而得出CF=DE=1,根据勾股定理求出CD 的平方,即正方形的面积.详解:作EF ⊥l 2,交l 1于E 点,交l 4于F 点.∵l 1∥l 2∥l 3∥l 4,EF ⊥l 2,∴EF ⊥l 1,EF ⊥l 4,即∠AED=∠DFC=90°.∵ABCD 为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE .∵AD=CD ,∴△ADE ≌△DCF ,∴CF=DE=1.∵DF=2, ∴CD 2=12+22=2,即正方形ABCD 的面积为2.点睛:本题主要考查的是三角形全等的判定与性质,属于中等难度的题型.作出辅助线是解决这个问题的关键.二、填空题题11.已知20n 是整数,则正整数n 的最小值为___ 【答案】1【解析】因为20n 是整数,且20=25n n ,则1n 是完全平方数,满足条件的最小正整数n 为1.【详解】∵20=25n n ,且20n 是整数,∴25n 是整数,即1n 是完全平方数;∴n 的最小正整数值为1.故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.12.如图,已知//,136a b ∠=︒,则2∠=____________________.【答案】36°【解析】根据对顶角相等可得∠3=∠1,再根据两直线平行,同位角相等解答.【详解】解:由对顶角相等可得,∠3=∠1=36°,∵a ∥b ,∴∠2=∠3=36°.故答案为:36°.【点睛】本题考查了两直线平行,同位角相等的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键. 13.如图反映了某出租公司乘车费用y(元)与路程x(千米)之间的关系,请你根据图中信息回答下列问题:()1公司规定的起步价是______元;()2该公司规定除起步价外,超过5千米的每增加1千米多收______元.()3若你是一名乘客,共付了44元钱,那么你的行程是______千米.【答案】10 1.7 1【解析】()1根据图象的信息解答即可;()2根据图象信息解答即可;()3得出解析式后代入数值解答即可.【详解】解:()1由图象可得:公司规定的起步价是10元;()2由图象可得:该公司规定除起步价外,超过5千米的每增加1千米多收11.710 1.7-=元; ()3由图象可得函数解析式为:()y 10x 5 1.7=+-⨯,把y 44=代入解析式可得:()4410x 5 1.7=+-⨯,解得:x 25=,故答案为:10;1.7;1.【点睛】本题考查一次函数的图象,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.14.如图是一汽车探照灯纵剖面,从位于O 点的灯泡发出的两束光线OB ,OC 经过灯碗反射以后平行射出,如果∠ABO =α,∠DCO =β,则∠BOC 的度数是_____.【答案】α+β【解析】如图,作OE ∥AB ,则OE ∥CD ,∴∠ABO=∠BOE=∠α,∠COE=∠DCO=∠β,∴∠BOC=∠BOE+∠COE=∠ABO+∠DCO=∠α+∠β.故答案为∠α+∠β.点睛:本题关键在于构造辅助线,再根据平行线的性质解题.15.一个长方形的长为a ,宽为b ,面积为8,且满足2248a b ab +=,则长方形的周长为_________.【答案】1【解析】根据题意可得ab=8,代入22()48a b ab ab a b +=+=,求出a+b ,故可得到周长.【详解】∵一个长方形的长为a ,宽为b ,面积为8,∴ab=8,∵22()48a b ab ab a b +=+=∴a+b=6故长方形的周长为2(a+b )=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是熟知提取公因式法因式分解.16.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为________.【答案】(1,3).【解析】直接利用已知点的坐标确定原点的位置,进而得出棋子“炮”的点的坐标.【详解】如图所示:由题意可得,“帅”的位置为原点位置,所以棋子“炮”的点的坐标为:(1,3),故答案为:(1,3).【点睛】本题考查了坐标确定位置,正确得出原点的位置是解题关键.17.如图,有一张三角形纸片ABC,∠A=80°,∠B=70°,D是AC边上一定点,过点D将纸片的一角折叠,使点C落在BC下方C′处,折痕DE与BC交于点E,当AB与∠C′的一边平行时,∠DEC'=_____度.【答案】110度或1.【解析】根据题意分情况讨论:①当AB∥C′D时,②当AB∥C′E时,再根据折叠的性质得到答案.【详解】∵∠A=80°,∠B=70°,∴∠C=180°﹣∠A﹣∠B=180°﹣70°﹣80°=30°,①当AB∥C′D时,∠CDC′=∠A=80°,由折叠性质得:∠CDE=∠C′DE=∠CDC′=40°,∠C=∠C′=30°,∴∠DEC′=180°﹣∠C′DE﹣∠C′=180°﹣40°﹣30°=110°;②当AB∥C′E时,设BE交C′D于点F,如图所示:则∠B=∠BEC′=70°,∴∠BFD=∠C′FE=180°﹣∠C′﹣∠BEC′=180°﹣30°﹣70°=80°,∴∠ADF=360°﹣∠A﹣∠B﹣∠BFD=360°﹣80°﹣70°﹣80°=130°,∴∠CDC′=180°﹣∠ADF=180°﹣130°=50°,由折叠性质得:∠CDE=∠C′DE=∠CDC′=25°,∠C=∠C′=30°,∴∠DEC′=180°﹣∠C′DE﹣∠C′=180°﹣25°﹣30°=1°;故答案为:110度或1.【点睛】本题考查折叠的性质,解题的关键是掌握折叠的性质,分情况讨论问题.三、解答题18.共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).请根据以上信息,解答下列问题:(1)填空:a= ; b= ; m= ;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D 组观点的市民人数.【答案】(1) 60;40;15;(2)36°;(3)持有D 组观点的市民人数大约为20万人;(4)见解析.【解析】(1)根据扇形统计图和统计表中的数据计算即可得到结论;(2)用360°×扇形C 所占的百分数即可得到结论;(3)根据题意列式计算即可.【详解】解:(1)调查的总人数为:50÷25%=200,∴a=200×30%=60,b=200×20%=40,∴m=3010015200⨯= 故答案为60,40,15;(2)扇形图中B 组所在扇形的圆心角为:360°×(1-25%-30%-20%-15%)=36°;(3)100×20%=20(万人)∴估计其中持有D 组观点的市民20万人【点睛】本题考查了扇形统计图的知识,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息. 19.如图,在ABC ∆中,BD 平分ABC ∠,交AC 于点D ,//DE BC ,交AB 于点E ,F 是BC 上一点,且BDF BDE ∠=∠,求证://DF AB【答案】见解析.【解析】先求出∠1=∠2,再得到∠3=∠4,利用平行线的判定定理解答.【详解】解:证明:∵BD 平分ABC ∠∴12∠=∠∵//DE BC∴23∠=∠∴13∠=∠∵34∠=∠∴14∠=∠∴//DF AB【点睛】本题考查平行线判定方法,解题关键是掌握平行线的性质和判定定理.20.已知:如图,在△ABC 中,∠C=90°,∠A=30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AC 、AB 于点E .D (保留作图痕迹,不写作法) (2)猜想AC 与CE 之间的数量关系,并证明你的猜想.【答案】(1)作图见解析;(2)3AC CE ,证明见解析.【解析】(1)利用基本作图(作线段的垂直平分线)作DE 垂直平分AB ;(2)连接BE ,如图,利用线段垂直平分线的性质得EA=EB ,则∠A=∠ABE=30°,则可计算出∠CBE=30°,利用含30度的直角三角形三边的关系得到BE=2CE ,则AC=3CE .【详解】解:(1)DE 即为所作AB 的垂直平分线.(2)AC=3CE .理由如下:连接BE ,如图,∵ED 垂直平分AB ,∴EA=EB ,∴∠A=∠ABE=30°,∵∠ABC=60°,∴∠CBE=30°,∴BE=2CE ,∴AE=2CE ,∴AC=3CE .【点睛】本题考查了作图-基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.也考查了线段垂直平分线的性质.21.贺岁片《流浪地球》被称为开启了中国科幻片的大门,2019也被称为中国科幻片的元年.某电影院为了全面了解观众对《流浪地球》的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有人;(2)扇形统计图中,扇形C的圆心角度数是.(3)请补全条形统计图;(4)春节期间,该电影院来观看《流浪地球》的观众约3000人,请估计观众中对该电影满意(A、B、C 类视为满意)的人数.【答案】(1)100;(2)54°;(3)见解析;(4)2850(人).【解析】(1)根据条形统计图得到A类人数,根据扇形统计图得到A类人数所占的百分比,计算求出接受调查的观众人数;(2)根据C类人数的百分比,乘以360°可求出圆心角度数;(3)求出C类人数,补全条形统计图即可;(4)求出观众中对该电影满意的人数的百分比,计算即可.【详解】解:(1)由条形统计图可知,A类人数是60人,由扇形统计图可知,A类人数所占的百分比为60%,则本次接受调查的观众人数为:60÷60%=100(人),故答案为:100;(2)扇形C的圆心角度数为:360°×10060205100---=54°,故答案为:54°;(3)C类人数为:100﹣60﹣20﹣5=15(人),补全条形统计图如图所示:(4)观众中对该电影满意的人数为:3000×95100=2850(人).【点睛】本题考查的是条形统计图、扇形统计图、样本估计总体,读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1)小明被分配到“半程马拉松”项目组的概率为________.(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:调查总人数20 50 100 200 500参加“半程马拉松”人数15 33 72 139 356参加“半程马拉松”频率0.750 0.660 0.720 0.695 0.712①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?【答案】120.7;2100【解析】分析:(1)结合题意,利用概率公式直接求解即可;(2)①,结合表格信息,根据用频率估计概率的知识可求解;②,结合①的结论,用总人数乘参加“迷你马拉松”人数的概率,即可完成解答.详解:(1)∵小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组,∴小明被分配到“半程马拉松”项目组的概率为:12;故答案为12;(2)①由表格中数据可得:本次赛事参加“半程马拉松”人数的概率为:0.7;故答案为0.7;②参加“迷你马拉松”的人数是:3000×0.7=2100(人)点睛:此题主要考查了利用频率估计概率,正确理解频率与概率之间的关系是解题的关键.23.化简求值:(x+2y )2﹣(x ﹣2y )2,其中x =﹣1,y =12. 【答案】8xy ,-1 【解析】原式利用完全平方公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式=x 2+1xy+1y 2﹣x 2+1xy ﹣1y 2=8xy ,当x =﹣1,y =12时,原式=﹣1. 【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握完全平方公式的结构特征以及相关的运算法则是解本题的关键.24.求下列各式中x 的值:(1)(x +10)3=-343; (2)36(x -3)2=49;(3)34(1)0x x --=. 【答案】(1)-7;(2)x 1=116,x 2=256;(3)16+43 【解析】(1)根据立方根的定义即可求出答案;(2)根据平方根的定义即可求出答案;(3)去括号,再将x 系数化为1,即可求出答案.【详解】(1)x +10=-7,解得:x =-17;(2)(x -3)2=4936,x -3=±76,解得:x 1=116,x 2=256;(3)去括号得:3x -4x +4=0,(3-4)x =-4,解得:x =43-=16+43. 【点睛】本题主要考查了平方根、立方根的定义,解本题的要点在于熟知平方根、立方根的知识点,并利用知识点解方程.25.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整:边数三四五六七……n 对角线条数0 2 5 ……(3)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.【答案】(1)详见解析;(2)9,14,(3)2n n-;(3)1.【解析】(1)根据要求画图;(2)观察得出多边形对角线条数公式(3)2n n-;(3)先根据多边形的内角和公式(n-2)×180°求出该多边形的边数,再根据多边形对角线条数公式(3)2n n-进行计算即可得解.【详解】解:(1)如图(2)画图并总结可得:边数三四五六七……n 对角线条数0 2 5 9 14 ……(3)2n n-(3)设多边形的边数为n,由题意,得:(n-2)×180°=1440°,解得:n=10,所以,此多边形的对角线的条数为(3)2n n-=1072⨯=1.【点睛】考核知识点:多边形的内角和和对角线.观察总结出规律是关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在下列调查中,适合采用全面调查的是()A.了解市民对北京世博会的关注度B.了解七年级(3)班的学生期末成绩C.调查全网中小学生课外阅读情况D.环境部门调查6月长江某水域的水质情况【答案】B【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解市民对北京世博会的关注度,调查范围广,适合抽样调查,故A错误;B、了解七年级(3)班的学生期末成绩,适合普查,故B正确;C、调查全网中小学生课外阅读情况,调查范围广,适合抽样调查,故C错误;D、环境部门调查6月长江某水域的水质情况,调查范围广,适合抽样调查,故D错误;故选:B.【点睛】此题主要考查统计调查的方式,解题的关键是熟知普查与抽样调查的适用范围.2.关于x的方程32211x mx x--=++有增根,则m的值是()A.﹣5 B.5 C.﹣7 D.2【答案】A【解析】根据分式的方程增根定义,得出增根,再代入化简后的整式方程进行计算即可.【详解】由题意得:3x﹣2﹣m=2(x+1),方程的增根为x=﹣1,把x=﹣1代入得,﹣3﹣2﹣m=0解得m=﹣5,故选A.【点睛】本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.3.下列调查方式,不适合使用全面调查的是()A.旅客上飞机前的安检B.航天飞机升空前的安检C.了解全班学生的体重D.了解咸宁市中学生每天使用手机的时间【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、对旅客上飞机前的安检是事关重大的调查,适合普查,故A 不符合题意;B 、航天飞机升空前的安全检查是事关重大的调查,适合普查,故B 不符合题意;C 、了解全班学生的体重适合普查,故C 不符合题意;D 、了解广州市中学生每周使用手机所用的时间适合抽样调查,故D 符合题意;故选:D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若x y >,则下列式子中正确的是( )A .33x y ->-B .33x y ->-C .33x y ->-D .33x y ->- 【答案】C【解析】根据不等式的基本性质,进行判断即可.【详解】A.根据不等式的性质1,不等式两边同时乘以1-,再加3,即可得33x y --<,故A 选项错误,B.根据不等式的性质2,不等式两边同时乘以13-,可得33x y -<-,故B 选项错误, C.根据不等式的性质1,不等式两边同时减3,可得33x y ->-,故C 选项正确,D.根据不等式的性质3,不等式两边同时乘以3-,可得33x y --<,故D 选项错误.故选:C.【点睛】此题考查不等式的性质,解题关键在于熟练掌握不等式的基本性质.5.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于( )A .140°B .120°C .100°D .80【答案】A 【解析】先根据对顶角相等得出∠AOC =80°,再根据角平分线的定义得出∠COM =40°,最后解答即可.【详解】解:∵∠BOD =80°,∴∠AOC =80°,∠COB =100°,∵射线OM是∠AOC的平分线,∴∠COM=40°,∴∠BOM=40°+100°=140°,故选:A.【点睛】此题考查对顶角和角平分线的定义,关键是得出对顶角相等.6.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°【答案】D【解析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数. 【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.7.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的平方根为()A.2 B.4 C.2±D.2±【答案】D【解析】由2x =,1y =是二元一次方程组的解,将2x =,1y =代入方程组求出m 与n 的值,进而求出2m n -的值,利用平方根的定义即可求出2m n -的平方根.【详解】将21x y =⎧⎨=⎩代入方程组81mx ny nx my +=⎧⎨-=⎩中,得:2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, ∴2624m n -=-=,则2m n -的平方根为2±.故选:D .【点睛】此题考查了二元一次方程组的解,以及平方根的定义,解二元一次方程组的方法有两种:加减消元法,代入消元法.8.现有一摞数学书,总厚度为120cm ,下表是拿走数学书本数与余下书的厚度之间的关系:根据此表提供的信息,估计数学书一共有( )A .57本B .58本C .59本D .60本【答案】D【解析】根据题意设一共有x 本数学书,再根据列表中数据可知一本书的厚度为2cm ,即可列出方程2x=120,解得答案即可.【详解】设共有x 本数学书,再根据列表中数据可知一本书的厚度为2cm ,即可列方程2x=120解得x=60一共有60本数学书故选D.【点睛】本题考查根据题意列出方程并解答,熟练掌握计算法则是解题关键. 9.已知关于x 、y 的方程组343x y a x y a +=-⎧⎨-=⎩其中31a -≤≤,给出下列说法:①当1a =时,方程组的解也是方程2x y a +=-的解;②当2a =-时,x 、y 的值互为相反数;③若1x ≤,则14y ≤≤;④43x y =⎧⎨=-⎩是方程组的解,其中说法正确的是( )A .①②③④B .①②③C .②④D .②③【答案】D 【解析】①②④将a 的值或方程组的解代入方程组,通过求解进行判断,③解方程组,用含a 的代数式表示x ,y ,根据x 的取值范围求出a 的取值范围,进而可得y 的取值范围.【详解】①当1a =时,方程组为333x y x y +=⎧⎨-=⎩, 解得,30x y =⎧⎨=⎩, ∴321x y +=≠-,故错误;②当2a =-时,方程组为366x y x y +=⎧⎨-=-⎩, 解得,33x y =-⎧⎨=⎩,即x 、y 的值互为相反数,故正确; ③343x y a x y a+=-⎧⎨-=⎩, 解得,121x a y a =+⎧⎨=-⎩, ∵1x ≤,∴0a ≤,∵31a -≤≤,∴30a -≤≤,∴14y ≤≤,故正确;④当43x y =⎧⎨=-⎩时,原方程组为494433a a-=-⎧⎨+=⎩,无解,故错误; 综上,②③正确,故选D .【点睛】本题考查解二元一次方程组,解一元一次不等式,方程(组)的解,熟练掌握其运算法则是解题的关键,一般采用直接代入的方法进行求解.10.某市2017年有25000名学生参加中考,为了了解这25000名考生的中考成绩,从中抽取了1000名考生的成绩进行分析,以下说法正确的是( )2A .25000名考生是总体B .每名考生的成绩是个体C .1000名考生是总体的一个样本D .样本容量是25000【答案】B【解析】A. ∵25000名考生的中考成绩是总体 ,故不正确;B. ∵每名考生的成绩是个体,故正确;C. ∵1000名考生的中考成绩是总体的一个样本,故不正确;D. ∵样本容量是1000 ,故不正确;故选B.二、填空题题11.如图,在ABC ∆中,E 、D 分别为AB 、CE 的中点,且24ABC S ∆=,则EDB S ∆=________.【答案】2【解析】先根据点E 是AB 的中点可知S △BCE =12S △ABC ,再根据点D 是CE 的中点即可得出结论. 【详解】解:∵点E 是AB 的中点,S △ABC =24,∴S △BCE =12S △ABC =12×24=1. ∵点D 是CE 的中点, ∴S △BDE =12S △BCE =12×1=2. 故答案为:2.【点睛】本题考查的是三角形的面积,熟知三角形的中线将三角形分成面积相等的两部分是解答此题的关键. 12.若35x y -=,则266x y --的值是______.【答案】4【解析】将266x y --变形为2(3)6x y --,整体代入即可.【详解】解:∵35x y -=,∴2662(3)61064x y x y --=--=-=,故答案为:4.【点睛】本题考查了代数式求值,熟练掌握整体思想的应用是解题关键.13.分解因式:a 3﹣4a =_____.【答案】(2)(2)a a a +-【解析】先提取公因式x ,然后利用平方差公式进行因式分解.【详解】解:a 3﹣4a=a (a 2﹣4)=(2)(2)a a a +-故答案为:(2)(2)a a a +-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握平方差公式的结构是本题的解题关键.14.如图 ,△ACE ≌△DBF ,如果∠E =∠F ,AD =10 ,BC =2 ,那么线段AB 的长是_____.【答案】4【解析】由△ACE ≌△DBF ,∠E =∠F 得到AC=DB,所以AB=CD ,再由AD=10,BC=2即可计算AB 的长度.【详解】∵△ACE ≌△DBF ,∠E =∠F ,∴AC=DB,∴AC-BC=DB-BC,∴AB=CD,∵AD=10,BC=2,∴AB=1()42AD BC -=. 故填:4.【点睛】此题考查三角形全等的性质,根据全等三角形的对应边相等即可得到AB=CD,由此求值.15.观察下列等式:39×41=402-12,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,…请你把发现的规律用字母表示出来:m×n =________. 【答案】2222m n n m +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭【解析】观察可以发现,4039412+=,141392-=;5048522+=,152482-=;6056642+=,464562-=∴m•n =(2m n +)1﹣(2n m -)1. 【详解】∵4039412+=,141392-=;∴39×41=401﹣11=(39412+)1﹣(41392-)1; 同理5048522+=,152482-=;6056642+=,464562-=∴48×51=501﹣11=(48522+)1﹣(52482-)1;56×64=601﹣41=(56642+)1﹣(64562-)1… ∴m•n =(2m n +)1﹣(2n m -)1. 故答案为(2m n +)1﹣(2n m -)1. 【点睛】 本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .【答案】cm .【解析】试题解析:如图,折痕为GH ,由勾股定理得:AB==10cm ,由折叠得:AG=BG=AB=×10=5cm ,GH ⊥AB ,∴∠AGH=90°, ∵∠A=∠A ,∠AGH=∠C=90°,∴△ACB ∽△AGH ,∴,∴,∴GH=cm .考点:翻折变换17.一个长方形的长为a ,宽为b ,面积为8,且满足2248a b ab +=,则长方形的周长为_________.【答案】1【解析】根据题意可得ab=8,代入22()48a b ab ab a b +=+=,求出a+b ,故可得到周长.【详解】∵一个长方形的长为a ,宽为b ,面积为8,∴ab=8,∵22()48a b ab ab a b +=+=∴a+b=6故长方形的周长为2(a+b )=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是熟知提取公因式法因式分解.三、解答题18.解下列不等式和不等式组,并用数轴表示解集. (1) 104(3)2(1)x x --≤-;(2) 3(2)01213x x x x --<⎧⎪+⎨≥-⎪⎩ 【答案】(1)4x ≥;(2)34x <≤【解析】分析: (1)首先去括号,然后移项、合并同类项、系数化成1即可求解;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组组的解集.详解: (1) ()()104321x x --≤-去括号10-4x+12≤2x -2移项-4x-2x≤-2-10-12合并-6x≤-24系数化为1得4x ≥在数轴上表示为:(2)() 3201213x xxx①②⎧--<⎪⎨+≥-⎪⎩解:解不等式①得x≤1,解不等式②得x<4,在数轴上表示为:所以不等式组的解集为x≤1.点睛: 本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A,B作x轴.y轴的垂线交于点C,如图所示.点P从原点出发,以每秒1个单位长度的速度沿着O→B→C→A的路线移动,运动时间为t秒.(1)写出A,B,C三点的坐标:A,B,C;(2)当t=14秒时,求△OAP的面积.(3)点P在运动过程中,当△OAP的面积为6时,求t的值及点P 的坐标.【答案】(1)A(4,0);B(0,6);C(4,6);(2)△OAP的面积S=4;(3)t=3时,P(0,3);t=13时,P(4,3),都有△OAP的面积为6.【解析】(1)(a-4)2+|b-6|=0,解得a=4,b=6,得出A(4,0),B(0,6),由BC∥x轴,得出点C的纵坐标为:6,由AC∥y轴,得出点C的横坐标为:4,即可得出结果;(2)四边形OACB是矩形,OB=AC=6、BC=OA=4,当t=14 时,P在AC边上,AP=2,则△OAP的面积=OA•PA=4;(3)①当P在OB上时,OP=t,△OAP的面积=OA•OP=×4×t=6,则t=3,即OP=3,则P点坐标为(0,3);。
2017-2018年人大附中七年级下期末试卷
孙老师聊初中数学
人大附中 2017-2018 学年度第二学期期末初一年级数学练习 2018.7.4
则 a+5b 的值为
.
20. 如图,在凹四边形 ABCD 中,∠BAC 和∠ABD 的角平分线
交于点 E,则∠C,∠D 和∠E 之间的数量关系是
.
孙老师聊初中数学
21. 新定义:若关于 x,y 的二元一次方程组① a1x+b1 y = c1 的解是 x = x0 ,关于 x,y 的二元一次
a2 x +b2 y = c2
正确的是:
.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).
图1
图2
图3
1 A. x<
2
B. x≥2
C. x≤2
D. x≤ 1 2
10. 如图,已知直线 AB∥DF,点 C,E 是线段 AF 上的点,且满足∠B=∠DEF,
AB=36,BC=DE=31,AC=29,CE=15,则 CF 为( )
A. 46
B. 44
C. 48
D. 51
孙老师聊初中数学
11. 小明同学在学习完全等三角形以后,思考怎么用三角板平分一个角,
y = y0
方程组② e1x+ f1 y = d1 的解是 x = x1 ,且满足 x1-x0 ≤0.1, y1-y0 ≤0.1,则称方程组②的解是方程
e2 x + f2 y = d2
y = y1
x0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年北京人大附中七年级(下)期末数学试卷
一、选择题(每小題3分,共36分)
1.(3分)下列各数中是不等式3x >的解的是( ) A .2-
B .1
C .2
D .5
2.(3分)已知三角形三边长分别为2,5,x ,则x 的取值范围是( ) A .17x <<
B .37x <<
C .35x <<
D .25X <<
3.(3分)如图,已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )
A .103︒
B .106︒
C .74︒
D .100︒
4.(3分)已知实数x ,y 满足25|4|()0x y x y +-+-=,则实数x ,y 的值是( ) A .22x y =-⎧⎨=-⎩
B .0
0x y =⎧⎨=⎩
C .2
2x y =⎧⎨=⎩
D .3
3x y =⎧⎨=⎩
5.(3分)某多边形的每个内角均为120︒,则此多边形的边数为( ) A .5
B .6
C .7
D .8
6.(3分)若点(3,2)M m m --在第二象限,则m 的取值范围是( ) A .23m <<
B .2m <
C .3m >
D .2m >
7.(3分)计算|2|3+-的值是( )
A .1-
B .1
C .5-
D .5
8.(3分)下面不等式一定成立的是( ) A .
2
a
a < B .a a -<
C .若a b >,c d =,则ac bd >
D .若1a b >>,则22a b >
9.(3有意义,则x 的取值范围是( ) A .1
2
x <
B .2x …
C .2x …
D .1
2
x …
10.(3分)如图,已知直线//AB DF ,点C ,E 是线段AF 上的点,且满足B DEF ∠=∠,36AB =,31BC DE ==,29AC =,15CE =,则CF 为( )
A .46
B .44
C .48
D .51
11.(3分)小明同学在学习完全等三角形以后,思考怎么用三角板平分一个角,经过研究他得到一种方法:如图,在已知AOB ∠的两边上,分别取OM ON =,再分别用三角板过点M ,N 作OA ,OB 的垂线,交点为P ,画射线OP ,则OMP ONP ∆≅∆,所以OP 平分AOB ∠.在此画图过程中OMP ONP ∆≅∆的判定依据是( )
A .SSS
B .SAS
C .ASA
D .HL
12.(3分)晓东根据某市公交车阶梯票价,得出乘坐路程m (单位:公里)和票价n (单位:元)之间的关系如表:
我们定义公交车的平均单价为w m
=
,当7m =,10,13时,平均单价依次为1w ,2w ,3w ,则1w ,2w ,3w 的大小关系是( ) A .123w w w >>
B .312w w w >>
C .231w w w >>
D .132w w w >>
二.填空题(每空2分,共20分)
13.(4分)用不等式表示x 的4倍与2的和大于6: 此不等式的解集为 .
14.(2分)在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为 . 15.(2分)在ABC ∆中,60B ∠=︒,2A C ∠=∠,则A ∠的度数为 .
16.(2分)关于x 的不等式1x -的非负整数解为 .
17.(2分)如图,在ABC ∆中,90ACB ∠=︒,3AC =,4BC =,CD 为ABC ∆的中线,则ACD ∆的面积为 .
18.(2分)已知点(,0)A a 和点(0,5)B 两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是 .
19.(2分)若天于x 的不等式组2153x a x b -<⎧⎨->⎩
的解集为11x -<<,则5a b +的值为 .
20.(2分)如图,在凹四边形ABCD 中,BAC ∠和ABD ∠的角平分线交于点E ,则C ∠,
D ∠和
E ∠之间的数量关系是 .
21.(2分)新定义,若关于x ,y 的二元一次方程组①111
222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩
,关
于x ,y 的二元一次方程组②111
222e x f y d e x f y d +=⎧⎨+=⎩的解是
11
x x y y =⎧⎨
=⎩,且满足100||0.1x x
x -…,10
|
|0.1y y y -…,则称方程组②的解是方程组①的模糊解,关于x ,y 的二元一次方程组22
2104x y m x y m +=+⎧⎨
-=+⎩
的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是 . 三、解答题(22题4分,23题7分,24、25题每题4分,26题5分,共24分) 22.(4分)解方程组2313
4523x y x y +=⎧⎨+=⎩
.
23.(7分)解不等式或不等式组,并把它的解集在数轴上表示出来 (1)313x x +->; (2)332(2)
2314
x x x ->-⎧⎪
⎨--⎪⎩…;
24.(4分)如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =,求证:
BC ED =.
25.(4分)如图,ABC
⊥
C
∆中,90
∠=︒,点D为线段AC上一点,DE AB
∠=︒,58
B
于点E,DF平分ADE
∠的度数.
∠交AB于F,求DFE
26.(5分)作图题:如图,在平面直角坐标系xOy中,(4,1)
C-
A-,(1,1)
B-,(5,3)
(1)画出ABC
∆的AB边上的高;
(2)将ABC
∆(点D和点A对应,点E和点B对应,点F和点C对应),∆平移到DEF
若点D的坐标为(1,0),请画出平移后的DEF
∆.
四.解答题(27-28每题6分,29题8分,共20分)
27.(6分)列方程组和不等式解应用题
为了响应某市的“四个一”工程,培养学生的爱国主义情怀,某校学生和带队老师在5月下旬某天集体乘车去参观抗日战争纪念馆.已知学生的数量是带队老师的12倍多20人,学生和老师的总数共540人.
(1)请求出去参观抗日战争纪念馆学生和老师各多少人?
(2)如果学校准备租赁A型大巴车和B型大巴车共14辆,(其中B型大巴车最多有7辆)已知A型大巴车每车最多可以载35人,日租金为2000元,其中B型大巴车每车最多可以载45人,日租金为3000元,请求出最经济的租赁车辆方案.
28.(6分)在ABC
∆中,若存在一个内角角度,是另外一个内角角度的n倍(n为大于1的正整数),则称ABC
∆为n倍角三角形.例如,在ABC
∆中,80
A
∠=︒,75
B
∠=︒,25
C
∠=︒,可知3
B C
∠=∠,所以ABC
∆为3倍角三角形.
(1)在ABC
∆中,55
A
∠=︒,25
B
∠=︒,则ABC
∆为倍角三角形;
(2)若DEF
∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的1
3
,
求DEF
∆的最小内角;
(3)若MNP
∆是2倍角三角形,且90
M N P
∠<∠<∠<︒,请直接写出MNP
∆的最小内角的取值范围.
29.(8分)在平面直角坐标系xOy中,点A为x轴上的动点,点B为x轴上方的动点,连接OA,OB,AB.
(1)如图1,当点B在y轴上,且满足OAB
∠的角平分线与OBA
∠的角平分线交于点P,请直接写出P
∠的度数;
(2)如图2,当点B在y轴上,OAB
∠的角平分线与OBA
∠的角平分线交于点P,点C在
BP的延长线上,且满足45
AOC
∠=︒,求
OAB OCB
∠
∠
;
(3)如图3,当点B在第一象限内,点P是AOB
∆内一点,点M,N分别是线段OA,
OB上一点,满足:
1
90
2
APB AOB
∠=︒+∠,PM PN
=,180
ONP OMP
∠+∠=︒.
以下结论:①OM ON
=;②AP平分OAB
∠;③BP平分OBA
∠;④AM BN AB
+=.正确的是:.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).。