千题百炼——高考数学100个热点问题(一):第5炼 函数的对称性与周期性
高中数学函数对称性和周期性小结
高中数学函数对称性和周期性小结一、函数对称性:1.f(a+x) = f(a-x) ==> f(x) 关于x=a对称2.f(a+x) = f(b-x) ==> f(x) 关于 x=(a+b)/2 对称3.f(a+x) = -f(a-x) ==> f(x) 关于点(a,0)对称4.f(a+x) = -f(a-x) + 2b ==> f(x) 关于点(a,b)对称5.f(a+x) = -f(b-x) + c ==> f(x) 关于点 [(a+b)/2 ,c/2] 对称6.y = f(x) 与 y = f(-x) 关于 x=0 对称7.y = f(x) 与 y = -f(x) 关于 y=0 对称8.y =f(x) 与 y= -f(-x) 关于点 (0,0) 对称例1:证明函数 y = f(a+x) 与 y = f(b-x) 关于 x=(b-a)/2 对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y = f(a+x) 上,令关于 x=t 的对称点Q(2t – m,n),那么n =f(a+m) = f[ b – (2t – m)]∴ b – 2t =a , ==> t = (b-a)/2 ,即证得对称轴为 x=(b-a)/2 .例2:证明函数 y = f(a - x) 与 y = f(x – b) 关于x=(a + b)/2 对称。
证明:假设任意一点P(m,n)在函数y = f(a - x) 上,令关于 x=t 的对称点Q(2t – m,n),那么n =f(a-m) = f[ (2t – m)– b]∴2t - b =a , ==> t = (a + b)/2 ,即证得对称轴为 x=(a + b)/2 .二、函数的周期性令a , b 均不为零,若:1.函数y = f(x) 存在 f(x)=f(x+a) ==> 函数最小正周期 T=|a|2.函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a|3.函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a|4.函数y = f(x) 存在 f(x + a) =1/f(x) ==>函数最小正周期 T=|2a|5.函数y = f(x) 存在 f(x + a) = [f(x) + 1]/[1 –f(x)] ==>函数最小正周期 T=|4a|这里只对第2~5点进行解析。
2025版新高考版高考总复习数学函数的周期性和对称性
2025版新高考版高考总复习数学3.3 函数的周期性和对称性五年高考考点1 函数的周期性1.(2021全国甲文,12,5分,中)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f (−13)=13,则f (53)=( )A.-53B.−13C.13D.53答案 C2. (2016山东理,9,5分,中)已知函数f (x )的定义域为R .当x <0时, f (x )=x 3-1;当-1≤x ≤1时, f (-x )=-f (x );当x >12时, f (x +12)=f (x −12),则f (6)= ( )A .-2B .-1C .0D .2 答案 D3.(2022新高考Ⅱ,8,5分,难)已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )f (y ), f (1)=1,则∑k=122f (k )= ( )A.-3B.-2C.0D.1 答案 A4.(2018江苏,9,5分,中)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )={cos πx2,0<x ≤2,|x+12|,−2<x ≤0,则f (f (15))的值为 .答案√225.(2016江苏,11,5分,中)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上, f (x )={x +a,−1≤x <0,|25−x|,0≤x <1,其中a ∈R .若f (−52)=f (92),则f (5a )的值是 .答案 -25考点2 函数的对称性(2022全国乙理,12,5分,难)已知函数f (x ),g (x )的定义域均为R ,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图象关于直线x =2对称,g (2)=4,则∑k=122f (k )= ( )A.-21B.-22C.-23D.-24 答案 D三年模拟综合拔高练1.(2024届河北保定月考,7)已知定义在R 上的函数f (x )满足f (x +2)=3f(x),且f (2)=-1,则f (100)=( )A.-1B.1C.-3D.3 答案 C2.(2024届重庆七校开学考,3)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),当x ∈(0,2)时, f (x )=3x -1,则f (2 022)+f (2 023)=( )A.-2 023B.-1C.1D.32 022 答案 B3.(2023福建厦门一模,6)定义在R 上的函数f (x )满足f (x +1)=f (x )-2,则下列是周期函数的是( )A.y =f (x )-xB.y =f (x )+xC.y =f (x )-2xD.y =f (x )+2x 答案 D4.(2024届福建连城一中月考,7)已知定义在R 上的函数f (x )满足①f (x +2)=f (x ),②f (x -2)为奇函数,③当x ∈[0,1)时,f(x 1)−f(x 2)x 1−x 2>0(x 1≠x 2)恒成立,则f (−152)、f (4)、 f (112)的大小关系正确的是 ( )A. f (−152)>f (4)>f (112)B. f (−152)>f (112)>f (4)C. f (112)>f (4)>f (−152) D. f (4)>f (112)>f (−152)5.(2024届辽宁名校联盟联考,4)若函数y=f(x),y=g(x)的定义域均为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)·g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数答案D6.(2024届山东济南历城二中开学摸底检测,7)已知函数f(x)是R上的偶函数,且f(x)的图象关于点(1,0)对称,当x∈[0,1]时,f(x)=2-2x,则f(0)+f(1)+f(2)+…+f(2 022)的值为()A.-2B.-1C.0D.1答案C7.(多选)(2024届河北石家庄月考,12)已知函数y=xf(x)是R上的偶函数,f(x-1)+f(x+3)=0,当x∈[-2,0]时,f(x)=2x-2-x+x,则()A. f(x)的图象关于直线x=2对称B.4是f(x)的一个周期C. f(x)在(0,2]上单调递增)<f(0.50.2)D. f(2 023)<f(12答案ACD8.(多选)(2024届山东部分学校开学摸底联考,10)已知函数f(x)对任意x∈R都有f(x)=f(x+4)+f(2),若函数y=f(x+3)的图象关于直线x=-3对称,且∀x1,x2∈[0,2],当x1≠x2时,都有(x2-x1)(f(x2)-f(x1))>0,则下列结论正确的是()A. f(2)=0B. f(x)是奇函数C. f(x)是周期为4的周期函数D. f(3)<f(-4)9.(多选)(2023湖南师大附中5月模拟,10)已知定义在R上的函数f(x)满足f(x+2)+f(x)=0,且y=f(2-x)为偶函数,则下列说法一定正确的是()A.函数f(x)的周期为2B.函数f(x)的图象关于(1,0)对称C.函数f(x)为偶函数D.函数f(x)的图象关于直线x=3对称答案BC10.(多选)(2024届山东临沂开学摸底联考,12)已知f(x)是定义在R上的奇函数,f(1-2x)为偶函数,f(1)=3,则()A.曲线y=f(x)关于直线x=1轴对称B. f(x)是以4为周期的周期函数C. f(1)+f(2)+…+f(2 023)=0D.曲线y=f(x)关于点(3,0)对称答案ABC。
千题百炼——高考数学100个热点问题(一):第5炼 函数的对称性与周期性 Word版含解析
第5炼 函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
千题百炼- 函数图象的辨析100题(解析版)
结合选项,可得A选项符合题意.
故选:A.
5.(2021·江西·九江市柴桑区第一中学高三月考(理))函数 的图象大致形状为().
A. B.
C. D.
【答案】A
【分析】
首先判断函数的奇偶性,再根据特殊点的函数值判断可得;
【详解】
解:因为 ,所以定义域为 ,且 ,即 为偶函数,函数图象关于 轴对称,故排除C、D;
A. B.
C. D.
【答案】B
【分析】
根据函数为奇函数以及函数值的正、负,就中得到正确答案.
【详解】
因为 ,所以函数为奇函数,故排除A,D选项;
当 时, ,所以 ,故排除C;
故选:B.
【点睛】
方法点睛:求解时要充分利用选项中的图象,提取有用的信息,并利用排除法得到正确选项.
34.(2021·河北石家庄·二模)函数 的图象大致为()
又 时, ,故排除选项D;
故选:A.
4.(2021·四川资阳·高三月考(理))函数 的图象大致为()
A. B.
C. D.
【答案】A
【分析】
根据函数的奇偶性,可排除C、D,利用 和 时, ,结合选项,即可求解.
【详解】
由题意,函数 的定义域为 ,
且 ,
所以函数 为奇函数,图象关于原点对称,排除C、D;
利用排除法,先判断函数的奇偶性,再取特殊值判断即可
【详解】
因为 ,所以 是偶函数,排除B,D,
因为 ,排除C,
故选:A.
28.(2022·全国·高三专题练习)函数 在 轴正半轴的图象大致为()
A. B.
C. D.
【答案】D
【分析】
根据 ,化简函数的解析式,结合对数型函数的性质,幂函数的性质进行判断即可.
高考数学专题《函数的奇偶性、对称性、周期性》填选压轴题及答案
6.(多选题)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()
A.f(x)为奇函数B.f(x)为周期函数
C.f(x+3)为奇函数D.f(x+4)为偶函数
专题03函数的奇偶性、对称性、周期性
【方法点拨】
1.常见的与周期函数有关的结论如下:
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(2)如果f(x+a)= (a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
对于 , 是函数 的一条对称轴,且函数 是周期为4的周期函数,则 是函数 的一条对称轴,
又由函数为奇函数,则直线 是函数 图象的一条对称轴, 正确;
对于 ,函数 在 , 上有7个零点:分别为 , , ,0,2,4,6; 错误;
对于 , 在区间 , 上为增函数且其周期为4,函数 在 , 上为增函数,
又由 为函数 图象的一条对称轴,则函数 在 , 上为减函数, 正确;
2.函数奇偶性、对称性间关系:
(1)若函数y=f(x+a)是偶函数,即f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称;一般的,若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x= 对称.
(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0恒成立,则函数y=f(x)关于点(a,0)中心对称;一般的,若对于R上的任意x都有f(a+x)+f(a-x)=2b恒成立,则y=f(x)的图象关于点(a,b)对称.
专题05 函数周期性,对称性,奇偶性问题(学生版)-2024年高考二级结论速解技巧
f (a + x)= f (a − x)
最常逆应用:若 y
=
f (x) 关于 x
=
a
对称:可得到如下结论中任意一个:
f= ( x)
f (2a − x)
;
f (−x=) f (2a + x)
周期性与对称性记忆口诀:同号周期,异号对称.
(2)点对称:若 f (a + x) =− f (b − x) + c ,则 y = f (x) 的图象关于点 ( a + b , c ) 对称. 22
C. f (2022) = 0
D. f (2023) = 2
三、填空题
6.(2023·四川南充·四川省南部中学校考模拟预测)已知函数 f ( x) 是定义在 R 上的奇函数,对任意的 x∈ R
都有
f
x
+
3 2
= − f
(
x)
,当
x
∈
−
3 4
,
0
时, = f ( x)
log2 (1+ x) ,则 f (2021) + f (2022) = _________
当 x ∈[−2, 0] 时, f= ( x)
1 x 3
+
b
,则
f
(log3 162)
= ___________.
11.(2023·全国·高三专题练习)已知定义在 R 上的函数 f (x) 满足 f (2 + x) =f (x) ,当 x ∈[0, 2]时,
f (x) = −x(x − 2) ,则方程 f (x) = lg x 有___________个根.
最常逆应用:若 y
函数的周期性、对称性(解析版)
函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。
高考数学经典常考题型第5专题 函数的对称性与周期性
第5专题训练 函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
2019高考数学黄金解题模板专题05 函数的周期性和对称性
【高考地位】函数的周期性和对称性是函数的两个基本性质。
在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。
因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。
【方法点评】一、函数的周期性的判定及应用使用情景:几类特殊函数类型解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 熟记常见结论,准确求出函数的周期性;(1)若函数)(x f 满足)()(a x f a x f -=+,则函数)(x f 的周期为a 2;(2)若函数)(x f 满足)()(x f a x f -=+或)(1)(x f a x f =+或)(1)(x f a x f -=+, 则函数)(x f 的周期为a 2;第三步 运用函数的周期性求解实际问题.例 1 函数定义域为,且对任意,都有,若在区间上则( )A. B. C. D.【答案】C【解析】第一步,准确求出函数的周期性:由()()2f x f x +=,可知()f x 是周期为2的函数, 第二步,运用函数的周期性求解实际问题:令1-=x 故()()11f f -=,代入解析式,得()22a a e -+=-,解得2a =,从而()()22,10{ 22,01x x x f x x e x +-≤≤=-<≤,故()()()()2017201810022f f f f +=+=+=,故选C.【点评】函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.【变式演练1】【云南省曲靖市第一中学2018届高三9月高考复习质量监测】已知函数满足和,且当时,则A . 0B . 2C . 4D . 5 【答案】C考点:函数的对称性与函数的周期性【变式演练2】定义域为R 上的奇函数()f x 满足()()11f x f x -+=+,且()11f -=,则()2017f =( )A. 2B. 1C. -1D. -2 【答案】C 【解析】()()11f x f x -+=+ ()()()24f x f x f x T ⇒=-=--⇒= ,因此()2017f =()()111f f =--=- ,选C.考点:函数的周期性.【变式演练3】【甘肃省静宁县第一中学2018届高三上学期第一次模拟】函数在[0,2]上单调递增,且函数是偶函数,则下列结论成立的是( )A .B .C .D . 【答案】C【解析】函数是偶函数,则其图象关于轴对称,所以函数的图像关于对称,则,,函数在上单调递增,则有,所以.选.考点:抽象函数的周期性.二、函数的对称性问题使用情景:几类特殊函数类型 解题模板:记住常见的几种对称结论:第一类 函数)(x f 满足()()f x a f b x +=-时,函数()y f x =的图像关于直线2a bx +=对称;第二类 函数)(x f 满足()()c f x a f b x ++-=时,函数()y f x =的图像关于点(,)22a b c+对称;第三类 函数()y f x a =+的图像与函数()y f b x =-的图像关于直线2b ax -=对称. 例2 .已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B 【解析】考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数()f x 满足),(-)-(x f x f =则函数关于),(00中心对称,(3)()f x f x -=,则函数关于32=x 轴对称,常用结论:若在R 上的函数()f x 满足)()(),()(x b f x b f x a f x a f +-=+-=+,则函数)(x f 以||4b a -为周期.本题中,利用此结论可得周期为632-04=⨯,进而(2019)(3)f f =,)3(f 需要回到本题利用题干条件赋值即可.例 3 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 【答案】D 【解析】考点:函数的周期性;函数的对称性.例 4 已知()21y f x =-为奇函数, ()y f x =与()y g x =图像关于y x =对称,若120x x +=,则()()12g x g x +=( )A. 2B. -2C. 1D. -1 【答案】B 【解析】()21y f x =-为奇函数,故()21y f x =-的图象关于原点()0,0对称,而函数()y f x =的图象可由()21y f x =-图象向左平移12个单位,再保持纵坐标不变,横坐标伸长到原来的2倍得到,故()y f x =的图象关于点()1,0-对称,又()y f x =与()y g x =图象关于y x =对称,故函数()y g x =的图象关于点()0,1-对称,120x x +=,即12x x =-,故点()()()()1122,,,x g x x g x ,关于点()0,1-对称,故()()122g x g x +=-,故选B.【点评】本题主要考查函数的奇偶性、函数图象的平移变换、放缩变换以及函数的对称性,属于难题题.函数图像的确定除了可以直接描点画出外,还常常利用基本初等函数图像经过“平移变换”“翻折变换”“对称变换”“伸缩变换”得到,在变换过程中一定要注意变换顺序.本题是利用函数的平移变换、放缩变换后根据对称性解答的.【变式演练4】定义在R 上的奇函数)(x f ,对于R x ∈∀,都有)43()43(x f x f -=+,且满足2)4(->f ,mm f 3)2(-=,则实数m 的取值范围是 .【答案】1-<m 或30<<m 【解析】考点:函数的奇偶性、周期性. 【高考再现】1. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.2. 【2018年全国普通高等学校招生统一考试理数(全国卷II )】已知是定义域为的奇函数,满足.若,则( )A .B .C .D .【答案】C 【解析】因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:考点:函数的周期性.【名师点睛】函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 3. 【2018年全国文科数学】已知函数,则A . 在(0,2)单调递增B .在(0,2)单调递减C . 的图像关于直线x=1对称D .的图像关于点(1,0)对称【答案】C【考点】函数的对称性、单调性。
函数对称性与周期性习题(绝对物超所值)精编
函数对称性与周期性习题(绝对物超所值)精编本文档将为你提供一系列关于函数对称性和周期性的题,以帮助你更好地理解这些概念。
这些题经过精心编选,旨在让你在研究过程中得到更有效的训练。
1. 对称性题1.1 点对称性1.1.1 题一已知函数 f(x) 的图像关于点 A 对称,且 A(2, -3) 是图像上的点。
求函数 f(x) 的表达式。
1.1.2 题二已知函数 g(x) 的图像关于 y 轴对称,且 g(0) = 2。
求函数 g(x)的表达式。
1.2 奇偶性1.2.1 题三已知函数 h(x) 是一个奇函数,且 h(1) = 4。
求函数 h(x) 的表达式。
1.2.2 题四已知函数 k(x) 是一个偶函数,且 k(3) = -1。
求函数 k(x) 的表达式。
2. 周期性题2.1 正弦函数2.1.1 题五已知函数 y = A·sin(Bx + C) 的图像经过点 P(0, 1) 和点Q(π/4, 0),求函数的表达式。
2.1.2 题六已知函数 y = A·sin(Bx + C) 的周期为4π,振幅为 3,且图像过点P(π/6, -3)。
求函数的表达式。
2.2 余弦函数2.2.1 题七已知函数 y = A·cos(Bx + C) 的图像经过点 P(0, 2) 和点Q(π/3, 0)。
求函数的表达式。
2.2.2 题八已知函数 y = A·cos(Bx + C) 的周期为2π,振幅为 4,且图像过点P(π/4, -4)。
求函数的表达式。
以上是该文档中精选的一些习题,通过完成这些习题,相信你可以更好地掌握函数对称性和周期性的概念。
希望这些习题能对你的学习有所帮助!。
高中数学考前100问(最终版)
“ .高中数学考前回归教材资料亲爱的高三同学,当您即将迈进考场时,对于以下 100 个问题,您是否有清醒的认识?1.集合中的元素具有无序性和互异性.如集合{a,2}隐含条件 a ≠ 2 ,集合 {x | ( x -1)(x - a) = 0}不能直接化成{1,a }.2.研究集合问题,一定要抓住集合中的代表元素,如:{ x | y = lgx }与{ y | y = lgx }及{ (x, y)| y = l gx }三集合并不表示同一集合;再如: 设 A={直线},B={圆},问 A ∩B 中元素有几个?能回答是一个,两个或没有吗?”与“A={(x, y)| x + 2y = 3},B={(x, y)|x 2 + y 2 = 2}, A ∩B 中元素有几个?”有无区别?过关题:设集合 M = {x | y = x + 3},集合 N = {y | y = x 2 + 1, x ∈ M },则 MN = ___(答: [1, +∞) )3 .进行集合的交、并、补运算时,不要忘了集合本身和空集的特殊情况,不要忘了借助于数轴和韦恩图进行求解;若 AB= φ ,则说明集合 A 和集合 B 没公共元素,你注意到两种极端情况了吗? A = φ 或 B = φ ;对于含有 n 个元素的有限集合 M ,其子集、真子集、和非空真子集的个数分别是2n 、 2n - 1 和 2n - 2 ,你知道吗?你会用补集法求解吗?A 是B 的子集 ⇔ A ∪B=B ⇔ A ∩B=A ⇔ A ⊆ B ,你可要注意 A = φ 的情况.过关题:已知集合 A={-1, 2}, B={x| m x + 1 = 0},若 A ∩B=B ,则所有实数 m 组成的集合为.1答: m = {0,1,- }2已知函数 f ( x ) = 4 x 2 - 2( p - 2) x - 2 p 2 - p + 1 在区间 [-1,1] 上至少存在一个实数 c ,使 f (c) > 0 ,求实数 p 的取值范围.答: (-3, 3 2) )4 .(1)求不等式(方程)的解集,或求定义域时,你按要求写成集合或区间的形式了吗?(2)你会求分式函数的对称中心吗?过关题:已知函数 f ( x ) = a - x x - a - 1的对称中心是(3, -1),则不等式 f (x) > 0 的解集是 .答:{x | 2 < x < 3}5 .求一个函数的解析式,你注明了该函数的定义域了吗?6 .四种命题是指原命题、逆命题、否命题和逆否命题,它们之间有哪三种关系?只有互为逆否的命题同真假!复合命题的真值表你记住了吗?命题的否定和否命题不一样,差别在哪呢?充分条件、必要条件和充要条件的概念记住了吗?如何判断?反证法证题的三部曲你还记得吗?假设、推矛、得果 原命题: p ⇒ q ;逆命题: q ⇒ p ;否命题: ⌝p ⇒ ⌝q ;逆否命题: ⌝q ⇒ ⌝p ;互为逆否的两个命题是等价的.如:“ sin α ≠ sin β ”是“ α ≠ β ”的条件.(答:充分非必要条件)若 p ⇒ q 且 q ≠ p ;则 p 是 q 的充分非必要条件(或 q 是 p 的必要非充分条件);| 注意命题 p ⇒ q 的否定与它的否命题的区别:命题 p ⇒ q 的否定是 p ⇒⌝ q ;否命题是 ⌝p ⇒ ⌝q命题“p 或 q ”的否定是“┐P 且┐Q ”,“p 且 q ”的否定是“┐P 或┐Q ”注意:如 “ a, b ∈ Z ,若 a 和 b 都是偶数,则 a + b 是偶数”的否命题是“若 a 和 b 不都是偶数,则 a + b是奇数”;否定是“若 a 和 b 都是偶数,则 a + b 是奇数”7.绝对值的几何意义是什么?不等式ax + b |< c ,| ax + b |> c (c > 0) 的解法掌握了吗?过关题:| x | + | x – 1|<a 的解集非空,则 a 的取值范围是,| x | – | x – 1|<a 恒成立,则 a 的取值范围是.有解,则 a 的取值范围是.答: a > 1 ; a > 1 ; a > -18.如何利用二次函数求最值?注意对 x 2 项的系数进行讨论了吗?若 (a - 2) x 2 + 2(a - 2) x - 1 < 0 恒成立,你对 a - 2 =0 的情况进行讨论了吗?若改为二次不等式 (a - 2) x 2 + 2(a - 2) x - 1 < 0 恒成立,情况又怎么样呢?9. (1)二次函数的三种形式:一般式、交点式、和顶点式,你了解各自的特点吗?(2)二次函数与二次方程及一元二次不等式之间的关系你清楚吗?你能相互转化吗?( 3)方程有解问题,你会求解吗?处理的方法有几种?过关题:不等式 a x 2 + b x + 2 > 0 的解集为{x | - 1 1< x < } ,则 a + b = .2 3答: -14过关题:方程 2sin 2 x – sinx + a – 1 = 0 有实数解,则 a 的取值范围是.9答: [-2, ]8特别提醒:二次方程 ax 2 + bx + c = 0 的两根即为不等式 ax 2 + bx + c > 0 (< 0) 解集的端点值,也是二次函数 y = ax 2 + bx + c 的图象与 x 轴的交点的横坐标.对二次函数 y = ax 2 + bx + c ,你了解系数 a, b , c 对图象开口方向、在 y 轴上的截距、对称轴等的影响吗?对函数 y = lg( x 2 - 2ax + 1) 若定义域为 R ,则 x 2 - 2ax + 1 的判别式小于零;若值域为 R ,则 x 2 - 2ax + 1 的判别式大于或等于零,你了解其道理吗?例如:y = lg(x 2 + 1)的值域为,y = lg(x 2 – 1) 的值域为 ,你有点体会吗?答: [0, +∞);( -∞, +∞)10 求函数的单调区间,你考虑函数的定义域了吗?如求函数 y = log (x 2 - 2x -3)的单调增区间?再如已知函数2y = log (x 2 - 2ax -1)在区间 [2,3] 上单调减,你会求 a 的范围吗?答: 0 < a <a34若函数 y = x 2 - 2ax + 2 的单调增区间为[2, +∞),则 a 的范围是什么?答: a = 2若函数 y = x 2 - 2ax + 2 在 x ∈ [2, +∞)上单调递增,则 a 的范围是什么?答: a ≤ 2两题结果为什么不一样呢?y 11.函数单调性的证明方法是什么?(定义法、导数法)判定和证明是两回事呀!判断方法:图象法、复合函数法等. 还记得函数单调性与奇偶性逆用的例子吗?(⑴ 比较大小;⑵ 解不等式;⑶ 求参数的范围.)如已知 f ( x ) = 5sin x + x 3 , x ∈ (-1,1), f (1- a) + f (1- a 2 ) < 0 ,求 a 的范围. 答: (1, 2)求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间是区间不能用集合或不等式表示.12.判断函数的奇偶性时,注意到定义域的特点了吗?(定义域关于原点对称这个函数具有奇偶性的必要非充分条件).1过关题:f (x) = a x 2 + b x + 3 a + b 是偶函数,其定义域为[a – 1, 2a],则 a = , b =.答: ;0313.常见函数的图象作法你掌握了吗?哪三种图象变换法?(平移、对称、伸缩变换)函数的图象不可能关于 x 轴对称,(为什么?)如:y 2 = 4x 是函数吗?函数图象与x 轴的垂线至多一个公共点,但与 轴的垂线的公共点可能没有,也可能任意个; 函数图象一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图象;如圆;图象关于 y 轴对称的函数是偶函数,图象关于原点对称的函数是奇函数.指数函数与对数函数关于直线y = x 对称,你知道吗?过关题:函数 y = 2f (x – 1)的图象可以由函数 y = f (x)的图象经过怎样的变换得到?过关题:已知函数 y = f (x) (a ≤x ≤b ),则集合{(x, y)| y = f (x) ,a ≤x ≤b } ∩{(x, y)| x = 0}中,含有元素的个数为( )A. 0 或 1B. 0C. 1D. 无数个答: A14.由函数 y = f ( x ) 图象怎么得到函数 y = f (- x ) 的图象?答:以 y 轴为对称轴翻折由函数 y = f ( x ) 图象怎么得到函数 y = - f ( x ) 的图象?答:以 x 轴为对称轴翻折由函数 y = f ( x ) 图象怎么得到函数 y = - f (- x ) 的图象?答:以 (0,0) 为对称中心翻折由函数 y = f ( x ) 图象怎么得到函数 y = f (| x |) 的图象?答:去左翻右⑴ 曲线 C : f ( x , y) = 0 关于 x 轴的对称的曲线 C 是: . 答: f ( x , - y) = 0 1⑵ 曲线 C : f ( x , y) = 0 关于 y 轴的对称的曲线 C 是:.答: f (- x , y) = 0 2 ⑶ 曲线 C : f ( x , y) = 0 关于直线 y = x 的对称的曲线 C 是: . 答: f ( y , x) = 0 3⑷ 曲线 C : f ( x , y) = 0 关于直线 y = - x 对称的曲线 C 是:.答: f (- y , - x ) = 04⑸ 曲线 C : f ( x , y) = 0 关于直线 y = x + m 的对称的曲线 C 是:.答: f ( y - m , x + m ) = 0 5⑹ 曲线 C : f ( x , y) = 0 关于直线 y = -x + m 的对称的曲线 C 是:.答: f (m - y , m - x) = 06⑺ 曲线 C : f ( x , y) = 0 关于直线 x = m 对称的曲线 C 是: .答: f (2m - x, y) = 0 7⑻ 曲线 C : f ( x , y) = 0 关于直线 y = m 对称的曲线 C 是: .答: f ( x ,2 m - y) = 08 ⑼ 曲线 C : f ( x , y) = 0 关于原点的对称的曲线 C 是:.答: f (- x , - y) = 09过关题: f (x) = log x 关于直线 y = x 的对称函数(反函数).答: y = 2x或 [ b 的单调区间吗?(该函数在 (-∞,-. y指数式、对数式:a n = n a m ,a - n = 1 ,a 0 = 1 ,log 1 = 0 ,log a = 1 ,lg 2 + lg5 = 1 ,log x = ln x ,215.函数 y = x + kx(k > 0) 的图象及单调区间掌握了吗?如何利用它求函数的最值?与利用基本不等式求最值的联系是什么?若 k <0 呢? 你知道函数bab b,+∞) 上单调递增;在 (0, ] 或 [- ,0) 上单调递减)这可是一个应用广泛的函数!a a a求函数的最值,一般要指出取得最值时相应的自变量的值.16.(1)切记:研究函数性质注意一定在该函数的定义域内进行!一般是先求定义域,后化简,再研究性质]过关题: y = log1 (-x2+ 2x )的单调递增区间是________(答:(1,2)).2已知函数 f (x) = log 3 x + 2, x ∈[1, 9],则函数 g (x) = [f (x)] 2 + f (x 2)的最大值为 . 答:13求解中你注意到函数 g (x)的定义域吗?(2)抽象函数在填空题中,你会用特殊函数去验证吗?(即找函数原型)过关题 12:已知 f ( x ) 是定义在 R 上的奇函数,且为周期函数,若它的最小正周期为 T ,则 f (-(答:0)几类常见的抽象函数 :①正比例函数型: f ( x ) = kx(k ≠ 0) --------------- f ( x ± y ) = f ( x ) ± f ( y ) ;T2) = __x ②幂函数型: f ( x ) = x 2 -------------- f ( x y) = f ( x ) f ( y) , f ( ) =y f ( x ) f ( y);③指数函数型: f ( x ) = a x ---------- f ( x + y) = f ( x ) f ( y) , f ( x - y) =f ( x ) f ( y);x ④对数函数型: f ( x ) = log x --- f ( x y) = f ( x ) + f ( y) , f ( ) = f ( x ) - f ( y) ;a⑤三角函数型: f ( x ) = tan x ----- f ( x + y) = f ( x ) + f ( y) 1 - f ( x ) f ( y).17.解对数函数问题时注意到真数与底数的限制条件了吗?指数、对数函数的图象特征与性质明确了吗?对指数函数 y = a x ,底数 a 与 1 的接近程度确定了其图象与直线 y = 1 接近程度;对数函数 y = log x 呢? 你 a还记得对数恒等式(a log a N = N )和换底公式吗?知道: n m log N = log aa m N n吗?mmm a a eana b = N ⇔ log N = b (a > 0, a ≠ 1, N > 0) , a log a N = N .a如 ( )log 28的值为________(答: 1 2 - β + 2k π ,( k ∈ Z )sin x > ; ⎨2 由三角函数线,我们很容易得到函数 y = sin x , y = cos x 和 y = tan x 的⎪ tan θ ≥ 1函数 y =2sin(π15︒,75[ 2 ) 时,x, sinx, tanx 的大小关系如何?cos ϕ = ⎨ ⎩ϕ 1 2 64 )18.你还记得什么叫终边相同的角?若角α 与 β 的终边相同,则α = β + 2k π ,( k ∈ Z )若角 α 与 β 的终边共线,则:α = β + k π ,( k ∈ Z )若角 α 与 β 的终边关于 x 轴对称,则:α = -β + 2k π ,( k ∈ Z )若角 α 与 β 的终边关于 y 轴对称,则:α = π - β + 2k π ,( k ∈ Z )若角 α 与 β 的终边关于原点对称,则:α = β + (2 k + 1)π ,( k ∈ Z )若角 α 与 β 的终边关于直线 y = x 对称,则:α =π各象限三角函数值的符号:一全正,二正弦,三两切,四余弦; ︒ 角的正弦、余弦、正切值还记得吗? 19.什么叫正弦线、余弦线、正切线?借助于三角函数线解三角不等式或不等式组的步骤还清楚吗?如:⎧ 3 2 ⎪cos θ < 2 ⎩单调区间;三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出它们的单调区间、对称中心、对称轴及其取得最值时的 x 值的集合吗?(别忘了 k ∈ Z )ππ– 2x)的单调递增区间是- + k π ,+ k π]( k ∈ Z ) 吗?你知道错误的原因吗?663y = tan x 图象的对称中心是点 ( k π 2,0) ,而不是点 (k π ,0) (k ∈ Z ) 你可不能搞错了!你会用单位圆比较sinx 与 cosx 的大小吗?当x ∈ (0, π过关题:函数 y = tan x 与函数 y = sin x 图象在 x ∈[-2π,2π]上的交点的个数有个? 答: 520 .三角函数中,两角 α、β 的和、差公式及其逆用、变形用都掌握了吗?倍角公式、降次公式呢?⎧⎪ a sin x + b cos x = a 2 + b 2 sin(x + ϕ ) 中 ϕ 角是如何确定的?(可由 ⎪ ⎪ s in ϕ =⎪ aa 2 +b 2ba 2 +b 2确定,也可由tan= b a及 a , b 的符号来确定)公式的作用太多了,有此体会吗?重要公式: sin 2α = 1- cos2α ; cos 2α = 1 + cos2α .;nat α = ± 1-osc α = nis α = 1-osc α ;222 1+osc α 1+osc α nis α1± sin θ = (cos ± sin )2 = cos ± sin12 ,k π + 2 , α + βα + β = 2 ⋅ α + β (αβ ) (αβ )2-等),(答: y = - 3A.π函数 y = sin ⎛ 5π- 2 x ⎪ 的奇偶性是______(答:偶函数)y A 、 “ θ θ θ θ2 2 2 2等,你还记住哪些变形公式?特殊角三角函数值你记清楚了吗?如:函数 f ( x ) = 5 s in x cos x - 5 3 c os 2x +53( x ∈ R ) 的单调递增区间为___________(答:2[ k π - π5π 12]( k ∈ Z ) )巧变角:如 α = (α + β ) - β = (α - β ) + β , 2α = (α + β ) + (α - β ) , 2α = (β + α) - (β -α) ,2=- -2如(1)已知 tan(α + β ) = 25π 1 π 3, tan( β - ) = ,那么 tan(α + ) 的值是_____(答: );4 4 4 22(2)已知 α , β 为锐角, sin α = x,cos β = y , cos(α + β ) = -4 3 1 - x 2 + x( < x < 1) )5 5 53 5,则 y 与 x 的函数关系为______(3)若 x =π6是函数 y = a sinx – b cosx 的一条对称轴,则函数 y = b sinx – a cosx 的一条对称轴是ππ B.C.D. π ( )答: B63221.会用五点法画 = A s in( ωx + ϕ ) 的草图吗?哪五点?会根据图象求参数 ω、ϕ 的值吗?什么是振幅、初相、相位、频率? 答: A,ϕ, wx + ϕ, | ω |2π22.同角三角函数的三个基本关系,你记住了吗?三角函数诱导公式的本质是: 奇变偶不变,符号看象限”⎫ ⎝ 2 ⎭23.正弦定理、余弦定理的各种表达形式你还记得吗?会用它们解斜三角形吗?如何实现边角互化?(用:面积公式,正弦定理,余弦定理,大角对大边等实现转化),三角形解的个数题型你熟悉吗(一解、两解、无 解)?24.你对三角变换中的几种常见变换清楚吗?(1)角的变换:和差、倍角公式、异角化同角、单复角互化;(2)名的变换:见切化弦;, 且 < α < ,则 cos α -sin α的值为.答: -过关题: sin α = 5 ,sin β = , 且α ,β为锐角, 则 α + β =.答:y = sin x −左−或−平−−|Φ|→ y = sin( x + Φ) −横−坐−伸−到−原来−的−倍→ y = sin(ω x + Φ)1 ω− 右 移 y = sin x −横−坐−伸−到−原来−的−倍→ y = sin ωx −左−或−平−−|→ y = sin(ωx + Φ)1 Φω−−−−− 原来的− → y = A s in(ωx + Φ) −−−平−−→ y = A s in(ωx + Φ) + b 2 ](3)次的变换:降幂公式;π π(4)形的变换:通分、去根式、1 的代换1 = sin 2 α + cos 2 α = tan =sin =cos0)等,这些统称为 1 的代换.4 225.在已知三角函数中求一个角时,你(1)注意考虑两方面了吗?(先判定角的范围,再求出某一个三角函数值)(2)注意考虑到函数的单调性吗?过关题: sin α cos α = 1 π π8 4 23210π 5 10426.形如 y = Asin(ωx + ϕ) +b ,y = A t an(ωx + ϕ) 的最小正周期会求吗?有关周期函数的结论还记得多少?周期函数对定义域有什么要求吗?求三角函数周期的几种方法你记得吗?怎么证明函数为周期函数?27、 y = Asin(ωx + ϕ) +b 与 y =sinx 变换关系:φ正左移负右移;b 正上移负下移;标 缩标 缩 右 移 | ω标 缩 下 移28.在解含有正余弦函数的问题时,你深入挖出正余弦的有界性了吗?过关题:已知 s in α cos β = 12 1 1 ,求 sin β cos α 的变化范围.答: [- , ]2 2提示:整体换元,令 s in β cos α = t ,然后与 sin α cos β 相加、相减,求交集.29.请记住(sin α ± cos α )与 sin α cos α 之间的关系.5过关题:求函数 y = sin2x + sinx + cosx 的值域.答: [- , 2 + 1]430 常见角的范围①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是(0,②直线的倾斜角、 与的夹角的取值范围依次是[0, π ) , [0,π31 以下几个结论你记住了吗?π π] , [0, ] , [0, π ] ; 2 2⎩y=2sinθB=b+c⑷面积公式:S=1a⑴如果函数f(x)的图象关于直线x=a对称,那么函数f(x)满足关系式为,且函数f(x)若为奇函数,则函数f(x)的周期为.答:f(a+x)=f(a-x),4|a|⑵如果函数f(x)满足关于点(a,b)中心对称,那么函数f(x)满足关系式为;答:f(a+x)+f(a-x)=2b⑶如果函数f(x)的图象既关于直线x=a成轴对称,又关于点(b,c)成中心对称,那么f(x)是周期函数,周期是T=4|a-b|.(4)f(x+a)=f(b-x),则f(x)的图象关于x=a+b2对称.过关题:已知函数f(x)是偶函数,g(x)是奇函数,且满足g(x)=f(x–1),则f(2006)+f(2007)+f(2008) =.答:0132.你还记得弧度制下的弧长公式和扇形面积公式吗?l=|α|r,S=lr若α是角度,公式又是什么形式2呢?过关题:已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积.(答:2cm2),⎧x=2cosθ曲线⎨π(θ为参数,且-π≤θ≤-)的长度为.答:34π333.三角形中的三角函数的几个结论你还记得吗?A B+C⑴内角和定理:三角形三内角和为π,sinA=sin(+C),cosA=-cos(B+C),s in=cos()22⑵正弦定理:a b c===2R(R为三角形外接圆的半径), sin A sinB sinC注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解⑶余弦定理:a222-2bc cos A,cos A=定三角形的类型.b2+c2-a2(b+c)2-a2=-1等,常选用余弦定理鉴2bc2bc1abcah=ab sin C=224R,内切圆半径r=2S∆ABC a+b+c(5)两边之和大于第三边,两边之差小于第三边,大角对大边,大边对大角,你注意到了吗?sinA>sinB⇔A>B,你会证明吗?(6)已知a,b,A时三角形解的个数的判定:bCh a其中h=bsinA,⑴A为锐角时:①a<h时,无解;②a=h时,一解(直角);③h<a<b时,两解(一锐角,一钝角);④a≥b时,一解(一锐角).⑵A为直角或钝角时:①a≤b时,无解;②a>b时,则b36.倒数法则还记得吗?(指ab>0,a>b⇒1)(x>③正数x,y满足x+2y=1,则1+的最小值为______(答:3+22);(7)三角形为锐角三角形满足什么条件?34.常见的三角换元法:已知x2+y2=a2,可设x=a cosθ,y=a sinθ;已知x2+y2≤1,可设x=r cosθ,y=r sinθ(0≤r≤1);已知x2y2+a2b2=1,可设x=a cosθ,y=b sinθ;35.重要不等式的指哪几个不等式?若a,b>0,(1)a2+b2≥a+b≥ab≥2(当且仅当a=b时取等号);221+1a b(2)a、b、c∈R,a2+b2+c2≥ab+bc+ca(当且仅当a=b=c时,取等号);(3)若a>b>0,m>0,b+m<a a+m(糖水的浓度问题).111<,常用如下形式:a>b>0⇒0<<,a b a b11a<b<0⇒0>>)用此求值域的注意点是什么?a b如求函数y=12x-11的值域,求函数y=2x-1的值域呢?37.不等式证明的基本方法都掌握了吗?(比较法、分析法、综合法及放缩法(a2+b2≥(a+b)22≥2|ab|)等号成立的条件是什么?基本变形:①a+b≥;(a+b2)2≥;38利用重要不等式求函数的最值时,是否注意到一正,二定,三相等?如:①函数y=4x-91)的最小值2-4x2.(答:8)②若若x+2y=1,则2x+4y的最小值是______(答:22);1x y39.二元函数求最值的三种方法掌握了吗?方法一:转化为一元问题,用消元或换元的方法;方法二:利用基本不等式;方法三:数形结合法,距离型、截距型、斜率型)过关题:若正数a,b满足a b=a+b+3,则a+b的取值范围是.(答:[6,+∞))40不等式的大小比较,你会用特殊值比较吗?a + b, .“ x - 1 - . 答: ( 2, 3)过关题:已知 a > b > 0,且 a b = 1,设 c = 2, P = log a, N = log b , M = log ab ,c cc则 A. P < M < NB. M < P < NC. N < P < MD. P < N < M ( )答: A41 不等式解集的规范格式是什么?(一般要写成区间或集合的形式) 另外“序轴标根法”解不等式的注意事项是什么?将不等式整理成一边为零的形式,将非零的那边因式分解,要求每个因式中未知量 x 的最高次数项的系数均为正值,求各因式的零点,画轴,穿线,注意零点的重数,在写解集时还得考虑解集中是否包含零点 如:解不等式 ( x + 3)( x - 1)3 ( x + 2)2 ≥ 0 .(答:{x | x ≥ 1或x ≤ -3 或 x = -2} );42.解分式不等式f ( x )g ( x )> a(a ≠ 0) 应注意什么问题?(在不能肯定分母正负的情况下,一般不能去分母而是移项通分)43.解含参数不等式怎样讨论?注意解完之后要写上: 综上,原不等式的解集是…”解不等式ax 2 ax - 1> x(a ∈ R)(综上,当 a = 0 时,原不等式的解集是{x | x < 0} ;当 a > 0 时,原不等式的解集是{x | x > 1 a或 x < 0} ;当 a < 0 时,原不等式的解集是{x | 1 a< x < 0 } )过关题:解关于 x 的不等式:ax + 1> 1 ,(| a |≠1) x + 1答: a > 1,{x | x > 0或x < -1}; a =1,∅; 0 < a < 1,{x | -1 < x < 0}44.含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化)45.解对数不等式应注意什么问题?(化成同底,利用单调性,底数和真数都大于零)过关题:解关于 x 的不等式: log ( x 2- x - 2) > log1 1 421246.会用不等式 || a | - | b ||≤| a ± b |≤| a | + | b | 证一些简单问题吗?取等号需满足什么条件的?47.不等式恒成立问题有哪几种处理方式?(特别注意一次函数型和二次函数型,还有恒成立理论)过关题:对任意的 a ∈[-1, 1],函数 f (x) = x 2 + (a – 4) x + 4 – 2a 的值总大于 0,则 x 的取值范围是.答: (-∞,1) (3, +∞)过关题:当 P(m, n )为圆 x 2 + ( y – 1) 2 = 1 上任意一点时,不等式 m + n + c ≥0 恒成立,则 c 的取值范围是.答: [ 2 - 1,+∞)48.等差、等比数列的重要性质你记得吗?证明方法是什么?}{公式法(利用等差、等比数列的通项公式或利用a=⎨直接写出所求数列的通项公式)S-S n≥2⎩nna2+(2n-1)=n2,(等差数列中的重要性质:若,则;等差数列的通项公式:a=kn+b型前n项和:S=An2+Bn型n n等比数列中的重要性质:若,则用等比数列求前n项和时一定要注意公比q是否为1?(过关题:求和:S=x+2x2+3x3++nx n要注意什么?n时,;时,)49.等差数列、等比数列的重要性质:an+1-an-1=d(a为常数)的数列有什么性质?若{a}为等差数列,n则{a2n-1,ka +b }也是等差数列,它们的公差是什么?n50.数列通项公式的常见求法:观察法(通过观察数列前几项与项数之间的关系归纳出第项a与项数n之间的关系)n⎧S n=11nn-1叠加法(适用于递推关系为an+1-a=f(n)型)n连乘法(适用于递推关系为an+1=f(n)型)an构造新数列法(如递推关系n+1=pa+q;an n+1=pa+b(b为等差数列或等比数列)型)n n n51.数列求和的常用方法:公式法:⑴等差数列的求和公式(两种形式),⑵等比数列的求和公式⑶1+2++n=n(n+1),1+3+5+1+3+5++(2n+1)=(n+1)2;12+22+32+1+n2=n(n+1)(2n+1)6分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项”先合并在一起,再运用公式法求和(如:通项中含(-1)n因式,周期数列等等)倒序相加法:在数列求和中,如果和式到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,那么常可考虑选用倒序相加法,(等差数列求和公式)错位相减法:(“差比数列”的求和)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和,常用裂项形式有:⑴1111111 =-⑵=(-)n(n+1)n n+1n(n+k)k n n+k⑶11111<=(-)k2k2-12k-1k+11111111-=<<=-k k+1(k+1)k2k(-1)k-1kk kn (n + 1)(n + 2) 2 n (n + 1) (n + 1)(n + 2)(n + 1)!n ! (n + 1)!裂项法求和:如求和:1 + 1 1 + 2 1 + 2 + 3 +① a n+1-a n =…… ⎨= 0如 a n = -2n 2+29n-3 ⎪< 0n +1 = ⎨= 1 (a n >0) 如 a n = ⎪< 1 ⎩ 求通项常法: (1)可利用公式: a = ⎨ ⎩S n - S n -1 n ≥ 22 22 22n n 14, n = 1n + 1 + n (n ≥ 2) ,则 a =________(答:a = n + 1 - 2 + 1) a n = an -1 an -2 a⑷⑹ 2( n + 1 - n ) < 1 n< 2( n - n - 1) ⑺ a = S - S n nn -1 (n ≥ 2)⑻ C m -1 + C m = C m ⇒ C m = C m - C m -1 (理科)nnn +1nn +1n分组法求数列的和:如 a n =2n+3n 、错位相减法求和:如 a n =(2n-1)2n 、1 + + 11 +2 +3 + + n =(答:2nn + 1)、倒序相加法求和:如①求证: C 0 + 3C 1 + 5C 2 +nnn+ (2 n + 1)C n = (n + 1) 2n ;(理科)nx 2 1 1 1 7②已知 f ( x ) = ,则 f (1)+ f (2) + f (3) + f (4) + f ( ) + f ( ) + f ( ) =___(答: )1 + x2 234 2求数列{a n }的最大、最小项的方法(函数思想):⎧> 0⎪ ⎩②a ⎪ an ⎧> 19 n (n + 1)10 n③ a n =f(n) 研究函数 f(n)的增减性 如 a n =nn 2 + 156⎧S n = 1 1 n如:数列{a } 满足 n1 1 a +a + 1+ 1a= 2n + 5 ,求 a (答: a =n n{2n +1, n ≥ 2 )(2)先猜后证(3)递推式为 an +1= a +f(n) (采用累加法); a nn +1 = a ×f(n) (采用累积法);n如已知数列{a } 满足 a = 1 ,a - a n1nn -1 =1nn(4)构造法形如 a = kann -1+ b 、 a = kann -1+ b n (k , b 为常数)的递推数列如已知 a = 1,a = 3a1nn -1+ 2 ,求 a (答: a = 2 3n -1 - 1 );n n(5)涉及递推公式的问题,常借助于“迭代法”解决,适当注意以下 2 个公式的合理运用a n =(a n -a n-1)+(a n-1-a n-2)+……+(a 2-a 1)+a 1 ;aa a n ⋅ n -1 2a 11( a ≠ 0)i+ 13n - 24 + 1 1 , 数列{a n }的前 n 项和为 Sn , 点 P n (a n , - a答:(1) a = 4n - 3 4n - 3 2 4n - 3 4n - 3 + 4n + 1 = >,求数列通项时注意到 n ≥ 2 了吗?一般情况是: a= ⎨ ⎩S - S 常用定理:①线面平行 b ⊂ α ⎬ ⇒ a //α ; ⎬ ⇒ a //α ; a ⊥ β ⎬ ⇒ a //α a ⊄ α⎪⎭ a ⊄ α ⎪⎭ ②线线平行: a ⊂ β ⎬ ⇒ a //b ; ⎬ ⇒ a // b ; α ⋂γ = a ⎪ ⇒ a //b ; a // b ⎫ ⇒ c // bα ⋂ β = b ⎭β ⋂γ = b ⎭③面面平行: a ⋂ b = O ⎬ ⇒ α // β ; ⎬ ⇒ α // β ; ⎬ ⇒ α // γa // β ,b // β ⎪⎭④线线垂直: a ⊥ α⎫⎬ ⇒ a ⊥ b ;所成角 90;a ⊂ α ⎪ (三垂线);逆定理?b ⊂ α ⎭α // β ⎫ α // β ;; α//β ⎫⎬ ⇒a ⊥ β ; a // b ⎫⎬ ⇒ b ⊥ αa ⋂b = O ⎬ ⇒l ⊥α α ⋂β = l ⎬ ⇒ a ⊥ β l ⊥ a,l ⊥ b ⎪⎭ a ⊂α, a ⊥ l ⎪⎭⑥面面垂直:二面角 900; a ⊂ β ⎫ a // β ⎫(6)倒数法形如 a =nan -1的递推数列都可以用倒数法求通项.ka + bn -1如①已知 a = 1,a =1n②已知数列满足 a =1, a1n -1- a = a an n n -1,求 a (答: a = n n 1 n 2),已知函数 f (x) = -x 2 a n +1)(n ∈N*)在曲线 y = f (x)上, 且 a 1 =1, a n > 0.(1)求数列{a n }的通项公式; (2)求证: S n >2n4n + 1 + 1 (n ∈N*);(3)若数列{b n }的前 n 项和为 T n , 且满足 Tn +12 n= Tnan +12+ 16n 2 - 8n - 3 , 试确定 b 1 的值, 使得数列{b n }是等差数列.n1 12 2(2)提示: a = (3) b = 1n 1 由 a = S - Sn n n -1n ⎧ S1 n n -1 n = 1 n ≥ 252.立体几何中平行、垂直关系证明思路明确了吗?各种平行、垂直转换的条件是什么?①空间两直线:平行、相交、异面;判定异面直线用定义或反证法②直线与平面: a ∥α 、a ∩α =A (a ⊄ α ) 、a ⊂ α③平面与平面:α ∥β 、α ∩β =a线//线 ⇔ 线//面 ⇔ 面//面,线⊥线 ⇔ 线⊥面 ⇔ 面⊥面.a //b ⎫ α ⊥ β⎫⎪ ⎪a ⊂ β ⎭a //α⎫ ⎫⎪ a ⊥ α⎫ ⎬ ⎬ ⎪ b ⊥ α ⎭ ⎪ a // c ⎭a ⊂ α,b ⊂ α ⎫⎪a ⊥ α ⎫ α // β ⎫ a ⊥ β ⎭ γ // β ⎭PO ⊥ α ⎫⎬ ⇒ a ⊥ P Aa ⊥ AO ⎪⎭⑤线面垂直: a ⊂α,b ⊂α⎫ α⊥β ⎫⎪ ⎪ a ⊥α⎭ a ⊥ α⎭⎬⇒ α ⊥ β ; ⎬⇒ α ⊥ β a ⊥ α ⎭ a ⊥α ⎭两条异面直线所成的角、直线与平面所成的角及二面角的平面角的取值范围依次是: (0, π ] 、 [0, ] 、, 53.异面直线所成的角如何求?(异面问题相交化,即转化到同一平面上去求解) 范围是什么?过关题:在正方体 ABCD – A 1B 1C 1D 1 中,点 P 在线段 A 1C 1 上运动,异面直线 BP 与 AD 1 所成的角为θ ,则 角θ 的取值范围是 .π22[0, π ] .(3)在用向量法求异面直线所成的角、线面角、二面角的平面角时,应注意什么问题?“作、证、算”三个步骤可一个都不能少啊!(理科)求空间角①异面直线所成角θ 的求法:π(1)范围: θ ∈ (0, ] ;2(2)求法:平移以及补形法、向量法.如(1)正四棱锥 P - ABCD 的所有棱长相等, E 是 PC 的中点,那么异面直线 BE 与 P A 所成的角的余弦值等于____(答:3 3);(2)在正方体 AC 1 中,M 是侧棱 DD 1 的中点,O 是底面 ABCD 的中心,P 是棱 A 1B 1 上的一点,则OP 与 AM 所成的角的大小为____(答:90°);②直线和平面所成的角:(1)范围 [0,π2] ;(2)斜线与平面中所有直线所成角中最小的角.:(3)求法:作垂线找射影或求点线距离 (向量法);如(理)(1)在正三棱柱 ABC-A 1B 1C 1 中,已知 AB=1,D 在棱 BB 1 上,BD=1,则 AD 与平面 AA 1C 1C所成的角正弦为______(答:64);(2)正方体 ABCD-A 1B 1C 1D 1 中,E 、F 分别是 AB 、C 1D 1 的中点,则棱 A 1B 1 与截面 A 1ECF 所成的角的余弦值是______(答:3 3);如(1)正方形 ABCD-A 1B 1C 1D 1 中,二面角 B-A 1C-A 的大小为________(答: 60 );(2)正四棱柱 ABCD —A 1B 1C 1D 1 中对角线 BD 1=8 BD 1与侧面 B 1BCC 1 所成的为 30°,则二面角 C 1—BD 1—B 1的正弦为______(答:6 3);(3)从点 P 出发引三条射线 PA 、PB 、PC ,每两条的夹角都是 60°,则二面角 B-P A-C 的余弦值是______(答: 13);54.(1)有关长方体的性质和结论,你记得吗?过关题:平面α 、 β 、 γ 两两互相垂直,直线 l 与平面 α 、 β 所成的角分别为 30o 、45o ,则直线 l 与平面 γ 所成的角为 .答: 30︒; r = ; R = aa | ! (2)有关正四面体的性质和结论,你记得吗?正方体中有一个正四面体的模型,你知道吗?你能灵活运用吗?侧棱与底面所成的角的余弦值为;侧面与底面所成的二面角的余弦值为 ;正四面体的内切球半径 r 与外接球的半径 R 之比为 ,它们与正四面体的高 h 之间的关系分别为、 .答:3 ; 1 ; 1 h 3h 3 3 34 4(3)正三棱锥、正四棱锥的性质,你记得吗?它们的特征直角三角形,你会应用吗?(4)求点到面的距离的常规方法是什么?(直接法、等体积法、换点法)(5)求多面体体积的常规方法有哪些?(直接法、等体积法、割补法)55.球的表面积、柱、锥、球的表面积会求吗?体积公式都记得吗?过关题:一个四面体的所有棱长都是 2 ,四个顶点在同一球面上,则此球的表面积为. 答: 3π56.平行六面体→直平行六面体→长方体→正四棱柱→正方体间联系三棱锥中:侧棱长相等(侧棱与底面所成角相等) ⇔ 顶点在底面射影为底面外心;侧棱两两垂直(两对对棱垂直) ⇔ 顶点在底面射影为底面垂心 ;斜高相等(侧面与底面所成相等 ) ⇔ 顶点在底面射影为底面内心 ;正棱 锥各侧面与底面所成角相等为θ ,则 S 侧 cos θ =S 底;正三角形四心?内切外接圆半径?;57.向量运算的几何形式和坐标形式,请注意:向量运算中向量的起点、终点及其坐标的特征⑴ 几个概念:零向量、单位向量、与同方向的单位向量,平行向量,相等向量,相反向量,以及一个向量在另一向量上的投影( 在 b 方向上的投影是 a | cos θ =a ⋅b , θ为向量a 与 b 的夹角)一定要记住 | b |过关题:在直角坐标平面上,向量 OA = (4,1) 与 OB = (2, -3) 在直线 l 上的射影长度相等,则 l 的斜率为. 答: -12⑵ 0 和 0 是有区别的了, 0 的模是 0,它不是没有方向,而是方向不确定;0 可以看成与任意向量平行,但与任意向量都不垂直.⑶ 若 a = 0 ,则 a ⋅ b = 0 ,但是由 a ⋅ b = 0 ,不能得到 a = 0 或 b = 0 ,你知道理由吗?还有: a = c 时, a ⋅ b = c ⋅ b 成立,但是由 a ⋅ b = c ⋅ b 不能得到 a = c ,即消去律不成立.58.向量中的重要结论记住了吗?如:在三角形 ABC 中,点 D 为边 AB 的中点,则 CD =12(CA + CB) ;已知直线 AB 外一点 O ,点 C 在直线 AB 上的充要条件为 O C = tOA + (1- t )OB .(三点共线)59 你会用向量法证明垂直、平行和共线及判断三角形的形状吗?60.向量运算的有关性质你记住了吗?数乘向量,向量的内积,向量的平行,向量的垂直,向量夹角的求法,两向量的夹角为锐角等价于其数量积大于零吗?(不等价)向量定义、向量模、零向量、单位向量、相反向量(长度相等方向相反的向量叫做相反向量. a 的相反向量是- a .)、共线向量、相等向量②当 a , b 同向时, a • b = a b ,特别地, a 2= a • a = a , a = ③ | a • b |≤| a || b |.如已知 a = (λ,2λ),b = (3λ ,2) ,如果 a 与 b 的夹角为锐角,则 λ 的取值范围是b b 或 λ > 0且 λ ≠ ); b 1 2如(1)平面直角坐标系中,O 为坐标原点,已知两点 A(3,1) , B(-1,3) ,若点 C 满足 OC = λ OA + λ OB ,(2)在 ∆ABC 中,① PG = 1 ( P A + PB + PC ) ⇔ G 为 ∆ABC 的重心,特别地 P A + PB + PC = 0 ⇔ P 为e e , →a e e 注意:不能说向量就是有向线段,为什么?(向量可以平移)61、加、减法的平行四边形与三角形法则: AB + B C = A C ; AB - AC =CB ; a - b ≤ a ± b ≤ a + b62、向量数量积的性质:设两个非零向量 a , b ,其夹角为θ ,则:① a ⊥ b ⇔ a • b = 0 ;2 a 2 ;当 a 与 b 反向时, a • b =- a b ;当θ 为锐角时, a • b >0,且 a 、 不同向, a ⋅ b > 0 是θ 为锐角的充要条件;当θ 为钝角时, a • b <0,且 a 、 不反向, a ⋅ b < 0 是θ 为钝角的充要条件;→ →→ →______(答: λ < -4133④向量 b 在 a 方向上的投影︱ ︱cos θ =a ⋅ ba⑤ →和 →是平面一组基底则该平面任一向量 = λ →+ λ →( λ , λ 唯一)121 12 212特别: OP = λ OA + λ OB 则 λ + λ = 1 是三点 P 、A 、B 共线的充要条件,向量基本定理是什么?12−−→ −−→ −−→12其中 λ , λ ∈ R 且 λ + λ = 1,则点 C 的轨迹是___(答:直线 AB )1 2123∆ABC 的重心;② P A ⋅ PB = PB ⋅ PC = PC ⋅ P A ⇔ P 为 ∆ABC 的垂心;③向量 λ ( AB + AC )(λ ≠ 0) 所在直线过 ∆ABC 的内心(是 ∠BAC 的角平分线所在直线);| AB | | AC |如:(1)若 O 是 △ABC 所在平面内一点,且满足 OB - OC = OB + OC - 2OA ,则 ABC 的形状为____(答:直角三角形);(2)若 D 为 ∆ABC 的边 BC 的中点,∆ABC 所在平面内有一点 P ,满足 P A + BP + CP = 0 ,设 | AP | | PD |= λ ,则 λ 的值为___(答:2);(3)若点 O 是 △ABC 的外心,且 OA + OB + CO = 0 ,则 △ABC 的内角 C 为__(答:120 );63.任何直线都有倾斜角,但只有倾斜角不等于直角的直线才有斜率,直线的斜率公式、点到直线的距离公式、两平行直线间的距离公式记住了吗?直线的倾斜角的范围是什么?有关直线的倾斜角及范围,你会求吗?。
2025新高考函数压轴小题专题突破——专题3 函数的周期性、对称性(解析版)
专题3函数的周期性、对称性1.函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数,当[]01x ∈,时,()12f x x =,若函数()()g x f x x b =--恰有一个零点,则实数b 的取值集合是()A .112244k k k z ⎛⎫-+∈ ⎪⎝⎭,,B .152222k k k z ⎛⎫++∈ ⎪⎝⎭,C .114444k k k z ⎛⎫-+∈ ⎪⎝⎭,,D .1154444k k k z ⎛⎫++∈ ⎪⎝⎭,2.设函数y=f (x)是定义域为R 的奇函数,且满足f (x-2)=-f (x)对一切x ∈R 恒成立,当-1≤x≤1时,f (x)=x 3,则下列四个命题:①f(x)是以4为周期的周期函数.②f(x)在[1,3]上的解析式为f (x)=(2-x)3.③f(x)在33(,(22f 处的切线方程为3x+4y-5=0.④f(x)的图象的对称轴中,有x=±1,其中正确的命题是()A .①②③B .②③④C .①③④D .①②③④3.设函数为定义域为R 的奇函数,且=2−,当∈0,1时,=sin ,则函数g =cos B −在区间−52)A .6B .7C .13D .144.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为()A .15B .16C .17D .185.已知偶函数()f x 满足()()33f x f x +=-,且当[]0,3x ∈时,()2xf x xe-=,若关于x 的不等式()()20f x tf x ->在[]150,150-上有且只有150个整数解,则实数t 的取值范围是()A .120,e -⎛⎫ ⎪⎝⎭B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎫ ⎪⎝⎭D .112,2e e --⎛⎫ ⎪⎝⎭6.已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数2025新高考函数压轴小题专题突破——专题3 函数的周期性、对称性(解析版)()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为()A .1-或12B .1或12-C .1-或2D .2-或17.已知函数()f x 为R 上的奇函数,且图象关于点(3,0)对称,且当x ∈(0,3)时,1()()12xf x =-,则函数()f x 在区间[2019,2024]上的()A .最小值为34-B .最小值为78-C .最大值为0D .最大值为788.已知()f x 是定义在R 上的奇函数,满足()()1f x f x =-+,当102x ≤≤时,()f x =论错误的是()A .方程()f x x a -+=0最多有四个解B .函数()f x 的值域为[22,22-]C .函数()f x 的图象关于直线12x =对称D .f (2020)=09.已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为()A .12B .1C D .210.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .611.已知()f x 、()g x 都是定义域为R 的连续函数.已知:()g x 满足:①当0x >时,()0g x '>恒成立;②R x ∀∈都有()()g x g x =-.()f x 满足:①R x ∀∈都有(1)(1)f x f x +=-;②当[1,1]x ∈-时,3()33f x x x =-.若关于x 的不等式2[()](3g f x g a a ≤-+对48[,33x ∈恒成立,则a 的取值范围是()A .RB .[1,)+∞C .[0,1]D .(,0][1,)-∞+∞ 12.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则()A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点13.已知定义域为(0,)+∞的函数()f x 满足:对任何(0,)+∞,都有(3)3()f x f x =,且当(1,3]x ∈时,()3f x x =-,在下列结论中,正确命题的序号是________①对任何m ∈Z ,都有(3)0m f =;②函数()f x 的值域是[0,)+∞;③存在n ∈Z ,使得(31)17n f +=;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是“存在k ∈Z ,使得1(,)(3,3)k k a b +⊆”;14.定义在()0,+∞上的函数()f x 满足:对()0,x ∀∈+∞,都有()()22f x f x =,当(]1,2x ∈时,()2f x x =-,给出如下结论,其中所有正确结论的序号是:____.①对m Z ∀∈,有()20m f =;②函数()f x 的值域为[)0,+∞;③存在n Z ∈,使得()219nf +=;15.已知定义域为R 的函数()f x 既是奇函数,又是周期为3的周期函数,当3(0,2x ∈时,()sin f x x π=,则函数()f x 在区间[0,6]上的零点个数是__________.16.已知定义域为R 的奇函数()f x 满足()()13f x f x +=-,当(]0,2x ∈时,()24f x x =-+,则函数()()y f x a a R =-∈在区间[]4,8-上的零点个数最多时,所有零点之和为__________.17.已知函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=在定义域上有四个不同的解,则实数a 的取值范围是_______.18.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,11()2xf x -⎛⎫= ⎪⎝⎭,则下列命题:①对任意x ∈R ,都有()()2f x f x +=;②函数()f x 在()1,2上递减,在()2,3上递增;③函数()f x 的最大值是1,最小值是0;④当()3,4x ∈时,31()2x f x -⎛⎫= ⎪⎝⎭.其中正确命题的序号有_________.19.已知数列{}n a 满足12a =-,且32n n S a n =+(其中n S 为数列{}n a 前n 项和),()f x 是定义在R 上的奇函数,且满足(2)()f x f x -=,则2021()f a =___________.20.给出定义:若1122M x M -<≤+(其中M 为整数),则M 叫做离实数x 最近的整数,记作{}x M =.在此基础上给出下列关于函数(){}f x x x =-的四个结论:①函数() y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数() y f x =的图象关于直线()2kx k Z =∈对称;③函数() y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数;④函数() y f x =是偶函数;其中正确结论的是________.(把正确的序号填在横线上).专题3函数的周期性、对称性1.函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数,当[]01x ∈,时,()12f x x =,若函数()()g x f x x b =--恰有一个零点,则实数b 的取值集合是()A .112244k k k z ⎛⎫-+∈ ⎪⎝⎭,,B .152222k k k z ⎛⎫++∈ ⎪⎝⎭,C .114444k k k z ⎛⎫-+∈ ⎪⎝⎭,,D .1154444k k k z ⎛⎫++∈ ⎪⎝⎭,【解析】函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数,()(),(1)(1)f x f x f x f x -=---=-,(2)((1)1)()()f x f x f x f x -=--=-=-,即(2)(),(4)(2)()f x f x f x f x f x +=-∴+=-+=,()f x ∴的周期为4.[]01x ∈,时,()12f x x ==,[]12,[0,1],()()1,0()x f x x x f x -∈-=-=-∈-,()f x ∴=(1)(1),()(2)f x f x f x f x --=-∴=-- ,()f x 周期为4,()(2)(2)f x f x f x ∴=--=-+,当[1,2],2[0,1],()(2)x x f x f x ∈-+∈=-+=,当[2,3],2[1,0],()(2)x x f x f x ∈-+∈-=-+=,做出函数()f x 图像,如下图所示:令()()0g x f x x b =--=,当[1,0]x ∈-,()()0g x f x x b x b =--=-=,x b --=22(21)0x b x b +++=,221(21)4410,4b b b b ∆=+-=+==-,此时直线与()f x 在[1,0]x ∈-函数图像相切,与函数有两个交点,同理154b =-,直线与()f x 在[4,5]x ∈函数图像相切,与函数有两个交点,则要使函数()f x 在[1,4]内与直线y x b =+只有一个交点,则b 满足15144b -<<-,()f x 周期为4,b 范围也表示为11544b <<,所以所有b 的取值范围是1154444k b k k Z +<<+∈.故选:D.2.设函数y=f (x)是定义域为R 的奇函数,且满足f (x-2)=-f (x)对一切x ∈R 恒成立,当-1≤x≤1时,f (x)=x 3,则下列四个命题:①f(x)是以4为周期的周期函数.②f(x)在[1,3]上的解析式为f (x)=(2-x)3.③f(x)在33(,(22f 处的切线方程为3x+4y-5=0.④f(x)的图象的对称轴中,有x=±1,其中正确的命题是()A .①②③B .②③④C .①③④D .①②③④【解析】()(2)(4)4f x f x f x T =--=-∴=当13x ≤≤时,33()(2)[(2)](2)f x f x x x =--=--=-当13x ≤≤时,23331()3(2)()()2428f x x k f f =--∴=-'='=,所以切线方程为133()3450842y x x y -=--∴+-=()(2)(2),(2)()()f x f x f x f x f x f x =--=--=-=-∴ f(x)的图象关于x=±1对称,因此选D.3.设函数为定义域为R 的奇函数,且=2−,当∈0,1时,=sin ,则函数g =cos B −在区间−52)A .6B .7C .13D .14【解析】由题意,函数o −p =−op ,op =o2−p ,则−o −p =o2−p ,可得o +4)=op ,即函数的周期为4,且=op 的图象关于直线=1对称.op =|cos(πp|−op 在区间[−52,92]上的零点,即方程|cos(πp|=op 的零点,分别画=|cos(πp|与=op 的函数图象,∵两个函数的图象都关于直线=1对称,∴方程|cos(πp|=op 的零点关于直线=1对称,由图象可知交点个数为6个,可得所有零点的和为6,故选A .4.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为()A .15B .16C .17D .18【解析】定义在R 上的奇函数()f x 满足()()22f x f x +=-,得2222f x f x f x f x ++=--=-=-()()()(),即4 f x f x +=-()(),则44[]f x f x f x f x f x +=-+=--=∴()()()().()的周期为8.函数f x ()的图形如下:比如,当不同整数i x 分别为-1,1,2,5,7…时,b a -取最小值,141420f f f -=-== (),(),(),,至少需要二又四分一个周期,则b-a 的最小值为18,故选D5.已知偶函数()f x 满足()()33f x f x +=-,且当[]0,3x ∈时,()2xf x xe -=,若关于x 的不等式()()20f x tf x ->在[]150,150-上有且只有150个整数解,则实数t 的取值范围是()A .120,e -⎛⎫ ⎪⎝⎭B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎫⎪⎝⎭D .112,2e e --⎛⎫⎪⎝⎭【解析】因为偶函数()f x 满足()()33f x f x +=-,所以()()()6f x f x f x -==-,即()()6+f x f x =,所以函数()f x 是以6为周期的周期函数,当[]0,3x ∈时,()2x f x xe -=,所以()22xx f x e -'=(1-,当02x ≤<时,()0f x '>,函数()f x 递增;当23x <≤时,()0f x '<,函数()f x 递减;当当2x =时,函数()f x 取得极大值()2f x e=,作出函数()f x 在(3,3]-上的图象,如图所示:因为不等式()()20f x tf x ->在[]150,150-上有且只有150个整数解,所以不等式()()20fx tf x ->在(3,3]-上有且只有3个整数解,当()0f x =时,不符合题意,故不等式()f x t >在(3,3]-上有且只有3个整数解,因为()()1322133,f e f e --==,所以()()3311f f e=>,即()()13f f <,故不等式()f x t >在(3,3]-上的3个整数解分别为-2,2,3,所以,()()13f f t <<,即32123t ee --<<,故选:B6.已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin xg x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为()A .1-或12B .1或12-C .1-或2D .2-或1【解析】解:已知()()sin xg x h e x x x ++=-,①且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin xx g x e x x h -+---=++,得:()()sin xex x g x h x --=-+,②①+②得:()2x xe e g x -+=,由于2020x -关于2020x =对称,则20203x -关于2020x =对称,()g x 为偶函数,关于y 轴对称,则()2020g x -关于2020x =对称,由于()()20202320202x f g x x λλ-=---有唯一零点,则必有()20200f =,()01g =,即:()()0223021202020f g λλλλ=--=--=,解得:1λ=-或12.故选:A.7.已知函数()f x 为R 上的奇函数,且图象关于点(3,0)对称,且当x ∈(0,3)时,1()()12xf x =-,则函数()f x 在区间[2019,2024]上的()A .最小值为34-B .最小值为78-C .最大值为0D .最大值为78【解析】函数()f x 的图像关于点()3,0对称,()()6f x f x ∴+=--.又函数()f x 为奇函数,()()6f x f x ∴+=,∴函数()f x 是6T =的周期函数,201933763=⨯-Q ,202433762=⨯+,由周期性可知,函数()f x 在区间[2019,2024]上的图像与在区间[]3,2-上的图像一样,又当(0,3)x ∈时,1()()12xf x =-,由指数函数性质知()f x 在区间(0,3)上单调递减,又函数()f x 为R 上的奇函数,故当(3,0)x ∈-时,()12x f x =-,故()f x 在()3,0-上单调递减,且()00f =,所以()f x 在区间()3,3-上单调递减,即()f x 在区间(]3,2-上单调递减,函数取得最小值3(2)4f =-.故函数()f x 在区间[2019,2024]上的最小值为34-故选:A.【点睛】结论点睛:本题主要考查函数的性质及对称性与周期性的综合应用,函数周期性常用结论:(1)若()()f x a f x a +=-,则函数的T =2a ;(2)若()()f x a f x +=-,则函数的T =2a ;(3)若1()()f x a f x +=,则函数的T =2a ;(4)函数()f x 关于直线x a =与x b =对称,那么函数()f x 的T =2||b a -;(5)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,则函数()f x 的T =2||b a -;(6)若函数()f x 关于直线x a =对称,又关于点(),0b 对称,则函数()f x 的T =4||b a -8.已知()f x 是定义在R 上的奇函数,满足()()1f x f x =-+,当102x ≤≤时,()f x =论错误的是()A .方程()f x x a -+=0最多有四个解B .函数()f x 的值域为[,22-]C .函数()f x 的图象关于直线12x =对称D .f (2020)=0【解析】由()(1)f x f x =-+可得:(1)(2)f x f x +=-+,则()(2)f x f x =+,所以函数()f x 的周期为2,所以(2020)(0)0f f ==,D 正确,排除D ;再由()(1)f x f x =-+以及()()f x f x =--,所以()(1)f x f x -=+,则函数()f x 的对称轴为12x =,C 正确,排除C ;当012x 时,()[0f x =,2,又函数是奇函数,102x - 时,2()[2f x =-,0],即1122x - 时22()[]22f x ∈-,又因为函数()f x 的对称轴为12x =,所以1322x 时22()[]22f x ∈-,所以1322x - 时22()[]22f x ∈-又因为函数()f x 的周期为2,所以函数()f x 的值域为22[,22-,B 正确,排除B ;故选:A .9.已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2x f x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为()A .12B .1C D .2【解析】当)x ⎡∈⎣时,()(g x ∈,令2x =12x =±.∵()()2f x f x =+,∴()f x 的周期为2,所以()f x 在[-1,5]的图象所示:结合题意,当17422a =-+=,19422b =+=时,b a -取得最大值.最大值为1.故选:B.10.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .6【解析】由()()2f x f x -=知函数()f x 的图象关于直线1x =对称,∵()()2f x f x -=,()f x 是R 上的奇函数,∴()()()2f x f x f x -=+=-,∴()()4f x f x +=,∴()f x 的周期为4,考虑()f x 的一个周期,例如[]1,3-,由()f x 在[)0,1上是减函数知()f x 在(]1,2上是增函数,()f x 在(]1,0-上是减函数,()f x 在[)2,3上是增函数,对于奇函数()f x 有()00f =,()()()22200f f f =-==,故当()0,1x ∈时,()()00f x f <=,当()1,2x ∈时,()()20f x f <=,当()1,0x ∈-时,()()00f x f >=,当()2,3x ∈时,()()20f x f >=,方程()1f x =-在[)0,1上有实数根,则这实数根是唯一的,因为()f x 在()0,1上是单调函数,则由于()()2f x f x -=,故方程()1f x =-在()1,2上有唯一实数,在()1,0-和()2,3上()0f x >,则方程()1f x =-在()1,0-和()2,3上没有实数根,从而方程()1f x =-在一个周期内有且仅有两个实数根,当[]13,x ∈-,方程()1f x =-的两实数根之和为22x x +-=,当[]1,11x ∈-,方程()1f x =-的所有6个实数根之和为244282828282830x x x x x x +-++++-+++-+=+++++=.故选:A .11.已知()f x 、()g x 都是定义域为R 的连续函数.已知:()g x 满足:①当0x >时,()0g x '>恒成立;②R x ∀∈都有()()g x g x =-.()f x 满足:①R x ∀∈都有(1)(1)f x f x +=-;②当[1,1]x ∈-时,3()33f x x x =-.若关于x 的不等式223[()](3g f x g a a ≤-+对48[,33x ∈恒成立,则a 的取值范围是()A .RB .[1,)+∞C .[0,1]D .(,0][1,)-∞+∞ 【解析】因为R x ∀∈都有()()g x g x =-,所以()g x 是偶函数,又当0x >时,()0g x '>恒成立,所以()g x 在()0,+¥上单调递增,所以223[()]()3g f x g a a ≤-+等价于223|()|3f x a a ≤-+,只需2max 23|()|3f x a a ≤-+,48[,]33x ∈.因为R x ∀∈都有(1)(1)f x f x +=-,即()(2)f x f x =+,所以()f x 是周期函数,周期为2,当()1,3x ∈时,()21,1x -∈-,所以()()()3()23232f x f x x x =-=---,故48[,]33x ∈时,()()3()3232f x x x =---,求导得,()2()923f x x '=--,令()0f x '=,解得13482[,333x =-∈,238233x =+>,当43,233x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0f x '>,此时()f x 单调递增;当38233x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,所以48[,]33x ∈时,3max ()3232333222333f x f ⎛⎫⎛⎫⎛⎫==--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝---⎝⎭⎭233=,所以2232333a a ≤-+,又因为223123103234a a a ⎛⎫-+=-+-> ⎪⎝⎭,所以2223333a a a a -+=-+,则2232333a a ≤-+,解得1a ≥或0a ≤.所以实数a 的取值范围是(,0][1,)-∞⋃+∞.故选:D.二、多选题12.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则()A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【解析】解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称,即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得,(4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f = ,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确;故选:BCD13.已知定义域为(0,)+∞的函数()f x 满足:对任何(0,)+∞,都有(3)3()f x f x =,且当(1,3]x ∈时,()3f x x =-,在下列结论中,正确命题的序号是________①对任何m ∈Z ,都有(3)0m f =;②函数()f x 的值域是[0,)+∞;③存在n ∈Z ,使得(31)17n f +=;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是“存在k ∈Z ,使得1(,)(3,3)k k a b +⊆”;【解析】对于①,对任何(0,)+∞,都有(3)3()f x f x =,当(1,3]x ∈时,()3f x x =-,所以()()()111333333(3)0m m m m f f f f ---=⋅==⋯==,①正确;对于②,取(m m 1x 3,3,(1,3]3m x +⎤∈∈⎦13,333333m m m m m x x x x f f f x +⎛⎫⎛⎫⎛⎫=-=⋅⋅⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭从而函数()f x 的值域为[0,+∞),②正确;对于③,(1,3]x ∈时,()3f x x =-,对任意(0,)x ∈+∞,恒有(3)3()f x f x =成立,n Z ∈,所以()11131313313217333n n n n n n n f f ⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦解得2n =,∴③正确;对于④,充分性:令133k k a b +≤<≤则1333k ka b ≤<≤所以()()3333k k k k ab f a f b f f ⎛⎫⎛⎫-=⋅-⋅ ⎪ ⎪⎝⎭⎝⎭333k k k a b f f ⎡⎤⎛⎫⎛⎫=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦33333k k k a b ⎡⎤⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦333k k k b a ⎛⎫=- ⎪⎝⎭b a =->必要性:令0a b <<,()()3333k k k k a b f a f b f f ⎛⎫⎛⎫-=⋅-⋅ ⎪ ⎪⎝⎭⎝⎭333k k k a b f f ⎡⎤⎛⎫⎛⎫=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由函数()f x 在区间(,)a b 上单调递减,所以033k k ab f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭即33k k ab f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又当(1,3]x ∈时,()3f x x =-,且()3f x x =-为减函数,所以存在k ∈Z ,使得1333k k a b <<<,则133k k a b +<<<,所以(,)a b ⊆1(3,3)k k +∴函数()f x 在区间(,)a b ⊆1(3,3)k k +上单调递减,④正确;综上所述,正确结论的序号是①②③④.故答案为①②③④.14.定义在()0,+∞上的函数()f x 满足:对()0,x ∀∈+∞,都有()()22f x f x =,当(]1,2x ∈时,()2f x x =-,给出如下结论,其中所有正确结论的序号是:____.①对m Z ∀∈,有()20m f =;②函数()f x 的值域为[)0,+∞;③存在n Z ∈,使得()219n f +=;【解析】因为()()()11222220m m m f f f --==⋯==,所以①对;因为当(]1,2x ∈时,()[)20,1f x x =-∈,当1,12x ⎛⎤∈⎥⎝⎦时,()()11220,22f x x ⎡⎫=-∈⎪⎢⎣⎭,当111,22k k x -⎛⎤∈ ⎥⎝⎦时,()()11220,22k k k f x x ⎡⎫=-∈⎪⎢⎣⎭,当(12,2k k x -⎤∈⎦时,())1111220,22k k k f x x ---⎛⎫⎡=-∈ ⎪⎣⎝⎭,因此当k →+∞时,112,02k k -→+∞→,从而函数()f x 的值域为[)0,+∞;所以②对;因为349(2,2)∈,所以由上可得()112121 229,142n n k k f k --⎛⎫++=-=-≥ ⎪⎝⎭,即2210k n -=,111122521,26k n n k -----=∴==无解.所以③错;综上正确结论的序号是①②15.已知定义域为R 的函数()f x 既是奇函数,又是周期为3的周期函数,当3(0,2x ∈时,()sin f x x π=,则函数()f x 在区间[0,6]上的零点个数是__________.【解析】因为函数定义域为R ,周期为3,所以39(0)(()022f f f ===如图所示,画出函数的函数图像,由图像可知在[]0,6上的零点为390,1,,2,3,4,,5,622所以共有9个零点16.已知定义域为R 的奇函数()f x 满足()()13f x f x +=-,当(]0,2x ∈时,()24f x x =-+,则函数()()y f x a a R =-∈在区间[]4,8-上的零点个数最多时,所有零点之和为__________.【解析】试题分析:由于定义域为R 的奇函数()f x 满足()()13f x f x +=-,()()()()()()()()()4484f x f x f x f x f x f x f x f x f x ∴-=-+=-∴+=-∴+=-+=,,,,∴函数()f x 为周期函数,且周期为8,当(]0,2x ∈时,()24f x x =-+,函数()()y f x a a R =-∈在区间[]4,8-上的零点的个数,即为函数()y f x =与y a =的交点的个数,作出函数()[],4,8y f x x =∈-上的函数的图象,显然,当0a =时,交点最多,符合题意,此时,零点的和为()420246814-+-+++++=.17.已知函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=在定义域上有四个不同的解,则实数a 的取值范围是_______.【解析】已知定义在()(),00,-∞⋃+∞上的函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩若()()0f x f x +-=在定义域上有四个不同的解等价于21162a y x x =++关于原点对称的函数21162a y x x =-+-与函数f (x )=lnx -x (x >0)的图象有两个交点,联立可得211ln 062a x x x x -++=-有两个解,即2311ln 62a x x x x x =-++可设()2311ln 62g x x x x x x =-++,则()21ln 2232g x x x x '=-++,进而()120g x x x ''=+-≥且不恒为零,可得()g x '在()0,∞+单调递增.由()10g '=可得01x <<时,()0,()g x g x '<单调递减;1x >时,()0,()'>g x g x 单调递增,即()g x 在1x =处取得极小值且为13-作出()y g x =的图象,可得103-<<a 时,211ln 062a x x x x -++=-有两个解.故答案为:1,03⎛⎫- ⎪⎝⎭18.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,11()2x f x -⎛⎫= ⎪⎝⎭,则下列命题:①对任意x ∈R ,都有()()2f x f x +=;②函数()f x 在()1,2上递减,在()2,3上递增;③函数()f x 的最大值是1,最小值是0;④当()3,4x ∈时,31()2x f x -⎛⎫= ⎪⎝⎭.其中正确命题的序号有_________.【解析】由题意,函数()f x 对任意的x ∈R 恒有()()11f x f x =+-,可得()()2[(1)1][(1)1]f x f f x f x f x +=++=+-=,所以①正确;由[]0,1x ∈时,11()2xf x -⎛⎫= ⎪⎝⎭为单调递增函数,因为函数()f x 是定义在R 上的偶函数,可得[]1,0x ∈-时,函数()f x 为单调递减函数,又由函数的周期为2,可得函数()f x 在()1,2上递减,在()2,3上递增,所以②正确;由②可得,当2x =时,函数取得最小值,最小值为()()1202f f ==;当3x =时,函数取得最大值,最大值为()()311f f ==,根据函数的周期性,可得函数的最大值为1,最小值为12,所以③不正确;当()3,4x ∈时,则4(0,1)x -∈,可得()()1(4)3114(2)()()()22x x f x f x f x f x ----=-=-===,所以④正确.故答案为:①②④.19.已知数列{}n a 满足12a =-,且32n n S a n =+(其中n S 为数列{}n a 前n 项和),()f x 是定义在R 上的奇函数,且满足(2)()f x f x -=,则2021()f a =___________.【解析】解:因为()f x 是定义在R 上的奇函数,且满足(2)()f x f x -=所以()()()2f x f x f x -=+=-,()()()42f x f x f x +=-+=所以()f x 的最小正周期为4又因为数列{}n a 满足12a =-,且32n n S a n =+①;当2n ≥时,11312n n S a n --=+-②;①减②得133122n n n a a a -=-+,所以132n n a a -=-,()1311n n a a -=--所以{}1n a -以3-为首项,3为公比的等比数列,所以13n n a -=-,即13nn a =-所以2021202113a =-又()()2021202120211202020213414141C =-=++⋅-⋅- 所以20213被4除余3所以()()()()()202120212021()133111200f a f f f f f =-=--=---===故答案为:020.给出定义:若1122M x M -<≤+(其中M 为整数),则M 叫做离实数x 最近的整数,记作{}x M =.在此基础上给出下列关于函数(){}f x x x =-的四个结论:①函数() y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数() y f x =的图象关于直线()2kx k Z =∈对称;③函数() y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数;④函数() y f x =是偶函数;其中正确结论的是________.(把正确的序号填在横线上).【解析】因为{}x M =,函数(){}f x x x =-,所以()f x x M=-当0M =时,()11,22f x x x =-<≤,当1M =时,()111,1122f x x x =--<≤+,当2M =时,()112,2222f x x x =--<≤+,当3M =时,()113,3322f x x x =--<≤+,函数图象如图所示:由图象可知:①函数()y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦,故正确;②函数()y f x =的图象关于直线()2kx k Z =∈对称,故正确;③函数()y f x =在11,22⎡⎤-⎢⎥⎣⎦上不单调,故错误;④其函数关于y 轴对称,所以()y f x =是偶函数,故正确.故答案为:①②④1.设函数32()2f x x ex mx lnx =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是()A .(-∞,21]e e+B .(0,21]e e+C .21(e e+,]+∞D .21(e e --,21]e e+2.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数,若函数()f x 至少存在一个零点,则实数a 的取值范围是()A .21(0,]e e-B .21(0,]e e +C .21[,)e e -+∞D .21(,]e e-∞+3.已知函数2()2lnxf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是()A .21(,e e -∞+B .21(,]e e -∞+C .21[,)e e -+∞D .21(,)e e-+∞4.若函数322()x ex mx lnxf x x-+-=至少存在一个零点,则m 的取值范围为()A .(-∞,21]e e+B .21[e e +,)+∞C .(-∞,1}e e+D .1[e e+,)+∞5.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是.1.设函数32()2f x x ex mx lnx =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是()A .(-∞,21]e e+B .(0,21]e e+C .21(e e+,]+∞D .21(e e --,21]e e+【解析】解:32()2f x x ex mx lnx =-+- 的定义域为(0,)+∞,又()()f x g x x=,∴函数()g x 至少存在一个零点可化为函数32()2f x x ex mx lnx =-+-至少有一个零点;即方程3220x ex mx lnx -+-=有解,则32222x ex lnx lnxm x ex x x-++==-++,2211222()lnx lnxm x e x e x x --'=-++=--+;故当(0,)x e ∈时,0m '>,当(,)x e ∈+∞时,0m '<;则22lnxm x ex x=-++在(0,)e 上单调递增,在(,)e +∞上单调递减,故22112m e e e e e e-++=+ ;又 当0x +→时,22lnxm x ex x=-++→-∞,故21m e e+ ;故选:A .2.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数,若函数()f x 至少存在一个零点,则实数a 的取值范围是()A .21(0,]e e-B .21(0,]e e+C .21[,)e e-+∞D .21(,e e-∞+【解析】解:令2()20lnxf x x ex a x=--+=,则22(0)lnxa x ex x x =-++>,设2()2lnxh x x ex x=-++,令21()2h x x ex =-+,2()lnxh x x=,221()lnxh x x -∴'=,发现函数1()h x ,2()h x 在(0,)e 上都是单调递增,在[e ,)+∞上都是单调递减,∴函数2()2lnxh x x ex x=-++在(0,)e 上单调递增,在[e ,)+∞上单调递减,故当x e =时,得21()max h x e e=+,∴函数()f x 至少存在一个零点需满足()max a h x ,即21a e e+ .故选:D .3.已知函数2()2lnxf x x ex a x=-+-(其中e 为自然对数的底数)至少存在一个零点,则实数a 的取值范围是()A .21(,)e e-∞+B .21(,]e e-∞+C .21[,)e e-+∞D .21(,)e e-+∞【解析】解:令2()20lnx f x x ex a x =-+-=,即22lnxx ex ax=-+,令2(),()2lnx g x h x x ex a x ==-+,则函数()lnxg x x=与函数2()2h x x ex a =-+至少有一个交点,易知,函数2()2h x x ex a =-+表示开口向上,对称轴为x e =的二次函数,函数()g x 的导函数2211()x lnxlnx x g x x x ⨯--'==,令()0g x '>,解得0x e <<,令()0g x '<,解得x e >,∴函数()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,1()()max g x g e e==,作出函数()g x 与函数()h x 的草图如下,由图可知,要使函数()g x 与()h x 至少一个交点,只需()()min max h x g x ,即2212e e a e -+ ,解得21a e e+ .故选:B .4.若函数322()x ex mx lnxf x x-+-=至少存在一个零点,则m 的取值范围为()A .(-∞,21]e e+B .21[e e +,)+∞C .(-∞,1}e e+D .1[e e+,)+∞【解析】解: 函数()f x 至少存在一个零点,∴3220x ex mx lnx x -+-=有解,即22lnxm x ex x=-++有解,221()222()lnx lnx lne m x e x e x x ---'=-++=--+,∴当(0,)x e ∈时,0m '>,m 为关于x 的增函数;当(,)x e ∈+∞时,0m '<,m 为关于x 的减函数.因此,画出函数22lnxy x ex x=-++的图象如右图所示,则若函数()f x 至少存在一个零点,则m 小于函数22lnxy x ex x=-++的最大值即可,函数22lnx y x ex x =-++的最大值为21e e+即21m e e+ .故选:A .5.设函数2()2lnxf x x ex a x=--+(其中e 为自然对数的底数),若函数()f x 至少存在一个零点,则实数a 的取值范围是(-∞,21e e+.【解析】解:21()22lnxf x x e x-'=--,令()0f x '=得x e =,当0x e <<时,()0f x '<,当x e >时,()0f x '>,()f x ∴在(0,)e 上单调递减,在(,)e +∞上单调递增,∴当x e =时,()f x 起点最小值f (e )21e a e =--+,()f x 至少有1个零点,210e a e ∴--+ ,即21a e e + .故答案为:(-∞,21]e e+.。
专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(原卷版)
2
A.
( , + ∞)
3
2
B.
(−∞, 3)
2
C.( ,1)
3
2
D.( ,1)∪(1,+∞)
3
4.已知函数 y=f(x)的图象关于直线 x=1 对称,且在[1,+∞)上单调递减,f(0)=0,
则 f(x+1)>0 的解集为(
A.
(1,+∞)
B.
(﹣1,1)
)
C.
(﹣∞,﹣1)
D.
(﹣∞,﹣1)∪(1,+∞)
题型一. 轴对称
1.已知函数 f(x)=f(2﹣x),x∈R,当 x∈[1,+∞)时,f(x)为增函数.设 a=f(1)
,b
=f(2)
,c=f(﹣1),则 a,b,c 的大小关系是(
A.a>b>c
B.b>a>c
)
C.c>a>b
D.c>b>a
2.定义在 R 上的奇函数 f(x)满足 f(1+x)=f(1﹣x),且当 x∈[0,1]时,f(x)=x(3
(2009•山东)已知定义在 R 上的奇函数 f(x)满足 f(x﹣4)=﹣f(x),且在区间[0,2]
高中数学一轮复习讲义
上是增函数,若方程 f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根 x1,x2,x3,
x4,则 x1+x2+x3+x4=
.
课后作业.函数性质
2�+1
1.若函数 f(x)=1+ 2�+1 +sinx 在区间[﹣k,k](k>0)上的值域为[m,n],则 m+n 等于
f(x)=﹣x(x﹣2),则(
高考数学100个常考高频考点
高考数学100个常考高频考点高考数学100个常考高频考点数学是高考中必考科目之一,也是许多学生最头疼的科目之一。
为了帮助广大考生高效备考,总结了高考数学100个常考高频考点,希望能对你有所帮助。
一、数与式1.常用数学符号及代表意义2.整数、有理数、无理数、实数3.绝对值及其性质4.分式及其基本性质5.分式运算6.带分数与假分数及其互化7.指数及其运算法则8.对数及其运算法则二、函数9.函数初步10.函数图像的基本性质11.函数的对称性及奇、偶性12.函数的单调性13.函数的零点、极值及其应用14.幂函数、指数函数、对数函数及其图像与性质15.三角函数、反三角函数及其性质16.常用函数的图像及其简单变换17.函数的综合应用问题三、三角函数18.任意角及其弧度制19.三角函数的基本关系20.简单三角函数的图像与性质21.三角函数的单调性22.三角函数的周期性及其性质23.三角函数的和差化积公式24.三角函数的倍角公式、半角公式25.三角函数的化简与求值四、数列与数学归纳法26.数列的基本概念27.等差数列的通项公式及其应用28.等比数列及其通项公式及其应用29.递推数列及递推公式30.数学归纳法及其应用五、平面向量31.向量及其基本概念32.向量的加、减、夹角公式33.向量的数量积及其应用34.向量的叉积及其应用35.平面向量的坐标表示法及其应用六、解析几何36.平面直角坐标系及其应用37.直线的垂直、平行及斜率公式38.直线的方程及其应用39.周长、面积的坐标公式40.圆的标准方程、一般方程及其性质41.直线与圆的位置关系、圆的切线方程42.抛物线、双曲线、椭圆的基本概念与方程43.二次函数的图像与性质44.二次函数的拐点、零点、极小值、极大值、客观题解七、立体几何45.空间几何体的基本概念46.空间向量的基本概念47.空间直线及其方程48.空间平面及其方程49.球的基本性质及其方程50.空间几何体的表面积与体积及其应用八、三角学51.三角形的基本概念、基本性质52.直角三角形及其基本性质53.三角形的内心、外心、垂心、重心及其性质54.三角形的中线、中位线、高及其性质55.相似三角形及其性质56.勾股定理、正弦定理、余弦定理57.解三角形、三角形综合应用九、导数与微积分58.导数的概念、性质、计算方法59.常用函数的导数60.利用导数研究函数的性质61.函数的最值、单调性及其应用62.微分的概念、定义及其应用63.中值定理及其应用十、集合与概率64.集合及其表示法、基本概念及其运算65.概率的基本概念、事件的合并与交66.等可能概型的概率问题67.条件概率及其应用68.互不相容事件、全概率公式和贝叶斯公式69.离散型随机变量及其分布律70.随机事件、概率分布函数、数学期望的概念及其计算方法十一、数理统计71.统计调查的设计方法72.总体、样本、参数及其估计73.频率分布和样本均值、方差的计算74.区间估计75.假设检验的基本概念76.一类、二类错误和检验水平77.正态分布、χ²分布、t分布的概念及其应用78.方差分析、回归分析及其应用79.抽样、分层抽样、整群抽样的基本概念十二、数学模型80.数学建模的基本概念81.数学建模的基本步骤82.常见的数学模型类型83.模型的求解、分析和优化84.数学模型的应用实例以上是高考数学100个常考高频考点的总结,相信通过有效的学习和练习,一定可以在考场上取得好成绩,希望对你有所帮助!。
千题百炼——高考数学100个热点问题
千题百炼——高考数学100个热点问题第四章第26炼求未知角的三角函数值三角函数与解三角形第26炼求未知角的三角函数值在三角函数的解答题中,经常要解决求未知角的三角函数值,此类问题的解决方法大体上有两个,一是从角本身出发,利用三角函数关系列出方程求解,二是向已知角(即三角函数值已知)靠拢,利用已知角将所求角表示出来,再利用三角函数运算公式展开并整体代换求解,本周着力介绍第二种方法的使用和技巧一、基础知识:1、与三角函数计算相关的公式:(1)两角和差的正余弦,正切公式:① sin sin cos sin cos② sin sin cos sin cos③ cos cos cos sin sin④ cos cos cos sin sin⑤ tan tan tan tan tan⑥ tan1tan tan1tan tan(2)倍半角公式:① sin22sin cos② cos2cos sin2cos112sin③ tan222222tan 1tan2,其中tan(3)辅助角公式:asin bcos2、解决此类问题的方法步骤: b a(1)考虑用已知角表示未知角,如需要可利用常用角进行搭配(2)等号两边同取所求三角函数,并用三角函数和差公式展开(3)利用已知角所在象限和三角函数值求出此角的其他函数值(4)将结果整体代入到运算式即可3、确定所涉及角的范围:当已知角的一个三角函数值求其他三角函数值时,角的范围将决定其他三角函数值的正负,所以要先判断角的范围,再进行三角函数值的求解。
确定角的范围有以下几个层次:(1)通过不等式的性质解出该角的范围(例如:5,则) 612243(2)通过该角的三角函数值的符号,确定其所在象限。
2021年高考数学高分套路 函数的周期性、对称性(解析版)
1
f(4).因为 f(2+2)=
,所以 f(4)=- =-
=-2- 3.故 f(2 020)=-2- 3.
-f2
f2 2- 3
(3) ∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即 f(x+6)=f(x),
∴f(x)是周期为 6 的周期函数,∴f(919)=f(153×6+1)=f(1).
【修炼套路】---为君聊赋《今日诗》,努力请从今日始
考向一 周期性
x1-x,0≤x≤1, 【例 1】(1)若函数 f(x)(x∈R)是周期为 4 的奇函数,且在[0,2]上的解析式为 f(x)=
sin πx,1<x≤2,
29
41
则 f 4 +f 6 =________.
1
(2)已知定义在 R 上的函数 f(x)满足 f(2)=2- 3,且对任意的 x 都有 f(x+2)=
函数的周期性与对称性
【套路秘籍】---千里之行始于足下
一.对称性 (一)对称轴 1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中 的轴对称,该直线称为函数的对称轴。 2.常见函数的对称轴 ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线 均为它的对称轴 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线 均为它的对称轴 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 x=-b/(2a) ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与 y=-x 均为它的对称轴 ⑤指数函数:既不是轴对称,也不是中心对称 ⑥对数函数:既不是轴对称,也不是中心对称 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是 y 轴;而其他的幂函数不具备对称性 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2 是它的对称轴 ⑨正弦型函数:正弦型函数 y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出 x,就是 它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2 中解出 x,就是它的对称轴;需要注意 的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化 ⑩余弦函数:既是轴对称又是中心对称,其中 x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心 ⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有 的同学会误以为对称中心只是(kπ,0) ⑿对号函数:对号函数 y=x+a/x(其中 a>0)因为是奇函数所以是中心对称,原点是它的对称中心。 ⒀三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性 得因题而异。 ⒁绝对值函数:这里主要说的是 y=f(│x│)和 y=│f(x)│两类。前者显然是偶函数,它会关于 y 轴对称; 后者是把 x 轴下方的图像对称到 x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如 y=│lnx │就没有对称性,而 y=│sinx│却仍然是轴对称
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( a,0 ) 对称
4 对称性的作用 最突出的作用 知一半而得全部 ,即一旦函数 备对称性,则只需要 分析一侧的性质,便可得到整个函数的性质, 要体现在以 几点 1 可利用对称性求得某些点的函数值 2 在作 时可作出一侧 ,再利用对称性得到另一半
3 极值点关于对称轴 对称中心 对称 4 在轴对称函数中,关于对称轴对称的两个单调区间单调性相 关于对称中心对称的两个单调区间单调性相同 在中心对称函数中,
T 的自变 函数值相等
3 若 f ( x ) 是一个周期函数,则 f ( x + T ) = f ( x ) ,那 即 2T 是 f ( x ) 的一个周期,进而可得
f ( x + 2T ) = f ( x + T ) = f ( x ) ,
是 f ( x ) 的一个周期
kT ( k ∈ Z )
4 最小 周期
f ( x ) 是奇函数中的 x 占据整个括号,
f (x + a) = − f − ( x + a )
变换来理解, f ( x + a ) 是奇函数,则 f ( x + a ) 关于 ( 0,0 ) 中心对
称,而 f ( x ) 可视
f ( x + a)
移了 a 个单位
方向由 a 的符号决定 ,所以 f ( x ) 关于
第二章
第 5 炼 函数的对称性
周期性
函数及 性质
二 函数的周期性 1 定 设 f ( x ) 的定 域
D, 若对 ∀x ∈ D , 存在一个非零常数 T , f ( x + T ) = f ( x ) ,
则称函数 f ( x ) 是一个周期函数,称 T 2 周期性的理解 可理解 间隔
f ( x ) 的一个周期
由第 3 条所说, kT ( k ∈ Z )
是 f ( x ) 的一个周期,所以在某些周期函
数中,往往寻找周期中最小的 数,即称 周期,比如常值函数 f ( x ) = C 5 函数周期性的判定 1 2
最小 周期 然而并非所 的周期函数都 最小
f ( x + a ) = f ( x + b)
可得 f ( x )
f ( x + a)
第二章
第 5 炼 函数的对称性
周期性
函数及 性质
2 中心对称的等 1
述
f ( a − x ) = − f ( a + x ) ⇔ f ( x ) 关于 ( a,0 ) 中心对称
a = 0 时,恰好就是奇函数
2
a+b f ( a − x ) = − f ( b + x ) ⇔ f ( x ) 关于 ,0 中心对称 2
a+b 2
f ( x ) 关 于 x = 1 轴 对 称 ⇒ f ( x ) = f (2 − x ) , 或 得 到
f ( 3 − x ) = f ( −1 + x ) 均可,只是在求函数值方面,一侧是 f ( x ) 更 方便
3 称 要注意偶函数是指自变 取相 数,函数值相等,所以在 f ( x + a ) 中, x 仅是括号中的 一部分,偶函数只是指 中的 x 取相 以 的命题区分 若 f ( x ) 是偶函数,则 f ( x + a ) = f − ( x + a ) 所以是指括号内取相 数,则函数值相等,所以 本结论 可通过 而 f ( x ) 可视 对称 数时,函数值相等,即 f ( x + a ) = f ( − x + a ) ,要
第二章
第 5 炼 函数的对称性
周期性
函数及 性质
第 5 炼反函数的对称性
一 基础知识 一 函数的对称性 1 对定 域的要求
周期性反
无论是轴对称还是中心对称,均要求函数的定 域要关于对称轴
或
对称中心 对称 2 轴对称的等 1 2 述
f ( a − x ) = f ( a + x ) ⇔ f ( x ) 关于 x = a 轴对称
f ( 3 − x ) = − f ( −5 + x ) 均可,同样在求函数值方面,一侧是 f ( x ) 更 方便
3
f ( x + a ) 是奇函数,则 f ( x + a ) = − f ( − x + a ) ,进而可得到
f ( x ) 关于 ( a,0 ) 中
心对称 要注意奇函数是指自变 取相 数,函数值相 ,所以在 f ( x + a ) 中, x 仅是括号中的 一部分,奇函数只是指 中的 x 取相 以 的命题区分 若 f ( x ) 是奇函数,则 f ( x + a ) = − f − ( x + a ) 所以是指括号内取相 数,则函数值相 ,所以 本结论 可通过 数时,函数值相 ,即 f ( x + a ) = f ( − x + a ) ,要
a = 0 时,恰好就是偶函数
f ( a − x ) = f ( b + x ) ⇔ f ( x ) 关于 x =
a+b 轴对称 2
在已知对称轴的情况
,构造形如 f ( a − x ) = f ( b + x ) 的等式只需注意两点,一是等 二是 a , b 的取值保号内 x 前面的符号相 所给对称轴即可 例如
在已知对称中心的情况 , 构造形如 f ( a − x ) = − f ( b + x ) 的等式同样需注意两点, 一 是等式两侧 f 和 x 前面的符号均相 可 例 如 二是 a , b 的取值保证 x =
a+b 2
所给对称中心即
f ( x ) 关 于 ( −1,0 ) 中 心 对 称 ⇒ f ( x ) = − f ( −2 − x ) , 或 得 到
f ( x + a ) 是偶函数,则 f ( x + a ) = f ( − x + a ) ,进而可得到
f ( x ) 关于 x = a 轴对
f ( x ) 是偶函数中的 x 占据整个括号,
f (x + a) = f − ( x + a )
变换来理解, f ( x + a ) 是偶函数,则 f ( x + a ) 关于 x = 0 轴对称, 移了 a 个单位 方向由 a 的符号决定 ,所以 f ( x ) 关于 x = a
周期函数, 周期 T = b − a
f ( x + a ) = − f ( x ) ⇒ f ( x ) 的周期 T = 2a
分析 直接从等式入手无法得周期性, 考虑等间距再构造一个等式 f ( x + 2a ) = − f ( x + a ) 所以